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Abstract

Social media is immensely popular, with billions of users across various platform. The study of social
media has allowed for deeper inquiries into questions posed by computer scientists, social scientists,
and others. Social media posts tagged with location have provided means for researchers to perform
even deeper analysis into their data. While location information allows for rich insight into social
media data, very few posts are explicitly tagged with geographic information. In this work, we begin
by introducing some state-of-the-art analysis techniques that can be performed using the location of a
social media post. Next, we introduce some systems that help first responders provide relief with the
help of the location of social media posts. Finally, we discuss how machine learning techniques can
be applied to infer the location of a social media post, bringing this analysis to any message posted on
social media.

1 Introduction

Social media sites provide ways for their users to conveniently share their lives in real-time, from their current
mood to the music they are listening to, and even information pertaining to their physical activities. Among the
myriad ways to share information, the ability for users to share their location has come to the forefront of many
sites. Sites such as Twitter and Facebook allow users to tag their posts with their current location, either with the
venue or “place”, or the exact GPS coordinates. Sites such as Foursquare have built their entire platform around
users sharing their geographic information.

Increasingly, researchers and practitioners have found ways to make use of this new source of information
for novel applications, such as recommending new venues to users, and predicting the number of people who
will check in at a certain location. It has also been used to increase the effectiveness of existing problems such
as helping deliver the right information to first responders in humanitarian assistance and disaster recovery.

In this work we discuss state-of-the-art challenges in leveraging geographic information in social media
research. We begin by discussing how researchers use this information to make recommendations and to predict
the next location a user will visit. Next, we discuss systems that have been created to help make sense of users
mobility patterns in online social networks and to use these patterns to understand the greater picture of an event
of disaster as it unfolds on social media. Finally, we introduce techniques that can predict a user’s location in
absence of explicit information on their post. These techniques have the potential to bring this analysis to the
entirety of social media posts, and not just those explicitly tagged with geographic information.
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2 Using Location Data for Novel Applications

2.1 Personalized Point of Interest Recommendation on Location-Based Social Networks

The rapid growth of cities has developed an increasing number of points of interest (POIs), e.g., restaurants,
theaters, stores, and hotels, providing us with more choices of life experience than before. People are willing
to explore the city and neighborhood in their daily life and decide “where to go” according to their personal
interest and the various choices of POIs. At the same time, making a satisfying decision efficiently among the
large number of POI choices becomes a touch problem for a user. To facilitate a user’s exploration and decision
making, POI recommendation has been introduced by location-based services such as Yelp and Foursquare.
However, such recommendation models are commonly based on majority users’ preference on POIs, which
ignore a user’s personal preference. Comparing to visiting places that best fit a user’s interest, visiting places
against a user’s taste may give him very terrible experience, especially in a situation when the user travels to
a new place. Therefore, personalized POI recommendation is proposed to help users filter out uninteresting
venues according to their own taste and save their time in decision making.

2.1.1 Background

Before the Web 2.0 era, analyzing user’s mobility for personalized POI recommendation is based on cellphone-
based GPS data. Due to the lack of mapping information between geographical coordinates and real-world POIs
on GPS data, a POI is usually determined by the stay points (geographical points at which a user spent sufficient
long time) extracted from hundreds of users’ GPS trajectory (a sequence of time-stamped latitude/longtitude
pairs collected repeatedly at intervals of a short period) logs [25, 26]. With the rapid development of location-
based social networking services, e.g., Foursquare, Yelp, and Facebook Places1, users are able to check in at
real-world locations with specific POI information and share such check-ins with their friends through mobile
devices, resulting in more abundant information to improve personalized location recommendation.

This abundance of information has led to a new class of social network, called a “location-based social net-
work”. Location-based social networks not only refer to the social connections among users, but also consist of
the “location-based” context including geographical check-in POIs, check-in time stamps, and check-in related
content (e.g., tips, comments, POI descriptions, etc.), as shown in Figure 1. Compared with other online social
networks that consist of user activities interacting with the virtual world, LBSNs reflect a user’s geographi-
cal action in the real world, residing where the online world and real world intersect, therefore bridging the
gap between the real world and the virtual world, providing both opportunities and challenges for researchers
to investigate users’ check-in behavior for personalized POI recommendation in spatial (“where”), temporal
(“when”), social (“who”) and content (“what”) aspects.

In this work, we use POI, venue, and location as interchangeable terms. Let u = {u1, u2, ..., um} be the set
of users and l = {l1, l2, ..., ln} be the set of POIs where m and n are the numbers of users and POIs, respectively.
The problem of personalized POI recommendation on LBSNs is defined as:

Given a user u ∈ u, a set of POIs (locations) lu ∈ l that u has checked-in, recommend him some POIs for his
future visits based on the LBSN context (e.g., social connections, content information of check-ins, time stamps
of check-ins) related to him.

In the last decade, recommender systems have been widely studied among various categories, e.g., movie
recommendation on Netflix, dating recommendation on Zoosk, item recommendation on Amazon. However, it
is not sufficient to directly apply these technologies as personalized POI recommendation on LBSNs presents
unique challenges due to the heterogeneous information layout and the specificity of human mobility. Designing
efficient POI recommendation approaches on LBSNs inevitably needs to consider the following properties.

1http://www.facebook.com/about/location
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Figure 1: The information layout of location-based social networks. The geographical layer contains the his-
torical check-ins of users, while the social layer contains social friendship information, and the content layer
consists of user feedbacks or tips about different places. All these three layers share one timeline, indicating the
temporal information of the user “check-in” behavior.

Geographical Property of Social Connections
Geographical property and social connections are coherent and affect each other in human behavior. For
example, a user is more likely to be friends with other users who are geographically close to him, e.g,
co-workers, colleagues. Likewise, a user may check-in at a location due to the influence from his friends,
such as following friends’ suggestions to visit a restaurant. Such coherence results in a new property,
commonly referred to as socio-spatial properties [21]. Thus, considering the social information together
with the geographical property enables us to capture the user preferences more precisely in personalized
POI recommendation on LBSNs.

Temporal Patterns of Geographical Check-ins
Human geographical movement exhibits strong temporal patterns [3, 15, 24] and is highly relevant to the
location property. For example, a user regularly goes to a restaurant for lunch around 12:00 pm, watches
movie on Friday night, and shops during weekends. This is generally referred to as temporal cyclic
patterns. Such temporal patterns are not widely observed in other recommender systems. For instance, it
is not common to observe a user regularly watching a specific movie (e.g., Batman, Avatar) or purchasing a
specific item (e.g., camera, cellphone) at specific hour of the day, or day of the week. (Although birthdays
or holidays like Thanksgiving may affect human behavior a bit, they are not commonly considered).

Semantic Indications of Check-in Content
Content information on LBSNs could be related to a user’s check-ins, providing a unique opportunity for
location recommendation from a conceptual perspective. For example, By observing a user’s comment on
a Mexican restaurant discussing its spicy food, we observe if the user is interested in spicy food or not.
This is an example of user interests. By observing a location’s description as “vegetarian restaurant”, we
may infer that the restaurant serves “vegetarian food” and users who check-in at this location might be
interested in the vegetarian diet. This is an example of location properties. These two types of information
are representatives of user-generated content and location-associated content on LBSNs. The former refers
to comments that left by users towards specific locations when they check-in; the latter can be descriptive
tags associated with specific locations.

The above three properties indicate the three unique relationships between geographical information and so-
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cial, temporal, and content information, commonly referred to as geo-social correlations, geo-temporal patterns,
and geo-content indications. For more information, please refer to Gao and Liu 2015 [9].

2.2 Geolocated Information for Crisis Response Applications

In this section we discuss how geolocated social media data can be used to help with disaster relief. We introduce
two classes of systems: crisis maps that help first responders match need with resources, and tools which help
first responders get a deeper understanding of the situation.

2.2.1 Crisis Mapping

Crisis mapping consists of tools that help first responders to coordinate resources in times of disaster. Usually,
the requests for assistance are obtained through SMS, as well as through social media. Twitter is often used in
such applications [11].

Ushahidi [8] is one of the first crisis mapping systems. It has helped to coordinate relief in Kenya [16],
Afghanistan, and Haiti. The system features a request engine that allows for those affected to seek out the
resources they need for their specific situation. Volunteers and disaster relief organizations can then use this
map to allocate aid and to see where their services can be of the most use.

TweetTracker [10] enables a first responder to collect Twitter data pertaining to a crisis by specifying param-
eters about the crisis. These parameters can come in one of three forms: 1) keywords which describe words that
pertain to the crisis, 2) geographical bounding boxes which specify the region or regions affected by the crisis,
and 3) user names which can be users that tweet about the crisis. TweetTracker collects tweets that match any
of these parameters and shows them to the first responder.

ASU Coordination Tracker (ACT) [7], is designed to collect crowdsourced requests, keep first responders
aware of the current situation, and help them coordinate for disaster relief. The main goal of ACT is to analyze
crowdsourced requests and promote inter-agency coordination to prevent duplication of effort during crisis. It
comprises of five functional modules: request collection, request analysis and visualization, response, coordina-
tion, and situational awareness. Figure 2(a) shows an overview of classified requests and the quantity of requests
on ACT’s crisis map. ACT collects two types of requests: requests from crowds (crowdsourcing) and requests
from groups (groupsourcing). Crowdsourcing refers to requests submitted by people (e.g. victims, volunteers)
who are not from certified organizations. The groupsourcing [1,6] requests originate from responding organiza-
tions such as United Nation, Red Cross, etc. Specially, crowdsourcing data are collected in forms of web, SMS
and tweets collected through TweetTracker. The data analysis takes advantage of both data mining technology
and expert knowledge to iteratively capture the essential content of raw requests and classify them into several
categories (food, shelter, missing persons, etc.). Figure 2(b) shows a clustering visualization for expert labeling
and decision making based on active learning techniques.

2.2.2 Visualizing Crisis Data

Another way that geolocated social media data has helped first responders is by giving them a picture of what
is unfolding on the ground. While looking at the raw data is very difficult, several systems have emerged in the
past few years to make sense of the massive volume of data that is generated during a crisis.

TweetXplorer [17] is a system that is designed to help first responders get situational awareness. An overview
of the system is shown in Figure 3(a). Queries are issued to the system using the query pane on the bottom right.
The network in the top right shows the most retweeted users in the dataset. The top left shows a map, which
shows the locations that gave the most geotagged tweets about the user’s query. This map can also be used to
help the user’s explore the data. The map can be combined with the network to show the geo-tagged retweets of
a particular user, as shown in Figure 3(b). This can help the analysts understand which locations care the most
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(a) ACT Request Window (b) Request Classification and Visualization

Figure 2: ASU Coordination Tracker overview. This shows two important views of the system. On the left we
see a request window which shows requests made by specific organizations classified in terms of quantity. On
the right we see the active learning module which helps the human expert to classify requests.

about a particular tweet. The map can also be “brushed”, causing it to show a tag cloud of the most important
words in the selected region.

Another visual analytic system designed to help first responders understand events on the ground is Sense-
Place2 [13]. The system helps analysts find important tweets by allowing them to query in two ways: through
keywords, and through a spatial filtering interface. In this way the users can find both the content they are
interested in and where it originates. More details about the system can be found on the project web page2.

3 Inferring Location Information in Social Media

While location-based user analysis has taken off in recent years, the number of users providing their location
has not kept pace. Only about 1% of all of the tweets posted on Twitter are geotagged [19]. This is largely due
to Twitter’s “opt-in” policy for providing user location. The disparity prevents existing techniques being used to
assist the vast majority of users of a service who do not use their geographical information.

To bridge the gap analysis and users who lack location information, researchers have focused on uncovering
the locations of users who do not share their location on social media. This location can be uncovered from three
perspectives: the user’s profile location, where he lives; the tweet’s location, where the message was published;
and the event location, where the message is talking about. In this section we discuss attempts that researchers
have made to address these problems.

3.1 Inferring a User’s Location

A “user’s location” refers to the location where the user lives, or the location that he would give in his profile.
The problem of user location prediction of Twitter users was first investigated in [4], where the authors used
the language of the user’s tweets to estimate his home location. The authors manually asses the statistical
distribution of words in the tweets to find words that contained a “strong geo-scope”. One example of such a
word is “Red Sox”, which occurs much more in the Boston, Massachusetts area than anywhere else in the USA.
This work was extended in [2], where the authors propose an automated approach to finding words with a strong
geo-scope. Linguists have also made an attempt at this problem looking for statistical variation in different
geographic regions. In [5], the authors propose geographical topic models to model the language across the
entire continental United States. [23] and [20] use a grid-based approach to define regions using the data.

2http://www.geovista.psu.edu/SensePlace2/
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(a) TweetXplorer

(b) Social Network Overlaid on Map (c) Geo-Aware Tag Cloud

Figure 3: Overview of TweetXplorer. The top pane shows an overview of the system. The bottom left shows
how the network can be combined with the map to analyze who is retweeting the user. The bottom right shows
a tag cloud that shows the most important words from a particular geographic area.

Researchers have approached this problem not just from one perspective (e.g. text, or network) but instead
take a holistic approach trying to incorporate as much signal as possible into their models. In [22], the authors
combine signals such as the tweeter’s “location field” in his profile, any URLs in his biography (top-level do-
mains such as .uk may provide a country indicator), and the time zone the user has set. This heuristic-based
approach is furthered by [14], who adds more information including patterns of users posting time, and points
of interest. This work also studies how different types of spatial aggregation and ensemble approaches can lead
to better classification results.

In the context of disaster response, user location has been used to help first responders to find “eyewitness
accounts”: accounts that are both geographically near the disaster and discussing the topics of those affected.
Kumar et. al 2013 [12] proposed a method for finding eyewitness accounts by measuring all of the users who
tweet about a crisis along two dimensions: the location of their geotagged tweets, and their affinity for a set
of topics. An example of these dimensions is shown in Figure 4. The users who score above-average on both
dimensions, putting them in the upper-right quadrant, are considered “Q1” users. The authors find that the
properties of Q1 users reflect the properties of eyewitness users: they tweet first on pressing topics and often
relay relevant information that is not found in the other dimensions.

One important requirement of all of the above work is the number of tweets required in order for the ap-
proaches to make accurate predictions. The geo-scope approaches described in [2,4] requires at least 700 tweets
for an accurate prediction, while the linguistic [5, 20, 23] and heuristic-based [14, 22] methods require approxi-
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Figure 4: Quadrants used to find eyewitness users. Here, the authors focus on users with an above-average Geo
Relevance Score (vertical axis), and an above-average Topic Score (horizontal axis).

(a) Temporal language differences. (b) Geographic language differ-
ences: tranquil time.

(c) Geographic language differ-
ences: crisis time.

Figure 5: Temporal and geographic differences of language (calculated using Jensen-Shannon divergence);
darker shades represent greater difference. To illustrate geographic differences, we compare Boston (B) with
three other major U.S. cities: Chicago (C), Los Angeles (L), and Miami (M).

mately 200 tweets.

3.2 Inferring a Tweet’s Location

While current approaches to user location prediction have shown promising results, one limitation is that they
need a substantial history of a user’s tweets in order to make accurate predictions. This much data is often
unavailable for the vast majority of users on Twitter. Moreover, even for users who have posted this much
information, it can be very difficult to collect this history under duress. Here we discuss alternatives to this
problem, that allow users to geotag a single tweet. Often this is necessary in times of crisis when it is not
feasible to collect a user’s entire history to estimate his location.

Disaster response agencies often look to Twitter to understand what is unfolding on the ground in real time.
To get a sense of the area most effected by the disaster, these agencies look at geo-tagged tweets. Since geo-
tagged tweets only account for 1% of all activity on Twitter, these first responders are left looking for other
methods to find a tweet’s location. However, with the requirement of hundreds of past tweets for a particular
user, existing methods to finding a user’s location become infeasible during crisis situations.

In the absence of explicit geographic information, it is unlikely that a single tweet contains enough informa-
tion to locate its exact position. Instead, to accommodate the lack of information, in [18] we change the problem
to reflect what first responders are actually looking for during times of crisis: whether or not a tweet actually
originates from within the crisis region. By simplifying the problem from predicting two continuous values to
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predicting one boolean value, we make the problem more tractable with such sparse data.
To differentiate the users within a crisis region from those outside by the text of their tweet, we must first

verify that the text that is generated from within a crisis region is actually different from the text outside of
it. We perform this analysis along two dimensions: within the area of the crisis before and during the crisis,
and during the time of the crisis across different locations. The results of this analysis are shown in Figure 5.
Figure 5(a) shows the temporal difference by hour over the course of April 15, 2013, the day of the Boston
Marathon Bombing. We see that the hours leading up to the bombing are much more similar than the hours after
the bombing. Furthermore, in the location comparisons, we see that the cities are similar before the disaster
(Figure 5(b)), and exhibit different behavior after the beginning of the crisis (Figure 5(c)). Thus, a linguistic
difference exists between the linguistic patterns during the crisis within the crisis location.

Now that we have established that a difference exists between the locations during the crisis, we can continue
to build a machine learning model that can capture these differences and aid first responders in finding tweets
coming from within the crisis region. To do this, we hypothesize some linguistic features within the tweet that
may be useful in identifying whether it originates from within the crisis region: Word Unigrams and Bigrams,
Part-of-Speech Tags, Shallow Parsing, and Crisis-Sensitive Features. Crisis-sensitive features are some features
identified by inspecting the text produced in the tweet. These consist of some part-of-speech patterns that are
commonly observed in crises.

To test the effectiveness of our linguistic features, we build basic classifiers to test our features. The model
then outputs its prediction of whether the tweet is inside region or outside region. We compare all possible
combinations of individual feature classes and find that a combination of Unigram + Bigram + Crisis Sensitive
features perform best for both crises.

We see that in both crises all of the top performing feature combinations still contain both the Bigram
and Unigram feature classes. These classifiers massively outperform traditional approaches in the geolocation
problem. This shows that inferring the tweet’s location is possible, and that by modifying the problem to focus
on the binary question of “within location” and “outside location” we are able achieve superior performance on
this problem.

4 Conclusion

Social media is immensely popular, allowing users to share their lives in new ways. By allowing users to share
their location, social media sites have enabled their users with richer means to express themselves. Location
information is an important part of social media analysis, allowing researchers to obtain new insights into the
behavior of users online and practitioners to develop new applications. In this work, we have shown how location
can be leveraged to find users’ interests and to predict what location a user will visit next. Furthermore, location
can be leveraged to help those affected by disaster, both by helping them to find the right information and by
making sure their requests for help are sourced to the correct agencies.

One of the main difficulties with studying location in social media is the lack of explicit information. This
comes, in part, from the low number of users who share their information on social media sites. We have
presented work which seeks to address this problem. We have also presented an algorithm that helps find users
in the region affected by a crisis. By focusing only on whether the user is inside or outside the region, we are
able to achieve higher performance than traditional approaches.

The problem of discovering location information in social media is a challenging one with a long way to
go. Future work consists of finding the “event location”, the location that the user is talking about. This can
differ from both the user’s tweet location and his user location. Another area for future work is location privacy.
In discovering location, we may uncover the location of users who do not want to be discovered, such as users
participating in protests. While existing approaches illuminate the potential for privacy concerns, future work
will be to address them in a way that does not bring users into harms way. Additionally, data reliability is a
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problem within the context of location discovery. Users providing fake and incorrect values for their location
add noise to the data. Future work seeks to identify these fake and incorrect locations and remove them to
increase the performance of the location discovery task.

Acknowledgments

This work is sponsored in part by Office of Naval Research (ONR) grant N000141410095 and by the Department
of Defense under the Minerva Initiative through the ONR grant N000141310835.

References

[1] Geoffrey Barbier, Reza Zafarani, Huiji Gao, Gabriel Fung, and Huan Liu. Maximizing benefits from
crowdsourced data. Computational and Mathematical Organization Theory, 18(3):257–279, 2012.

[2] Hau-wen Chang, Dongwon Lee, Mohammed Eltaher, and Jeongkyu Lee. @Phillies Tweeting from Philly?
Predicting Twitter User Locations with Spatial Word Usage. In Proceedings of the 2012 International
Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012), ASONAM ’12, pages
111–118, Washington, DC, USA, 2012. IEEE Computer Society.

[3] Z. Cheng, J. Caverlee, K. Lee, and D.Z. Sui. Exploring millions of footprints in location sharing services.
In Proceedings of the Fifth International Conference on Weblogs and Social Media, 2011.

[4] Zhiyuan Cheng, James Caverlee, and Kyumin Lee. You Are Where You Tweet: A Content-Based Approach
to Geo-locating Twitter Users. In Proceedings of the 19th ACM international conference on Information
and knowledge management, pages 759–768. ACM, 2010.

[5] Jacob Eisenstein, Brendan O’Connor, Noah A Smith, and Eric P Xing. A Latent Variable Model for
Geographic Lexical Variation. In Proceedings of the 2010 Conference on Empirical Methods in Natural
Language Processing, pages 1277–1287. Association for Computational Linguistics, 2010.

[6] H. Gao, G. Barbier, and R. Goolsby. Harnessing the crowdsourcing power of social media for disaster
relief. Intelligent Systems, IEEE, 26(3):10–14, 2011.

[7] H. Gao, X. Wang, G. Barbier, and H. Liu. Promoting coordination for disaster relief–from crowdsourcing
to coordination. Social Computing, Behavioral-Cultural Modeling and Prediction, pages 197–204, 2011.

[8] Huiji Gao, Geoffrey Barbier, and Rebecca Goolsby. Harnessing the crowdsourcing power of social media
for disaster relief, 2011.

[9] Huiji Gao and Huan Liu. Mining Human Mobility in Location-Based Social Networks. Data Mining and
Knowledge Discovery. Morgan & Claypool, 2015.

[10] Shamanth Kumar, Geoffrey Barbier, Mohammad Ali Abbasi, and Huan Liu. TweetTracker: An Analysis
Tool for Humanitarian and Disaster Relief. ICWSM, 2011.

[11] Shamanth Kumar, Fred Morstatter, and Huan Liu. Twitter data analytics. Springer, 2014.

[12] Shamanth Kumar, Fred Morstatter, Reza Zafarani, and Huan Liu. Whom Should I Follow?: Identifying
Relevant Users During Crises. In Proceedings of the 24th ACM Conference on Hypertext and Social Media,
HT ’13, pages 139–147, New York, NY, USA, 2013. ACM.

12



[13] Alan M. MacEachren, Anuj Jaiswal, Anthony C. Robinson, Scott Pezanowski, Alexander Savelyev,
Prasenjit Mitra, Xiao Zhang, and Justine Blanford. Senseplace2: Geotwitter analytics support for situ-
ational awareness. In Visual Analytics Science and Technology (VAST), 2011 IEEE Conference on, pages
181–190. IEEE, 2011.

[14] Jalal Mahmud, Jeffrey Nichols, and Clemens Drews. Home Location Identification of Twitter Users.
Transactions on Intelligent Systems and Technology, 5(3), 2014.

[15] E. Malmi, T.M.T. Do, and D. Gatica-Perez. Checking in or checked in: Comparing large-scale manual
and automatic location disclosure patterns. The 11th International Conference on Mobile and Ubiquitous
Multimedia (MUM 2012), 2012.

[16] Patrick Meier and Kate Brodock. Crisis mapping kenyas election violence: Comparing mainstream news,
citizen journalism and ushahidi. iRevolution Blog, October, 23, 2008.

[17] Fred Morstatter, Shamanth Kumar, Huan Liu, and Ross Maciejewski. Understanding Twitter Data with
TweetXplorer. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, KDD ’13, pages 1482–1485, New York, NY, USA, 2013. ACM.

[18] Fred Morstatter, Nichola Lubold, Heather Pon-Barry, J”urgen Pfeffer, and Huan Liu. Finding eyewitness
tweets during crises. ACL Workshop on Language Technologies and Computational Social Science, 2014.

[19] Fred Morstatter, Jürgen Pfeffer, Huan Liu, and Kathleen M. Carley. Is the Sample Good Enough? Com-
paring Data from Twitter’s Streaming API with Twitter’s Firehose. Proceedings of ICWSM, 2013.

[20] Stephen Roller, Michael Speriosu, Sarat Rallapalli, Benjamin Wing, and Jason Baldridge. Supervised
Text-Based Geolocation using Language Models on an Adaptive Grid. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Language Processing and Computational Natural Language
Learning, pages 1500–1510. Association for Computational Linguistics, 2012.

[21] S. Scellato, A. Noulas, R. Lambiotte, and C. Mascolo. Socio-spatial properties of online location-based
social networks. Proc. 5th International AAAI Conference on Weblogs and Social Media, 11, 2011.

[22] Axel Schulz, Aristotelis Hadjakos, Heiko Paulheim, Johannes Nachtwey, and Max Mühlhäuser. A multi-
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