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Abstract

With the development of location-based social networks, an increasing amount of individual mobility
data accumulate over time. The more mobility data are collected, the better we can understand the
mobility patterns of users. At the same time, we know a great deal about online social relationships
between users, providing new opportunities for mobility prediction. This paper introduces a novelty-
seeking driven predictive framework for mining location-based social networks that embraces not only a
bunch of Markov-based predictors but also a series of location recommendation algorithms. The core of
this predictive framework is the cooperation mechanism between these two distinct models, determining
the propensity of seeking novel and interesting locations.

1 Introduction

With the proliferation of smart phones and the advance in positioning technologies, location information can
be acquired more easily than ever before. This development has led to the flourishing of a new kind of social
network service, known as location-based social networks (LBSNs), such as Foursquare, Gowalla, and so on.
In these LBSNs, people can not only track and share individual location-related information, but also learn
collaborative social knowledge. Thus, a large amount of mobility data, such as check-ins (announcing a user’s
current location), have been collected, along with online social relationships between users. The more these data
are collected, the better we can understand individual and crowd mobility patterns, and the more accurately we
can predict future locations.

Mobility prediction plays important roles in urban planning [12], traffic forecasting [13], advertising, and
recommendations [36], and has thus attracted lots of attention in the past decade. A typical scenario is shown in
Fig 1(a). Past mobility data, such as GPS trajectories, sequences of Wifi access points, and cell tower traces, are
either of coarse positioning granularity but passively recorded or only collected actively by a small number of
volunteers. Thus, the collected data may be large scale, but redundant, so that the research for mobility predic-
tion has mainly focused on frequent pattern mining. With the development of location-based social networks,
mobility prediction is becoming a hot research topic once again. This is, on one hand, because mobility data
are actively collected from a large number of users connected by online social networks; on the other hand,
the introduction of social relationships provides new opportunities for mobility understanding and prediction
since it has been observed that mobility behaviors, particularly long-distance travel, are more influenced by
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social network ties [6]. At the same time, the locations are of extremely fine granularity (e.g., a room in an
office) so that mobility patterns are much less redundant. Since users may not have an impetus to record their
regular behaviors, some movement behaviors are missed. Due to these characteristics, mobility prediction on
location-based social networks faces several challenges. First, mobility data are extremely sparse, so that only
a small number of frequent patterns and only a portion of user preferences are implied. Second, more irregular
behaviors are presented in the mobility data from LBSNs, increasing the difficulty of prediction and urgently
requiring irregularity mobility prediction. Third, the collected check-ins tend to be noisy since check-ins don’t
necessarily imply a physical visit, so that mobility behaviors do not reveal an individual’s full preferences.

To address these challenges, we start by analyzing the mobility data from location-based social networks in
two ways to understand the distinct characteristics of mobility patterns. 1) Spatial analysis, is conducted on this
mobility data to understand individual spatial distribution and the distance distribution between consecutively
visited locations, given that regularly and irregularly visited locations coexist in the mobility data. 2) Temporal
analysis, is achieved by delving into this mobility data, to determine the significance and strength of temporal
regularity and Markov dependence.
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Figure 1: (a) A typical scenario for next check-in location prediction; (b) A novelty-seeking driven framework
for general mobility prediction

Following the analysis of mobility data, we introduce a novelty-seeking driven predictive framework for
mobility prediction, which consists of three components, as shown in Fig 1(b). 1) Regularity mining for regular
mobility prediction, which includes a temporal-based regularity model and Markov-based predictors [16]. To
address the sparsity challenge, we exploit kernel smoothing for regularity estimation and interpolation tech-
niques for integrating different orders of Markov model. And we further analyze the limit of predictability by
calculating the Kolmogorov entropy of trajectories, where the power of all Markov models from zero-order
to infinity-order are taken into account [18]. 2) Recommendation techniques for irregular mobility prediction.
Obviously, it is difficult for Markov-based models to predict the irregular mobility behaviors, such as visiting
novel but appealing restaurants, but such behaviors are still subject to geographical restriction and are preference
driven. Additionally, irregular mobility behaviors are probably affected by social influence since they may be
more likely to involve distant travel. Thus, we introduce into the predictive framework the second component:
a series of location recommendation algorithms that capture these three factors. In these algorithms, to alleviate
the data sparsity when presenting individual preference, we resort to the histories of similar users and friends for
collaboration and use geographical constraint to discover the highest possible negatively preferred locations. To
reduce the effect of the noise when presenting user preference, we treat the data as an indication of positive and
negative preference with vastly varying confidence. 3) Mining propensity of novelty seeking. In order to jointly
predict both regular and irregular locations that a user will visit next, we introduce the core component, address-
ing the cooperation mechanism between these two distinct models by determining the propensity of seeking a
novel and attractive location. When people have strong propensity for novelty seeking, more emphasis can be
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placed on irregular mobility prediction, but when people are more likely to behave regularly, regularity-based
models are assigned larger importance.

2 Related Work

Mobility prediction has been widely studied in two independent fields. One field is statistical physics, by as-
suming human movement can be equivalent to particles and thus leveraging their well-studied motion model
for mobility prediction. For example, statistical physicians analyzed mobile phone data, bank notes, GPS tra-
jectories to understand users’ individual mobility patterns at an aggregated level by studying the distribution of
displacement and waiting time [2, 11, 25]. They then stimulated or predicted human movement based on the
derived motion model, such as continuous time random walk and truncated levy flight. This aggregated scaling
law can be analytically predicted by the mixed nature of human travel under the principle of maximum entropy,
given the constraint on total traveling cost [31]. The other field is mobile communication and data mining in
computer science, by directly modeling the mobility patterns based on the data. For example, in [1,9,23,28], the
authors presented Markov models and a frequented pattern tree to capture sequential mobility patterns for mobil-
ity prediction. In [6, 8], time-aware regularity was modeled for mobility prediction. Furthermore, concomitant
social relationships have brought new opportunities for mobility prediction and thus several novel prediction
algorithms that incorporate social networks have been proposed [3, 6, 9, 24, 26]. All of this work has observed a
small but significant effect of social relationships on mobility prediction. Although social influence is considered
as a kind of collective wisdom, it neglects collaborative social knowledge, e.g., from users with similar mobility
patterns. In contrast to this existing work, the proposed framework not only tries to fully capture collaborative
social knowledge based on recommendation techniques, but also makes better use of the individual power of
the regularity-based model and recommendation based on mining propensity of novelty seeking. Therefore, this
framework prevents regularity (individual preference) from always playing a dominant role.

Although there are few research that suggest exploiting this knowledge for prediction, the learning of this
collaborative social knowledge has been widely studied in location recommendation. For example, in [5, 10,
17, 20, 34], social influence, geographical restriction, and personalized user preference have been used for lo-
cation recommendation. Since these authors all have observed the significant effect of geographical constraint,
they have proposed different models, such as k-means clustering and kernel density estimation, for geograph-
ical modeling. In addition, the text content of locations, such as reviews and tips, has been used for further
improvement [21, 32] of recommendation. In contrast to existing methods, the proposed framework not only
takes into account the implicit feedback characteristics of mobility data but also presents a fully unified matrix
factorization for jointly modeling user preference, geographical constraint, and social influence. Through this
unified model, we have added more pseudo-negative (disliked) locations into the framework, thus alleviating the
sparsity challenge.

Similar ideas to mining propensity of novelty seeking have been proposed in [22, 27], where the probability
of novelty seeking is empirically assumed to either be invariant or proportional to the number of distinct visited
locations. If novelty seeking is considered to be a deviation from routine, it is related to the work in [29], where
deviation from routine is detected by likelihood testing. In contrast, we have summarized our research from three
perspectives, two of which are based on supervised learning, which can easily incorporate other features, and
the third one is based on unsupervised learning but differentiates several levels of novelty seeking. Additionally,
one method of them has a practical explanation, being directly related to the indigenization process of people.

3 Mobility Understanding on Location-based Social Networks

We first understand some basic mobility patterns on location-based social networks from the spatial and temporal
perspectives.
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3.1 Spatial Analysis

From the spatial perspective, first, we are interested in the distance distribution between consecutive mobility
records given regular and irregular (novel) mobility behaviors coexisted, and show the distribution in Fig 2(a).
Based on this, we find that 1) most check-ins (over 80%) are within 10 kilometers from the immediately preced-
ing locations; 2) when we already know that users have checked in at regular locations, the next regular location
is significantly nearer to them than next novel location; 3) users are more willing to explore continuously. This
means that when a user has visited a new attraction, she may also try a nearby restaurant. These three character-
istics indicate that spatial analysis can be useful for both regular and irregular location prediction and confirm
the need to separate novel locations from regular ones. Second, we are interested in individual spatial density
distribution. Thus, we randomly pick one user with more than 100 mobility records and plot her spatial distri-
bution in Fig 2(b). This figure demonstrates that users usually have several major activity areas, such as home
and working place, and implies that kernel density estimation is more appropriate for inferring the geographical
preference.
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Figure 2: Illustration of spatial and temporal analysis

3.2 Temporal Analysis

From the temporal perspective, first, we are interested in periodicity, measured as returning probability [11],
which is defined as the probability that a user will revisit a location t hours after her first visit. Its distribution is
shown in Fig. 2(c), which indicates that the returning probability is characterized by peaks of each day, capturing
a strong tendency to daily revisit regular locations. It thus confirms the existence of temporal regularity, which
is thus necessarily introduced into the prediction model. Second, we study the distribution of the time interval
between consecutive mobility records, and show the distribution in Fig. 2(d). This shows 1) when a user has
visited a regular location, she is less inclined for exploration soon after; 2) users will be more likely to visit
novel neighboring locations consecutively within a short interval (e.g., hour). Last, the existence of Markov
dependence has been found in the mobility data by comparing the entropy of trajectories with randomly shuffled
trajectories under the Markov assumption [30]. We do not elaborate on this here.

4 Mobility Prediction on Location-based Social Networks

Given regular and irregular mobility behaviors coexisting in mobility data, we propose a novelty-seeking driven
predictive framework to jointly make use of regularity-based models for predicting regular behaviors and rec-
ommendation based algorithms for modeling irregular behaviors. The choice between them is based on people’s
propensity for novelty seeking, as shown in Fig. 1(b). To be more specific, when people have strong propen-
sity for novelty seeking, recommendation-based algorithms can be relied on more, while when people are more
likely to behave regularly, regularity-based models are assigned larger importance.
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4.1 Regularity Mining for Regular Mobility Prediction

Regularity-based mining consists of Markov-based predictors for modeling the sequential dependence, tempo-
ral regularity for capturing periodical patterns, and a unified Hidden Markov Model for integrating these two
models.

4.1.1 Markov-based Predictors

Learning the Markov model mainly depends on the estimation of location transition (due to the small amount of
personal data, only first-order Markov models are taken into account). However, maximum likelihood estimation
easily suffers from over-fitting due to the insufficiency of training data. Particularly, in most mobility datasets
from LBSNs, the number of parameters in the Markov estimator is around 40× 40 since there are 40 POIs for
each user on average, while there are only about 60 training instances (mobility records) on average. Although
Laplace smoothing techniques can have some effect, they don’t differentiate the events of the same observed
frequency. Thus, we leverage the widely-used Kneser-Ney smoothing techniques [4], that is

P (l|k) = max{n(k, l)− δ, 0}∑
l′ n(k, l

′)
+

δ
∑

l′ 1{n(k,l′)>0}∑
l′ n(k, l

′)

∑
p 1{n(p,l)>0}∑

l′
∑

p 1{n(p,l′)>0}
(17)

where 1{·} is an indication function and 0 ≤ δ ≤ 1 is a discounting parameter that can be set using the empirical
formula δ = n1

n1+2n2
(n1 and n2 are the number of one-time transitions and two-time transitions across locations,

respectively). Intuitively, this equation discounts the observed times of a transition and turns them over to the
possibility that some locations cannot be transitioned from location k. Additionally, such an estimation ensures
that zero-order distribution (the marginal of the first-order probability distribution) matches the marginals of the
training data. Specifically, ∑

k

P (l|k)PML(k) = PML(l) (18)

Thus PML(l) is the stationary distribution of Markov process determined by the stochastic transition matrix
P (l|k).

4.1.2 Limit of Predictability

We only consider first-order Markov model above, but it is possible to use higher-order or even infinity-order
Markov models. The benefit of using higher-order models can be studied by analyzing the limit of predictabil-
ity [18]. Such analysis can be achieved by estimating the amount of information in terms of Kolmogorov entropy
in mobility trajectories. Since it is difficult to estimate Kolmogorov entropy directly, Lempel-Ziv estimators in
data compression [14] are often used for approximation, as they can converge to the real entropy of a time se-
ries when the length of trajectories is sufficiently large. One estimator of a trajectory of n points is defined as
follows:

S ≈ lnn
1
n

∑n
i=1 Λ

i
i

(19)

where Λi
i is the length of the shortest substring starting at position i without appearing from position 1 to

i − 1. Without a sufficiently long mobility trace, the entropy will be overly estimated since some frequent
patterns have not been observed yet. After estimating the entropy, we then resort to Fano’s inequality [7] to
transform it into the limit of predictability since this inequality connects the error probability of prediction with
the sequential entropy. The overly estimated entropy will incur the lower predictability due to the concavity
and monotonic decrease of the Fano function. The key problem of Fano’s inequality should guarantee that the
maximal prediction probability should be much higher than the random probability. The larger the difference
between them is, the closer the upper bound is to the actual predictability. In other words, the more regular
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Figure 3: Left: The distribution of Kolmogorov entropy S, sequential uncorrelated entropy Sunc without and
random entropy Srand across user population. Right: The distribution of predictability of three entropies

the mobility behaviors are, the smaller the error between the upper bound and actual predictability is. Fig.3
shows examples of the distribution of estimated entropy and predictability on the Gowalla dataset [6], which
only indicate 38% potential predictability.

4.1.3 Temporal Regularity

In temporal regularity, the conditional probability P (l|d, h) must be estimated accurately, where d is the day of
week and h is the hour of day. Assuming the conditional independence d and h given location l, this conditional
probability can be transformed as

P (l|d, h) = P (d|l)P (h|l)P (l)∑
l P (d|l)P (h|l)P (l)

. (20)

The probability to estimate becomes P (h|l) and P (d|l). However, without sufficient training data, the MLE
tends to be overfit. Also, the difference in the probability between neighbor hours of the day and between
neighbor days of the week can not be guaranteed to be small. For example, assume a user has been to a Chinese
restaurant at 6 p.m. only once. If this user returns to this restaurant in the near future, the distribution of the
revisit time should be centered around 6 p.m. rather than at 6 p.m. exactly. Thus we exploit Gaussian kernel
smoothing function for smoothing the MLE to the parameters.

P̃ (h|l) =

∑23
g=0K(d(h,g)σg,l

)PML(g|l)∑23
h′=0

∑23
g=0K(d(h

′,g)
σg,l

)PML(g|l)
, P̃ (d|l) =

∑6
e=0K(d(d,e)σe,l

)PML(e|l)∑6
d′=0

∑6
e=0K(d(d

′,e)
σe,l

)PML(e|l)
(21)

where d(h, g) = min(|h − g|, 24 − |h − g|) is the distance between the hth and gth hour of day and d(d, e) =
min(|d− e|, 7− |d− e|) is the distance between the dth and eth day of week. The reason for defining distance
in this way is that there is a cyclic property among them (the probability of 0 a.m. is close to 1 a.m. and 23 p.m.
and the probability of Sunday is also close to Saturday and Monday). K(x) is a truncated standard Gaussian
distribution over x ∈ [0,+∞).

4.1.4 Hidden Markov Model

Temporal regularity and Markov model can be integrated in a unified Hidden Markov Model, where locations
are considered as hidden states and the temporal information is considered as the observations of Hidden Markov
Model. The supervised learning to estimate the parameters corresponds to the above estimation process, except
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the initial probability of the hidden state is not estimated. Actually, we can simply use MLE for the initial state
probability. Note that we don’t take social relationship into account since social network ties are more likely to
influence long-distance travel according to [6] while long-distance travel may more probably involve irregular
mobility behaviors we will introduce next.

4.2 Location Recommendation for Irregular Mobility Prediction

Obviously, regularity-based models will fail to predict irregular mobility behaviors, but such behaviors are still
subject to geographical restriction, and are driven by both user preference and social influence. Below, we
introduce how to leverage these factors for irregular behavior prediction.

4.2.1 User Preference Learning

Learning user preference mainly involves collaborative filtering techniques, which take the user-location matrix
as input and mine the commonality between users. Each element of the matrix can either be visit frequency
or a binary value indicating whether the visit has occurred or not. Below, we introduce two approaches for
collaborative filtering that mines user commonality from different perspectives.

User-based collaborative filtering [16], directly measures user’s commonality in terms of similarity on be-
havior data. According to our analysis, considering the element of matrix as a binary value to define the similarity
is empirically optimal for recommendation. In this case, a user u is represented as ru ∈ {0, 1}N , where there
are N locations in total and her similarity with another user v is defined as follows,

su,v =
rTu rv

∥ru∥∥rv∥
. (22)

The scoring function of user u to location i is in proportion to sTu ri.
Matrix factorization is a dimension reduction technique such that the dot product between users, between

items, and between user and item in the reduced latent space can measure the commonality. However, since mo-
bility data only include the locations where users have been and are likely to prefer, while unattractive locations
and undiscovered but potentially appealing ones are mixed in unvisited locations, mobility data are actually a
kind of implicit feedback. In this case, we need to use a special class of matrix factorization algorithms, which
treat all unvisited locations as pseudo-negative and assign them a significantly lower confidence. User preference
is thus learned by solving the following optimization problem,

min
P,Q

∑
u,i

wu,i(ru,i − pTu qi)
2 + λ(∥P∥2F + ∥Q∥2F )

where pu ∈ RK and qi ∈ RK represent the preferences of user u and POI i. The weight wu,i is empirically
set as α(cu,i) + 1 if cu,i > 0; and 1 otherwise, where α(cu,i) is monotonic increasing w.r.t visit frequency cu,i,
indicating the visit frequency reflect confidence that the users are fond of them.

4.2.2 Geographical Constraint

Kernel density estimation. The geographical information of location requires physical interactions with users to
foster the universality of Tobler’s First Law of Geography: “Everything is related to everything else, but near
things are more related than distant things.” The key for capturing this phenomenon is geographical modeling.
We use two-dimensional kernel density estimation, which infers the probability a user will show up around
location lj , i.e.,

P (lj) =
1

|Li|h
∑
lk∈Li

K(
dj,k
h

),
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where K(·) is a kernel function. The setting of bandwidth h in the kernel function is determined by the re-
quirement that the influence of candidate locations on the border of the influence circle is close to zero. If the
probability on the border is at most ϵ times smaller than the maximum possible check-in probability, it is subject
to K( dh) < ϵK(0).

Learning-based geographical inference is proposed for the sake of seamlessly integrating geographical mod-
eling with matrix factorization based user preference learning. This is achieved by splitting the whole world into
grids of approximately the same size and pre-computing the received influence of each grid from all the loca-
tions, and then converting kernel density estimation to the following optimization problem,

min
xu

∑
i

wu,i(x
T
u yi − ru,i)

2 + λΩ(xu), subject to xu ≥ 0

In this objective function, yi is an influence vector of a location i, and each element corresponds to a grid’s influ-
ence received from this location; and xu is an activity area vector of user u, in which every element represents
the possibility that this user will appear in a certain grid. Thus, the dot product between them can be consid-
ered to be the possibility that user u will show up around location i. Ω(xu) is a regularized term for avoiding
over-fitting.

4.2.3 Social Influence

Social-based filtering [16] is similar to user-based collaborative filtering, except it captures user commonality
based on social network information. The simplest commonality/similarity between two users is defined as 1 if
they are friends and 0 otherwise. In this case, a user’s preference score for a location can be expressed as the
number of her friends who have visited. To more accurately distinguish the importance of friends based on their
closeness, we exploit another strategy, which is in proportion to the number of common friends, i.e.,

si,l =
|Fi ∩ Fl|
|Fi ∪ Fl|

,

where Fi and Fl represent the friend sets of user ui and ul, respectively.
Graph Laplacian regularization [15] is more often exploited for capturing social influence for the sake of

seamless integration with matrix factorization based preference learning, although social-based filtering tends
to be more intuitive. Given all users’ symmetric similarities S based on social network ties, such as the ratio of
common friends [19], this regularizer can be defined as follows:

ΩS(P ) =
1

2

∑
i,l

si,l∥pi − pl∥2 = tr(P TLP )

where Di,i =
∑

l si,l and L = D − S is a Laplacian matrix.

4.2.4 Hybrid Recommendation

Given the factors affecting the prediction of irregular behaviors, there are many methods for empirical integra-
tion. Since geographical modeling is converted into an optimization problem, it can be seamlessly incorporated
into user preference learning in terms of matrix factorization, as shown in Fig. 4. In this model, the influence
areas of a POI are considered as an extra part of the POI’s latent factors and the activity areas of a user are con-
sidered as an extra part of the user’s latent factors. Since they are aligned in position, the dot product between
them indicates two-dimensional kernel density estimation. At this moment, because unvisited locations around
visited ones share similar geographical influence, user preference for them needs to offset the geographical influ-
ence. Thus, such an integration allows us to find more potential disliked locations and plays an important role in
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Figure 4: The augmented model for matrix factorization, where the dimension of the latent space is K and the
number of grids is L.

alleviating the data sparsity. Furthermore, combining this with graph Laplacian regularization for incorporating
social relationships, the overall objective function becomes as follow:

min
P,Q,X

∥W ⊙ (R− PQT −XY T )∥2F + γ(∥P∥2F + ∥Q∥2F ) + ηΩS(P ) + λ∥X∥1, subject to X ≥ 0

where X is a matrix stacking a user’s activity area by columns and Y is a matrix stacking the items’ influence
areas vector by columns. ℓ1 norm of matrix X , ∥X∥1, constrains that users usually stay around several important
locations, such as home and working places.

4.3 Mining Propensity of Novelty Seeking

Mining individual propensity of novelty seeking is conducted from three perspectives: exploration prediction,
mobility indigenization, and irregularity detection. Exploration prediction is spatially and temporally dependent
while mobility indigenization is only with respect to cities. However, irregularity detection is independent to
both spatial and temporal contexts.

4.3.1 Exploration Prediction

Exploration prediction determines whether people will seek novel (irregular) locations next. Given mobility
data, whether a visit to a location is regular or not can be determined by searching the mobility history of the
user. If the visit location has already been visited earlier, the visit is considered as regular; otherwise, it is
irregular. Exploration prediction is thus boiled down to a binary classification problem, which can output a
classification result (regular or not) or exploration tendency (e.g., a probability of classifying the next location
as irregular). In the classifiers, we consider the following three types of features.

Historical features not only summarize the personality traits of novelty seeking, i.e, how often they check
in, but also reflect a user’s current status of neophilia, including whether a user is currently doing exploration
and how many opportunities a user has left to seek novel locations. The more locations near her activity area
are visited, the smaller the number of opportunities are left, and the smaller the propensity of seeking novel
locations is becoming.

Temporal features are introduced to consider the effect of this temporal information since users usually
have distinct degrees of novelty seeking at different times. As we have discovered, 1) users may prefer to do
exploration during weekends; 2) the time interval between consecutive records also affects novelty seeking.

Spatial features are also taken into account for exploration prediction because users also exhibit different
propensity of novelty seeking at locations with distinct degrees of familiarity. For example, if a user has arrived
in an unfamiliar location (e.g., city), her propensity for novelty seeking will increase.

4.3.2 Mobility Indigenization

When considering irregular mobility behaviors as mainly occurring out of town, we can use a more interesting
index, i.e., indigenization coefficients, for integration [33]. This index quantifies what extent an individual
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behaves like a native. Therefore, this index is opposite to the propensity of novelty seeking. The smaller the
index of a user in a city is, the more likely she is non-native to the city, so that irregular-based models should be
given higher emphasis.

We have proposed two coefficients for this indigenization index. The first one is an individual behavioral
index, Ii(u), which counts the ratio of repeated mobility records in a city, inspired by the fact that a native is
more likely to visit some locations many times than a non-native. That is, for a user, NT indicates the total
number of her mobility records and ND the number of different locations visited by her. The index is then
defined as

Ii = 1− ND

NT
. (23)

The second one is a collaborative behavioral index Ic, measured as the average normalized popularity of a user’s
visit locations, which is inspired by the fact that a native is less likely to visit popular locations than a non-native.
Given that R(lk) is the normalized rank of location lk (dividing the rank by the total number of locations in a
city), this index is formally defined as

Ic =
1

NT

NT∑
k=1

R(lk). (24)

These two indigenization coefficients can be used to define an integrated coefficient

I =
1

1 + exp(−wiIi − wcIc)
, (25)

where the parameters wi and wc can be learned from the logistic regression that best classifies natives and
non-natives. In other words, these two coefficients are taken as features for classifying people as native and
non-natives. After learning these two parameters, we obtain a probabilistic value for the indigenization level and
thus obtain a probability (i.e.,1− I) for novelty seeking.

4.3.3 Irregularity Detection

Irregularity detection [35] further distinguishes several levels of propensity of novelty seeking, and detects the
level of novelty seeking by measuring the popularity of the visit locations and the transition frequency to visiting
location with respect to individual mobility history before the visit time. When both the popularity and transition
frequency are smaller at the same time, the level of novelty seeking tends to be higher. After determining the
level of novelty seeking for each visit in the mobility data, we can measure the novelty seeking trait for each
user. For example, we can use the average level of novelty seeking. In other words, such an algorithm will give
each user the same but distinct propensity of novelty seeking at any time and any location. In order to leverage
it in the general mobility prediction framework, we can normalize it by dividing the maximum level of novelty
seeking to get a pseudo probability value. A larger value indicates a higher possibility of novelty seeking.

4.4 A Novelty-Seeking Driven Framework for General Mobility Prediction

Provided the probabilistic output of the regularity mining algorithm Pr(l) (r indicates regular) and recommen-
dation algorithm Pn(l) (n indicates novel), we exploit novelty seeking to combine them based on the probability
of exploration Pr(Explore) as follows:

P (l) = Pr(Explore)Pn(l) + (1− Pr(Explore))Pr(l), (26)

If Pr(Explore) ∈ {0, 1}, i.e., novelty seeking just classifies the next location as novel or not, we can switch
between location recommendation and the regularity-based model. Due to the discrete value of Pr(Explore),
we denote this case as “hard” integration. If Pr(Explore) ∈ [0, 1], i.e., representing the propensity of novelty
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seeking, we can interpolate the regularity-based model with location recommendation. In other words, both
novel and regular locations are ranked together in this case for the final location prediction. Due to the continuous
value of Pr(Explore), we denote this case as “soft” integration.

5 Conclusions
In this paper, we have introduced a novelty-seeking driven framework for incorporating regularity-based predic-
tion algorithms and recommendation algorithms for predicting irregular mobility behaviors. In regularity-based
prediction, we exploit Hidden Markov model for modeling location transition and temporal dependence. For
recommendation algorithms, we propose a unified recommendation framework to integrate social influence, ge-
ographical restriction, and user preference based on the implicit feedback characteristics of mobility data. And
the central idea of this predictive framework is the mechanism of cooperation between these two distinct mod-
els, by exploiting exploration prediction, indigenization coefficient and irregularity detection to characterize the
propensity of seeking a novel and appealing location.
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