
Scaling Optimistic Concurrency Control by Approximately
Partitioning the Certifier and Log

Philip A. Bernstein
Microsoft Research

Redmond, WA, USA
phil.bernstein@microsoft.com

Sudipto Das
Microsoft Research

Redmond, WA, USA
sudipto.das@microsoft.com

Abstract

In optimistic concurrency control, a certifier algorithm processes a log of transaction operations to de-
termine whether each transaction satisfies a given isolation level and therefore should commit or abort.
This logging and certification of transactions is often sequential and can become a bottleneck. To im-
prove transaction throughput, it is beneficial to parallelize or scale out the certifier and the log. One
common technique for such parallelization is to partition the database. If the database is perfectly parti-
tioned such that transactions only access data from a single partition, then both the log and the certifier
can be parallelized such that each partition has its own independent log and certifier. However, for many
applications, partitioning is only approximate, i.e., a transaction can access multiple partitions. Paral-
lelization using such approximate partitioning requires synchronization between the certifiers and logs
to ensure correctness. In this paper, we present the design of a parallel certifier and a partitioned log
that uses minimal synchronization to obtain the benefits of parallelization using approximate partition-
ing. Our parallel certifier algorithm dynamically assigns constraints to each certifier. Certifiers enforce
constraints using only atomic writes and reads on shared variables, thus avoiding expensive synchro-
nization primitives such as locks. Our partitioned log uses a lightweight causal messaging protocol to
ensure that transactions accessing the same partition appear in the same relative order in all logs where
they both appear. We describe the techniques applied to an abstract certifier algorithm and log protocol,
making them applicable to a variety of systems. We also show how both techniques can be used in Hyder,
a scale-out log-structured indexed record manager.

1 Introduction

Optimistic concurrency control (OCC) is a technique to analyze transactions that access shared data to determine
which transactions commit or abort [14]. Instead of delaying certain operations that might lead to an incorrect
execution, OCC allows a transaction to execute its operations as soon as it issues them. After the transaction
finishes, OCC determines whether the transaction commits or aborts. A certifier is the component that makes
this determination. It is a sequential algorithm that analyzes descriptions of the transaction one-by-one in a given
total order. Each transaction description, called an intention, is a record that describes the operations that the

Copyright 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

32

transaction performed on shared data, such as read and write. One way to determine the total order of intentions
is to store them in a log. In that case, the certifier analyzes intentions in the order they appear in the log.

A certifier algorithm has throughput limits imposed by the underlying hardware [7]. This limits the scala-
bility of a system that uses it. To improve the throughput, it is worthwhile to parallelize the algorithm. One way
to do this is to split the set of transactions into partitions such that for every pair of transactions from differ-
ent partitions, there are no conflicts between them. Then the certifier can run independently on each partition.
However, it is often infeasible to partition transactions in this way. In that case, the certifier algorithm needs to
handle transactions that span more than one partition. This paper presents such an algorithm.

The log also has throughput limits imposed by the hardware. Thus, a second opportunity for improving
throughput is to partition the log, such that each partition includes updates that apply to a distinct database
partition. This enables the log to be distributed over independent storage devices to provide higher aggregate
throughput of read and append operations to the log. However, if the partitioning is imperfect, some transac-
tions need to appear in two or more partitions. In this case, the log partitioning must ensure that conflicting
transactions appear in the same relative order in all logs where they both appear. This paper presents a way of
generating a log partitioning that satisfies this property.

The goal of these these two techniques—parallelizing a certifier and partitioning a log—is to increase trans-
action throughput. Our motivation for designing these techniques is to increase the throughput of our Hyder
system, a database architecture that scales out without partitioning [8]. In Hyder, the log is the database, which
is represented as a multi-version binary search tree. Each transaction T executes on a snapshot of the database
and generates an intention record that contains T ’s writeset and, depending on the isolation level, its readset.
The intention is stored in the log. A certification algorithm, called meld [9], reads intentions from the log and
sequentially processes them in log order to determine whether a transaction committed or aborted. If a transac-
tion commits, meld does one more step beyond OCC certification, namely, it merges the transaction’s updates
into the server’s locally-cached copy of the database. Since all servers receive the same log, meld makes the
same commit and abort decisions for every transaction. Therefore, for any two servers, their locally-cached
copies of the database are identical for any data that is stored in both of them. Since there is no synchronization
between the servers apart from appending to and reading from the shared log, the system scales out. That is,
throughput increases as more servers are added, until the log, network, or meld algorithm is saturated. Often,
the meld algorithm is the bottleneck. This was demonstrated in [6] by experiments with a distributed implemen-
tation of Hyder on a cluster of enterprise-grade commodity servers. It is therefore important to parallelize meld
to increase transaction throughput. Bernstein et al. [6] describes two approaches that use pipeline parallelism
to speed up meld; it introduces two preliminary stages that reduce the work done by the final sequential meld
algorithm. In this paper, we leverage database partitioning to parallelize the meld algorithm itself.
Organization: We formally define the problem in Section 2 and then present the algorithms for parallel certifi-
cation (Section 3) and log partitioning (Section 4). In Section 5, we revisit the question of how to apply these
parallel solutions to Hyder. Section 6 summarizes related work and Section 7 is the conclusion.

2 Problem Definition

The certifier’s analysis relies on the notion of conflicting operations. Two operations conflict if the relative order
in which they execute affects the value of a shared data item or the value returned by one of them. The most
common examples of conflicting operations are read and write, where a write operation on a data item conflicts
with a read or write operation on the same data item. Two transactions conflict if one transaction has an operation
that conflicts with at least one operation of the other transaction.

To determine whether a transaction T commits or aborts, a certifier analyzes whether any of T ’s operations
conflict with operations issued by other concurrent transactions that it previously analyzed. For example, if
two transactions executed concurrently and have conflicting accesses to the same data, such as independent

33

writes of a data item x or concurrent reads and writes of x, then the algorithm might conclude that one of the
transactions must abort. Different certifiers use different rules to reach their decision. However, all certifiers
have one property in common: their decision depends in part on the relative order of conflicting transactions.

We define a database partitioning to be a set of partition names, such as {P1, P2, . . .}, and an assignment
of every data item in the database to one of the partitions. A database partitioning is perfect with respect to a
set of transactions T = {T1, T2, . . .} if every transaction in T reads and writes data in at most one partition.
That is, the database partitioning induces a transaction partitioning. If a database is perfectly partitioned, then it
is trivial to parallelize the certifier and partition the log: For each partition Pi, create a separate log Li and an
independent execution Ci of the certifier algorithm. All transactions that access Pi append their intentions to Li,
and Ci takes Li as its input. Since transactions in different logs do not conflict, there is no need for shared data
or synchronization between the logs or between executions of the certifier on different partitions.

A perfect partitioning is not possible in many practical situations, so this simple parallelization approach is
not robust. Instead, suppose we can define a database partitioning that is approximate with respect to a set of
transactions T , meaning that most transactions in T read and write data in at most one partition. That is, some
transactions in T access data in two or more partitions (so the partitioning is not perfect), but most do not.

In an approximate partitioning, the transactions that access only one partition can be processed in the same
way as a perfect partitioning. However, transactions that access two or more partitions make it problematic
to partition the certifier. The problem is that such multi-partition transactions might conflict with transactions
that are being analyzed by different executions of the certifier algorithm, which creates dependencies between
these executions. For example, suppose data items x and y are assigned to different partitions P1 and P2, and
suppose transaction Ti writes x and y. Then Ti must be evaluated by C1 to determine whether it conflicts with
concurrent transactions that accessed x and by C2 to determine whether it conflicts with concurrent transactions
that accessed y. These evaluations are not independent. For example, if C1 determines that Ti must abort, then
that information is needed by C2, since C2 no longer has the option to commit Ti. When multiple transactions
access different combinations of partitions, such scenarios can become quite complex.

A transaction that accesses two or more partitions also makes it problematic to partition the log, because its
intentions need to be ordered in the logs relative to all conflicting transactions. Continuing with the example
of transaction Ti above, should its intention be logged on L1, L2, or some other log? Wherever it is logged, it
must be ordered relative to all other transactions that have conflicting accesses to x and y before it is fed to the
OCC algorithm. The problem we address is how to parallelize the certifier and partition the log relative to an
approximate database partitioning. Our solution takes an approximate database partitioning, an OCC algorithm,
and an algorithm to atomically append entries to the log as input. It has three components:

1. Given an approximate database partitioning P = {P1, P2, . . . , Pn}, we define an additional logical parti-
tion P0. Each transaction that accesses only one partition is assigned to the partition that it accesses. Each
transaction that accesses two or more partitions is assigned to the master logical partition P0.

2. We parallelize the certifier algorithm into n + 1 parallel executions {C0, C1, C2, . . . , Cn}, one for each
partition, including the logical partition. Each single-partition transaction is processed by the certifier
execution assigned to its partition. Each multi-partition transaction is processed by the logical partition’s
execution of the certifier algorithm. We define synchronization constraints between the logical partition’s
certifier execution and the partition-specific certifier executions so they reach consistent decisions.

3. We partition the log into n + 1 distinct logs {L0, L1, L2, . . . , Ln}, one associated with each partition
and one associated with the logical partition. We show how to synchronize the logs so that the set of all
intentions across all logs is partially ordered and every pair of conflicting transactions appears in the same
relative order in all logs where they both appear. Our solution is a low-overhead sequencing scheme based
on vector clocks.

Our solution works with any approximate database partitioning. Since multi-partition transactions are more

34

� �� ��

����	
��
��
�

�������������

�� ��
��������� 	��
��
��
�
����

���
�����

�������
��
�
����

���
����������

�������
��
�
����

���
����������

�������
��
�
����

���
����������

����	
��
��
�

�������������

����	
��
��
�

�������������

����	
��
��
�

��������������

����

 ����������
����

�� �

�� �

�� �

����������
�������

	�
������ �������������
�����
	� �

	� �

	� �

�������������
��������

�� �� �� ��

Figure 1: Design overview of parallel certification showing the different certifiers and the data structures used.

expensive than single-partition transactions, the fewer multi-partition transactions that are induced by the data-
base partitioning, the better. The synchronization performed between parallel executions of the certifier algo-
rithm is external to the certifier algorithm. Therefore, our solution works with any certifier algorithm. The same
is true for the synchronization performed between parallel logs.

3 Parallel Certification

We now explain the design of a parallel certifier assuming a single totally-ordered log. In this section, we use the
term certifier to refer to a certifier execution. A certifier can be parallelized using multiple threads within a single
process, multiple processes co-located on the same machine, or multiple processes distributed across different
machines; our discussion encompasses all such scenarios. Section 4, entitled “Partitioned Log,” explains how
the parallel certification of this section can use a partitioned log.

3.1 Design

We dedicate one certifier Ci to process intentions from single-partition transactions on partition Pi, and dedicate
one certifier C0 to process intentions from multi-partition transactions. A single scheduler S processes intentions
in log order, assigning each intention to one of the certifiers. The certifiers can process non-conflicting intentions
in parallel. However, they must process conflicting intentions in log order.

Our design uses constraints that capture the log order. S passes these constraints to each Ci. The certifiers
validate the constraints using atomic reads and writes on shared variables, so the synchronization is efficient.
Figure 1 illustrates the design of a parallel certifier showing the different variables and data structures maintained
by each Ci, and the data structures used by S to determine synchronization constraints passed to each Ci.

In what follows, for succinctness we frequently use the word “transaction” to mean the intention produced
by the transaction. Each intention in the log has a unique location, called its log sequence number, or LSN,
which reflects the relative order of intentions in the log. That is, intention Inti precedes intention Intk in the log
if and only if the LSN of Inti is less than the LSN of Intk.

Every certifier Ci(∀i ∈ [0, n]) maintains a variable LastProcessedLSN(Ci) that stores the LSN of the last
transaction processed by Ci. After Ci processes a transaction Tk, it sets LastProcessedLSN(Ci) equal to Tk’s
LSN; Ci performs this update irrespective of whether Tk committed or aborted. Every other certifier Cj(∀j ̸= i)
can atomically read LastProcessedLSN(Ci) but cannot update it. In our algorithm, each LastProcessedLSN(Ci),
i ∈ [1, n], is read only by C0 and LastProcessedLSN(C0) is read by all Ci, i ∈ [1, n]. Each Ci (i ∈ [0, n]) also
has an associated producer-consumer queue Qi where S enqueues the transactions Ci needs to process (i.e., S is
the producer for Qi). Each Ci dequeues the next transaction from Qi when it completes processing its previous
transaction (i.e., Ci is the consumer for Qi). The scheduler S maintains a local structure, LastAssignedLSN-
Map, that maps each Ci, i ∈ [1, n]), to the LSN of the last single-partition transaction it assigned to Ci. S

35

maintains another local structure, LastLSNAssignedToC0Map, that stores a map of each partition Pi to the
LSN of the last multi-partition transaction that it assigned to C0 and that accessed Pi.

Each certifier Ci needs to behave as if it were processing all single-partition and multi-partition transactions
that access Pi in log order. This requires that certifiers satisfy the following synchronization constraint:

Parallel Certification Constraint: Before certifying a transaction T that accessed partition Pi, all
transactions that precede T in the log and accessed Pi must have been certified.

This condition is trivially satisfied by a sequential certifier. Threads in a parallel certifier must synchronize
to ensure that the condition holds. For each transaction T , S determines which certifiers Ci will process T .
S uses its two local data structures, LastAssignedLSNMap and LastLSNAssignedToC0Map, to determine and
provide each such Ci with the synchronization constraints it must satisfy before Ci can process T . Note that this
constraint is conservative since this strict ordering is essential only for conflicting transactions. However, in the
absence of finer-grained tracking of conflicts, this conservative constraint guarantees correctness.

3.2 Synchronizing the Certifier Threads

Let Ti denote the transaction that S is currently processing. We now describe how S generates the synchroniza-
tion constraints for Ti. Once S determines the constraints, it enqueues the transaction and the constraints to the
queue corresponding to the certifier.
Single-partition transactions: If Ti accessed a single partition Pi, then Ti is assigned to the single-partition
certifier Ci. Ci must synchronize with C0 before processing Ti to ensure that the parallel certification constraint
is satisfied. Let Tk be the last transaction that S assigned to C0, that is, LastLSNAssignedToC0Map(Pi) = k.
S passes the synchronization constraint LastProcessedLSN(C0)≥ k to Ci along with Ti. The constraint tells
Ci that it can process Ti only after C0 has finished processing Tk. When Ci starts processing Ti’s intention,
it accesses the variable LastProcessedLSN(C0). If the constraint is satisfied, Ci can start processing Ti. If the
constraint is not satisfied, then Ci either polls the variable LastProcessedLSN(C0) until the constraint is satisfied
or uses an event mechanism to be notified when LastProcessedLSN(C0)≥ k.
Multi-partition transactions: If Ti accessed multiple partitions {Pi1, Pi2, . . .}, then S assigns Ti to C0. C0

must synchronize with the certifiers {Ci1, Ci2, . . .} of all partitions {Pi1, Pi2, . . .} accessed by Ti. Let Tkj be the
last transaction assigned to Pj ∈ {Pi1, Pi2, . . .}, that is, LastAssignedLSNMap(Cj) = kj . S passes the following
synchronization constraint to C0:∧

∀j:Pj∈{Pi1,Pi2,...} LastProcessedLSN(Cj) ≥ kj ,

The constraint tells C0 that it can process Ti only after all Cj in {Ci1, Ci2, . . .} have finished processing their cor-
responding Tkj ’s, which are the last transactions that precede Ti and accessed a partition that Ti accessed. When
C0 starts processing Ti’s intention, it reads the variables LastProcessedLSN(Cj) ∀j : Pj ∈ {Pi1, Pi2, . . .}. If the
constraint is satisfied, C0 can start processing Ti. Otherwise, C0 either polls the variables LastProcessedLSN(Cj)
∀j : Pj ∈ {Pi1, Pi2, . . .} until the constraint is satisfied or uses an event mechanism to be notified when the
constraint is satified.

Notice that for all j such that Pj ∈ {Pi1, Pi2, . . .}, the value of the variable LastProcessedLSN(Cj) increases
monotonically over time. Thus, once the constraint LastProcessedLSN(Cj)≥ kj becomes true, it will be true
forever. Therefore, C0 can read each variable LastProcessedLSN(Cj) independently, with no synchronization.
For example, it does not need to read all of the variables LastProcessedLSN(Cj) within a critical section.

36

� �� ��

�
�

��

������	
����
����

���������� ���

���������������	

�� ��

����
�� �		�
���
��
��

�� ����	

��	������		���������
�
���

�� �

�� �

�� �

����
����
��

��	���

������	
����
��

�������

��� ��� ��� ���

�� �

�� �

�� �
���������
���	������
�	
����

�� 	����	
�����		��

��

���

��	������		���������

�������

�

�

�

�

!

!

"

"

� �
������	
#���#
	��������	�

�

�$��%����&�����
���	�������

Figure 2: An example of the parallel certifier processing a single-partition transaction that accessed partition P2.

3.3 An Example

Consider a database with three partitions P1, P2, P3. Let C1, C2, C3 be the parallel certifiers assigned to
P1, P2, P3 respectively, and let C0 be the certifier responsible for multi-partition transactions. In this exam-
ple, we consider the following sequence of transactions:

T
[P2]
1 , T

[P1]
2 , T

[P2]
3 , T

[P3]
4 , T

[P1,P2]
5 , T

[P2]
6 , T

[P3]
7 , T

[P1,P3]
8 , T

[P2]
9

A transaction is represented in the form T
[Pj]
i where i is the transaction’s unique identifier and [Pj] is the set

of partitions that Ti accesses. In this example, we use the transaction’s identifier i also as its LSN. That is, we
assume T1 appears in position 1 in the log, T2 in position 2, and so on.

S processes the transactions (i.e., intentions) in log order. For each transaction, it determines which certifiers
will process the intention and determines the synchronization constraint it needs to pass to the certifiers to
enforce the parallel certification constraint. The sequence of figures 2– 8 illustrate the parallel certifier in action
while it is processing the above sequence of transactions, showing how the certifiers synchronize. In each figure,
we emphasize the transaction(s) at the tail of the log being processed by S; time progresses from top to bottom.
The LastProcessedLSN at the top of the figure shows the variable’s value for each certifier before it has started
processing the recently-arrived transactions, i.e., the values after processing the transactions from the previous
figure in the sequence. The vertical arrows beside each vertical line shows the processing time of each intention
at a certifier. The values updated as a result of processing an intention are highlighted in red. To avoid cluttering
the figure, we show minimal information about the previous transactions.

Figure 2 shows a single-partition transaction T1 accessing P2. The numbers ..1 – ..6 identify points in the
execution. At ..0 , S determines the synchronization constraint it must pass to C2, namely, that C0 must
have at least finished processing the last multi-partition transaction that accessed P2. S reads this value in
LastLSNAssignedToC0Map(P2). Since S has not processed any multi-partition transaction before T1, the con-
straint is LastProcessedLSN(C0)≥ 0. At ..1 , S updates LastAssignedLSNMap(C2)= 1 to reflect its assignment
of T1 to C2. At ..2 , S assigns T1 to C2, and then moves to the next transaction in the log. At ..3 , C2 reads
LastProcessedLSN(C0) as 0 and hence determines at ..4 that the constraint is satisfied. Therefore, at ..5 C2 starts
processing T1. After C2 completes processing T1, at ..6 it updates LastProcessedLSN(C2) to 1.

Figure 3 shows the processing of the next three single-partition transactions—T2, T3, T4—using steps sim-
ilar to those in Figure 2. As shown in Figure 4, whenever possible, the certifiers process the transactions in
parallel. In the state shown in Figure 3, at ..2 C1 is still processing T2, at ..3 C2 completed processing T3 and
updated its variable LastProcessedLSN(C2) to 3, and at ..4 C3 completed processing T4 and updated its variable
LastProcessedLSN(C3) to 4.

Figure 4 shows the processing of the first multi-partition transaction, T5, which accesses partitions P1

and P2. S assigns T5 to C0. At ..0 , S specifies the required synchronization constraint, which ensures that

37

� �� ��

�
�

�� ���

��	
��
��		�����

�� ��

����

�� �

�� �

�� �

��	
�		�����

������

��	
����		�����

�
�����

	
� 	
� 	�� 	
�

��

��

��

�
�

��

	
�
���

�
�

�� ���

	��

���

���
	
�

���

�
�

�	

�

� �

�� �������������������

���������������������

�������

���������������������

�������

�

�

���������������������������

� ��!����"����������������

Figure 3: S processes transactions in log order and updates its local structures. Each certifier processes the
transactions that S assigns to it.

� �� ��

�
�

�� ���

��	
��
��		�����

�� ��

����

�� �

�� �

�� 	

��	
�		�����

������

��	
����		�����

�
�����

��
��
��
	�

� �

� �

� �

�
�

��

��
���

�
�

�� ���

����
�

�	

�

�����

��	
�		�����

�������������

��	
�		�����

�������������

���

�

�

�

�

	

�

�
�

�� ������

����
���������������������

�� ������

����
���������������������

������������ ����� ����������!�

�� �"���#����������

�� ���$%�������&�"$������

����
���������������

�� ����������!�����������

�� ����� ���������

�

�

	

�

�

��"$������%���%����"��"����

�' �(�� �)���� ��� ����� ��

�� �������$������� *��
�

��

��

Figure 4: For multi-partition transactions, S determines the synchronization constraints and assigns the transac-
tion to C0.

T5 is processed after T2 (the last single-partition transaction accessing P1) and T3 (the last single-partition
transaction accessing P2). S reads LastAssignedLSNMap(P1) and LastAssignedLSNMap(P2) to determine
the LSNs of the last single-partition transactions for P1 and P2, respectively. The synchronization constraint
shown at ..0 corresponds to this requirement, i.e., LastProcessedLSN(C1)≥ 2

∧
LastProcessedLSN(C2)≥ 3.

S passes the constraint to C0 along with T5. Then, at ..1 , S updates LastLSNAssignedToC0Map(P1)= 5 and
LastLSNAssignedToC0Map(P2)= 5 to reflect that T5 is the last multi-partition transaction accessing P1 and P2.
Any subsequent single-partition transaction accessing P1 or P2 must now follow the processing of T5. At ..2 and
..3 C0 reads LastProcessedLSN(C2) and LastProcessedLSN(C1) respectively to evaluate the constraint. At this

point in time, C1 is still processing T2 and hence at ..4 the constraint evaluates to false. Therefore, even though
C2 has finished processing T3, C0 waits for C1 to finish processing T2. This occurs at ..5 , where it updates
LastProcessedLSN(C1) to 2. Now, at ..6 C1 notifies C0 about this update. So C0 checks its constraint again and
sees that it is satisfied. Therefore, at ..7 it starts processing T5.

Figure 5 shows processing of the next transaction T6, a single-partition transaction that accesses P2. Since
both T5 and T6 access P2, C2 can process T6 only after C0 has finished processing T5. Similar to other
single-partition transactions, S constructs this constraint by looking up LastLSNAssignedToC0Map(P2) which
is 5. Therefore, at ..0 S passes the constraint LastProcessedLSN(C0)≥ 5 to C2 along with T6, and at ..1 sets
LastLSNAssignedToC0Map(P2)= 6. At ..2 C2 reads LastProcessedLSN(C0)= 0. So its evaluation of the con-
straint at ..3 yields false. C0 finishes processing T5 at ..4 and sets LastProcessedLSN(C0)= 5. At ..5 , C0 notifies
C2 that it updated LastProcessedLSN(C0), so C2 checks the constraint again and finds it true. Therefore, at ..6
it starts processing T6.

While C2 is waiting for C0, other certifiers can process subsequent transactions if the constraints allow

38

� �� ��

�
�

�� ���

��	
��
��		�����

�� ��

����

�� �

�� �

�� 	

��	
�		�����

������

��	
����		�����

�
�����

��
��
��
	�

� �

� �

� �

�
�

��

���

�
�

��

���

����
�

�	

�

�� ���

�

�

�� ������

����
���������������������

�������������������������������

�� � ���!����������

�� ���"#������
$� "������

����
���������������

�� �����������������������

������������������

�� �������"��������%���

�

�

	

�

&

�� "������#���#���� �� ����

�'��(����)�����������������

������

������

�
�

��

�

	

�
&

���

��

�

���

��

Figure 5: Synchronization constraints to order single-partition transactions after a multi-partition transaction.

� �� ��

�
�

�� ���

��	
��
��		�����

�� ��

������ �

�� �

�	 �

��	
�		�����

������

��	
����		�����

�
�����

��
��
	�

�

�� �

�� �

�	 �

�
�

��

���

�
�

��

���

����
�

�	

�

�� ���

�

�

�	 ������

��������������������������

����������������������������

�	 ������� ��������!���

������������������	��

" �����

�

	

�

��" ������#���#����"��"����

�$��%����&�����������������

������

������

�

��

���

����
�

�	

�
	

�

�

���
��

	�

Figure 6: Benefits of parallelization for single-partition transactions. C3 can start processing T7 while T6 is
waiting for T5 to complete on C0.

it. Figure 6 illustrates this scenario where the next transaction in the log, T7, is a single-partition transaction
accessing P3. Since no multi-partition transaction preceding T7 has accessed P3, at ..0 the constraint passed to
C3 is LastProcessedLSN(C0)≥ 0. The constraint is trivially satisfied, which C3 observes at ..3 . Therefore, while
C2 is waiting, at ..4 C3 starts processing T7 in parallel with C0’s processing of T5 and C2’s processing of T6,
thus demonstrating the benefit of parallelizing the certifiers.

Figure 7 illustrates that if the synchronization constraints allow, even a multi-partition transaction can be
processed in parallel with other single-partition transactions without any waits. Transaction T8 accesses P1

and P3. At ..0 , based on LastAssignedLSNMap, S generates a constraint of LastProcessedLSN(C1)≥ 2
∧

LastProcessedLSN(C3)≥ 7 and passes it along with T8 to C0. By the time C0 starts evaluating its con-
straint, both C1 and C3 have completed processing the transactions of interest to C0. Therefore, at ..2 and
..3 C0 reads LastProcessedLSN(C1)= 2 and LastProcessedLSN(C3)= 7. So at ..4 C0 finds that the constraint

LastProcessedLSN(C1)≥ 2
∧

LastProcessedLSN(C3)≥ 7 is satisfied. Thus, it can immediately start processing
T8 at ..5 , even though C2 is still processing T6. This is another example demonstrating the benefits of parallelism.

As shown in Figure 8, S processes the next transaction, T9, which accesses only one partition, P2. Although
T8 is still active at C0 and hence blocking further activity on C1 and C3, by this time T7 has finished running at
C2. Therefore, when S assigns T9 to C2 at ..0 , C2’s constraint is already satisfied at ..3 , so C2 can immediately
start processing T9 at ..4 , in parallel with C0’s processing of T8. Later, T8 finishes at ..5 and T9 finishes at ..6 ,
thereby completing the execution.

39

� �� ��

�
�

�� ���

��	
��
��		�����

�� ��

������ �

�� �

�	

��	
�		�����

������

��	
����		�����

�
�����

��
 ��
 �	
 �

�� �

�� �

�	 �

�
�

��

���

�
�

��

���

����
�

�	

�

�� ���

�

�

������

������

�
�

��

���

����

�	

�
�

�� ��	 ������

������ � 	��

�

�
�

�	

�� ������

��������������������������

�� ������

������������������	�������

������������ ����� ���������

�� �������!������� "���

�� ���!#�������$�%!������

��������������������

�

	

�

�

�

��%!������#���#����%��%����

�& �'�� �(���� ��� ����� ��

���

Figure 7: Benefits of parallelization for multi-partition transaction. C0 can start processing T8 while C2 contin-
ues processing T6.

� �� ��

�
�

�� ���

��	
��
��		�����

�� ��

������ �

�� �

�� 	

��	
�		�����

������

��	
����		�����

�
�����

��
��

�
	�

�� �

�� �

�� �

�
�

��

���

�
�

��

���

����
�

�	

�

�� ���

�

�

������

������

�
�

��

���

����

�	

�
�

�� ��	 ������

������
��

�� ������

��������������������������

������������ ����� ���������

�� �������!������� "���

�� ���!#�������$�%!������

��������������������

�

�

&

�

��%!������#���#����%��%����

�' �(�� �)���� ��� ����� ��

�
�

�� ���

�
�

&

�

���
���

�

�� ���!#�������$�%!������

��������������������

Figure 8: Parallel certifier continues processing the transactions in log order and the synchronization constraints
ensure correctness of the parallel design.

3.4 Discussion

Correctness requires that for each partition Pi, all transactions that access Pi are certified in log order. There are
two cases, single-partition and multi-partition transactions.

• The constraint on a single-partition transaction Ti ensures that Ti is certified after all multi-partition trans-
actions that precede it in the log and that accessed Pi. Synchronization conditions on multi-partition
transactions ensure that Ti is certified before all multi-partition transactions that follow it in the log and
that accessed Pi.

• The constraint on a multi-partition transaction Ti ensures that Ti is certified after all single-partition trans-
actions that precede it in the log and that accessed partitions {Pi1, Pi2, . . .} that Ti accessed. Synchro-
nization conditions on single-partition transactions ensure that for each Pj ∈ {Pi1, Pi2, . . .}, Ti is certified
before all single-partition transactions that follow it in the log and that accessed Pj .

Note that transactions that modify a given partition Pi will be certified by Ci or C0 (but not both), depending on
whether it is single-partition or multi-partition.

The extent of parallelism achieved by the proposed parallel certifier depends on designing a partitioning that
ensures most transactions access a single partition and that spreads transaction workload uniformly across the
partitions. With a perfect partitioning, each certifier can have a dedicated core. So with n partitions, a parallel
certifier will run up to n times faster than a single sequential certifier.

40

Each of the variables that is used in a synchronization constraint—LastAssignedLSNMap, LastProcess-
edLSN, and LastLSNAssignedToC0Map—is updatable by only one certifier. Therefore, there are no race con-
ditions on these variables that require synchronization between certifiers. The only synchronization points are
the constraints on individual certifiers which can be validated with atomic read operations.

3.5 Finer-Grained Conflict Testing

The parallelized certifier algorithm generates constraints under the assumption that certification of two trans-
actions that access the same partition must be synchronized. This is a conservative assumption, in that two
transactions that access the same partition might access the same data item in non-conflicting modes, or might
access different data items in the partition, which implies the transactions do not conflict. Therefore, the syn-
chronization overhead can be improved by finer-grained conflict testing. For example, in LastAssignedLSNMap,
instead of storing one value for each partition that identifies the LSN of the transaction assigned to the partition,
it could store two values: the LSN of the last transaction that read the partition and was assigned to the partition
and the LSN of the last transaction that wrote the partition and was assigned to the partition. A similar distinc-
tion could be made for the other variables. Then, S could generate a constraint that would avoid requiring that
a multi-partition transaction that only read partition Pi be delayed by an earlier single-partition transaction that
only read partition Pi, and vice versa. Of course, the constraint would still need to ensure that a transaction that
wrote Pi is delayed by earlier transactions that read or wrote Pi, and vice versa.

This finer-grained conflict testing would not completely do away with synchronization between C0 and
Ci, even when a synchronization constraint is immediately satisfied. Synchronization would still be needed to
ensure that only one of C0 and Ci is active on a partition Pi at any given time, since conflict-testing within a
partition is single-threaded. Aside from that synchronization, and the use of finer-grained constraints, the rest of
the algorithm for parallelizing certification remains the same.

4 Partitioned Log

Partitioning the database also allows partitioning the log, provided ordering constraints between intentions in
different logs are preserved. The log protocol is executed by each server that processes transactions. Alterna-
tively, it could be embodied in a log server, which receives requests to append intentions from servers that run
transactions.

4.1 Design

In our design, there is one log Li dedicated to every partition Pi(∀i ∈ [1, n]), which stores intentions for
single-partition transactions accessing Pi. There is also a log L0, which stores the intentions of multi-partition
transactions. If a transaction Ti accesses only Pi, its intention is appended to Li without communicating with
any other log. If Ti accessed multiple partitions {Pi}, its intention is appended to L0 followed by communication
with all logs {Li} corresponding to {Pi}. The log protocol must ensure the following constraint for correctness:

Partitioned Log Constraint: There is a total order between transactions accessing the same parti-
tions, which is preserved in all logs where both transactions appear.

Figure 9 provides an overview of the log sequence numbers used in the partitioned log design. A technique
similar to vector clocks is used for sequence-number generation [11, 17]. Each log Li for i ∈ [1, n] maintains
the single-partition LSN of Li, denoted SP-LSN(Li), which is the LSN of the last single-partition log record
appended to Li. To order single-partition transactions with respect to multi-partition transactions, every log also
maintains the multi-partition LSN of Li, denoted MP-LSN(Li), which is the LSN of the last multi-partition

41

�� ���� ��
��������	����
��

�

���
�����	����
��

�

�����

���
�����	����
��

�

�����

���
�����	����
��

�

�����

���	�
����
�

�	�
����
��

�������

���	�
����
�

�	�
����
��

�������

���	�
����
�

�	�
����
��

�������

���	�
����
�

�	�
����
��

�������

Figure 9: Ordering of entries in the log. Each log Li maintains a compound LSN ([MP-LSN(Li), SP-LSN(Li)])
to induce a partial order across conflicting entries in different logs.

transaction that accessed Pi and is known to Li. The sequence number of each record Rk in log Li for i ∈ [1, n]
is expressed as a pair of the form [MP-LSNk(Li),SP-LSNk(Li)] which identifies the last multi-partition and
single-partition log records that were appended to Li, including Rk itself. The sequence number of each record
Rk in log L0 is of the form [MP-LSNk(L0), 0], i.e., the second position is always zero. All logs start with
sequence number [0, 0].

The order of two sequence numbers is decided by first comparing MP-LSN(Li) and then SP-LSN(Li).
That is, [MP-LSNm(Li),SP-LSNm(Li)] precedes [MP- LSNn(Lj),SP- LSNn(Lj)] iff either MP-LSNm(Li) <
MP- LSNn(Lj), or (MP-LSNm(Li) = MP-LSNn(Lj)

∧
SP-LSNm(Li) < SP-LSNn(Lj)). This technique

totally orders intentions in the same log (i.e., if i = j), while partially ordering intentions of two different
logs (i.e., if i ̸= j). If the ordering between two intentions is not defined, then they are treated as concurrent.
Notice that LSNs in different logs are incomparable, because their SP-LSN’s are independently assigned. The
assignment of sequence numbers is explained in the description of the log protocol.

4.2 Log Protocol

Single-partition transactions: Given transaction Ti, if Ti accessed a single partition Pi, then Ti’s intention is
appended only to Li. SP-LSN(Li) is incremented and the LSN of Ti’s intention is set to [mp-lsn,SP-LSN(Li)],
where mp-lsn is the latest value of MP- LSN(L0) that Li has received from L0.
Multi-partition transactions: If Ti accessed multiple partitions {Pi1, Pi2, . . .}, then Ti’s intention is appended
to log L0 and the multi-partition LSN of L0, MP-LSN(L0), is incremented. After these actions finish, MP-
LSN(L0) is sent to all logs {Li1, Li2, . . .} corresponding to {Pi1, Pi2, . . .}, which completes Ti’s append.

This approach of log-sequencing enforces a causal order between the log entries. That is, two log entries
have a defined order only if they accessed the same partition.

Each log Li(∀i ∈ [1, n]) maintains MP-LSN(Li) as the largest value of MP-LSN(L0) it has received from
L0 so far. However, each Li does not need to store its MP-LSN(Li) persistently. If Li fails and then recovers, it
can obtain the latest value of MP-LSN(L0) by examining L0’s tail. It is tempting to think that this examination of
L0’s tail can be avoided by having Li log each value of MP-LSN(L0) that it receives. While this does potentially
enable Li to recover further without accessing L0’s tail, it does not avoid that examination entirely. To see why,
suppose the last transaction that accessed Pi before Li failed was a multi-partition transaction that succeeded
in appending its intention to L0, but Li did not receive the MP-LSN(L0) for that transaction before Li failed.
In that case, after Li recovers, it still needs to receive that value of MP-LSN(L0), which it can do only by
examining L0’s tail. If L0 has also failed, then after recovery, Li can continue with its highest known value of
MP-LSN(L0) without waiting for L0 to recover. As a result, a multi-partition transaction might be ordered in Li

at a later position than where it would have been ordered if the failure did not happen.
Alternatively, for each multi-partition transaction, L0 could run two-phase commit with the logs correspond-

ing to the partitions that the transaction accessed. That is, it could send MP-LSN(L0) to those logs and wait for

42

�� ��

�
�

��

���

�� ��

�� ������������	
��� ����
��

�
�������������	��

�����

�� ������������	
��� ����

���
�������������	��

�

�

�

�� ������������	
��� ����

���
�������������	��
�

����� ����� �����

�
�

��

��	�

�

�
�

��

�
�

��

�
�

�	

�
�

��

��	�

�

�
�

��

��	�

�

�
�

�	

��	�

�

�� ������������	
��� ����

���
�������������	��

Figure 10: Single-partition transactions are appended to the single-partition logs L1, L2, and L3.

acknowledgments from all of them before logging the transaction at L0. However, like any use of two-phase
commit, this protocol has the possibility of blocking if a failure occurs between phases one and two.

To avoid this blocking, in our design, when L0 recovers, it communicates with every Li to pass the latest
value of MP-LSN(L0). When one of the Li’s recovers, it reads the tail of L0. This recovery protocol ensures
that MP- LSN(L0) propagates to all single-partition logs.

4.3 An Example

Let us assume that a database has three partitions P1, P2, P3. Let L1, L2, L3 be the logs assigned to P1, P2, P3

respectively, and L0 be the log for multi-partition transactions. Consider the following sequence of transactions:

T
[P2]
1 , T

[P1]
2 , T

[P2]
3 , T

[P3]
4 , T

[P1,P2]
5 , T

[P2]
6 , T

[P3]
7 , T

[P1,P3]
8 , T

[P2]
9

As earlier, a transaction is represented in the form T
[Pj ...]
i where i is a unique transaction identifier; note

that this identifier does not induce an ordering between the transactions. The superscript on Ti identifies the
partitions that Ti accesses. We use Ti to refer to both a transaction and its intention. In figures 10–14, the
vertical line at the extreme left shows the order in which the append requests arrive; time progresses from top
to bottom. The LSN at the top of each figure shows each log’s LSN before it has appended the recently-arrived
transactions, i.e., the values after processing the transactions from the previous figure in the sequence. The black
circles on each vertical line for a log shows the append of the transaction and the updated values of the LSN.
A multi-partition transaction is shown using a triangle and receipt of a new multi-partition LSN at the single
partition logs is shown with the dashed triangle. The values updated as a result of processing an intention are
highlighted in red.

Figure 10 shows four single-partition transactions T1, T2, T3, T4 that are appended to the logs correspond-
ing to the partitions that the transactions accessed; the numbers ..1 - ..4 identify points in the execution. When
appending a transaction, the log’s SP-LSN is incremented. For instance, in Figure 10, T1 is appended to L2 at
..1 which changes L2’s LSN from [0, 0] to [0, 1]. Similarly at ..2 - ..4 , the intentions for T2 − T4 are appended

and the SP-LSN of the appropriate log is incremented. Appends of single-partition transactions do not need
synchronization between the logs and can proceed in parallel; an order is induced only between transactions
appended to the same log. For instance, T1 and T3 both access partition P2 and hence are appended to L2 with
T1 (at ..1) preceding T3 (at ..3); however, the relative order of T1, T2, and T4 is undefined.

Multi-partition transactions result in loose synchronization between the logs to induce an ordering among
transactions appended to different logs. Figure 11 shows an example of a multi-partition transaction T5 that
accessed P1 and P2. When T5’s intention is appended to L0 (at ..1), MP-LSN(L0) is incremented to 1. In step
..2 , the new value MP-LSN(L0) = 1 is sent to L1 and L2. On receipt of this new LSN (step ..3), L1 and L2

43

�� ��

�
�

��

���

�� ��

�� ������ �	��
��
��
�����

����
������������

�����

�

�

��
���		������
���� ����

�����������
���	��
��
�

����� ����� �����

�
�

��
�����

�
�

��

�
�

��

�
	

�

�
�

�� �����

�

�
�

��

�����

�
	

�
 �����

�� ��

�
��������������
��

�� ������

��	�

��	�

��	�

�

�
�
�

�����

�
�

�����

Figure 11: A multi-partition transaction is appended to L0 and MP-LSN(L0) is passed to the logs of the partitions
accessed by the transaction.

�� ��

�
�

��

���

�� ��

����� ����� ����� �����

�
�

��
�����

�
�

��

�
�

��

�
�

�	

�
�

�� �����

�

�
�

��

�����

�
�

�	 �����

�

�����

�����

�����

����� �

�
�

��

�

�	

�

�����

�
�

�� ��	�

�

�	
��	�

�

�����	
���
���	��	��

�	

����������	��	���
���
�

�
 ��	
���
���	��	��

�	

����������	��	���
���

Figure 12: Single-partition transactions that follow a multi-partition transaction persistently store the new value
of MP-LSN(Li) in Li.

update their corresponding MP-LSN, i.e., L1’s LSN is updated to [1, 1] and L2’s LSN is updated to [1, 2]. As an
optimization, this updated LSN is not persistently stored in L1 or L2. If either log fails, this latest value can be
obtained from L0 that stores it persistently.

Any subsequent single-partition transaction appended to either L1 or L2 will be ordered after T5, thus es-
tablishing a partial order with transactions appended to L0. As shown in Figure 12, T6 is a single-partition
transaction accessing P2 which when appended to L2 (at ..1) establishes the order T3 < T5 < T6. As a
side-effect of appending T6’s intention, MP-LSN(L2) is persistently stored as well. T7, another single-partition
transaction accessing P3, is appended to L3 at ..2 . It is concurrent with all transactions except T4, which was
appended to L3 before T7.

Figure 13 shows the processing of another multi-partition transaction T8 which accesses partitions P1 and
P3. Similar to the steps shown in Figure 11, T8 is appended to L0 (at ..1) and MP-LSN(L0) is updated. The new
value of MP-LSN(L0) is passed to L1 and L3 (at ..2) after which the logs update their corresponding MP-LSN
(at ..3). T8 induces an order between multi-partition transactions appended to L0 and subsequent transactions
accessing P1 and P3. The partitioned log design continues processing transactions as described, establishing a
partial order between transactions as and when needed. Figure 14 shows the append of the next single-partition
transaction T9 appended to L2 (at ..1).

44

�� ��

�
�

��

���

�� ��

����� ����� ����� �����

�
�

��
�����

�
�

��

�
�

��

�
�

�	

�
�

�� �����

�
�

��

�����

�
�

�	 �����

�

�����

�����

�����

�����

�
�

��

�

�	

�

�����

�
�

�� �����

�

�	
�����

�
�

����	

�
�

����	

� ��	�

��	�

�

�

��	�

�� 	
����
��	������������

�����������������

�

�

�� ���	���
��������� 	
��

��������������
��	���
�

��
����������������������

�� 	
����

Figure 13: Different logs advance their LSNs at different rates. A partial order is established by the multi-
partition transactions.

�� ��

�
�

��

���

�� ��

����� ����� ����� �����

�
�

��
�����

�
�

��

�
�

��

�
�

�	

�
�

�� �����

�
�

��

�����

�
�

�	 �����

�

�����

�����

�����

�����

�
�

��

�

�	

�

�����

�
�

�� �����

�

�	
�����

�
�

����	

�
�

����	

�

�����

�����

�����

�� �	
���
��
�
��
�� ���

����������
�	
�����
�
�

�
�

��

�
�

��
��	
�

Figure 14: The partitioned log design continues appending single-partition transactions without the need to
synchronize with other logs.

4.4 Concurrent Appends to L0

To ensure that multi-partition transactions have a consistent order across all logs, a new intention is appended to
L0 only after the previous append to L0 has completed, i.e., the new value of MP-LSN(L0) has propagated to
all single-partition logs corresponding to the partitions accessed by the transaction. This sequential appending
of transactions to L0 might increase the latency of multi-partition transactions. A simple extension can allow
parallel appends to L0 simply by requiring that each log partition retains only the largest MP- LSN(L0) that it
has received so far. If a log Li receives values of MP-LSN(L0) out of order, it simply ignores the stale value
that arrives late. For example, suppose a multi-partition transaction Ti is appended to L0 followed by another
multi-partition transaction Tj , which have MP-LSN(L0) = 1 and MP-LSN(L0) = 2, respectively. Suppose log
Li receives MP-LSN(L0) = 2 and later receives MP-LSN(L0) = 1. In this case, Li ignores the assignment
MP-LSN(L0) = 1, since it is a late-arriving stale value.

4.5 Discussion

With a sequential certification algorithm, the logs can be merged by each compute server. A multi-partition
transaction Ti is sequenced immediately before the first single-partition transaction Tj that accessed a partition
that Ti accessed and was appended with Ti’s MP-LSN(L0). To ensure all intentions are ordered, each LSN is
augmented with a third component, which is its partition ID, so that two LSNs with the same multi-partition and
single-partition LSN are ordered by their partition ID.

45

�

�

�

�

� �

�

�	
����
����

�

�

�

�

� �

�	
����
����

(a) Independent trees
�����������	 �����������

������������

���

���������������
�

�����������������

�

�

�

�

� �

�

�

� �

(b) Lazily-maintained inter-partition links

Figure 15: Partitioning a database in Hyder. Subfigure (a) shows partitions as independent trees. Subfigure (b)
shows a single database tree divided into partitions with inter-partition links maintained lazily.

With the parallel certifier, the scheduler S adds constraints when assigning intentions to the certifiers. Cer-
tifiers Ci (i ∈ [1, . . . , n]) will process single-partition transactions appended to Li and C0 will process multi-
partition transactions appended to L0. For Ci (i ∈ [1, . . . , n]) processing a single-partition transaction with LSN
[MP-LSNk(Li), SP-LSNk(Li)], the certification constraint for Ci is LastProcessedLSN(C0) ≥ [MP-LSNk(Li),
0]. This constraint ensures that the single-partition transaction is certified only after C0 has certified the multi-
partition transaction with MP-LSNk(Li). For C0 processing multi-partition transaction T that accessed partitions
{Pi} and has LSN [MP-LSNk(L0), 0], the scheduling constraint is

∧
(∀j:Pj∈{Pi}) LastProcessedLSN(Cj) ≥ Xj ,

where Xj is the LSN of the last single-partition transaction accessing Pj that appeared in Lj before T . This
constraint ensures that the multi-partition transaction T is certified only after all single-partition transactions
that are ordered before T have been certified. These constraints can be deduced from the data structures that the
scheduling thread S maintains, as described in Section 3.1.

Consider for example the sequence of transactions in Section 4.3 and the LSNs assigned as shown in Fig-
ure 14. T6 is a single partition transaction with LSN [1, 3] is ordered after multi-partition transaction T5 with
LSN [1, 0]. T5’s position in L2 is between T3 and T6. The constraint passed to C2 which certifies T6 is
LastProcessedLSN(C0) ≥ [1, 0]. This constraint ensures that C2 certifies T6 only after C0 has certified T5.
Now consider the certification of multi-partition transaction T8 which accessed partitions P1 and P3. C0’s con-
straint is LastProcessedLSN(C1) ≥ [0, 1]

∧
LastProcessedLSN(C3) ≥ [0, 2]. This ensures that C0 certifies T8

only after C1 has certified T2 and C3 has certified T7.
To argue about correctness, we need to show that the partitioned log behaves the same as a non-partitioned

log. For sequential certification, the partitioned log is merged into a single non-partitioned log, so the result
follows immediately. For parallel certification, for each log Li (i ̸= 0), the constraints ensure that each multi-
partition transaction is synchronized between L0 and Li in exactly the same way as in the single-log case.

If most of the transactions access only a single partition and there is enough network capacity, this partitioned
log design provides a nearly linear increase in log throughput as a function of the number of partitions. The
performance impact of multi-partition transactions is not expected to be very high.

5 Partitioning in Hyder – An application scenario

As we explained in Section 1, Hyder is a system that uses OCC and a log-structured database that is shared by
all servers. Given an approximate partitioning of the database, the parallel certification and partitioned log algo-
rithms described in this paper can be directly applied to Hyder. Each parallel certifier would run Hyder’s OCC
algorithm, called meld, and each log partition would be an ordinary Hyder log storing updates to that partition.
Each log stores the after-image of the binary search tree created by transactions updating the corresponding par-
tition. Multi-partition transactions result in a single intention record that stores the after-image of all partitions,
though this multi-partition intention can be split so that a separate intention is created for every partition.

46

The application of approximate partitioning to Hyder assumes that the partitions are independent trees as
shown in Figure 15(a). Directory information is maintained that describes which data is stored in each partition.
During transaction execution, the executer tracks the partitions accessed by the transaction. This information is
included in the transaction’s intention, which is used by the scheduler to parallelize certification and by the log
partitioning algorithm.

In addition to the standard Hyder design where all compute nodes run transactions (on all partitions), it is
possible for a given compute node to serve only a subset of the partitions. However, this increases the cost of
multi-partition transaction execution and meld.

A design with a partitioned tree, as shown in Figure 15(b), is also possible, though at the cost of increased
complexity. Cross-partition links are maintained as logical links, to allow single-partition transactions to pro-
ceed without synchronization and to minimize the synchronization required to maintain the database tree. For
instance, in Figure 15(b), the link between partitions P1 and P3 is specified as a link from node F to the root K
of P3. Since single-partition transactions on P3 modify P3’s root, traversing this link from F requires a lookup
of the root of partition P3. This link is updated during meld of a multi-partition transaction accessing P1 and
P3 and results in adding an ephemeral node replacing F if F ’s left subtree was updated concurrently with the
multi-partition transaction. The generation of ephemeral nodes is explained in [9].

6 Related Work

Optimistic concurrency control (OCC) was introduced by Kung and Robinson in [14]. Its benefits and trade-
offs have been extensively explored in [1, 2, 12, 16, 18, 20]. Many variations and applications of OCC have
been published. For example, Tashkent uses a centralized OCC validator over distributed data [10]. An OCC
algorithm for an in-memory database is described in [15]. None of these works discuss ways to partition the
algorithm.

An early timestamp-based concurrency control algorithm that uses partitioning of data and transactions is
described in [5]. More recent examples of systems that partition data to improve scalability are in [3, 13, 19, 21].

The only other partitioned OCC algorithm we know of is for the Tango system[4]. In Tango, after a server
runs a multi-partition transaction T and appends T ’s log record, it rolls forward the log to determine T ’s com-
mit/abort decision and then writes that decision to the log. The certifier of each partition uses that logged
decision to decide how to act on log records from multi-partition transactions. This enables the certifier to up-
date its version state of data, so it can perform OCC validation of single-partition transactions. That is, each
certifier Ci reads the sequence of single-partition and multi-partition log records that read or updated Pi. When
Ci encounters a multi-partition log record, it waits until it sees a decision record for that transaction in the log.
This synchronization point is essentially the same as that of Ci waiting for C0 in our approach. However, the
mechanism is different in two ways: the synchronization information is passed through the log, rather than
through shared variables; and every server that runs a multi-partition transaction also performs the log roll-
forward to determine the transaction’s decision (although this could be done by a centralized server, like C0).
The experiments in[4] show good scalability with a moderate fraction of cross-partition transactions. It remains
as future work to implement the algorithm proposed here and compare it to Tango’s.

In Tango, all partitions append log records to a single sequential log. Therefore, the partitioned log constraint
is trivially enforced. By contrast, our design offers explicit synchronization between log records that access the
same partition. This enables them to be written to different logs, which in aggregate can have higher bandwidth
than a single log, like Tango’s.

Another approach to parallelizing meld is described in[6]. It uses a pipelined design that parallelizes meld
onto multiple threads. One stage of the pipeline preprocesses each intention I by testing for conflicts with
committed transactions before the final meld step. It also “refreshes” I by replacing stale data in I by committed

47

updates. The other stage combines adjacent intentions in the log, also before the final meld step. Each of these
stages reduces the work required by the final meld step.

7 Concluding Remarks

In this paper, we explained a design to leverage approximate partitioning of a database to parallelize the certifier
of an optimistic concurrency control algorithm and its accompanying log. The key idea is to dedicate a certifier
and a log to each partition so that independent non-conflicting transactions accessing only a single partition can
be processed in parallel while ensuring transactions accessing the same partition are processed in a sequence.
Since partitioning of the database, and hence the transactions, need not be perfect, i.e., a transaction can ac-
cess multiple partitions, our design processes these multi-partition transactions using a dedicated multi-partition
certifier and log. The efficiency of the design stems from using lightweight synchronization mechanisms—
the parallel certifiers synchronize using constraints while the partitioned log synchronizes using asynchronous
causal messaging. The design abstracts out the details of the certifier and the logging protocol, making it ap-
plicable to a wide variety of systems. We also discussed the application of the design in Hyder, a scale-out
log-structured transactional record manager. Our design allows Hyder to leverage approximate partitioning to
further improve the system’s throughput.

References

[1] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Efficient optimistic concurrency control using loosely
synchronized clocks. Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 23–34, 1995.

[2] D. Agrawal, A. J. Bernstein, P. Gupta, and S. Sengupta. Distributed multi-version optimistic concurrency
control with reduced rollback. Distributed Computing, 2(1):45 – 59, 1987.

[3] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin, J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Hush-
prakh. Megastore: Providing scalable, highly available storage for interactive services. In Proc. 5th
Biennial Conf. on Innovative Data Systems Research, 2011.

[4] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prabhakaran, M. Wei, J. Davis, S. Rao, T. Zou, and
A. Zuck. Tango: distributed data structures over a shared log. In Proc. 24th ACM Symp. on Operating
System Principles, pages 325–340, 2013.

[5] P. Bernstein, D. Shipman, and J. R. Jr. Concurrency control in a system for distributed databases (sdd-1).
ACM Trans. Database Syst., 5(1):1 – 17, 1980.

[6] P. A. Bernstein, S. Das, B. Ding, and M. Pilman. Optimizing optimistic concurrency control for tree-
structured, log-structured databases. In Proc. ACM SIGMOD Int. Conf. on Management of Data, 2015.

[7] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

[8] P. A. Bernstein, C. W. Reid, and S. Das. Hyder - a transactional record manager for shared flash. In Proc.
5th Biennial Conf. on Innovative Data Systems Research, pages 9–20, 2011.

[9] P. A. Bernstein, C. W. Reid, M. Wu, and X. Yuan. Optimistic concurrency control by melding trees. Proc.
VLDB Endowment, 4(11):944–955, 2011.

48

[10] S. Elnikety, S. Dropsho, and F. Pedone. Tashkent: Uniting durability with transaction ordering for high-
performance scalable database replication. In Proc. 1st ACM SIGOPS/EuroSys European Conf. on Com-
puter Systems, pages 117 – 130, 2006.

[11] M. J. Fischer and A. Michael. Sacrificing serializability to attain high availability of data in an unreliable
network. In Proc. 1st ACM SIGACT-SIGMOD Symp. on Principles of Database Systems, pages 70–75,
1982.

[12] R. Gruber. Optimistic concurrency control for nested distributed transactions. Technical Report
MIT/LCS/TR-453, MIT, June 1989.

[13] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. Jones, S. Madden, M. Stonebraker,
Y. Zhang, J. Hugg, and D. Abadi. H-store: a high-performance, distributed main memory transaction
processing system. Proc. VLDB Endowment, 1(2):1496 – 1499, 2008.

[14] H. T. Kung and J. Robinson. On optimistic methods for concurrency control. ACM Trans. Database Syst.,
6(2):213 – 226, 1981.

[15] P. Larson, S. Blanas, C. Diaconu, C. Freedman, J. Patel, and M. Zwilling. High-performance concurrency
control mechanisms for main-memory databases. Proc. VLDB Endowment, 5(4):298–309, 2011.

[16] G. Lausen. Concurrency control in database systems: A step towards the integration of optimistic methods
and locking. In Proc. ACM Annual Conf., pages 64 – 68, 1982.

[17] D. S. Parker Jr., G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker, E. Walton, J. M. Chow, D. A. Edwards,
S. Kiser, and C. S. Kline. Detection of mutual inconsistency in distributed systems. IEEE Trans. Software
Eng., 9(3):240–247, 1983.

[18] S. Phatak and B. R. Badrinath. Bounded locking for optimistic concurrency control. Technical Report
DCS-TR-380, Rutgers University, 1999.

[19] J. Rao, E. Shekita, and S. Tata. Using paxos to build a scalable, consistent, and highly available datastore.
Proc. VLDB Endowment, 4(4):243 – 254, 2011.

[20] A. Thomasian and E. Rahm. A new distributed optimistic concurrency control method and a comparison
of its performance with two-phase locking. In Proc. 10th Int. Conf. on Distributed Computing Systems,
pages 294 – 301, 1990.

[21] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi. Calvin: fast distributed transac-
tions for partitioned database systems. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
1 – 12, 2012.

49

