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Letter from the Editor-in-Chief

Computer Society News

The Technical Committe on Data Engineering (TCDE) is part of the IEEE Computer Society, the largest society
within the IEEE. As such it is governed by the technical committee framework established by the Computer
Society. The Computer Society itself is governed by a Board of Governors (BOG) that decides policy for the
society within the constraints permitted by the IEEE. I recently became a BOG member and have some (limited)
first hand knowledge of what is happening in the Computer Society and how it may impact technical committees,
e.g. TCDE, and the conferences that they sponsor.

The BOG met in the first week of June. At that meeting it adopted a new policy (which I played a role
in originating) that directly impacts the TCDE and our flagship ICDE conference. The new policy divides
conference surplus into equal thirds, going to conference (for the next conference instance), technical committee,
and Computer Society. And, perhaps most importantly, it gives the TCDE the ability to accrue a balance that
continues indefinitely. This will permit the TCDE to plan things on a longer time horizon than is currently
possible. My hope is that it will stimulate more activity at the TC level of the Computer Society. This would be
a very big plus for the entire organization.

The Current Issue

One of the spooky things about the world we live in is how much information is widely available about us and
what might be done with it- either with or without our knowledge. One of the great things about this world is all
the great services that can be provide to us based on data that is widely available about us. Interesting dilemma.
Do we resist this world or seize it with gusto?

We, as citizens in this world need to understand both the personal data that is available and the services that
we might usefully exploit based on that data. It is easy to understand the utility of location information– which
we give up willingly (at least in circumscribed conditions) to enable GPS systems to provide us with directions.
More difficult to get a handle on is social network style data. But varying kinds of machine learning operating
over ”big data” make it possible to personalize experience, such as providing restaurant recommendations. Of
course, this same data can be used to “foist” annoying ads your way. But no one ever promised that life would
be either easy or simple.

The current issue explores this interaction of location data and social data. This is incredibly timely, both
from a personal “they know that about me and how do I stop this” or “what a useful service” viewpoint and as
a technical research area. As a research area, this is at the intersection of data platforms and data management
on the one corner, and machine learning at another, and social media at a third. This is a great place to be as a
researcher as there are several directions that are emphatically worth exploring. Xiaofang Zhou has assembled a
great collection of papers in precisely this intersection of technical areas. The issue is by no means encyclopedic,
but it is a very useful sampling of good work going on right now. Hence it is a great place to start when (1)
trying to discover what companies might do with your data, and (2) for exploring research opportunities in this
space. I want to thank Xiaofang for a great issue of the Bulletin on a topic of great current interest.

David Lomet
Microsoft Corporation
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Letter from the Special Issue Editor

Among all types of big data available to us today, two types of data are in abundance and closely related with
each other: social media data and location data. Both types of data are rich in information but are highly
challenging to process. The best value derivable from these two types of data can be achieved once they are
considered together. This special issue on the topic of location-based social media analysis reports the latest
advances from leading researchers in this area for managing and analyzing these two type of data in a holistic
approach.

The past decade has witnessed the phenomenal success of online social networks (OSN) with billions of
users across various platforms, on which anyone is able to create and share any kind of information (news,
articles, images, videos) to her connections, leading to a huge amount of social media data. The current perva-
siveness of GPS-enabled mobile devices and the fact that all the giant social networks have also gone mobile
have empowered people to add a location dimension to existing online social networks in a variety of ways. For
example, users can upload geo-tagged photos/videos to Flickr, Instagram or Vimeo to share their great moment
with friends, comment on an event in Twitter with geo-tagged tweets, share what they think about a restau-
rant on Foursquare, or log bicycle trails for sport analysis and experience sharing on Bikely. These kinds of
location-embedded and location-driven social structures are known as location-based social networks (LBSN),
while the geo-tagged social media is often referred to as location-based social media. Compared to traditional
online social networks where peoples relationships in the virtual world may not necessarily correspond to those
in the real world, the location dimension bridges the gap between online social networks (aka virtual world) and
their real lives (aka real world). Moreover, as location is one of the most important components of user context,
incorporating locational information while analyzing online social networks enables a deeper understanding of
user preferences and behavior in the physical world. The enormous volume, fine granularity and heterogeneous
formats of location-based social media have brought us unprecedented opportunities to, for the first time, study
and understand humans social behavior with the scale and depth that could not possibly be achieved in the past.
This special issue consists of seven articles from leading researchers geared towards the recent development and
new frontiers of models, algorithms, applications and systems for location-based social media analysis.

The special issue starts with three survey-styled articles that review and summarize the challenges and state-
of-the-art technologies in dealing with location-based social media data. The article Discovering Location In-
formation in Social Media introduces some recent analytical techniques that leverage geographical information
in social media to make recommendations and predictions. It then moves on to discussing how machine learn-
ing methods can be applied to infer the location of a social media post so that the prior analysis can be carried
onto the entirety of social media data, rather than just those explicitly tagged with geographic information. In
the second article Inferring Real-World Relationships from Spatiotemporal Data, the authors survey the related
techniques pursuing the inference of the real-world social connections and social strength from spatio-temporal
data that are generated from location-based social networks. The last article in this set Go Beyond Raw Tra-
jectory Data: Quality and Semantics first points out the limitations of traditional techniques for processing raw
trajectory data in coping with the spatio-temporal data in the context of LBSNs due to the lack of quality control
mechanism and semantic information. The authors then review their recent work on enhancing the quality of
trajectory data and utilizing the semantic information that are readily available in location-based social media to
improve the interpretability of trajectory search results.

The next set of two papers mainly focuses on location-based social network mining by applying different
machine learning models and techniques. In the article Mining Location-based Social Networks: A Predictive
Perspective, the authors adopt supervised learning models to predict the future locations for users with regular
mobility patterns and irregular mobility patterns respectively. Afterwards they discuss how to characterize the
novelty-seeking propensity of LBSN users, which is used to prioritize the corresponding prediction models and
rank the locations for recommendation. The paper Clustering in Geo-Social Networks, on the other hand, applies
an unsupervised learning method (i.e., clustering) to find groups of places in an LBSN that share similar geo-
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social attributes and structures, which can benefit applications like marketing campaign, urban planning, travel
recommendation and so on.

The last two articles concern new techniques of analyzing microblogs by taking the space-time attribute into
consideration. In the article entitled Space-Time Aware Behavioral-Topic Modeling for Microblog Posts, the au-
thors model the topic of a microblog post where associated information in the form of timestamps, geo-locations
and user interactions (i.e., reply, re-tweet) is available. The article Taqreer: A System for Spatio-temporal Anal-
ysis on Microblogs introduces their recent development for Taqreer, which is a scalable and efficient system
for auto-generation of spatio-temporal analysis reports on large number of microblogs. Database technologies
including indexing structures, flushing strategies, query optimization and recovery management have been em-
ployed and integrated into the query processing engine in order to deal with microblogs with high arrival rate
and volume.

Irrespective of the nature of the papers, collectively they provide a good view of the state-of-the-art thoughts
and research in the area of location-based social media analytics. I hope you enjoy reading these articles!

Xiaofang Zhou
The University of Queensland

Australia
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Discovering Location Information in Social Media

Fred Morstatter, Huiji Gao, Huan Liu
Arizona State University

{Fred.Morstatter, Huiji.Gao, Huan.Liu}@asu.edu

Abstract

Social media is immensely popular, with billions of users across various platform. The study of social
media has allowed for deeper inquiries into questions posed by computer scientists, social scientists,
and others. Social media posts tagged with location have provided means for researchers to perform
even deeper analysis into their data. While location information allows for rich insight into social
media data, very few posts are explicitly tagged with geographic information. In this work, we begin
by introducing some state-of-the-art analysis techniques that can be performed using the location of a
social media post. Next, we introduce some systems that help first responders provide relief with the
help of the location of social media posts. Finally, we discuss how machine learning techniques can
be applied to infer the location of a social media post, bringing this analysis to any message posted on
social media.

1 Introduction

Social media sites provide ways for their users to conveniently share their lives in real-time, from their current
mood to the music they are listening to, and even information pertaining to their physical activities. Among the
myriad ways to share information, the ability for users to share their location has come to the forefront of many
sites. Sites such as Twitter and Facebook allow users to tag their posts with their current location, either with the
venue or “place”, or the exact GPS coordinates. Sites such as Foursquare have built their entire platform around
users sharing their geographic information.

Increasingly, researchers and practitioners have found ways to make use of this new source of information
for novel applications, such as recommending new venues to users, and predicting the number of people who
will check in at a certain location. It has also been used to increase the effectiveness of existing problems such
as helping deliver the right information to first responders in humanitarian assistance and disaster recovery.

In this work we discuss state-of-the-art challenges in leveraging geographic information in social media
research. We begin by discussing how researchers use this information to make recommendations and to predict
the next location a user will visit. Next, we discuss systems that have been created to help make sense of users
mobility patterns in online social networks and to use these patterns to understand the greater picture of an event
of disaster as it unfolds on social media. Finally, we introduce techniques that can predict a user’s location in
absence of explicit information on their post. These techniques have the potential to bring this analysis to the
entirety of social media posts, and not just those explicitly tagged with geographic information.

Copyright 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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2 Using Location Data for Novel Applications

2.1 Personalized Point of Interest Recommendation on Location-Based Social Networks

The rapid growth of cities has developed an increasing number of points of interest (POIs), e.g., restaurants,
theaters, stores, and hotels, providing us with more choices of life experience than before. People are willing
to explore the city and neighborhood in their daily life and decide “where to go” according to their personal
interest and the various choices of POIs. At the same time, making a satisfying decision efficiently among the
large number of POI choices becomes a touch problem for a user. To facilitate a user’s exploration and decision
making, POI recommendation has been introduced by location-based services such as Yelp and Foursquare.
However, such recommendation models are commonly based on majority users’ preference on POIs, which
ignore a user’s personal preference. Comparing to visiting places that best fit a user’s interest, visiting places
against a user’s taste may give him very terrible experience, especially in a situation when the user travels to
a new place. Therefore, personalized POI recommendation is proposed to help users filter out uninteresting
venues according to their own taste and save their time in decision making.

2.1.1 Background

Before the Web 2.0 era, analyzing user’s mobility for personalized POI recommendation is based on cellphone-
based GPS data. Due to the lack of mapping information between geographical coordinates and real-world POIs
on GPS data, a POI is usually determined by the stay points (geographical points at which a user spent sufficient
long time) extracted from hundreds of users’ GPS trajectory (a sequence of time-stamped latitude/longtitude
pairs collected repeatedly at intervals of a short period) logs [25, 26]. With the rapid development of location-
based social networking services, e.g., Foursquare, Yelp, and Facebook Places1, users are able to check in at
real-world locations with specific POI information and share such check-ins with their friends through mobile
devices, resulting in more abundant information to improve personalized location recommendation.

This abundance of information has led to a new class of social network, called a “location-based social net-
work”. Location-based social networks not only refer to the social connections among users, but also consist of
the “location-based” context including geographical check-in POIs, check-in time stamps, and check-in related
content (e.g., tips, comments, POI descriptions, etc.), as shown in Figure 1. Compared with other online social
networks that consist of user activities interacting with the virtual world, LBSNs reflect a user’s geographi-
cal action in the real world, residing where the online world and real world intersect, therefore bridging the
gap between the real world and the virtual world, providing both opportunities and challenges for researchers
to investigate users’ check-in behavior for personalized POI recommendation in spatial (“where”), temporal
(“when”), social (“who”) and content (“what”) aspects.

In this work, we use POI, venue, and location as interchangeable terms. Let u = {u1, u2, ..., um} be the set
of users and l = {l1, l2, ..., ln} be the set of POIs wherem and n are the numbers of users and POIs, respectively.
The problem of personalized POI recommendation on LBSNs is defined as:

Given a user u ∈ u, a set of POIs (locations) lu ∈ l that u has checked-in, recommend him some POIs for his
future visits based on the LBSN context (e.g., social connections, content information of check-ins, time stamps
of check-ins) related to him.

In the last decade, recommender systems have been widely studied among various categories, e.g., movie
recommendation on Netflix, dating recommendation on Zoosk, item recommendation on Amazon. However, it
is not sufficient to directly apply these technologies as personalized POI recommendation on LBSNs presents
unique challenges due to the heterogeneous information layout and the specificity of human mobility. Designing
efficient POI recommendation approaches on LBSNs inevitably needs to consider the following properties.

1http://www.facebook.com/about/location
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Figure 1: The information layout of location-based social networks. The geographical layer contains the his-
torical check-ins of users, while the social layer contains social friendship information, and the content layer
consists of user feedbacks or tips about different places. All these three layers share one timeline, indicating the
temporal information of the user “check-in” behavior.

Geographical Property of Social Connections
Geographical property and social connections are coherent and affect each other in human behavior. For
example, a user is more likely to be friends with other users who are geographically close to him, e.g,
co-workers, colleagues. Likewise, a user may check-in at a location due to the influence from his friends,
such as following friends’ suggestions to visit a restaurant. Such coherence results in a new property,
commonly referred to as socio-spatial properties [21]. Thus, considering the social information together
with the geographical property enables us to capture the user preferences more precisely in personalized
POI recommendation on LBSNs.

Temporal Patterns of Geographical Check-ins
Human geographical movement exhibits strong temporal patterns [3, 15, 24] and is highly relevant to the
location property. For example, a user regularly goes to a restaurant for lunch around 12:00 pm, watches
movie on Friday night, and shops during weekends. This is generally referred to as temporal cyclic
patterns. Such temporal patterns are not widely observed in other recommender systems. For instance, it
is not common to observe a user regularly watching a specific movie (e.g., Batman, Avatar) or purchasing a
specific item (e.g., camera, cellphone) at specific hour of the day, or day of the week. (Although birthdays
or holidays like Thanksgiving may affect human behavior a bit, they are not commonly considered).

Semantic Indications of Check-in Content
Content information on LBSNs could be related to a user’s check-ins, providing a unique opportunity for
location recommendation from a conceptual perspective. For example, By observing a user’s comment on
a Mexican restaurant discussing its spicy food, we observe if the user is interested in spicy food or not.
This is an example of user interests. By observing a location’s description as “vegetarian restaurant”, we
may infer that the restaurant serves “vegetarian food” and users who check-in at this location might be
interested in the vegetarian diet. This is an example of location properties. These two types of information
are representatives of user-generated content and location-associated content on LBSNs. The former refers
to comments that left by users towards specific locations when they check-in; the latter can be descriptive
tags associated with specific locations.

The above three properties indicate the three unique relationships between geographical information and so-
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cial, temporal, and content information, commonly referred to as geo-social correlations, geo-temporal patterns,
and geo-content indications. For more information, please refer to Gao and Liu 2015 [9].

2.2 Geolocated Information for Crisis Response Applications

In this section we discuss how geolocated social media data can be used to help with disaster relief. We introduce
two classes of systems: crisis maps that help first responders match need with resources, and tools which help
first responders get a deeper understanding of the situation.

2.2.1 Crisis Mapping

Crisis mapping consists of tools that help first responders to coordinate resources in times of disaster. Usually,
the requests for assistance are obtained through SMS, as well as through social media. Twitter is often used in
such applications [11].

Ushahidi [8] is one of the first crisis mapping systems. It has helped to coordinate relief in Kenya [16],
Afghanistan, and Haiti. The system features a request engine that allows for those affected to seek out the
resources they need for their specific situation. Volunteers and disaster relief organizations can then use this
map to allocate aid and to see where their services can be of the most use.

TweetTracker [10] enables a first responder to collect Twitter data pertaining to a crisis by specifying param-
eters about the crisis. These parameters can come in one of three forms: 1) keywords which describe words that
pertain to the crisis, 2) geographical bounding boxes which specify the region or regions affected by the crisis,
and 3) user names which can be users that tweet about the crisis. TweetTracker collects tweets that match any
of these parameters and shows them to the first responder.

ASU Coordination Tracker (ACT) [7], is designed to collect crowdsourced requests, keep first responders
aware of the current situation, and help them coordinate for disaster relief. The main goal of ACT is to analyze
crowdsourced requests and promote inter-agency coordination to prevent duplication of effort during crisis. It
comprises of five functional modules: request collection, request analysis and visualization, response, coordina-
tion, and situational awareness. Figure 2(a) shows an overview of classified requests and the quantity of requests
on ACT’s crisis map. ACT collects two types of requests: requests from crowds (crowdsourcing) and requests
from groups (groupsourcing). Crowdsourcing refers to requests submitted by people (e.g. victims, volunteers)
who are not from certified organizations. The groupsourcing [1,6] requests originate from responding organiza-
tions such as United Nation, Red Cross, etc. Specially, crowdsourcing data are collected in forms of web, SMS
and tweets collected through TweetTracker. The data analysis takes advantage of both data mining technology
and expert knowledge to iteratively capture the essential content of raw requests and classify them into several
categories (food, shelter, missing persons, etc.). Figure 2(b) shows a clustering visualization for expert labeling
and decision making based on active learning techniques.

2.2.2 Visualizing Crisis Data

Another way that geolocated social media data has helped first responders is by giving them a picture of what
is unfolding on the ground. While looking at the raw data is very difficult, several systems have emerged in the
past few years to make sense of the massive volume of data that is generated during a crisis.

TweetXplorer [17] is a system that is designed to help first responders get situational awareness. An overview
of the system is shown in Figure 3(a). Queries are issued to the system using the query pane on the bottom right.
The network in the top right shows the most retweeted users in the dataset. The top left shows a map, which
shows the locations that gave the most geotagged tweets about the user’s query. This map can also be used to
help the user’s explore the data. The map can be combined with the network to show the geo-tagged retweets of
a particular user, as shown in Figure 3(b). This can help the analysts understand which locations care the most
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(a) ACT Request Window (b) Request Classification and Visualization

Figure 2: ASU Coordination Tracker overview. This shows two important views of the system. On the left we
see a request window which shows requests made by specific organizations classified in terms of quantity. On
the right we see the active learning module which helps the human expert to classify requests.

about a particular tweet. The map can also be “brushed”, causing it to show a tag cloud of the most important
words in the selected region.

Another visual analytic system designed to help first responders understand events on the ground is Sense-
Place2 [13]. The system helps analysts find important tweets by allowing them to query in two ways: through
keywords, and through a spatial filtering interface. In this way the users can find both the content they are
interested in and where it originates. More details about the system can be found on the project web page2.

3 Inferring Location Information in Social Media

While location-based user analysis has taken off in recent years, the number of users providing their location
has not kept pace. Only about 1% of all of the tweets posted on Twitter are geotagged [19]. This is largely due
to Twitter’s “opt-in” policy for providing user location. The disparity prevents existing techniques being used to
assist the vast majority of users of a service who do not use their geographical information.

To bridge the gap analysis and users who lack location information, researchers have focused on uncovering
the locations of users who do not share their location on social media. This location can be uncovered from three
perspectives: the user’s profile location, where he lives; the tweet’s location, where the message was published;
and the event location, where the message is talking about. In this section we discuss attempts that researchers
have made to address these problems.

3.1 Inferring a User’s Location

A “user’s location” refers to the location where the user lives, or the location that he would give in his profile.
The problem of user location prediction of Twitter users was first investigated in [4], where the authors used
the language of the user’s tweets to estimate his home location. The authors manually asses the statistical
distribution of words in the tweets to find words that contained a “strong geo-scope”. One example of such a
word is “Red Sox”, which occurs much more in the Boston, Massachusetts area than anywhere else in the USA.
This work was extended in [2], where the authors propose an automated approach to finding words with a strong
geo-scope. Linguists have also made an attempt at this problem looking for statistical variation in different
geographic regions. In [5], the authors propose geographical topic models to model the language across the
entire continental United States. [23] and [20] use a grid-based approach to define regions using the data.

2http://www.geovista.psu.edu/SensePlace2/
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(a) TweetXplorer

(b) Social Network Overlaid on Map (c) Geo-Aware Tag Cloud

Figure 3: Overview of TweetXplorer. The top pane shows an overview of the system. The bottom left shows
how the network can be combined with the map to analyze who is retweeting the user. The bottom right shows
a tag cloud that shows the most important words from a particular geographic area.

Researchers have approached this problem not just from one perspective (e.g. text, or network) but instead
take a holistic approach trying to incorporate as much signal as possible into their models. In [22], the authors
combine signals such as the tweeter’s “location field” in his profile, any URLs in his biography (top-level do-
mains such as .uk may provide a country indicator), and the time zone the user has set. This heuristic-based
approach is furthered by [14], who adds more information including patterns of users posting time, and points
of interest. This work also studies how different types of spatial aggregation and ensemble approaches can lead
to better classification results.

In the context of disaster response, user location has been used to help first responders to find “eyewitness
accounts”: accounts that are both geographically near the disaster and discussing the topics of those affected.
Kumar et. al 2013 [12] proposed a method for finding eyewitness accounts by measuring all of the users who
tweet about a crisis along two dimensions: the location of their geotagged tweets, and their affinity for a set
of topics. An example of these dimensions is shown in Figure 4. The users who score above-average on both
dimensions, putting them in the upper-right quadrant, are considered “Q1” users. The authors find that the
properties of Q1 users reflect the properties of eyewitness users: they tweet first on pressing topics and often
relay relevant information that is not found in the other dimensions.

One important requirement of all of the above work is the number of tweets required in order for the ap-
proaches to make accurate predictions. The geo-scope approaches described in [2,4] requires at least 700 tweets
for an accurate prediction, while the linguistic [5, 20, 23] and heuristic-based [14, 22] methods require approxi-
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Figure 4: Quadrants used to find eyewitness users. Here, the authors focus on users with an above-average Geo
Relevance Score (vertical axis), and an above-average Topic Score (horizontal axis).

(a) Temporal language differences. (b) Geographic language differ-
ences: tranquil time.

(c) Geographic language differ-
ences: crisis time.

Figure 5: Temporal and geographic differences of language (calculated using Jensen-Shannon divergence);
darker shades represent greater difference. To illustrate geographic differences, we compare Boston (B) with
three other major U.S. cities: Chicago (C), Los Angeles (L), and Miami (M).

mately 200 tweets.

3.2 Inferring a Tweet’s Location

While current approaches to user location prediction have shown promising results, one limitation is that they
need a substantial history of a user’s tweets in order to make accurate predictions. This much data is often
unavailable for the vast majority of users on Twitter. Moreover, even for users who have posted this much
information, it can be very difficult to collect this history under duress. Here we discuss alternatives to this
problem, that allow users to geotag a single tweet. Often this is necessary in times of crisis when it is not
feasible to collect a user’s entire history to estimate his location.

Disaster response agencies often look to Twitter to understand what is unfolding on the ground in real time.
To get a sense of the area most effected by the disaster, these agencies look at geo-tagged tweets. Since geo-
tagged tweets only account for 1% of all activity on Twitter, these first responders are left looking for other
methods to find a tweet’s location. However, with the requirement of hundreds of past tweets for a particular
user, existing methods to finding a user’s location become infeasible during crisis situations.

In the absence of explicit geographic information, it is unlikely that a single tweet contains enough informa-
tion to locate its exact position. Instead, to accommodate the lack of information, in [18] we change the problem
to reflect what first responders are actually looking for during times of crisis: whether or not a tweet actually
originates from within the crisis region. By simplifying the problem from predicting two continuous values to
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predicting one boolean value, we make the problem more tractable with such sparse data.
To differentiate the users within a crisis region from those outside by the text of their tweet, we must first

verify that the text that is generated from within a crisis region is actually different from the text outside of
it. We perform this analysis along two dimensions: within the area of the crisis before and during the crisis,
and during the time of the crisis across different locations. The results of this analysis are shown in Figure 5.
Figure 5(a) shows the temporal difference by hour over the course of April 15, 2013, the day of the Boston
Marathon Bombing. We see that the hours leading up to the bombing are much more similar than the hours after
the bombing. Furthermore, in the location comparisons, we see that the cities are similar before the disaster
(Figure 5(b)), and exhibit different behavior after the beginning of the crisis (Figure 5(c)). Thus, a linguistic
difference exists between the linguistic patterns during the crisis within the crisis location.

Now that we have established that a difference exists between the locations during the crisis, we can continue
to build a machine learning model that can capture these differences and aid first responders in finding tweets
coming from within the crisis region. To do this, we hypothesize some linguistic features within the tweet that
may be useful in identifying whether it originates from within the crisis region: Word Unigrams and Bigrams,
Part-of-Speech Tags, Shallow Parsing, and Crisis-Sensitive Features. Crisis-sensitive features are some features
identified by inspecting the text produced in the tweet. These consist of some part-of-speech patterns that are
commonly observed in crises.

To test the effectiveness of our linguistic features, we build basic classifiers to test our features. The model
then outputs its prediction of whether the tweet is inside region or outside region. We compare all possible
combinations of individual feature classes and find that a combination of Unigram + Bigram + Crisis Sensitive
features perform best for both crises.

We see that in both crises all of the top performing feature combinations still contain both the Bigram
and Unigram feature classes. These classifiers massively outperform traditional approaches in the geolocation
problem. This shows that inferring the tweet’s location is possible, and that by modifying the problem to focus
on the binary question of “within location” and “outside location” we are able achieve superior performance on
this problem.

4 Conclusion

Social media is immensely popular, allowing users to share their lives in new ways. By allowing users to share
their location, social media sites have enabled their users with richer means to express themselves. Location
information is an important part of social media analysis, allowing researchers to obtain new insights into the
behavior of users online and practitioners to develop new applications. In this work, we have shown how location
can be leveraged to find users’ interests and to predict what location a user will visit next. Furthermore, location
can be leveraged to help those affected by disaster, both by helping them to find the right information and by
making sure their requests for help are sourced to the correct agencies.

One of the main difficulties with studying location in social media is the lack of explicit information. This
comes, in part, from the low number of users who share their information on social media sites. We have
presented work which seeks to address this problem. We have also presented an algorithm that helps find users
in the region affected by a crisis. By focusing only on whether the user is inside or outside the region, we are
able to achieve higher performance than traditional approaches.

The problem of discovering location information in social media is a challenging one with a long way to
go. Future work consists of finding the “event location”, the location that the user is talking about. This can
differ from both the user’s tweet location and his user location. Another area for future work is location privacy.
In discovering location, we may uncover the location of users who do not want to be discovered, such as users
participating in protests. While existing approaches illuminate the potential for privacy concerns, future work
will be to address them in a way that does not bring users into harms way. Additionally, data reliability is a
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problem within the context of location discovery. Users providing fake and incorrect values for their location
add noise to the data. Future work seeks to identify these fake and incorrect locations and remove them to
increase the performance of the location discovery task.
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Abstract

The pervasiveness of GPS-enabled mobile devices and the popularity of location-based services have
generated, for the first time, massive data that represents the movements of people in the real world
at a high resolution, aka spatiotemporal data. Such collections of spatiotemporal data constitute a rich
source of information for studying various social behaviors, and in particular, give a boost to the study of
inferring the real-world social connections from spatiotemporal data. This article surveys the prominent
techniques proposed for deriving social connections and social strength from spatiotemporal data and
discusses their formulations.

1 Introduction

Social networks have been studied by social scientists since the pre-Internet era, and their relevance particularly
increased in the last decade. We identify three periods in the study of social networks corresponding to the
growth in the availability of data over time.

The very first period in social networks started back in 1970s [12] when social scientists realized that it was
critical to understand the underlying network that portrays people’s social connections and influence relation-
ships. Such information is significant in the analysis of the propagation of information, innovations, practice,
rumors and contagious infections, and also in commerce including target advertising and recommendations.
However, in the pre-Internet era, the problem of identifying “who is friend of whom” was challenging, and stud-
ies on social networks in this earlier stage had to confine themselves to extremely small datasets [11], which
mostly came from some social surveys at very limited scales.

The second period started along with the Internet revolution in the ’90s through the development of web,
when our lives have continually expanded to occupy virtual worlds [7]. Towards the end of the last decade, the
research on social networks witnessed an explosion. To a large extent, this has been fueled by the spectacular
growth of social media and online social networks, such as LinkedIn, Facebook and Twitter, which started in
2003, 2004 and 2006, respectively [11]. These giant networks have produced and continue to produce enormous
datasets about hundreds of millions of online connected users in the form of social graphs. Therefore, the “who
is friend of whom” question, which was a big challenge during the first period, suddenly became a cakewalk.
The readily available social graphs collected from online social networks motivated social scientists to move far
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Figure 1: Three periods in social network studies.

beyond the basic question of “who is friend of whom” to much more interesting and sophisticated topics. As a re-
sult, a large number of studies has been devoted to new questions/solutions related to social networks, including
measuring friendships quantitatively [13], identifying most influential people in a network [9], maximizing and
speeding up the propagation of information and innovations in a social graph [10], and analyzing the structures
and properties of a social network (e.g., density, clusters, stability, etc.) [15] [14]. However, all these achieve-
ments may still be considered inadequate in the eyes of the social scientists due to the gap that exists between
online social networks (aka the virtual world) and the real lives (aka the real world). The large volume of studies
during this period focused on the virtual world and utilized data collected from online networks. However, the
people’s relationships in the virtual world may not necessarily correspond to those in the real world.

Subsequently, we are now witnessing the third period as the phase of bridging the gap between the virtual
world and the real world. Indeed, the pervasiveness of GPS-enabled mobile devices, and the fact that all the
giant social networks have also gone mobile, has introduced massive data that represents the movements of
people in the real world at high resolution, specifically by indicating who has been where and when (aka spa-
tiotemporal data). Spatiotemporal data can be collected effortlessly from online services, such as geo-tagged
contents (tweets from Twitter, pictures from Instagram, Facebook and Flickr, check-ins from Foursquare), or
from mobile apps’ data (WhatsApp, Glancee), etc. Such collections of spatiotemporal data constitute a rich
source of information for studying and inferring various social behaviors, including social connections. For
example, for social connections, the intuition is that if two people have been to the same places at the same time
(aka co-occurrences), there is a good chance that they are socially related. Since these social connections are
inferred from people’s real world locations, they constitute social connections that occur in the real world, as
opposed to those that may take place only in the virtual world.

The goal of this article is to survey the techniques pursuing the inference of the real-world social connections
from spatiotemporal data during, what we called earlier, the third period of social networks.

2 Motivation

The ubiquity of mobile devices and the popularity of location-based services have generated, for the first time,
rich datasets of people’s location information at a very high fidelity. Just a few years ago, it was practically im-
possible to find any data that could describe people’s locations at high resolution and large scale. However, this
is no longer the case nowadays since smart phones and Location-Based Services have produced a tremendous
corpus of rich spatiotemporal data. For example, Twitter and Foursquare reportedly received millions of spa-
tiotemporal records per day as geo-tagged tweets or check-ins [16]. This newly available location data is useful
for investigating various social behaviors, and thus has motivated social scientists to study and to extend the
conventional concept of social behaviors to capture people’s activities in the real world, particularly by inferring

15



the implicit networks of social connections based on the actual physical locations of people.
Furthermore, applications for such physically inferred networks of social connections are plenty. First, they

include all the applications of online social networks such as marketing applications (e.g., target advertising,
recommendation engines such as friendship suggestions), social studies (e.g., identifying influential people) and
cultural studies (e.g., to examine the spreading patterns of new ideas, practices and rumors). In addition, the
physically inferred social connections also have their own unique applications due to the geo-spatial properties.
For example, the inferred social connections can be used to identify the new (or unknown) members of a criminal
gang or a terrorist cell or it can be used in epidemiology to study the spread of diseases through human contacts.

3 Challenges

Inferring the implicit social connections is challenging for several reasons.
First, it is not clear what attribute of spatiotemporal data should be measured to infer social connections? If

the frequency of co-occurrences (number of times that two people are seen together) is used as the indication of
a social connection, one may arrive at a wrong conclusion about their social relationship. To illustrate, suppose
two students study at the same library around the same time every day, which results in high frequencies of co-
occurrences, but they may not even know each other. This erroneous conclusion can be attributed to coincidences
- the fact that the library is a popular location and many students may co-occur frequently there by accident,
and thus, the observation that two people only co-occur at the library is not a strong indication of a social
connection. On the other hand, a few co-occurrences between two people in a small private place are perhaps
a better indication of a friendship. Or alternatively, several co-occurrences at different popular places (e.g.,
coffeehouses, restaurants) may also be a better indication of friendships.

Second, it is of great interest to quantify social connections, and thus, the goal of inferring social connections
from spatiotemporal data is not just to answer the true/false question, whether two people are friends with each
other or not? It is more informative to infer a quantitative value that characterizes how strong a social connection
is (aka social strength). Lastly, spatiotemporal data is often extremely large, in the order of gigabytes of text,
which could render the inference algorithms inefficient, taking too much time and/or resources to perform.

4 Solutions

In this section, we survey the methods proposed for inferring social connections from spatiotemporal data.

4.1 The report-based study

Eagle et al. were among the pioneers to look into the correlation between the location behaviors of users
and their social connections. Specifically, in an early study [1], they conducted an analysis on two different
sets of data of the same group of users, who were students at a university campus. One dataset collected
from mobile phone, called “behavioral”, which contained various features of user data, including the spatial
proximity of users at work, their proximity on a specific night of the week, the phone communications between
the users and the number of unique locations they were seen together [3] [1]. On the other hand, the other
dataset was reported by users themselves, called “self-report”, in which each user indicated who were his/her
actual friends. Subsequently, a regression analysis was conducted over the behavioral dataset to find out possible
friendships, which in turn were compared with the self-reported friendships. Their results showed that the social
relationships extracted from the behavioral dataset were indeed related to the self-reported relationships. In
addition, communications were the most significant predictor of friendships, followed by the number of common
locations and spatial proximity.
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4.2 Probability model

Crandall et al. [4] created a probability model to infer the probability of a friendship between two people given
their co-occurrences in time and space. Specifically, they divided the surface of the earth into N grid-like
cells, whose side lengths span s degrees of latitude and longitude. Two users are said to co-occur if they were
present within the same cell within t days from each other. The number of unique locations (cells) of the co-
occurrences between two people is the only factor used to determine the probability of their friendship. Multiple
co-occurrences between two people within the same cell are not considered. Hence, the question becomes:
What is the probability that two people have a social connection, given that they have co-occurrences in k
distinct locations at a temporal range of t?

To formulate the friendship probability, assume that there are M people, each has one social tie, meaning
one friend, and the social graph consists of M/2 disjoint edges. Each day, each pair of friends chooses to visit a
place (i) together with probability β, and (ii) separately with probability 1−β, with random choices of location.
Let F denote the event that they are friends, and let Ck denote the event that they visit k unique locations
together on k consecutive days. Consequently, the conditional probability P (F |Ck) indicates the probability of
two users being friends given that they co-occurred in k different locations on k consecutive days, which can be
expressed by the Bayes’ law and has the final formula as follows:

P (F |Ck) =
P (F )P (Ck|F )

P (Ck)
(1)

=
1

M
ek log β(N−1)+1 (2)

The final formula in Equation 2 is obtained after computing the component factors in Equation 1: P (F ),
P (Ck|F ) and P (Ck), the details of which can be found in [4].

The advantage of this model is that it has a final, concise and simple expression for the friendship probability.
The model only considers the number of unique locations where two users co-occurred, therefore it reduces the
complexity of the algorithm significantly. The authors showed that even very few co-occurrences could lead to
a sharp increase in the probability of a friendship, and this finding shows potential implications for the privacy
of users on social media sites, which tells how much of the user data can be released until their privacy becomes
exposed.

Despite achieving some promising results, the model still has several limitations. The first limitation is the
simplifying assumption about the structure of the social network: each user can have only one friend, which is
usually not the case in reality. Second, the model does not consider the frequency of co-occurrences at each
location; all the co-occurrences at one location count only once. Finally, the issue related to coincidences was
not addressed, that is whether the co-occurrences between two people are an indication of a social connection,
or are simply coincidences between two people in time and space?

4.3 Trajectory-based model

Li et al. proposed the HGSM model that measures the similarity between two users based on the similarity
between their trajectories [2]. The primary idea of this model is that the more similar the location histories of
two users are, the more similar their common interests and preferences are, and thus the more likely that they
are related socially. The HGSM model (Hierarchical-Graph-Based Similarity Measurement) first represents
each user’s location history as a trajectory (both sequentially and hierarchically), and the similarity between the
trajectories of two users indicates their social similarity.
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4.3.1 Trajectory

The sequential aspect of the trajectory allows the representation of discrete points in space (the locations visited
by a user) as a continuous sequence. On the other hand, the hierarchical aspect allows for finer levels of geo-
spatial granularity in a trajectory. For example, when a a stay point by a user contains multiple businesses
located near each other, that stay point can be further turned into a subsequence of points with a smaller scale
and a different (finer) level of granularity, and all such levels are said to form a hierarchy of granularity of
location history of a user. A stay point is represented as a cluster of points at a smaller scale. Therefore, in
HGSM, a user’s trajectory consists of a set of graphs HG = {G} built on different geo-spatial scales of the
hierarchy, where each graph Gi(V,E) ∈ HG is a set of vertexes V = {C} (a set of clusters containing the
user’s stay points) and edges E.

The trajectories (aka sequences) of two users are presented as follows:

seq1 =< a1(k1)
∆t1→ a2(k2)

∆t2→ ...am(km) >

seq2 =< b1(k
′
1)

∆t′1→ b2(k
′
2)

∆t′2→ ...bm(k′m) >

where ai ∈ V is the cluster ID, ki is the set of time the user successively visited cluster ai, and ∆ti is the
transition time the user traveled from cluster ai to cluster ai+1.

These two sequences are considered similar if and only if they satisfy two following conditions:

• For ∀ 1 ≤ i ≤ m, ai = bi, meaning nodes ai and bi must share the same cluster ID.

• For ∀ 1 ≤ i ≤ m, |∆ti −∆t′i| ≤ tth, where tth is a pre-defined time threshold.

Under these two conditions, a common similar sequence (sseq) for the two users is defined as follows:

sseq =< b1(min(k1, k
′
1))→b2(min(k2, k

′
2))→...bm(min(km, k

′
m)) >

m is therefore called the length of the common similar sequence of the two users.

4.3.2 Similarity measurement

The similarity of the two sequences seq1 and seq2 is determined by the measurement or the score of their
common similar sequence (sseq), which depends on its length m:

s(m) = α(m)

m∑
i=1

min(ki, k
′
i) (3)

where α(m) is an m-dependent coefficient, for which the optimal value is determined experimentally to be
α(m) = 2m−1.

At a single layer of the hierarchy, two users may have multiple, say n, common similar sequences. Their
similarity at a single layer is determined by the following equation:

Sl =
1

N1 ×N2

n∑
i=1

si (4)

where N1 and N2 denote the numbers of stay points of the two users at the layer.
The overall similarity of the two users’ trajectories across the set H of multiple layers of the hierarchy is:

S =

H∑
l=1

βlSl (5)
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βl is a layer-dependent coefficient, determined experimentally to be βl = 2l−1.
The advantages of this model include the exhaustive representation of users’ location histories as trajectories

at very fine levels of geo-spatial granularity, and the similarity measurement of two trajectories as a quantity or
strength of a friendship. The model clearly shows a high level of correlation between the human movements
in the real world and their social relationships. One of the disadvantages of the model is the high complexity
of constructing the users’ trajectories. Another disadvantage is that the issue related to coincidences was not
addressed, that is when two users happen to be in the same location by accident, and possibly on multiple
occasions, such as in a crowded shopping mall. Such coincidences can contribute to the similarity between two
trajectories of two unrelated users and may cause a misunderstanding of a social tie existing between them.

4.4 Feature-based model

Cranshaw et al. introduced various features extracted from spatiotemporal data that have connections with, or are
indications of friendships, and thus inferred friendships based on such features [3]. Similar to the approach by
Crandall et al. [4] presented in Section 4.2, in order to find the co-occurrences between people, the authors first
divided the space into a grid-like cells, each is of approximately 30m each side. Two people are said to co-occur
if they are present in the same cell within a time interval of 10 minutes. Various features of the co-occurrences
between two people were introduced, which we summarize below.

4.4.1 Diversity of a location

The primary goal of studying the diversity of a location is to evaluate the impact of a co-occurrence between two
people (aka. co-location) on the fact that whether they are friends or not. Specifically, the authors aimed to find
out, whether a co-occurrence between two people happened by chance (aka a coincidence) or it happened as the
result of a social connection between them. For example, the fact that two people shop at the same popular mall
or dine at the same popular restaurant during the same time may happen by chance, and thus they are strangers
to each other. On the other hand, co-occurrences between two people at a small place, where there are only a
few people, are likely a good indication of a friendship. Thus, the popularity of the location of co-occurrences
matters to the prediction of friendships. Three measures are introduced to measure the diversity of a location.

Frequency is the raw number of visits by people to the location. Obviously, the higher the frequency, the
more popular the location is. User-count is the number of unique people who have visited the location.

Location Entropy measures the diversity of a location by taking into account both the number of of unique
visitors to the location, and the relative proportions of their visits. Specifically, let l be a location, let
Vl,u = {< u, l, t >: ∀t} be the set of visits (aka check-ins or spatiotemporal records) in location l by user u,
let Vl = {< u, l, t >: ∀t, ∀u} be the set of all visits in location l by all users. The probability that a randomly
picked check-in from Vl belongs to user u is Pu,l = |Vl,u|/|Vl|. If we define this event as a random variable,
then its uncertainty is given by the Shannon entropy as follows:

Hl = −
∑

u,Pu,l ̸=0

Pu,l logPu,l (6)

This is called Location Entropy. A high value of the location entropy indicates a popular place with many visitors
and is not specific to anyone. On the other hand, a low value of the location entropy implies a less popular place
with few visitors, e.g., domestic houses, which are often non-crowded.

4.4.2 Features of co-occurrences

Various features of co-occurrences are introduced in this work. Intensity and duration features measure how
actively (frequently) two users co-occurred, and for how long. Location diversity introduced in Section 4.4.1 is
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characterized by three different measures: frequency, user-count and location entropy. These provide the basis
for understanding the impact of co-occurrences on the friendship information. Specificity measures how specific
a location is to the user pair who co-occurred in the location. This feature is inspired by tf-idf [3]; specifically,
the specificity of a location to the user pair u1 and u2 is defined as the number of co-occurrences between them
in the location divided by the total number of visits by all users in the location. Some other features are related
to the structural properties, such as (a) the number of people who have co-occurred with both users, (b) that
number divided by the number of people who co-occurred with either user, and (c) the total number of unique
locations visited by both users together divided by the total number of unique locations visited by either of the
users. In addition, the regularity of each user’s routine was also measured, the details of which can be found
in [3].

4.4.3 The inference of friendship information

As a final step, the above-mentioned features, together with the explicit friendships (the ground truth) are used to
train different classifiers, including Random Forest, AdaBoost and Support-Vector machine. The experimental
results in the study [3] showed that the Random Forest and AdaBoost classifiers outperformed the Support-
Vector machine classifiers.

The advantages of this model include the consideration of the popularity of the locations of co-occurrences,
its impact on friendship information, and the consideration of various features of co-occurrences in inferring
friendships. There are two main disadvantages of this model. First, the model only infers the binary information
of friendships, meaning whether two users are friends or not, but not the strength of a friendship as compared to
the two models discussed in Sections 4.2 and 4.3. Second, the use of many features may lead to the difficulty of
balancing their relative importance during the training of the classifiers.

4.5 GEOSO model

In this model, Pham et al. took an entirely different approach to infer social connections from spatiotemporal
data by trying to estimate the strength of people’s relationships (aka social strength) based on the geometric
similarity of their visit patterns (i.e., who has been where and when) [5]. The authors introduced two properties:
commitment and compatibility, which must be considered by any distance measure in order to correctly infer
social strength from people’s location behaviors.

Commitment is a phenomenon when two people repeatedly co-occurred at the same place on multiple
occasions; the level of commitment is the number of times they co-occurred at the place. On the other hand,
compatibility is a phenomenon when two people co-occurred at multiple different places; we say that two
people are compatible to each other because they share a variety of common interests, which, in this case, are
the places they co-visited. The main question is which, commitment or compatibility, is a better indication of a
friendship? Intuitively, two close friends tend of hang out together in many different locations, and thus should
co-occur in various places. On the other hand, if two people co-occurred frequently, but at only one place, they
may or may not be friends because their co-occurrences may be coincidences. Therefore, the intuition is that
compatibility should have more impact on social strength than commitment. We will see how GEOSO (standing
for geo-social) model addresses this issue.

4.5.1 Data representation

Visit vector is a data structure that records the movement history of a user, specifically by indicating what places
a person visited in the past, and at what time. To achieve this, the authors also divided the space into grid-like
cells (see Section 4.2), where each cell has a unique ID. The grid is considered as a matrix, which is flattened
into a vector by traveling from left to right and from top to bottom (row-first order). Correspondingly, for a given
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(a) (b)

Figure 2: (a) Visit history of three users a, b and c. An arrow indicates the time that a user visited the cell. (b)
Commitment vs. compatibility.

user, each dimension of the visit vector represents one cell of the grid, and the value of the dimension is a list of
time showing when the user visited the cell.

For users a and b in Figure 2(a), their visit vectors are following:

Va = (0, < t1, t2, t3 >,< t4, t5 >, 0, 0, 0)

Vb = (0, 0, < t4, t5, t6 >, t7, t8, t9)

Co-occurrence vector: Two users are said to co-occur (or to have a co-occurrence) if they were present in
the same cell within a time interval τ (a threshold that can be taken as 30 minutes). Correspondingly, a co-
occurrence vector is a data structure that indicates how many times two users co-occurred, and where they
co-occurred. For example, the co-occurrence vector between users a and c is Cac = (0, 2, 2, 0, 0, 0). The formal
co-occurrence vector for any two users i and j has the following format:

Cij = (ci1,j1, ci2,j2, ..., cik,jk, ..., ciN,jN ) (7)

where cik,jk, called local frequency, denotes the number of co-occurrences between users i and j at cell of ID
k.

Next, imagine there are two users î and ĵ, who co-occurred more frequently than any other user pairs, both in
the number of times they co-occurred in each cell, and in the number of unique cells, in which they co-occurred.
Undoubtedly, this user pair would represent the strongest possible social connection among all the user pairs,
assuming that the social strength is derived from co-occurrences only. We call the co-occurrence vector of î and
ĵ the Optimal Vector (or the Master Vector), which is defined as follows:

M = (m,m, ...,m), m = max{cik,jk}, ∀i, j, k (8)

m is the maximum local frequency among all the user pairs in all locations. Note that M is a conceptual
co-occurrence vector; there may or may not exist a user pair with the co-occurrence vector M . The useful
information we obtain fromM is that its length indicates the maximum possible commitment, while its direction
corresponds to the maximum possible compatibility.

4.5.2 GEOSO distance measure

The social distance dij between users i and j is defined by the Pure Euclidean Distance (PED) between the
co-occurrence vector cij and the optimal vector M . The shorter the PED distance, the closer cij and M are (in
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both direction and length), and thus the stronger the social connection. Social strength sij is therefore defined
as the inverse of the distance metric dij .

dij =

√∑
k

(cik,jk −m)2, sij =
1

(dij + 1)
(9)

In the denominator of the formula of sij , 1 is added to dij to make sure that sij does not become infinity when
dij = 0. This also normalizes the value of social strength sij to the range [0, 1].

4.5.3 Commitment versus Compatibility

The remaining task is to analyze the relative importance of commitment and compatibility using the social
strength define by the GEOSO model. Assume that users i and j have only x co-occurrences in one cell (say
cell 1), user p and q have only y co-occurrences, all of which took place in different cells; without loss of
generality, we can assume that y co-occurrences took place in the first y cells. The co-occurrence vectors are:
cij = (x, 0, ..., 0), cpq = (1, 1, ..., 1, 0, ...0). Clearly, users i and j have pure commitment, while users p and q
have pure compatibility. We are interested in knowing how much of x would be equivalent to y in the sense that
they both create the same social strength? To achieve this, we equalize the social strengths sij = spq in order
to find the equivalence relationship between x (commitment) and y (compatibility). From equation sij = spq,
it is not difficult to find that y = (2mx − x2)/(2m − 1). Figure 2(b) shows this relationship. It is clear
that compatibility is more important than commitment as it has more impact on social strength. For example,
x = 20 would be equivalent to y = 10 for both to produce the same value of social strength. This observation
is consistent with our intuition as multiple co-occurrences in a single location might just be an indicator of
coincidences, such as students study in the same library while they are not friends, and therefore should be
limited in contributing to social strength. On the other hand, co-occurrences in multiple locations are seldom
coincidences and therefore should have more impact on social strength.

GEOSO model is particularly interesting for introducing the two properties of co-occurrences: commitment
and compatibility, and for evaluating their relative importance or impact on social strength. The geometric
social distance is intuitive and creates a quantitative value for social strength instead of just indicating the binary
information of friendships. The disadvantage is that all locations are considered equally important, meaning a
co-occurrence in a private office can have the same impact on social strength as a co-occurrence in a crowded
cafe or mall. This same problem also occurs in the models in Sections 4.2 and 4.3.

4.6 EBM model

By proposing the EBM (Entropy-Based Model) model to infer social strength from spatiotemporal data [6], the
goal of the authors is to address all the issues that were unsolved or partially addressed in the former studies.
These issues include (a) quantifying social connections, (b) discounting the impact of coincidences, (c) evaluat-
ing the impact of each co-occurrence depending on its location, (c) addressing the problem of data-sparseness,
and (d) improving the efficiency.

The EBM model explores two independent ways: diversity and weighted frequency, through which co-
occurrences contribute to social strength. Specifically, diversity measures how diverse the co-occurrences be-
tween two people are in terms of locations, while weighted frequency measures the impact of each co-occurrence
individually depending on the popularity of the location of the co-occurrence.

4.6.1 Diversity of co-occurrences

Consider the co-occurrence vectors for 3 different pairs of users:
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C12 = (10, 1, 0, 0, 9 )
C23 = ( 2, 3, 2, 2, 3 )
C13 = (10, 0, 0, 0, 10)

User 1 and User 2 have 20 co-occurrences, and User 2 and User 3 have only 12. However, in the latter case the
co-occurrences are spread over 5 different locations, while in the former case the co-occurrences happened in
just 3 different locations. Similarly, User 1 and User 3 co-occurred only in 2 different locations. Hence, C23 is
more diverse than C12, and C12 is more diverse than C13.

Intuitively, people, who are socially connected, tend to visit various places together [4] [3] [1]. This intuition
is captured as how diverse their co-occurrences are. Below is the definition of diversity of co-occurrences [6]:

Definition 1: Diversity is a measure that quantifies how many effective locations the co-occurrences between
two people represent, given the mean proportional abundance of the actual locations.

The goal is to formulate the diversity of co-occurrences by using either Shannon entropy or Renyi entropy. First,
let’s define some notations.

Let rl,ti,j =< i, j, l, t > be a co-occurrence of User i and User j in location l and at time t. LetRl
ij =

∪
t r

l,t
i,j be

the set of co-occurrences of User i and User j, which happened in location l. Rij is the set of all co-occurrences
of User i and User j in all locations: Rij =

∪
lR

l
i,j =

∪
l,t r

l,t
i,j

The probability that a randomly picked co-occurrence from the set Rij happened in location l is P l
ij =

|Rl
ij |/|Rij |. If we randomly pick a co-occurrence from the set Rij and define its location as a random variable,

then the uncertainty associated with this random variable is defined by the Shannon entropy for User i and User
j as follows (the upper index S denotes Shannon):

HS
ij = −

∑
l

P l
ij logP

l
ij = −

∑
l,cij,l ̸=0

cij,l
fij

log
cij,l
fij

(10)

where fij =
∑

l cij,l is the total number of co-occurrences of User i and User j, termed frequency, and P l
ij =

cij,l
fij

is expressed using the notation of the co-occurrence vector of User i and User j. Note the difference between
frequency fij and local frequency cij,l; the frequency of two users is the sum of all their local frequencies across
all locations.

Similarly, the uncertainty can also be expressed using Renyi entropy - a more generalized type of entropy
with a flexibility to control the contribution of each component P l

ij .

HR
ij =

(
− log

∑
l

(
P l
ij

)q)
/(q − 1) (11)

=

(
− log

∑
l

(
cij,l
fij

)q
)
/(q − 1) (12)

where q ≥ 0 is the order of diversity.
Generally, entropy is often regarded to as the index of diversity, but not diversity itself [8]. Diversity D is

computed as the exponential function of entropy H . Specifically, D = exp(H). The expressions for diversity
using each of the entropies above is:

DS
ij = exp

−
∑

l,cij,l ̸=0

cij,l
fij

log
cij,l
fij

 (13)
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DR
ij =

 ∑
l,cij,l ̸=0

(
cij,l
fij

)q
1/(1−q)

(14)

The upper index S denotes Shannon, R denotes Renyi.
Both Shannon entropy and Renyi entropy show how diverse a co-occurrence vector is in terms of locations. It

is the unpredictability of the location of a co-occurrence. In other words, it is the amount of location information
in the co-occurrences of two users. Therefore, their advantage is that its capture of diversity is consistent with
the intuitions of friendships. First, the more locations, the higher the entropy. This is intuitive as the more
places two users visited together, the stronger their connection. Second, the more uniform the distribution of the
co-occurrences across locations (more equal proportion of co-occurrences in each location), the higher entropy.
This is also intuitive for social strength, because close friends tend to hang out at various places together, thus
their co-occurrences should be spread out over many locations, which results in more uniform co-occurrence
vectors.

However, the disadvantage of Shannon entropy is that it may give higher importance to large components
(aka outliers) of the co-occurrence vector because each component is weighted by its proportional abundance.
For example, in co-occurrence vector C12 = (10, 1, 0, 0, 9), 10 co-occurrences in the first cell is an outlier,
which contributes more to the value of Shannon entropy as compared to the single co-occurrence in the second
cell. This is not always a desired behavior that we want, because a high number of co-occurrences in a single
crowded location may indicate coincidences, and their contribution to the social strength should, in fact, be
limited rather than amplified.

On the other hand, Renyi entropy can effectively address the problem of coincidences. The elegance of using
the Renyi entropy comes from the parameter q, called the order of diversity, which indicates its sensitivity to the
local frequency cij,l. Specifically:

• When q > 1 the Renyi entropy HR
ij considers the high values of cij,l more favorably. In other words, the

higher the local frequency cij,l, the more impact the outliers have on Renyi entropy.

• When q < 1, instead, the Renyi entropy gives more weight to the low local frequencies cij,l.

• When q = 0, the Renyi entropy is completely insensitive to cij,l and gives the pure number of co-
occurrence locations - a.k.a. richness.

• When q = 1: As we know by now, the Renyi entropy favors local frequencies cij,l in opposite directions
when q < 1 versus when q > 1, therefore q = 1 is the cross-over point where Renyi entropy stops all of
its biases and weighs the local frequencies cij,l by their own relative proportions, which is what Shannon
entropy does. Thus, at q = 1, Renyi entropy becomes Shannon entropy. Indeed, even though Equations
(11) and (12) are undefined at q = 1, their limits exist when q → 1 and become the Shannon entropy.

Advantages: The advantage of Renyi Entropy is its flexibility to limit or increase a particular behavior in
co-occurrences. Particularly, it can reduce the impact of coincidences by setting parameter q to low values. An
optimal value of q can be obtained experimentally if a ground truth is available. The readers are referred to [6]
for how to obtain the optimal order of diversity experimentally.

4.6.2 Weighted frequency

While diversity measures the breadth of co-occurrences across locations, weighted frequency, on the other hand,
measures the depth of co-occurrences and weighs each co-occurrence individually depending on the popularity
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of the location. Weighed frequency utilizes Location Entropy, which was discussed in Section 4.4.1. The formula
of weighted frequency is given as follows:

Fij =
∑
l

cij,l × exp(−Hl) (15)

Weighted frequency tells us how important the co-occurrences at non-crowded places are to social connections.
Crowed locations have high Location entropy Hl, thus low exp(−Hl), and consequently the impact of cij,l on
Fij is decreased. On the other hand, for non-crowded locations, exp(−Hl) is high and this increases the impact
of cij,l. The authors also provided more details about weighted frequency, including its comparison to tf-idf, and
how weighted frequency addresses the problem of data sparseness [6].

4.6.3 Social strength

Finally, diversity and weighted frequency are combined to create social strength. Let sij be the ultimate social
strength that captures both diversity and weighted frequency. A linear regression is conducted:

sij = α.Dij + β.Fij + γ (16)

where Dij and Fij are defined in Equations (14) and (15), respectively. Parameters α, β and γ can be either
learned from dataset, or provided by users, or provided as application-dependent parameters. As a good practice,
sij is generally normalized to [0, 1]. The information about how to obtain the parameters of the regression can
be found in [6].

The advantages of the EBM model include the capture of the intuition of social connections in co-occurrences,
specifically by measuring the diversity of co-occurrences in terms of locations and the weighted frequency.
While the diversity offers a flexible mechanism of eliminating the impact of coincidences through Renyi entropy,
weighted frequency takes into account the impact of each individual location of co-occurrences by analyzing the
popularity of each location through Location Entropy. In general, all the main concerns of the former models
we pointed out in the previous sections have been effectively addressed by the EBM model.

5 Conclusion

In this article, we surveyed the solutions proposed for inferring the real-world social connections from spa-
tiotemporal data. Toward this end, we presented various models in details; for each model, we discussed the
key ideas/intuitions of how social connections are linked to the location history of users. We also explained the
main formulations of social connections and social strength for each model, together with its advantages and
disadvantages.

This line of research opens a number of opportunities for future work. For example, the inferred real-world
social connections and their strengths can be used to further study other aspects of social networks, such as social
influence and information propagation among people in the real world. It is also possible to investigate the type
of each social connection, whether two people are in a casual friendship, colleagues or in a family relationship,
based on the semantics of the locations, in which they co-occurred. The real-world social connections can
also be applied in other fields of study, such as in epidemiology to study the spread of disease through human
contacts, or in criminology to investigate the nature, causes, patterns and consequences of a criminal behavior.
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Abstract

Past decades have witnessed extensive studies from both academia and industries over trajectory data,
which are generated from a diverse range of applications. Existing literature mainly focuses on raw
trajectories with spatio-temporal features such as location, time, speed, direction and so on. Recently,
the pervasive use of smart mobile devices like smart phones, watches and bands have brought about
more generation of trajectory by personal users (instead of companies or organizations) and from online
space (instead of physical space), where individuals can decide when and where to log on and share their
locations with others. The more discentralized and contextualized trajectory sources have brought some
unique challenges for database management with respect to the quality and semantics of trajectories
data. With more applications and services relying on trajectory data analysis, it is necessary for us
to think about how these new issues will affect the traditional way that trajectories are digested and
processed. In this paper we will elaborate on these challenges and introduce our recent progress in the
respective directions. The message we try to deliver is that raw trajectories themselves no longer satisfy
the requirement of today’s mainstream applications. To really release the power of trajectory-based
applications, we should go beyond the raw trajectory data by enhancing their quality and semantics,
which calls for novel computing architectures, paradigms and algorithms with sufficient capabilities to
manage and analyse the enhanced trajectory data.

1 Introduction

The increasing availability of location-acquisition technologies including telemetry attached on wildlife, GPS
set on cars, WLAN networks, and mobile phones carried by people have enabled tracking of almost any kind of
moving objects, which results in huge volumes of spatio-temporal data in the form of trajectories [36]. Trajectory
data consists of rich information about when and where a particular moving object is and offers unprecedented
opportunity for discovering its mobility patterns. This inspires tremendous amount of research in trajectory
data from a variety of aspects in the past decade, ranging from designing effective indexing structures [24]
[8] [22] [9] [13] and efficient query processing algorithms [24] [29] [11] [14], to data mining and knowledge
discovery [19] [16] [15] [21]. Despite their significant contributions in this area, traditional research on trajectory
data has primarily focused on its raw format, i.e., a sequence of spatio-temporal points collected directly from the
location-acquisition devices. While there was nothing wrong with this research philosophy especially back in the
days when the source and scale of trajectory data are quite limited, recent advances in sensor technologies and
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location-based social networks (LBSN) have posed new challenges to this community, which can be summarised
in the following two aspects.

• Challenge 1: Data Quality. Although a trajectory can be theoretically modelled as a continuous function
mapping from time to space, in a database it is actually a discrete sequence of spatio-temporal locations
sampled from the movement of an object. In other words, when a raw trajectory is reported to the server
and stored, it is just a sample of the original travel history. Therefore different sampling rates can result in
completely different raw trajectories even for the same travel history. Since the sources of trajectory data
are so diversified nowadays, the sampling rates vary significantly from one application to another. As a
few examples, a geologist equipped with specialized GPS-devices can report her locations with very high
frequency (e.g., every second) while a casual mobile phone user may only provide one location record
every couple of hours or even days (via, for example, a check-in service in LBSN). Such variations can
also be imposed by external factors (such as availability of on-device battery and wireless signal) and may
change at the users discretion. In this big data era, it is not uncommon that we need to integrate trajecto-
ries across multiple sources and analyse them altogether. Nevertheless, our previous study [26] has shown
that the great variance in sampling rates can render existing trajectory distance functions (e.g., DTW [17],
LCSS [29] or EDR [10], ERP [11]) ineffective, which will in turn affect the algorithms, systems and ap-
plications relying on those distance functions. From database perspective, this essentially is a data quality
problem that can be present in many analytical tasks involving multi-sourced and heterogeneous data.
Systematic approaches are desired in order to gain deeper understanding of its root cause and eventually
develop a comprehensive solution.

• Challenge 2: Data Semantics. Recent years have witnessed the flourish of location-based social net-
works (LBSN) that enables people to add a location dimension to existing online social networks in a
variety of ways. For example, users can upload geo-tagged photos/videos to Flickr [2], Instagram [4]
and/or Vimeo [6] to share their great moment with friends, comment on an event in Twitter [5] with
geo-tagged tweets, check-in at a restaurant on Foursquare [3], or log bicycle trails for sport analysis and
experience sharing on Bikely [1]. The location dimension serves as glue in LBSN that bridges the gap
between physical and digital world. In other words, by aggregating all the geo-tagged contents posted by
a user in her cyber-space (i.e., LBSN), we can actually know not only where and when she has been, as in
the traditional trajectory database, but also what she was doing by extracting the information from the mul-
timedia contents attached to the locations (e.g., text, images, videos). Moreover, we can even transform
raw trajectories collected from GPS modules to semantic trajectories by applying semantic annotation
techniques [7, 30]. With such a large volume of trajectory data enriched with semantic and activity infor-
mation, we are confronted with challenges in terms of managing, analysing and understanding it. Due to
the complex and combinatorial nature of this data, techniques across multiple areas including database,
multimedia, data mining and natural language processing should be considered.

In this paper we will categorize and introduce our recent progress that has been made with respect to the
above challenges. Generally speaking, we have found that the knowledge derived from raw trajectories is quite
limited in most cases and even misleading sometimes. We believe the mainstream location-based services should
base themselves on a higher level of abstraction for trajectory data, the one that has been dedicatedly processed to
acquire better quality and more semantics. Figure 1 demonstrates our opinion about the relative positions of raw
trajectories and enhanced trajectories in modern trajectory data management systems and applications. In the
remainder of this paper, we will focus on explaining the research philosophy of our work and their relationships,
while referring interested readers to the original papers for technique details.
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Raw Trajectory Data

Quality Enhanced Trajectories Semantic Enhanced Trajectories
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Figure 1: This figure demonstrates the relationship between raw trajectories, quality enhanced trajectories and
semantic enhanced trajectories. It also illustrates their relative positions in trajectory data management systems
and trajectory-based applications.

2 Quality-Aware Trajectory Management

Nowadays trajectory data can be generated from highly diversified services and applications, resulting in data
with different qualities. Generally trajectory data quality issues can arise from two levels: point level and
trajectory level. The first one is caused by the inaccuracies of location-acquisition devices and systems, i.e.,
the reported location is deviated from its actual location. Although this issue seems inherent and inevitable,
we normally do not regard it as a major problem due to rapid advances of tracking technologies (e.g., GPS
with sub-meter precision). Our focus is then on the second level, which is caused by the sampling rates of
trajectories. As mentioned before, a trajectory in database is just a sample of its original travel history. Because
nothing is known about the objects’ whereabouts in-between two consecutive sampled locations, a trajectory
is of low quality or high uncertainty if its sampling rate is low. To deal with an object’s location in-between
those samples, a typical technique is to apply interpolation [20] by which means the sampled positions become
the end points of line segments, and the trajectories are transformed into polylines in 3D (x-y-time) space.
However, as pointed out by [12, 18, 23], interpolation cannot reflect the exact movement pattern of an object. In
theory, a moving object can be located anywhere within a given (bounded) region, as long as it does not violate
physical constraints (e.g., maximum allowed velocity). Some efforts have been made to consider this issue when
processing trajectory data by proposing probabilistic queries [28, 31] that, instead of reporting the result only,
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provides the confidence of the result being true as well. However the quality of the trajectories cannot benefit or
be improved from those approaches. In this section, we will introduce our methodologies to tackle this problem
– enhancing the trajectory quality, which we believe to be more fundamental and efficient solutions compared
to the expensive probabilistic queries.

2.1 Enhancing Trajectory Quality by Reducing Uncertainty

In [32] we aimed at reducing the uncertainty of a trajectory with low sampling rate, which is the main cause of
trajectory quality issues. More specifically, given a low-sampled trajectory, our goal is to estimate its original
and complete route/path on the underlying road network. At the first glance this seems a mission impossible if
we simply act on each low-sampled trajectory separately since no better estimation can be done than linear inter-
polation for consecutive samples. However we have made two important observations based upon our analysis
on real data. First, travel patterns between certain locations are often highly skewed. This is due to the fact that,
when people travel, they often plan the route based on the experience of their own or others, rather than choosing
a path randomly. The skewness of travel pattern distribution makes it feasible to distinguish the possible routes
based on their popularity. The second observation, which is more interesting, is that similar trajectories can of-
ten complement each other to make themselves more complete. This implies that if we consider these trajectories
collectively, they may reinforce each other to form a more complete route. These two observations show that
the original route of a low-sampled trajectory can be estimated to some extent if a set of historical trajectories
within the same spatial domain is available. Now the question is how to leverage this historical data. Intuitively,
given a low-sampled trajectory, one can simply search for the historical trajectories that pass by all the sampled
locations of the given trajectory and then find the most popular routes. Nevertheless, since the given trajectory
can have arbitrary locations, we usually cannot find any historical trajectory that matches the whole part of the
query very well. Even if we can, the amount may not be large enough to serve as reliable statistics. Therefore we
propose a more practical solution consisting of three steps. Firstly, we divide the whole query into a sequence
of sub-queries and search for the reference trajectories that can give hints on how each sub-query travels. Then
we infer the local routes for each sub-query by considering the reference trajectories in a collective manner. At
last, we connect consecutive local routes to form the global routes and return the ones with the highest scores to
the users. As a summary, the essence of the route inference approach in this paper is to extract the travel pattern
from history, and infer the possible paths of the query by suggesting a few popular routes. Compared to the
original number of possible routes, the uncertainty of the given trajectory is reduced significantly in this way.
Please refer to [32] for the detailed algorithms.

2.2 Enhancing Trajectory Quality by Data Calibration

Data quality issues do not just lie in low-sampled trajectories. In [26] we observed that trajectories with incon-
sistent sampling rate (no matter low or high) are almost incomparable and make the most classical trajectory
distance functions less effective. To address this problem, in [26] we take a different philosophy that, instead
of manipulating or adjusting the original trajectory data, uses a fixed and data independent set of spatial ob-
jects (called reference system) to re-write all the sampled locations of the original trajectories. This process is
called trajectory calibration, the aim of which is to reduce the inconsistency in the sampling rates amongst all
trajectories and improve the effectiveness of similarity-based trajectory analysis. Nonetheless it is a non-trivial
task to perform trajectory calibration. First, building a good reference set is the stepping stone for the entire
system. Since our goal is to rewrite the trajectory data using the reference set, we expect a good reference set
to be stable, independent of data sources, and have a strong association with the trajectory data. The first and
second properties are essential for producing trajectories in a unified form, while the third property ensures that
the calibration process will not introduce a large deviation from the original routes. Trajectory calibration may
encounter three circumstances when rewriting a trajectory with the reference set: 1) a trajectory point may need
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to be shifted and aligned onto the reference; 2) some trajectory points may need to be removed or merged (when
the sampling rate is higher than necessary); 3) some new trajectory points may need to be inserted (when the
sampling rate is too low), all in the context of the chosen reference system. Further, the criteria to judge the
goodness of the calibration results need to be established, for the system to enforce efficiently and effectively
and for the users to understand to what extent the calibration can improve the data analysis results. The calibra-
tion framework we proposed comprises two components: a reference system and a calibration method. For the
first component, we present several reference systems by defining different types of anchor points (space-based,
data-based, POI-based and feature-based), which are fixed small regions in the underlying space. A series of
strategies are designed for the calibration component, including the methods to insert anchor points to trajecto-
ries in order to make them more complete without scarifying geometric resemblance to the original routs. Please
refer to [26] for more technical details.

3 Semantic Enhanced Trajectory Management

A trajectory in its raw format is just a sequence of spatio-temporal locations (e.g., a GPS point is a triplet
(longitude, latitude, timestamp)). Although a lot of research have been done towards mining interesting patterns
from a collection of trajectories purely based on their spatio-temporal features [15,16,19,21,34,35], the results
from those mining algorithms are often hard to explain and interpret for humans.This is because raw trajectory
data can only reveal when and where a person was but cannot tell what she was doing (i.e., activity) and how
she went there (i.e., moving behaviour) without leveraging extra information at semantic level. There have been
some preliminary studies that enrich GPS locations with semantic entities such as POIs, roads, regions, resulting
in semantic trajectories or annotated trajectories [7, 25]. These work focused on how to determine the correct
semantic label for each trajectory point when multiple entities are in its vicinity, i.e., the generation of semantic
trajectory data. In this section, we will introduce our recent research in managing and processing trajectories
that have been enhanced with semantic information.

3.1 Querying Semantic Trajectories

Even though semantic trajectories contain much more information than raw trajectories, their value cannot be
derived and utilised until there is an appropriate way to store, manage and process this data efficiently to a
large scale. In this light, we developed a database storage framework to support efficient indexing and query
processing over activity trajectory [33], which is a specific kind of semantic trajectory with textual information
(e.g., keywords, tags, short phrases) describing user’s activity at each location. More precisely, we propose a
novel similarity query for activity trajectories by incorporating both geometric distance and activity match into
the similarity measure, with the goal of returning more meaningful results to the users. However, answering
this new query turns to be a more challenging problem since just making use of either location or activity
information for pruning the search space will result in bad query performance. Our approach to this problem
starts with a novel grid index called GAT, which includes a hierarchy of cells for each activity, an inverted list of
trajectories containing each activity within each cell, and a summarized sketch of activities for each trajectory.
GAT keeps the advantage of hierarchical spatial index while avoiding the flaws of large “dead zones” when
indexing trajectories by minimum bounding boxes. In addition, the index not only uses the local information on
trajectory segments within the cells but also preserves some global information for the entire trajectory in the
activity sketch, so that its pruning power can be boosted. On top of the index, we develop a best-first search
strategy with tighter distance lower bound for all “unseen” trajectories in the database and an efficient algorithm
to compute the distance between candidates and the query. The interested readers can find more details about
the indexing structure and search algorithms in our paper [33].
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3.2 Summarising Trajectories with Short Text

The common way to generate semantic trajectories is to mechanically replace the coordinate of each location
with a semantic entity, which often yields excessive information for people to digest and interpret. Therefore an-
other direction we have been working on recently is to find a more compact, expressive and interpretable way to
represent semantic trajectories. Inspired by text summarisation in information retrieval, we in [27] proposed to
use short text to summarise and represent a trajectory by leveraging a diversified source of auxiliary information
(e.g., PoI, road network). We found the textual representation can be superior than raw and semantic trajectories
in two aspects. First, as the output is a summarization rather than mechanical transformation of raw trajectories
(like semantic trajectories), data volume will be reduced significantly. Second, despite of smaller data size, the
information conveyed in the text are strategically focused on the most ‘interesting’ parts of the trajectories, thus
making more sense for humans. A partition-and-summarization framework was proposed in our work. The par-
tition phase tries to find an optimal partition according to the user’s granularity requirement, which can minimize
the variation of predefined features for the trajectory segments within the same partition. The purpose of this
optimization is to use more compact representation to summarize each partition. In the summarization phase,
we define a novel measure for the unusualness of each feature by employing the common patterns amongst other
trajectories, and generate textual description for the most unusual features with a predefined template. Please
refer to [27] for more details about this framework.

4 Concluding Remarks

In this paper we have discussed some new challenges in trajectory data management that were brought about by
the emergence of location-based services and explosion of smartphone users. Particular attentions are paid on
two aspects – quality and semantics, which are believed as vital dimensions to uncover the true value of trajectory
data for government, businesses and personal users. We introduce some of our recent studies in addressing these
issues from different angles and highlight the connection between our research and the conventional ones. We
hope these discussions can trigger more research interest and efforts in developing modern computing platforms
and data management systems for trajectories – one of the most ubiquitous and accessible data today.
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Abstract

With the development of location-based social networks, an increasing amount of individual mobility
data accumulate over time. The more mobility data are collected, the better we can understand the
mobility patterns of users. At the same time, we know a great deal about online social relationships
between users, providing new opportunities for mobility prediction. This paper introduces a novelty-
seeking driven predictive framework for mining location-based social networks that embraces not only a
bunch of Markov-based predictors but also a series of location recommendation algorithms. The core of
this predictive framework is the cooperation mechanism between these two distinct models, determining
the propensity of seeking novel and interesting locations.

1 Introduction

With the proliferation of smart phones and the advance in positioning technologies, location information can
be acquired more easily than ever before. This development has led to the flourishing of a new kind of social
network service, known as location-based social networks (LBSNs), such as Foursquare, Gowalla, and so on.
In these LBSNs, people can not only track and share individual location-related information, but also learn
collaborative social knowledge. Thus, a large amount of mobility data, such as check-ins (announcing a user’s
current location), have been collected, along with online social relationships between users. The more these data
are collected, the better we can understand individual and crowd mobility patterns, and the more accurately we
can predict future locations.

Mobility prediction plays important roles in urban planning [12], traffic forecasting [13], advertising, and
recommendations [36], and has thus attracted lots of attention in the past decade. A typical scenario is shown in
Fig 1(a). Past mobility data, such as GPS trajectories, sequences of Wifi access points, and cell tower traces, are
either of coarse positioning granularity but passively recorded or only collected actively by a small number of
volunteers. Thus, the collected data may be large scale, but redundant, so that the research for mobility predic-
tion has mainly focused on frequent pattern mining. With the development of location-based social networks,
mobility prediction is becoming a hot research topic once again. This is, on one hand, because mobility data
are actively collected from a large number of users connected by online social networks; on the other hand,
the introduction of social relationships provides new opportunities for mobility understanding and prediction
since it has been observed that mobility behaviors, particularly long-distance travel, are more influenced by

Copyright 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

35



social network ties [6]. At the same time, the locations are of extremely fine granularity (e.g., a room in an
office) so that mobility patterns are much less redundant. Since users may not have an impetus to record their
regular behaviors, some movement behaviors are missed. Due to these characteristics, mobility prediction on
location-based social networks faces several challenges. First, mobility data are extremely sparse, so that only
a small number of frequent patterns and only a portion of user preferences are implied. Second, more irregular
behaviors are presented in the mobility data from LBSNs, increasing the difficulty of prediction and urgently
requiring irregularity mobility prediction. Third, the collected check-ins tend to be noisy since check-ins don’t
necessarily imply a physical visit, so that mobility behaviors do not reveal an individual’s full preferences.

To address these challenges, we start by analyzing the mobility data from location-based social networks in
two ways to understand the distinct characteristics of mobility patterns. 1) Spatial analysis, is conducted on this
mobility data to understand individual spatial distribution and the distance distribution between consecutively
visited locations, given that regularly and irregularly visited locations coexist in the mobility data. 2) Temporal
analysis, is achieved by delving into this mobility data, to determine the significance and strength of temporal
regularity and Markov dependence.
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Figure 1: (a) A typical scenario for next check-in location prediction; (b) A novelty-seeking driven framework
for general mobility prediction

Following the analysis of mobility data, we introduce a novelty-seeking driven predictive framework for
mobility prediction, which consists of three components, as shown in Fig 1(b). 1) Regularity mining for regular
mobility prediction, which includes a temporal-based regularity model and Markov-based predictors [16]. To
address the sparsity challenge, we exploit kernel smoothing for regularity estimation and interpolation tech-
niques for integrating different orders of Markov model. And we further analyze the limit of predictability by
calculating the Kolmogorov entropy of trajectories, where the power of all Markov models from zero-order
to infinity-order are taken into account [18]. 2) Recommendation techniques for irregular mobility prediction.
Obviously, it is difficult for Markov-based models to predict the irregular mobility behaviors, such as visiting
novel but appealing restaurants, but such behaviors are still subject to geographical restriction and are preference
driven. Additionally, irregular mobility behaviors are probably affected by social influence since they may be
more likely to involve distant travel. Thus, we introduce into the predictive framework the second component:
a series of location recommendation algorithms that capture these three factors. In these algorithms, to alleviate
the data sparsity when presenting individual preference, we resort to the histories of similar users and friends for
collaboration and use geographical constraint to discover the highest possible negatively preferred locations. To
reduce the effect of the noise when presenting user preference, we treat the data as an indication of positive and
negative preference with vastly varying confidence. 3) Mining propensity of novelty seeking. In order to jointly
predict both regular and irregular locations that a user will visit next, we introduce the core component, address-
ing the cooperation mechanism between these two distinct models by determining the propensity of seeking a
novel and attractive location. When people have strong propensity for novelty seeking, more emphasis can be
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placed on irregular mobility prediction, but when people are more likely to behave regularly, regularity-based
models are assigned larger importance.

2 Related Work

Mobility prediction has been widely studied in two independent fields. One field is statistical physics, by as-
suming human movement can be equivalent to particles and thus leveraging their well-studied motion model
for mobility prediction. For example, statistical physicians analyzed mobile phone data, bank notes, GPS tra-
jectories to understand users’ individual mobility patterns at an aggregated level by studying the distribution of
displacement and waiting time [2, 11, 25]. They then stimulated or predicted human movement based on the
derived motion model, such as continuous time random walk and truncated levy flight. This aggregated scaling
law can be analytically predicted by the mixed nature of human travel under the principle of maximum entropy,
given the constraint on total traveling cost [31]. The other field is mobile communication and data mining in
computer science, by directly modeling the mobility patterns based on the data. For example, in [1,9,23,28], the
authors presented Markov models and a frequented pattern tree to capture sequential mobility patterns for mobil-
ity prediction. In [6, 8], time-aware regularity was modeled for mobility prediction. Furthermore, concomitant
social relationships have brought new opportunities for mobility prediction and thus several novel prediction
algorithms that incorporate social networks have been proposed [3, 6, 9, 24, 26]. All of this work has observed a
small but significant effect of social relationships on mobility prediction. Although social influence is considered
as a kind of collective wisdom, it neglects collaborative social knowledge, e.g., from users with similar mobility
patterns. In contrast to this existing work, the proposed framework not only tries to fully capture collaborative
social knowledge based on recommendation techniques, but also makes better use of the individual power of
the regularity-based model and recommendation based on mining propensity of novelty seeking. Therefore, this
framework prevents regularity (individual preference) from always playing a dominant role.

Although there are few research that suggest exploiting this knowledge for prediction, the learning of this
collaborative social knowledge has been widely studied in location recommendation. For example, in [5, 10,
17, 20, 34], social influence, geographical restriction, and personalized user preference have been used for lo-
cation recommendation. Since these authors all have observed the significant effect of geographical constraint,
they have proposed different models, such as k-means clustering and kernel density estimation, for geograph-
ical modeling. In addition, the text content of locations, such as reviews and tips, has been used for further
improvement [21, 32] of recommendation. In contrast to existing methods, the proposed framework not only
takes into account the implicit feedback characteristics of mobility data but also presents a fully unified matrix
factorization for jointly modeling user preference, geographical constraint, and social influence. Through this
unified model, we have added more pseudo-negative (disliked) locations into the framework, thus alleviating the
sparsity challenge.

Similar ideas to mining propensity of novelty seeking have been proposed in [22, 27], where the probability
of novelty seeking is empirically assumed to either be invariant or proportional to the number of distinct visited
locations. If novelty seeking is considered to be a deviation from routine, it is related to the work in [29], where
deviation from routine is detected by likelihood testing. In contrast, we have summarized our research from three
perspectives, two of which are based on supervised learning, which can easily incorporate other features, and
the third one is based on unsupervised learning but differentiates several levels of novelty seeking. Additionally,
one method of them has a practical explanation, being directly related to the indigenization process of people.

3 Mobility Understanding on Location-based Social Networks

We first understand some basic mobility patterns on location-based social networks from the spatial and temporal
perspectives.
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3.1 Spatial Analysis

From the spatial perspective, first, we are interested in the distance distribution between consecutive mobility
records given regular and irregular (novel) mobility behaviors coexisted, and show the distribution in Fig 2(a).
Based on this, we find that 1) most check-ins (over 80%) are within 10 kilometers from the immediately preced-
ing locations; 2) when we already know that users have checked in at regular locations, the next regular location
is significantly nearer to them than next novel location; 3) users are more willing to explore continuously. This
means that when a user has visited a new attraction, she may also try a nearby restaurant. These three character-
istics indicate that spatial analysis can be useful for both regular and irregular location prediction and confirm
the need to separate novel locations from regular ones. Second, we are interested in individual spatial density
distribution. Thus, we randomly pick one user with more than 100 mobility records and plot her spatial distri-
bution in Fig 2(b). This figure demonstrates that users usually have several major activity areas, such as home
and working place, and implies that kernel density estimation is more appropriate for inferring the geographical
preference.
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Figure 2: Illustration of spatial and temporal analysis

3.2 Temporal Analysis

From the temporal perspective, first, we are interested in periodicity, measured as returning probability [11],
which is defined as the probability that a user will revisit a location t hours after her first visit. Its distribution is
shown in Fig. 2(c), which indicates that the returning probability is characterized by peaks of each day, capturing
a strong tendency to daily revisit regular locations. It thus confirms the existence of temporal regularity, which
is thus necessarily introduced into the prediction model. Second, we study the distribution of the time interval
between consecutive mobility records, and show the distribution in Fig. 2(d). This shows 1) when a user has
visited a regular location, she is less inclined for exploration soon after; 2) users will be more likely to visit
novel neighboring locations consecutively within a short interval (e.g., hour). Last, the existence of Markov
dependence has been found in the mobility data by comparing the entropy of trajectories with randomly shuffled
trajectories under the Markov assumption [30]. We do not elaborate on this here.

4 Mobility Prediction on Location-based Social Networks

Given regular and irregular mobility behaviors coexisting in mobility data, we propose a novelty-seeking driven
predictive framework to jointly make use of regularity-based models for predicting regular behaviors and rec-
ommendation based algorithms for modeling irregular behaviors. The choice between them is based on people’s
propensity for novelty seeking, as shown in Fig. 1(b). To be more specific, when people have strong propen-
sity for novelty seeking, recommendation-based algorithms can be relied on more, while when people are more
likely to behave regularly, regularity-based models are assigned larger importance.
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4.1 Regularity Mining for Regular Mobility Prediction

Regularity-based mining consists of Markov-based predictors for modeling the sequential dependence, tempo-
ral regularity for capturing periodical patterns, and a unified Hidden Markov Model for integrating these two
models.

4.1.1 Markov-based Predictors

Learning the Markov model mainly depends on the estimation of location transition (due to the small amount of
personal data, only first-order Markov models are taken into account). However, maximum likelihood estimation
easily suffers from over-fitting due to the insufficiency of training data. Particularly, in most mobility datasets
from LBSNs, the number of parameters in the Markov estimator is around 40× 40 since there are 40 POIs for
each user on average, while there are only about 60 training instances (mobility records) on average. Although
Laplace smoothing techniques can have some effect, they don’t differentiate the events of the same observed
frequency. Thus, we leverage the widely-used Kneser-Ney smoothing techniques [4], that is

P (l|k) = max{n(k, l)− δ, 0}∑
l′ n(k, l

′)
+
δ
∑

l′ 1{n(k,l′)>0}∑
l′ n(k, l

′)

∑
p 1{n(p,l)>0}∑

l′
∑

p 1{n(p,l′)>0}
(17)

where 1{·} is an indication function and 0 ≤ δ ≤ 1 is a discounting parameter that can be set using the empirical
formula δ = n1

n1+2n2
(n1 and n2 are the number of one-time transitions and two-time transitions across locations,

respectively). Intuitively, this equation discounts the observed times of a transition and turns them over to the
possibility that some locations cannot be transitioned from location k. Additionally, such an estimation ensures
that zero-order distribution (the marginal of the first-order probability distribution) matches the marginals of the
training data. Specifically, ∑

k

P (l|k)PML(k) = PML(l) (18)

Thus PML(l) is the stationary distribution of Markov process determined by the stochastic transition matrix
P (l|k).

4.1.2 Limit of Predictability

We only consider first-order Markov model above, but it is possible to use higher-order or even infinity-order
Markov models. The benefit of using higher-order models can be studied by analyzing the limit of predictabil-
ity [18]. Such analysis can be achieved by estimating the amount of information in terms of Kolmogorov entropy
in mobility trajectories. Since it is difficult to estimate Kolmogorov entropy directly, Lempel-Ziv estimators in
data compression [14] are often used for approximation, as they can converge to the real entropy of a time se-
ries when the length of trajectories is sufficiently large. One estimator of a trajectory of n points is defined as
follows:

S ≈ lnn
1
n

∑n
i=1 Λ

i
i

(19)

where Λi
i is the length of the shortest substring starting at position i without appearing from position 1 to

i − 1. Without a sufficiently long mobility trace, the entropy will be overly estimated since some frequent
patterns have not been observed yet. After estimating the entropy, we then resort to Fano’s inequality [7] to
transform it into the limit of predictability since this inequality connects the error probability of prediction with
the sequential entropy. The overly estimated entropy will incur the lower predictability due to the concavity
and monotonic decrease of the Fano function. The key problem of Fano’s inequality should guarantee that the
maximal prediction probability should be much higher than the random probability. The larger the difference
between them is, the closer the upper bound is to the actual predictability. In other words, the more regular

39



0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

Entropy

p
(E

n
tr

o
p

y
)

 

 

S
rand

S
unc

S

0 0.2 0.4 0.6 0.8 1
0

5

10

15

Π

p
(Π

)

 

 

Π
rand

Π
unc

Π
max

Figure 3: Left: The distribution of Kolmogorov entropy S, sequential uncorrelated entropy Sunc without and
random entropy Srand across user population. Right: The distribution of predictability of three entropies

the mobility behaviors are, the smaller the error between the upper bound and actual predictability is. Fig.3
shows examples of the distribution of estimated entropy and predictability on the Gowalla dataset [6], which
only indicate 38% potential predictability.

4.1.3 Temporal Regularity

In temporal regularity, the conditional probability P (l|d, h) must be estimated accurately, where d is the day of
week and h is the hour of day. Assuming the conditional independence d and h given location l, this conditional
probability can be transformed as

P (l|d, h) = P (d|l)P (h|l)P (l)∑
l P (d|l)P (h|l)P (l)

. (20)

The probability to estimate becomes P (h|l) and P (d|l). However, without sufficient training data, the MLE
tends to be overfit. Also, the difference in the probability between neighbor hours of the day and between
neighbor days of the week can not be guaranteed to be small. For example, assume a user has been to a Chinese
restaurant at 6 p.m. only once. If this user returns to this restaurant in the near future, the distribution of the
revisit time should be centered around 6 p.m. rather than at 6 p.m. exactly. Thus we exploit Gaussian kernel
smoothing function for smoothing the MLE to the parameters.

P̃ (h|l) =

∑23
g=0K(d(h,g)σg,l

)PML(g|l)∑23
h′=0

∑23
g=0K(d(h

′,g)
σg,l

)PML(g|l)
, P̃ (d|l) =

∑6
e=0K(d(d,e)σe,l

)PML(e|l)∑6
d′=0

∑6
e=0K(d(d

′,e)
σe,l

)PML(e|l)
(21)

where d(h, g) = min(|h − g|, 24 − |h − g|) is the distance between the hth and gth hour of day and d(d, e) =
min(|d− e|, 7− |d− e|) is the distance between the dth and eth day of week. The reason for defining distance
in this way is that there is a cyclic property among them (the probability of 0 a.m. is close to 1 a.m. and 23 p.m.
and the probability of Sunday is also close to Saturday and Monday). K(x) is a truncated standard Gaussian
distribution over x ∈ [0,+∞).

4.1.4 Hidden Markov Model

Temporal regularity and Markov model can be integrated in a unified Hidden Markov Model, where locations
are considered as hidden states and the temporal information is considered as the observations of Hidden Markov
Model. The supervised learning to estimate the parameters corresponds to the above estimation process, except
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the initial probability of the hidden state is not estimated. Actually, we can simply use MLE for the initial state
probability. Note that we don’t take social relationship into account since social network ties are more likely to
influence long-distance travel according to [6] while long-distance travel may more probably involve irregular
mobility behaviors we will introduce next.

4.2 Location Recommendation for Irregular Mobility Prediction

Obviously, regularity-based models will fail to predict irregular mobility behaviors, but such behaviors are still
subject to geographical restriction, and are driven by both user preference and social influence. Below, we
introduce how to leverage these factors for irregular behavior prediction.

4.2.1 User Preference Learning

Learning user preference mainly involves collaborative filtering techniques, which take the user-location matrix
as input and mine the commonality between users. Each element of the matrix can either be visit frequency
or a binary value indicating whether the visit has occurred or not. Below, we introduce two approaches for
collaborative filtering that mines user commonality from different perspectives.

User-based collaborative filtering [16], directly measures user’s commonality in terms of similarity on be-
havior data. According to our analysis, considering the element of matrix as a binary value to define the similarity
is empirically optimal for recommendation. In this case, a user u is represented as ru ∈ {0, 1}N , where there
are N locations in total and her similarity with another user v is defined as follows,

su,v =
rTu rv

∥ru∥∥rv∥
. (22)

The scoring function of user u to location i is in proportion to sTu ri.
Matrix factorization is a dimension reduction technique such that the dot product between users, between

items, and between user and item in the reduced latent space can measure the commonality. However, since mo-
bility data only include the locations where users have been and are likely to prefer, while unattractive locations
and undiscovered but potentially appealing ones are mixed in unvisited locations, mobility data are actually a
kind of implicit feedback. In this case, we need to use a special class of matrix factorization algorithms, which
treat all unvisited locations as pseudo-negative and assign them a significantly lower confidence. User preference
is thus learned by solving the following optimization problem,

min
P,Q

∑
u,i

wu,i(ru,i − pTu qi)
2 + λ(∥P∥2F + ∥Q∥2F )

where pu ∈ RK and qi ∈ RK represent the preferences of user u and POI i. The weight wu,i is empirically
set as α(cu,i) + 1 if cu,i > 0; and 1 otherwise, where α(cu,i) is monotonic increasing w.r.t visit frequency cu,i,
indicating the visit frequency reflect confidence that the users are fond of them.

4.2.2 Geographical Constraint

Kernel density estimation. The geographical information of location requires physical interactions with users to
foster the universality of Tobler’s First Law of Geography: “Everything is related to everything else, but near
things are more related than distant things.” The key for capturing this phenomenon is geographical modeling.
We use two-dimensional kernel density estimation, which infers the probability a user will show up around
location lj , i.e.,

P (lj) =
1

|Li|h
∑
lk∈Li

K(
dj,k
h

),
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where K(·) is a kernel function. The setting of bandwidth h in the kernel function is determined by the re-
quirement that the influence of candidate locations on the border of the influence circle is close to zero. If the
probability on the border is at most ϵ times smaller than the maximum possible check-in probability, it is subject
to K( dh) < ϵK(0).

Learning-based geographical inference is proposed for the sake of seamlessly integrating geographical mod-
eling with matrix factorization based user preference learning. This is achieved by splitting the whole world into
grids of approximately the same size and pre-computing the received influence of each grid from all the loca-
tions, and then converting kernel density estimation to the following optimization problem,

min
xu

∑
i

wu,i(x
T
u yi − ru,i)

2 + λΩ(xu), subject to xu ≥ 0

In this objective function, yi is an influence vector of a location i, and each element corresponds to a grid’s influ-
ence received from this location; and xu is an activity area vector of user u, in which every element represents
the possibility that this user will appear in a certain grid. Thus, the dot product between them can be consid-
ered to be the possibility that user u will show up around location i. Ω(xu) is a regularized term for avoiding
over-fitting.

4.2.3 Social Influence

Social-based filtering [16] is similar to user-based collaborative filtering, except it captures user commonality
based on social network information. The simplest commonality/similarity between two users is defined as 1 if
they are friends and 0 otherwise. In this case, a user’s preference score for a location can be expressed as the
number of her friends who have visited. To more accurately distinguish the importance of friends based on their
closeness, we exploit another strategy, which is in proportion to the number of common friends, i.e.,

si,l =
|Fi ∩ Fl|
|Fi ∪ Fl|

,

where Fi and Fl represent the friend sets of user ui and ul, respectively.
Graph Laplacian regularization [15] is more often exploited for capturing social influence for the sake of

seamless integration with matrix factorization based preference learning, although social-based filtering tends
to be more intuitive. Given all users’ symmetric similarities S based on social network ties, such as the ratio of
common friends [19], this regularizer can be defined as follows:

ΩS(P ) =
1

2

∑
i,l

si,l∥pi − pl∥2 = tr(P TLP )

where Di,i =
∑

l si,l and L = D − S is a Laplacian matrix.

4.2.4 Hybrid Recommendation

Given the factors affecting the prediction of irregular behaviors, there are many methods for empirical integra-
tion. Since geographical modeling is converted into an optimization problem, it can be seamlessly incorporated
into user preference learning in terms of matrix factorization, as shown in Fig. 4. In this model, the influence
areas of a POI are considered as an extra part of the POI’s latent factors and the activity areas of a user are con-
sidered as an extra part of the user’s latent factors. Since they are aligned in position, the dot product between
them indicates two-dimensional kernel density estimation. At this moment, because unvisited locations around
visited ones share similar geographical influence, user preference for them needs to offset the geographical influ-
ence. Thus, such an integration allows us to find more potential disliked locations and plays an important role in
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Figure 4: The augmented model for matrix factorization, where the dimension of the latent space is K and the
number of grids is L.

alleviating the data sparsity. Furthermore, combining this with graph Laplacian regularization for incorporating
social relationships, the overall objective function becomes as follow:

min
P,Q,X

∥W ⊙ (R− PQT −XY T )∥2F + γ(∥P∥2F + ∥Q∥2F ) + ηΩS(P ) + λ∥X∥1, subject to X ≥ 0

where X is a matrix stacking a user’s activity area by columns and Y is a matrix stacking the items’ influence
areas vector by columns. ℓ1 norm of matrixX , ∥X∥1, constrains that users usually stay around several important
locations, such as home and working places.

4.3 Mining Propensity of Novelty Seeking

Mining individual propensity of novelty seeking is conducted from three perspectives: exploration prediction,
mobility indigenization, and irregularity detection. Exploration prediction is spatially and temporally dependent
while mobility indigenization is only with respect to cities. However, irregularity detection is independent to
both spatial and temporal contexts.

4.3.1 Exploration Prediction

Exploration prediction determines whether people will seek novel (irregular) locations next. Given mobility
data, whether a visit to a location is regular or not can be determined by searching the mobility history of the
user. If the visit location has already been visited earlier, the visit is considered as regular; otherwise, it is
irregular. Exploration prediction is thus boiled down to a binary classification problem, which can output a
classification result (regular or not) or exploration tendency (e.g., a probability of classifying the next location
as irregular). In the classifiers, we consider the following three types of features.

Historical features not only summarize the personality traits of novelty seeking, i.e, how often they check
in, but also reflect a user’s current status of neophilia, including whether a user is currently doing exploration
and how many opportunities a user has left to seek novel locations. The more locations near her activity area
are visited, the smaller the number of opportunities are left, and the smaller the propensity of seeking novel
locations is becoming.

Temporal features are introduced to consider the effect of this temporal information since users usually
have distinct degrees of novelty seeking at different times. As we have discovered, 1) users may prefer to do
exploration during weekends; 2) the time interval between consecutive records also affects novelty seeking.

Spatial features are also taken into account for exploration prediction because users also exhibit different
propensity of novelty seeking at locations with distinct degrees of familiarity. For example, if a user has arrived
in an unfamiliar location (e.g., city), her propensity for novelty seeking will increase.

4.3.2 Mobility Indigenization

When considering irregular mobility behaviors as mainly occurring out of town, we can use a more interesting
index, i.e., indigenization coefficients, for integration [33]. This index quantifies what extent an individual
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behaves like a native. Therefore, this index is opposite to the propensity of novelty seeking. The smaller the
index of a user in a city is, the more likely she is non-native to the city, so that irregular-based models should be
given higher emphasis.

We have proposed two coefficients for this indigenization index. The first one is an individual behavioral
index, Ii(u), which counts the ratio of repeated mobility records in a city, inspired by the fact that a native is
more likely to visit some locations many times than a non-native. That is, for a user, NT indicates the total
number of her mobility records and ND the number of different locations visited by her. The index is then
defined as

Ii = 1− ND

NT
. (23)

The second one is a collaborative behavioral index Ic, measured as the average normalized popularity of a user’s
visit locations, which is inspired by the fact that a native is less likely to visit popular locations than a non-native.
Given that R(lk) is the normalized rank of location lk (dividing the rank by the total number of locations in a
city), this index is formally defined as

Ic =
1

NT

NT∑
k=1

R(lk). (24)

These two indigenization coefficients can be used to define an integrated coefficient

I =
1

1 + exp(−wiIi − wcIc)
, (25)

where the parameters wi and wc can be learned from the logistic regression that best classifies natives and
non-natives. In other words, these two coefficients are taken as features for classifying people as native and
non-natives. After learning these two parameters, we obtain a probabilistic value for the indigenization level and
thus obtain a probability (i.e.,1− I) for novelty seeking.

4.3.3 Irregularity Detection

Irregularity detection [35] further distinguishes several levels of propensity of novelty seeking, and detects the
level of novelty seeking by measuring the popularity of the visit locations and the transition frequency to visiting
location with respect to individual mobility history before the visit time. When both the popularity and transition
frequency are smaller at the same time, the level of novelty seeking tends to be higher. After determining the
level of novelty seeking for each visit in the mobility data, we can measure the novelty seeking trait for each
user. For example, we can use the average level of novelty seeking. In other words, such an algorithm will give
each user the same but distinct propensity of novelty seeking at any time and any location. In order to leverage
it in the general mobility prediction framework, we can normalize it by dividing the maximum level of novelty
seeking to get a pseudo probability value. A larger value indicates a higher possibility of novelty seeking.

4.4 A Novelty-Seeking Driven Framework for General Mobility Prediction

Provided the probabilistic output of the regularity mining algorithm Pr(l) (r indicates regular) and recommen-
dation algorithm Pn(l) (n indicates novel), we exploit novelty seeking to combine them based on the probability
of exploration Pr(Explore) as follows:

P (l) = Pr(Explore)Pn(l) + (1− Pr(Explore))Pr(l), (26)

If Pr(Explore) ∈ {0, 1}, i.e., novelty seeking just classifies the next location as novel or not, we can switch
between location recommendation and the regularity-based model. Due to the discrete value of Pr(Explore),
we denote this case as “hard” integration. If Pr(Explore) ∈ [0, 1], i.e., representing the propensity of novelty
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seeking, we can interpolate the regularity-based model with location recommendation. In other words, both
novel and regular locations are ranked together in this case for the final location prediction. Due to the continuous
value of Pr(Explore), we denote this case as “soft” integration.

5 Conclusions
In this paper, we have introduced a novelty-seeking driven framework for incorporating regularity-based predic-
tion algorithms and recommendation algorithms for predicting irregular mobility behaviors. In regularity-based
prediction, we exploit Hidden Markov model for modeling location transition and temporal dependence. For
recommendation algorithms, we propose a unified recommendation framework to integrate social influence, ge-
ographical restriction, and user preference based on the implicit feedback characteristics of mobility data. And
the central idea of this predictive framework is the mechanism of cooperation between these two distinct mod-
els, by exploiting exploration prediction, indigenization coefficient and irregularity detection to characterize the
propensity of seeking a novel and appealing location.
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Abstract

The rapid growth of Geo-Social Networks (GeoSNs) provides a new and rich form of data. Users of
GeoSNs can capture their geographic locations and share them with other users via an operation named
checkin. Thus, GeoSNs can track the connections (and the time of these connections) of geographic
data to their users. In addition, the users are organized in a social network, which can be extended
to a heterogeneous network if the connections to places via checkins are also considered. The goal
of this paper is to analyze the opportunities in clustering this rich form of data. We first present a
model for clustering geographic locations, based on GeoSN data. Then, we discuss how this model
can be extended to consider temporal information from checkins. Finally, we study how the accuracy
of community detection approaches can be improved by taking into account the checkins of users in a
GeoSN.

1 Introduction

Clustering is a common task of data mining, which divides a set of objects into groups such that objects in
the same group (called a cluster) are similar to each other while objects in different clusters are dissimilar.
Clustering finds applications in machine learning, pattern recognition, image analysis, information retrieval, and
bioinformatics. Specific applications include grouping homologous sequences into gene families in bioinformat-
ics, partitioning the general population of consumers into groups in market research, recognizing communities
within large groups of people in social networks, dividing a digital image into distinct regions for border detec-
tion or object recognition. Clustering can be achieved by various algorithms that may differ significantly in how
they define clusters. Popular definitions of clusters are groups with small distances among the cluster members,
dense areas of the data space, intervals or particular statistical distributions. The distance function, the density
threshold or the number of expected clusters to use depend on the data to be clustered and the intended use of
the clustering results.

The enormous growth of Geo-Social Networks (GeoSNs) not only brings more interesting data to clustering,
but also poses challenges. In GeoSNs, such as Gowalla1, Foursquare2, and Facebook Places3, users are allowed
to capture their geographic locations and share them by an operation named checkin. A checkin is a triplet

Copyright 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1http://gowalla.com
2https://foursquare.com
3https://www.facebook.com/about/location
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⟨u, p, time⟩ modeling the fact that user u visited place with point location p = ⟨x, y⟩ at a certain time . Thus,
on one hand, GeoSNs provide geographic places (e.g. points of interest) an opportunity to be (temporally)
connected with social networks. On the other hand, the users of social networks are associated with their
checkin point locations. The purpose of this paper is to investigate how clustering can be applied on this rich
form of data.

Different from the traditional clustering of geographic locations, where only the spatial dimension is consid-
ered, clustering places in a GeoSN involves geo-social or geo-social-temporal dimensions. The geo-social place
clusters discovered in a GeoSN find important application in the generalization and characterization of places.
For example, discovering regions populated with similar places with respect to the people who live in them or
visit them is a common task in geographic data analysis. Taking another example in urban planning, land man-
agers are interested in identifying regions which have consistent demographic statistics, e.g., areas where elderly
people prefer to visit, or, in general, people who belong to certain communities and have special transportation
or living needs. The place clusters found in GeoSNs may benefit marketing as well. The fact that two (or more)
commercial places belong to the same cluster indicates that there is a high likelihood that a user who likes one
place would also be interested to visit the other(s). Therefore, campaigns may be initiated to users who visited
other places in the same cluster, or a set of places could do collaborative promotion (e.g., a discount for users
who visit multiple places in the cluster). By considering also the temporal information in the data (i.e., when
did users checkin at the various places), the discovered clusters can be further refined and can become valuable
for urban activity analysis, local authorities, service providers, decision makes, etc. For example, a certain set of
places (e.g., shopping spots) may be characterized as a cluster for only restricted time periods or intervals (e.g.,
during Saturday morning hours). In addition, the user-groups that are relevant to a cluster could be relative to
certain time periods. For example, shopping places in downtown are visited during the evening by people who
have to work and could not shop at daytime, while supermarkets and small shops in the suburbs are usually vis-
ited by housewives in the daytime. Such geo-social-temporal clusters can be useful to marketing or advertising
companies, which may benefit from understanding the (time sensitive) shopping habits of various social groups.

GeoSN data can also be used for clustering social network users. Different to classic social networks, which
do not have checkin information, GeoSNs allow users to be clustered not only based on their social links but
also based on their checkin behavior. Using both the social relationships and the checked in places by users can
help discovering user clusters (called local communities) such that users in the same cluster not only have close
social relationships, but also have similar mobility behavior in terms of their checkin places. The discovered
local communities may provide useful information to local advertisers and social travel recommendation services
such as facebook.com/36hrs.in and gogobot.com.

In this paper we investigate the possibilities of clustering geographic locations (i.e., places) and users based
on the rich information tracked by GeoSNs. We first present the Density-based Clustering Places in Geo-
Social Networks (DCPGS) model in Section 2 that detects geo-social place clusters in GeoSNs, considering
both the spatial and the social distances between places. The DCPGS model (originally, proposed in [12])
extends traditional density-based clustering for spatial locations to consider the social relationships of users
who visit them in a GeoSN. Next, we discuss possible definitions and future research directions for the geo-
social-temporal place clustering and the local community detection problems in GeoSNs, in Sections 3 and 4,
respectively. Finally, Section 5 concludes the paper.

2 Geo-Social Place Clustering

Among various clustering techniques, density-based clustering [4] is an effective approach for spatial data with
low dimensionality [13]. It discovers arbitrary shaped clusters and is robust to outliers. The DCPGS model
extends the density-based clustering framework by introducing a new distance function that takes both the spatial
proximity and the social relationship between places into account. Section 2.1 formulates the DCPGS problem
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and defines the social distance measure between places that we use. DCPGS algorithms based on R-tree and
grid partitioning are proposed in Section 2.2. We report part of our findings in Section 2.3.

2.1 Model and Definitions

The input of the DCPGS model includes a social network G and the set of checkins CK of a set of users U to a
set of places P . The social network is an undirected graph G = (U,E), where U is the set of all users and each
edge (ui, uj) ∈ E indicates that users ui, uj ∈ U are friends. Each place pk ∈ P is identified by a unique GPS
coordinate. Set CK = {⟨ui, pk, tr⟩|ui ∈ U, pk ∈ P} includes all checkins generated by users in U . For a place
pk, its visiting user set is defined by Upk = {ui|⟨ui, pk, ∗⟩ ∈ CK}, where ∗ means any time.
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Figure 1: Example and storage structure of GeoSNs

2.1.1 DCPGS Model

DCPGS extends the model of DBSCAN [4]; for each place pi ∈ P , DCPGS finds its geo-social ϵ-neighborhood
Nϵ(pi), which includes all places pj such that Dgs(pi, pj) ≤ ϵ, DS(pi, pj) ≤ τ , and E(pi, pj) ≤ maxD .
For two places pi, pj , E(pi, pj) is the Euclidean distance, DS(pi, pj) is the social distance, and Dgs(pi, pj) =
f(DS(pi, pj), E(pi, pj)) is the geo-social distance, defined as a function ofE(pi, pj) andDS(pi, pj). Parameter
ϵ is geo-social distance threshold, while τ and maxD are two sanity constraints for the social and the spatial
distances between places, respectively. If the geo-social ϵ-neighborhood of a place pi contains at least MinPts
places, then pi is a core place; in this case, pi and all places in its geo-social ϵ-neighborhood should belong to
a cluster r(pi). If another core place pj belongs to cluster r(pi), then r(pi) = r(pj), i.e., the clusters defined
by pi and pj are merged. After identifying all core places and merging the corresponding clusters, DCPGS
ends up with a set of (disjoint) clusters and a set of outliers (i.e., places that do not belong to the geo-social
ϵ-neighborhood of any core place).
Parameters. ϵ and MinPts are the main parameters of DCPGS. MinPts (i.e., the minimum number of places in
the neighborhood of a core place) is set as in the original DBSCAN model (see [4]); a typical value is 5. ϵ takes a
value between 0 and 1, because, as we explain later on, we define Dgs(pi, pj) to take values in this range. Since
the geo-social distance Dgs(pi, pj) is a function of a spatial and a social distance, τ and maxD constrain these
individual distances to avoid the following two cases that negatively affect the quality of geo-social clusters.

• The geo-social distance between two places pi and pj could be less than ϵ if they are extremely close to
each other in space, but have no social connection at all. This may lead to putting places close to each
other spatially, but having no social relationship, into the same cluster.

• The geo-social distance between two places pi and pj could be less than ϵ if they have very small social
distance, but they are extremely far from each other spatially. This may lead to putting places with close
social distances, but large spatial distances, into the same cluster.
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Constraints τ and maxD are defined for quality control and can be set by experts or according to the ana-
lyst’s experience. We experimentally study how clustering quality is affected by the two constraints and ϵ in
Section 2.3.
Distance Functions. The social distance DS(pi, pj) takes in the visiting user sets Upi and Upj of places pi and
pj , respectively, and returns a value between 0 and 1. In Section 2.1.2, we present our definition for DS(pi, pj).
Before defining the geo-social distance Dgs(pi, pj), we normalize the Euclidean distance E(pi, pj) to a spatial
distance DP (pi, pj) =

E(pi,pj)
maxD that takes values between 0 and 1. Finally, Dgs(pi, pj) is defined as weighted

sum of DS(pi, pj) and DP (pi, pj), i.e.,

Dgs(pi, pj) = ω ·DP (pi, pj) + (1− ω) ·DS(pi, pj), (27)

where ω ∈ [0, 1].

2.1.2 Social Distance Between Places

The social distance DS(pi, pj) between pi and pj naturally depends on the social network relationships between
the visiting user sets Upi and Upj of places pi and pj , respectively. Our definition for DS(pi, pj) is based on the
set CU ij of contributing users between two places pi and pj :

Definition 1: (Contributing Users) Given two places pi and pj with visiting user sets Upi and Upj , respectively,
the set of contributing users CU ij for the place pair (pi, pj) is defined as CU ij = {ua ∈ Upi |ua ∈ Upj ∨ ∃ub ∈
Upj , (ua, ub) ∈ E} ∪ {ua ∈ Upj |ua ∈ Upi ∨ ∃ub ∈ Upi , (ua, ub) ∈ E}

Specifically, if a user ua has visited both pi and pj , then ua is a contributing user. Also if ua has visited place
pi, ub has visited pj , and ua and ub are friends, both ua and ub are contributing users. Users in CU ij contribute
positively (negatively) to the social similarity (distance) between pi and pj . Formally:

Definition 2: (Social Distance) Given two places pi and pj with visiting users Upi and Upj , respectively, the
social distance between pi and pj is defined as

DS(pi, pj) = 1− |CU ij |
|Upi ∪ Upj |

(28)

The above definition of DS(pi, pj) takes both the set similarity between sets Upi and Upj and the social
relationships among users inUpi andUpj into account. In addition, the distance measure penalizes pairs of places
pi and pj which are popular (i.e., Upi and/or Upj are large) but their set of contributing users is relatively small
(see Equation 28). The reason is that such place pairs are not characteristic to their (loose) social connections.

As an example, consider places pi and pj of Figure 1. Figure 1(b) shows Upi and Upj for the two places pi
and pj of the toy example in Figure 1(a). The figure also connects the user pairs in the two sets who are linked
by friendship edges in the social network. Note that user u8 does not belong to either Upi or Upj , but connects
users u4 and u7 in the social graph.

To computeDS(pi, pj), we first set Upi = {u1, u2, u4} and Upj = {u1, u3, u5, u6}. All users in Upi and Upj

are checked one by one to obtain the contributing users between pi and pj . We derive CU ij = {u1, u2, u3, u5},
since (i) u1 have visited both pi and pj , (ii) user u2, who visited pi, has a friend u5 who visited pj , (iii) sym-
metrically, user u5, who visited pj , has a friend u2 who visited pi, and (iv) u3 (∈ Upj ) has a friend u1 hav-
ing been to pi. According to Definition 2, the social distance DS(pi, pj) between pi and pj in Figure 1 is
1− |CU ij |/(|Upi ∪ Upj |) = 1− 4/6 ≈ 0.3333.
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2.2 Algorithms

We propose two algorithms for computing geo-social clusters using DCPGS model. Algorithm DCPGS-R (Sec-
tion 2.2.1) is based on the R-tree index, while algorithm DCPGS-G (Section 2.2.2) uses a grid partitioning.

2.2.1 Algorithm DCPGS-R: R-tree based

Algorithm DCPGS-R is a direct extension of the DBSCAN algorithm; it uses an R-tree to facilitate the search
of the geo-social ϵ-neighborhood for a given place. Initially, all places are bulk-loaded into an R-tree. Then,
DCPGS-R examines all places and, given a place pi, it performs a range query centered at pi with radius maxD
to get a set of candidate places that may fall in the geo-social ϵ-neighborhood of pi, i.e., Nϵ(pi). Recall that
maxD is the maximum allowed spatial distance between place pi and places in its geo-social ϵ-neighborhood.
Then, DCPGS-R keeps in Nϵ(pi) only the candidates that satisfy the social distance constraint τ and the geo-
social distance threshold ϵ. Clusters are identified by merging core places and their geo-social ϵ-neighborhoods.

2.2.2 Algorithm DCPGS-G: Grid based

DCPGS-R conducts a spatial range query for each place to obtain the candidate places for the purpose of dis-
covering geo-social clusters. Even though individual R-tree based range queries are very efficient, discovering
geo-social clusters in a GeoSN with millions of places requires millions of such queries (e.g., there are 1,280,969
places in the Gowalla dataset used in our experiments). Given two places pi and pj that are spatially close to
each other, as Figure 2(a) shows, the results of the two range queries with radius maxD centered at pi and pj ,
respectively, are almost identical. In algorithm DCPGS-R, independently issuing similar range queries on the
R-tree searches almost the same space, resulting in redundant traversing paths and computations. To overcome
this drawback, we develop a dynamic grid partitioning technique and a new algorithm DCPGS-G.

pi

pj

maxD

maxD

(a) Nearby spatial range queries (b) Grid partitioning

Figure 2: Nearby spatial range queries and grid partitioning

Grid Partitioning. The area covered by the whole data set is partitioned using a grid of size maxD/
√
2 ×

maxD/
√
2. The non-empty grid cells are indexed by a hash table with the grid cell coordinates as search keys.

Neighbor Cells. The neighbor cells of a cell c are the cells that intersect the union of four circles, each centered
at a corner of cell c with radius maxD . For example, in Figure 2(b), the 20 gray cells (except c) are the neighbor
cells of c, denoted as NC (c). We can trivially show that for any place p inside c, the content of p’s geo-social
ϵ-neighborhood is contained in NC (c) and c itself.
Cluster Discovery. Algorithm DCPGS-G includes three phases. First, it maps all places into grid cells. Second,
it computes the geo-social ϵ-neighborhoods of places at the grid cell level. Specifically, for each non-empty and
unprocessed cell c, its neighbor cells NC (c) are retrieved. This operation filters out the pairs of places (pi, pj)
with spatial distance greater than maxD . A cell is ‘unprocessed’ if its neighbor cells have not been retrieved
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before. Then the pairs of places (pi, pj) that satisfy the social distance constraint τ and the geo-social distance
threshold ϵ are identified and the geo-social ϵ-neighborhoodsNϵ(pi) andNϵ(pj) are updated. After all cells have
been processed, meaning that the geo-social ϵ-neighborhoods of all places in the GeoSN are acquired, the third
phase discovers all geo-social clusters following the framework of algorithm DCPGS-R, except that the Nϵ(pi)
of each place pi has already been computed in the second phase.
Complexity. With the help of grid partitioning, the geo-social ϵ-neighborhood of all places in cell c can be
obtained by checking all c’s neighbor cells; the whole process can be completed within a single pass of the
data. Thus, the complexity of DCPGS-G is O(n), as each of its three phases makes one pass over the data.
However, algorithm DCPGS-R computes the geo-social ϵ-neighborhoods of each place one by one. Hence its
cost is O(n log n), given that the expected cost of a single range query on the R-tree is O(log n).

2.3 Evaluation Results

In [12], we evaluated the DCPGS model and algorithms using two data sets from real geo-social networks4

from two perspectives: effectiveness and efficiency. To assess effectiveness, we conducted a visualization-
based analysis and a social quality evaluation in terms of two measures: social entropy and community score.
In general, it has been demonstrated that the social relationships between users who visit places have great
impact in place clustering and cannot be overlooked. The social distance measure we propose is more effective
compared to competitor measures. To evaluate efficiency, we implemented the R-tree based and the grid-based
DCPGS algorithms to apply using alternative distance measures and compared their performance under various
parameter settings. The results show that the grid-based implementation is more efficient than the R-tree based
implementation and our proposed social distance measure between places is more efficient to compute compare
to more complex alternatives. The detailed evaluation results can be found in [12]. In this section, we show
part of our visualization-based analysis, which compares the clusters found by DCPGS and competitor methods
in the area of Manhattan on the Gowalla dataset (Figures 3(a)–3(f)) and also in the area of Chicago, on the
Brightkite dataset (Figures 4(a)–4(b)).

Competitor DBSCAN [15] disregards the social network and finds density-based clusters using only the
Euclidean distance between places. Competitor PureSocialDistance is an extreme case of DCPGS where ω is set
to 0 in Equation 27. Competitor LinkClustering constructs a place network PN where two places pi and pj are
connected if E(pi, pj) ≤ maxD and DS(pi, pj) ≤ τ . The edge weight is set to Wgs(pi, pj) = 1−Dgs(pi, pj).
Then, an offline community detection algorithm [1, 2] is applied on PN to discover place clusters. Competitor
Jaccard replaces the social distance in DCPGS with the Jaccard similarity between the visiting user sets of two
places. Finally, competitor SimRank applies the Minimax version of SimRank [7] to measure the similarity
between the visiting user sets of two places. Compared to these five competitors, our proposed DCPGS finds
geo-social clusters with the following features.
Geo-Social Splitting/Merging Criteria. Clusters found by DBSCAN due to their spatial closeness are split by
DCPGS because of their weak social relationships, while clusters split by DBSCAN due to relatively low spatial
density are merged by DCPGS due to their strong social ties. For example, Figure 3(a) and 3(b) shows that
the layouts of the clusters discovered by DCPGS and DBSCAN are totally different. Specifically, comparing
region A in Figures 3(a) with the corresponding region A′ in Figure 3(b), DCPGS and DBSCAN detect different
cluster structures. The clusters found by DCPGS cannot be discovered by DBSCAN even if the parameters are
tuned, since the densities of the small clusters in the half bottom of region A′ are similar and they are close to
each other. Hence, DBSCAN will consider the places in the half bottom of region A′ as either a single cluster or
several fragmented clusters (Figure 3(b)), under different parameter settings. Sometimes, DCPGS is able to split
spatially dense clusters due to some natural barriers, such as rivers, and walls. It is inconvenient for the users to
travel from one side of the barrier to the other side, so that the social ties between the places from the two sides

4snap.stanford.edu/data/index.html
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of the barrier are weak, resulting in a splitting effect. As an example, in Figures 4(a) and 4(b), a cluster (region
C) found by DBSCAN is split into two DCPGS clusters (regions C1 and C2) by the river. Although it might be
possible for DBSCAN to detect the two DCPGS clusters by reducing the value of eps , such parameter settings
will make some existing significant clusters disappear, resulting in too many outliers.
Spatially Loose Clusters. Some geo-social clusters found by DCPGS in region B of Figure 3(a) are considered
as outliers by DBSCAN, shown as region B′ in Figure 3(b), since the places in region B′ is spatially too sparse to
satisfy the density requirement of DBSCAN, and thus most places inside it are considered as outliers. However,
these places (in region B of Figure 3(a)) are grouped into clusters by DCPGS due to the reason that the users
who checked in those places have strong social relationships. If reducing the density parameters of DBSCAN,
such spatially loose clusters can also be discovered. Nevertheless, many other clusters may be merged, making
denser clusters indistinguishable.
Fuzzy Boundary Clusters. The boundaries of some DCPGS geo-social clusters are fuzzy, which makes sense in
the real world, since groups of socially connected users may spatially overlap. In contrast, the clusters detected
by DBSCAN have clearly strict boundaries. For instance, in Figure 3(a), no strict boundary exists between the
four clusters enclosed in region A. Competitor PureSocialDistance also produces clusters with fuzzy boundaries
(shown in Figure 3(c)). However, these clusters are spatially indistinguishable and of no interest, i.e., for the
applications mentioned in the Introduction.

Competitor LinkClustering produces thousands of small clusters with average size around 3, shown in Fig-
ure 3(d), which are typically not well-separated spatially. Because of the sparse geo-social network data, the
constructed place network consists of a lot of connected components that are disconnected with each other.
For example, the place network built given τ = 0.7, maxD = 100, and ω = 0.5 contains 34,496 connected
components with 4.3 nodes and 8.2 edges on average.

Competitors Jaccard and SimRank replace our DS definition (Definition 2) by the Jaccard and the SimRank
based measures. Figures 3(e) and 3(f) shows their clustering results. Competitor Jaccard produces small clus-
ters and too many outliers, since large distance values are given for most pairs of places pi and pj due to the
reason that the set of common users for two places in Jaccard (i.e., Upi ∩ Upj ) is expected to be small. On the
contrary, competitor SimRank produces clusters of slightly larger sizes compared to DCPGS. We observed that
the probability distribution of the SimRank-based measure is skewed towards small values, so that a lot of pairs
of places are given low bipartite minimax SimRank social distance.

3 Geo-Social-Temporal Place Clustering

A checkin in GeoSNs is a triplet ⟨u, p, time⟩ modeling the fact that user u visited place with point location
p = ⟨x, y⟩ at a certain time . The geo-social clusters found by the DCPGS model (presented in the previous
section) compute the social distance between places based on the social network relationships between the
visiting user sets of the places. However, temporal information is completely disregarded by the DCPGS model.
It would be interesting to extend the DCPGS model such that the temporal information is taken into account
in clustering and investigate how the temporal information affects the clustering result. In this section, we
investigate the discovery of geo-social-temporal clusters in GeoSNs, which are spatio-temporal regions visited
by groups of socially connected users.

In order to compute such geo-social-temporal clusters, a possible method would be to extend the definition
of social distance between places to a socio-temporal distance DST . Using the social-temporal distance DST ,
the DCPGS model can then replace the geo-social distanceDgs by a newly defined geo-social-temporal distance
as follows:

Dgst(pi, pj) = ω ·DP (pi, pj) + (1− ω) ·DST (pi, pj). (29)

An intuitive definition of the socio-temporal distanceDST would be to consider a pair of places socio-temporally
close if they share many visiting users that have checked in the places within a small time period. On the other
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(a) DCPGS: ϵ = 0.4, τ = 0.7,
maxD = 100m

(b) DBSCAN: eps = 40m (c) PureSocialDistance: ϵ = 0.2,
τ = 1, maxD = 1000m

(d) LinkClustering: τ = 0.7,
maxD = 100m

(e) Jaccard: ϵ = 0.4, τ = 0.7,
maxD = 100m

(f) SimRank: ϵ = 0.3, τ = 0.7,
maxD = 100m

Figure 3: Place clusters of Gowalla found in Manhattan

hand, two places are socio-temporally far from each other if they do not have common visitors within a short
time interval. The temporal dimension captures the evolution of place visits, and thus reflects the changes of the
social distance between places. Based on the above, we suggest that the following three possible definitions of
DST should be investigated.
Temporal Threshold. The socio-temporal distance extends the social distance (Equation 28) by replacing the
contributing users CUij with the temporally contributing users TCUij , i.e.,

DS(pi, pj) = 1− |TCU ij |
|Upi ∪ Upj |

. (30)

The temporally contributing users are socially connected users who checked in pi and pj within a time interval
θ. Let T (ua, pi) be the time when user ua checked in place pi; formally:

Definition 3: (Temporally Contributing Users) Given two places pi and pj with visiting user sets Upi and Upj ,
respectively, the set TCU ij of temporally contributing users for the place pair (pi, pj) is defined as TCU ij =
{ua ∈ Upi |(ua ∈ Upj∧|T (ua, pi)−T (ua, pj)| ≤ θ)∨(∃ub ∈ Upj , (ua, ub) ∈ E∧|T (ua, pi)−T (ub, pj)| ≤ θ}∪
{ua ∈ Upj |(ua ∈ Upi∧|T (ua, pi)−T (ua, pj)| ≤ θ)∨(∃ub ∈ Upi , (ua, ub) ∈ E∧|T (ub, pi)−T (ua, pj)| ≤ θ)}.

This definition of TCU ij favors place pairs to which socially connected users paid visits what were close in
time.
Damping Window. This method assigns each contributing user ua an exponential decay factor etc−T (ua,pi),
where tc is the current time and T (ua, pi) is the time when user ua checked in place pi. The contributing users
who made checkins recently are weighed high. Instead of counting 1 for each user when computing the social
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(a) DBSCAN: eps = 60m (b) DCPGS: ϵ = 0.4 s.t. τ = 0.7,
maxD = 120m

Figure 4: Clusters of Brightkite found by DBSCAN and DCPGS in Chicago

distance (Equation 28), this method counts the exponential decay factor of each user when computing the social-
temporal distance DST . This definition favors place pairs to which the socially connected users have paid recent
visits.
History-frame Clustering. This method performs geo-social clustering for each time period separately. For
example, we can generate a different clustering of places for each month, by only using the checkin data recorded
in that month. The clustering results would be useful in finding out how the place clusters evolve over time. It is
also possible to track which place enters or leaves a cluster at a particular month and which parts of the clusters
are time-insensitive.

4 Local Community Detection in GeoSNs

Community detection is an analytics tool for studying the social relationships among users. When detecting
communities, there are two possible sources of information one can use: the social network structure and the
features and attributes of users. Existing algorithms, however, typically focus on one of these two data modal-
ities: community detection algorithms traditionally consider only on the network structure, while clustering
algorithms mostly consider only user (node) attributes. Recently, algorithm CESNA [16] has been proposed to
detect overlapping communities in networks with node attributes. CESNA statistically models the interaction
between the network structure and the node attributes, which leads to more accurate community detection as
well as improved robustness in the presence of noise in the structure. Later, Shakarian et al. [11] used a variant
of Newman-Girvan modularity with the Louvain algorithm to address the problem of mining for geographically
dispersed communities.

In GeoSNs, it would be interesting to detect local user communities taking both the social network structure
and the checkin information into account, so that groups of socially connected users that checkin in the same
or geographically close places are discovered. Existing algorithms that use either the network structure or node
attributes cannot achieve the goal of local community detection. In addition, although CESNA could be applied
by considering the checkin places as attributes of nodes (i.e., users), it may not achieve satisfactory results,
because the proximity of places is not taken into account (i.e., only users that check in identical places would be
considered as similar). Typically, the probability that two users have a significant overlap in their visiting places
is low, therefore it makes sense to consider proximity as a factor of similarity between users in local community
detection. Finally, although Shakarian et al. [11] provide a way to leverage spatial information in addition to
network connection topology when mining networks for communities, they assume that each node in the social
network is associated with only one home location. This approach is not applicable for the case when the users
in GeoSNs have multiple check-in locations.
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To implement local community detection in GeoSNs, we first need to model the users’ mobile behaviors
according to their checkin locations. Next, in the social network, we assign weights on the edges based on
the similarity between the mobility behaviors of the corresponding users. Then, the resulting edge-weighted
graph can be fed to existing community detection algorithms for weighted graphs, such as ISCoDe [6] and the
algorithm proposed by Liu et al. [9], to identify the local communities. We suggest the following three ways for
modeling the mobility behaviors of users.
Trajectory-based. The checkin locations of each user can be connected according to the time of the checkins
to form a trajectory for the user. This trajectory models the mobility behavior of the user. Trajectory similarity
can then be used to model the similarity between two users that are connected in a social network. Measures for
trajectory similarity include Euclidean distance [10], dynamic time warping [8], edit distance [3], and longest
common subsequence [5].
Image-based. The mobile behavior of each user is modeled as a black-and-white image where each pixel
corresponds to the coordinates of a checkin location. The light intensity (gray value) of a pixel is determined by
the frequency of visits at the corresponding place. The similarity between two images can be computed using the
Minkowski metric on their contained pixels or more complicated measures incorporating specific task-dependent
features [14].
Frequently Visited Region based. By analyzing the checkin locations of users, we can identify one or multiple
frequently visited regions or areas for each of them. The granularity of the frequently visited regions can be
determined by superimposing a grid on the map that includes all checkin locations. Then, each user is associated
with one or multiple regions (cells) which s/he has frequently visited. For two users, we can use the spatial
relationships (e.g., Euclidean distance or overlapping ratio) between their frequently visited regions to determine
the similarity between the users.

5 Conclusions

Although geographic data clustering and community detection have been extensively studied for decades and
many effective algorithms have been proposed, the rapid growth of the geo-social networks bring to these two
problems a new and rich form of data together with new challenges. Clustering places by considering both their
spatial proximity and the users who visit them (as well as the ties between these users) results in significantly
different clusters compared to just using place locations. The time of the user checkins to places can be used
to further refine the clusters. Differences and interesting insights can also be found in the user communities
discovered when both the social relationships between users and the proximity between places they check in are
considered.

In this paper, we have presented the Density-based Clustering Places in Geo-Social Networks (DCPGS)
model [12] that discovers spatially and socially relevant place clusters. Our empirical studies prove the effec-
tiveness of the model. We also discussed how to extend the DCPGS model to consider temporal information in
the check-in data. Finally, we introduced the local community detection problem in GeoSNs, where the users
forming a cluster are not only socially close but also exhibit similar mobility behavior in terms of their check-in
locations.
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Abstract

How can we automatically identify the topics of microblog posts? This question has received substantial
attention in the research community and has led to the development of different topic models, which
are mathematically well-founded statistical models that enable the discovery of topics in document col-
lections. Such models can be used for topic analyses according to the interests of user groups, time,
geographical locations, or social behavior patterns. The increasing availability of microblog posts with
associated users, textual content, timestamps, geo-locations, and user behaviors, offers an opportunity
to study space-time dependent behavioral topics. Such a topic is described by a set of words, the dis-
tribution of which varies according to the time, geo-location, and behaviors (that capture how a user
interacts with other users by using functionality such as reply or re-tweet) of users. This study jointly
models user topic interest and behaviors considering both space and time at a fine granularity. We focus
on the modeling of microblog posts like Twitter tweets, where the textual content is short, but where
associated information in the form of timestamps, geo-locations, and user interactions is available. The
model aims to have applications in location inference, link prediction, online social profiling, etc. We
report on experiments with tweets that offer insight into the design properties of the papers proposal.

1 Introduction

Microblogging services that enable the posting and browsing of messages containing, e.g., news or local events,
are increasingly being used for social interactions.

For example, Twitter has several hundred million active users from around the world who post half a bil-
lion messages each day (https://about.twitter.com/company) and is arguably the most important microblogging
service. Twitter messages, called tweets, are timestamped and are limited to 140 characters. Twitter supports
reply, retweet, and mention functions for tweets, thus enabling social interactions around tweets. We are also
witnessing an increased use of geo-enabled mobile devices, most notably smartphones [12]. They offer not only
a timely way of using Twitter, but they also offer the ability to associate user location with tweets, yielding
geo-tagged tweets.

Copyright 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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The resulting tweets offer the following information: 1) who posted the tweet; 2) textual content; 3) the time
when the tweet was posted; 4) the geo-location from which the tweet was posted; and 5) an associated social
behavior (i.e., post, reply, retweet, or mention).

For example, tweet T1 in Table 1 was posted by “@ohcindyoh”; has text that suggest that the tweet concerns
a movie; was posted on April 29, 2013; was posted from location @cinema211; and was posted as an original
tweet (using “post”). Put differently, tweets may be viewed as being 5-dimensional.

ID Date Author Textual Content

T1 April 29, 2013 @ohcindyoh Watching Iron Man 3 (with Geng Depo Bangunan at @cinema21).

T2 April 29, 2013 @imabieberchicka @brailleman89 What are you doing?

T3 April 30, 2013 @imivycaparas Gorg sis!! Daniel’s concert tomorrow): huehuehue im jelly! Buy
smth for me!!! Shirt okay ): @jiannex

Table 1: Example tweets.

The availability of large collections of such 5-dimensional microblog posts makes it relevant to study an
integrated model of social behavioral patterns that exploits all five dimensions. Existing studies have, however,
proposed to model topics of social data based on only some of the 5 dimensions [4, 13–15, 18]. These models
can be used in applications such as topic mining [3], followee recommendation [4], and location prediction [13].
However, to the best of our knowledge, this study is the first to consider all of the 5 dimensions of microblog
posts. More specifically, we consider behaviors that correspond to the social functions offered by the microblog-
ging service, i.e., post, retweet, reply, mention, for tweets. We consider this user behavior together with space
and time because all three describe the context in which posts are generated by users.

To exemplify this context, consider again Table 1. Here, tweet T2 is a reply (tweets staring with @“user”)
from @imabieberchicka to @brailleman89 that concerns their relationship. Some Twitter users use Twitter as
a chatting app for interacting with their friends, so that most tweets are associated with the reply behavior. If
we model user behaviors and topics jointly as in one study [4], we will find a “reply-daily” topic that concerns
mostly daily issues and appears in user replies. By looking at this topic, we can find users that interact with
other users using “reply”. The distribution of topics can depend on the kind of user behavior (e.g., post, reply),
for which reason the topics are called behavioral.

Next, some users use Twitter as a news channel and often retweet news events. For instance, movie fans
often talk about new movies, and music fans may often talk about concerts. In this case, we may find that topics
are associated with events. For example, tweet T1 is about watching a movie on April 29, 2013. If we observe
many tweets talking about the movie “Iron Man” on the same day then there may be an event related to “Iron
Man” on that day. It is thus important to consider time information.

Last but not least, some users may be interested only in events happening close to their locations. It is thus
beneficial to consider the geo-location of behavioral topics. For example, tweet T3 concerns a concert in the
Philippines. It is then likely to be most appropriate to recommend this event to users in the Philippines. This
shows that it is also necessary to consider space information.

In sum, it is important to model users, textual content, behaviors, space, and time jointly for microblog posts.
We thus propose a space-time dependent behavioral topic model. However, it is difficult to simply aggregate the
dimensions of tweets in a regression model as they are of different types.

The proposed modeling has three notable benefits. First, we can identify user groups at similar locations with
similar topics during a time period, but with different social behaviors. For example, Twitter users are likely to
check-into geographical locations when posting tweets concerning local events. The identification of different

1T1 contains a check-in that is regarded as a geo-location tag. If a tweet has no check-in, we use its lat-long as its geo-location.
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user behaviors may help us understand their motivations for using Twitter and how actively they interact with the
local events. Second, we can profile users and locations according to social behaviors (e.g., reply and retweet
behaviors) and the changes of topics over time. Third, we can predict user locations at a specific time given
topics and behaviors.

We compare our model with existing models and propose methods for estimating the parameters of the
model. Experimental findings from experiments with tweets show that our model is capable of identifying
interesting space-time dependent behavioral topics of users and of predicting user locations. The results also
suggest that the proposed model is effective for the applications considered.

The rest of the paper is organized as follows. Following a coverage of related work in Section 2, Section 3
presents the proposed model and means of estimating model parameters. The experimental study is presented in
Section 4. Section 5 concludes and discusses future work.

2 Related Work

Recently, geo-tagged and time-stamped social media has drawn much attention [1, 6, 7, 9, 10, 17]. Some studies
propose to model topics of microblog posts to understand their social content. Topic models like LDA [2] have
been used widely to find hidden “topics” in documents. In these models, each document can be represented in a
semantic topic space, which also enables tasks like text classification and document clustering. There is growing
interest in adapting topic models to short texts like microblog posts [3, 14, 18].

Twitter-LDA (T-LDA) [3] addresses the shortness of tweets while making two assumptions: 1) one tweet
has one hidden topic assignment; and 2) a given tweet may contain both topical words and background words,
where the former are words specific to the topic of the tweet and the latter are words that are popular in many
tweets. Experiments suggest that T-LDA can capture more meaningful topics than LDA in Twitter data [3], and
T-LDA is further extended into Behavior-LDA (B-LDA) [4] to jointly model the topic interests and interactions
of a user. B-LDA assumes a universal behavior distribution instead of a personalized behavior distribution for
each topic, as the former ensures the behavior information is a property of “topic”. In this case, by examining a
user’s “topic” distribution, one may find personal behavior patterns and topic interests. In other words, a “topic”
here is a behavioral topic. To avoid confusion, we refer to a behavioral topic as a topic in this study.

One study [13] reviews some of the previous studies that integrate some of the 5 dimensions considered in
this paper, and the proposed model (W4) supports four dimensions (who, when, where, and what). However,
W4 cannot distinguish varying user behaviors. In other words, the model is unable to identify topics from posts
by the differences in how the users interact with the content. Moreover, W4 models time as categorical values
consisting of week and weekend days, which is very coarse when aiming to find timely topics. To the best of
our knowledge, our study is the first that integrates the 5 dimensions in one model. Further, our model considers
location and time at a fine granularity. In experiments, we show results based on the use of fine geographical
regions and precise time-stamps of tweets.

Another category of studies relevant to our problem is multi-view clustering [8,16], where each independent
view is able to cluster the data. Generally, the method aims to exploit the multiple views to discover the clusters
that agree across the views. For example, the Co-EM algorithm [8] is an expectation maximization algorithm
that iteratively performs the expectation step in one view, the result of which is passed to the maximization
step in another view. In multi-view clustering, each view corresponds to a representation of the same data with
different features, and the goal is to cluster the data by making use of multiple features. Our problem is not a
clustering problem, and it has a different goal than unsupervised clustering.
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l a location identifier 1 ≤ l ≤ L
b a behavior in B = {post, retweet, reply,mention}
z a topic identifier 1 ≤ z ≤ Z
u a user identifier 1 ≤ u ≤ U
n a tweet identifier 1 ≤ n ≤ N
w a word identifier 1 ≤ w ≤M
t a time-stamp identifier 1 ≤ t ≤ T
x, y switches, x ∈ [0, 2], y ∈ [0, 1]
ψz topic-specific behavior distribution
ϕz topic-specific word distribution
ϕ′ background word distribution
θu, θl, θt user, location, and time dependent topic distributions
αu, αl, αt priors of θu, θl, and θt
π, φ Bernoulli and multinomial distributions

Figure 1: Plate notation for our space-time dependent behavioral topic model for microblog posts. The dashed
variables will be collapsed out during Gibbs sampling [11]. Priors over all the multinomial or binomial distribu-
tions are omitted for clarity.

3 Model

In this section, we present our space-time dependent behavioral topic model as shown in Figure 1.

3.1 Space-Time Dependent Behavioral Topic Model

In B-LDA [4], it is assumed that all tweets posted by a user concern the user’s own interests. However, in many
cases, users will not only post tweets according to their own topics of interest, but may also post tweets that
concern temporal events and location-dependent topics. As a result, at least two additional dimensions may be
built into the model, i.e., space and time. We propose a probabilistic model that jointly models the space and
time of tweets for behavior-topic analysis. In the space-time dependent behavior-topic model, we assume to have
three types of topic distributions, i.e., user-dependent, space-dependent, and time-dependent topic distributions.
Below we present the full model that considers 5 dimensions: user, text, time, location, and behavior.

We assume to have a data set that contains U users. A user u has Nu (1 ≤ u ≤ U ) tweets. We use Mu,n

(1 ≤ n ≤ Nu) to denote the number of words in nth tweet of uth user, and wu,n,m (1 ≤ m ≤ Mu,n) to denote
the mth word in nth tweet of uth user, where 1 ≤ wu,n,l ≤ V and V is the vocabulary size. Next, lu,n and tu,n
denote the location and time, respectively, of the nth tweet of the uth user. Similar to B-LDA, our model assumes
a space B containing all possible types of behaviors. In the case of Twitter, B = {post, retweet, reply,mention}.
We use bu,n ∈ B to denote the behavior of the nth tweet of the uth user.

We now present our model. First, we assume that there are Z hidden topics, where each topic has a multino-
mial word distribution ϕz and a multinomial behavior distribution ψz . We pose Dirichlet priors η and β on ϕz
and ψz , respectively.

∀z(ϕz ∼ Dir(β) and ψz ∼ Dir(η)) (31)

Recall that we assume to have three types of topic distributions, i.e., a user-dependent distribution θu,
a space-dependent distribution θl, and a time-dependent distribution θt. Similarly, we pose Dirichlet priors
αu, αl, αt on these distributions.

∀u(θu ∼ Dir(αu)), ∀l(θl ∼ Dir(αl)), and ∀t(θt ∼ Dir(αt)) (32)

Each tweet has a single topic that is sampled from one of the three topic distributions θu, θl, and θt. Let
Multi(π) ∼ Dir(γ). We then use a switch xu,n ∼ Multi(π) to choose a topic from the three distributions (values
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0, 1, and 2 of xu,n indicate switches of the user, location, and time dependent distributions).

zu,n ∼


Multi(θu) if xu,n = 0

Multi(θl) if xu,n = 1

Multi(θt) if xu,n = 2

For a tweet with a topic label zu,n (1 ≤ zu,n ≤ Z), the words in this tweet are generated from two multino-
mial distributions, namely a background word distribution ϕ′ and a topic specific word distribution ϕ. Similarly,
they are with Dirichlet priors ϕ′ ∼ Dir(β′) and ϕ ∼ Dir(β). Let Multi(φ) ∼ Dir(ρ). We then use a switch
yu,n,m ∼ Multi(φ) to choose a word from the two distributions indicated by 0 and 1 values of yu,n,m.

wu,n,m ∼

{
Multi(ϕ′) if yu,n,m = 0

Multi(ϕzu,n) if yu,n,m = 1

3.2 Learning and Parameter Estimation

We use the Collapsed Gibbs sampler [11] to obtain samples of the hidden variable assignments and to estimate
the model parameters from these samples. We show the derived Gibbs sampling formulas in the following.
Proofs are similar to those given in related work [4].

For tweet n of user u, we jointly sample a switch xu,n and its topic label zu,n.

p(zu,n = z, xu,n = x | Z¬u,n ,X,L,T,B)

=
nx + γ∑

x′∈[0,2](n
x′ + γ)

· nbz + η∑
z′(n

b
z + η)

·
[

nzu + αu∑
z′(n

z′
u + αu)

]x=0

·
[

nzl + αl∑
z′(n

z′
l + αl)

]x=1

·
[

nzt + αt∑
z′(n

z′
t + αt)

]x=2

,

(33)

where l, t, and b denote the location, time, and behavior information; nz
′

u refers to the number of times topic z′

co-occurring with user u; and other ns are defined in the same way.
For each word wu,n,m = w in tweet n of user u, we sample its switch yu,n,m as follows.

p(yu,n,m = y | Y¬u,n ,X,Z,L,T) =
ny + ρ∑

y′∈[0,1](n
y′ + ρ)

·

[
nwy=0 + β∑
w′(nw

′
y=0 + β)

]y=0

·
[

nwz + β∑
z′(n

w
z′ + β)

]y=1

, (34)

where nwy=0 refers to the number of times word w being labeled as a background word.
With the Collapsed Gibbs sampler, we can make the following estimation of the model parameters:

θu,z =
nzu + αu∑

z′ n
z′
u + Zαu

user-topic distribution (35)

θl,z =
nzl + αl∑

z′ n
z′
l + Zαl

location-topic distribution (36)

θt,z =
nzt + αt∑

z′ n
z′
t + Zαt

time-topic distribution (37)

ψz,b =
nbz + η∑
b′ n

b′
z +Bη

topic-behavior distribution (38)

ϕz,w =
nwz,y=1 + β∑
w′ nw

′
t,y=1 + V β

, topic-word distribution (39)

where nzu is the number of times z is sampled for user u and nbz is the number of times behavior b co-occurs with
topic z.
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4 Experimental Study

We proceed to evaluate the proposed model. We first describe the datasets and then present the experimental
setup. Finally, we report on findings of a set of experiments.

4.1 Data and Settings

We collected all world-wide geo-tagged tweets from the public Twitter Streaming API from April 29 to July 2,
2013, and we choose 10,000 users at random and use all their tweets. We further select 90% of all the tweets at
random for training our model and use the remaining 10% of all tweets for evaluating our model.

Our model is able to find user-specific, space and time dependent behavioral topics, making it useful for
several real-world tasks. To evaluate the model, we

1. qualitatively analyze the learned word distributions and topic distributions from the model, and we

2. quantitatively evaluate the model against baseline models for the task of location prediction.

In this study, we focus on location and time relevant topics. Our model inherits its behavior dimension from
B-LDA. We thus do not discuss behavioral topics.

We ran 1000 iterations of Monte Carlo EM. For the Gibbs sampling steps, we ran 400 iterations for burn-in,
and we sampled every 10 iterations to reduce auto-correlation. We fixed the number of topics at 20. (We varied
this number from 10 to 100 with a step size of 10 and found the resulting topics to be most meaningful at around
20 by manual examination). For our models and competing baselines, we use grid search on a development set
to select the model parameters.

4.2 Qualitative Analysis

(Topics.) Table 2 presents top topic-specific words for some sample topics. The experimental findings show that
Twitter users often talk about themselves, for example, topic “daily life” is a popular topic that mostly concerns
the users’ daily updates. Similarly, topic “school” looks to be on updates about school. The topic “music” is
about songs, country music, pandora, etc. All these topics are readily identified based on their top topical words.
They can also serve as interpretable labels for the corresponding tweets or users.

We note that some of the extracted topics are featured with location information. For example, tweets related
to topic “movie” are mostly posted from locations close to a cinema. This suggests that some locations have
their own topics and relevant words; thus, based on the words used by users, we can draw clues about users’
locations. In light of this, we study location prediction in Section 4.3.

(Location and Time Dependent Events.) Unlike related work [13], the proposed model considers temporal
information at a fine granularity. This allows us to discover bursty events, i.e., topics with a sudden increase of
usage. We define a burstiness score of topic t on day d as s(t, d) = ct,d−ct,d−1+1

ct,d−1+1 , where ct,d denotes the number
of tweets with topic t on day d.

Table 3 visualizes top bursty topics sorted by s(t, d) as obtained using our model. We find that all these
bursty events are meaningful. The first bursty event is about the release of the movie Iron Man 3. The second
concerns a concert. The third one concerns a political event. Note that in the proposed model, each topic has a
location distribution; Thus, all the bursty events above have a location dimension. Close examination shows that
the first bursty event has tweets are from all over the world and is global. The second one is more localized as
its tweets are from the Philippines. The third one happened in the UK when the UKIP leader Nigel Farage was
on a campaign visit to Edinburgh. By using our model, we find that the locations associated with the event are
indeed from the UK. In all, we find that by considering space and time in the modeling of topics of microblog
posts, we can obtain better insights into the behavioral topics of users, locations, and times.
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“daily life” “god” “cars” “school” “music” “movie” “food” “drink”

good god car school song movie food drink
today lord drive year music watch eat smoke
tired world ride class shows watching ice water
early jesus house summer trend show cream beer
nap bless hit days listen funny pizza drinking

ready live driving hate listening fast chicken bottle
day man street test album movies breakfast smoking

school beautiful walking exam favorite game chocolate blunt
wake give walk back world favorite hot cold

shower woman bus start songs guy cheese juice
long good road ill love episode ate drunk

feeling blessed hate homework country purge hungry coffee
woke love work final pandora wolf dinner smell
night life gas math topic teen cake cup
awake pray truck english taylor family ill drank

Table 2: Top topic-specific words from ϕz,w for sample topics. Labels are assigned manually.

Dates Tweets Label

April 29, 2013

Iron man 3 wiff @rasekarini (@ Studio 21 - @cinema21 w/ 18 others)

Iron Man 3
Uuurgh Can’t wait to watch “IronMan”, Seems like it’s awesome movie
Hype for this new Iron Man movie....I ♡ Marvel
Watching Iron Man 3 (at @cinema21) http://t.co/QMVlvpkgIk

April 30, 2013

Daniel padilla live paperview yipee < 3
Okaaay so like, naa man daw payperview sa concert ni daniel padilla =)) Daniel Live!
Daniel padilla invades not just araneta,but also the twitter world.. Concert
Rocking my souvenir!! Daniel padilla concert #DanielLiveAtTheBigdome

May 16, 2013

Yes. Yes, he is. RT @juliahobsbawm: Nigel Farage is a Black Swan.
Nigel Farage has a great taste in suits and hats it must be said! Nigel Farage
Well that’s my vote. Viva Nigel Farage! http://t.co/MC7k84YgIO is heckled
Johnny don’t do Nigel Farage as he would look exactly the same #UKIP

Table 3: Bursty topics found by our model and sample tweets. Labels are assigned manually.

4.3 Location Prediction

We apply our model to a location prediction task. Specifically, given a tweet from a user, the task is to predict
the location where the user posted it. The intuition is that many locations have their own topics. For example,
if a location is a food court, people tend to tweet more about food in this location. Our method is that we first
obtain location-dependent topics learned by the proposed model; then, given a tweet with a set of words and a
behavior, we estimate its topics and find the most relevant location, detailed as follows.

For tweet n from user u with words wu,n and behavior bu,n, we predict its location by using this formula:
lu,n = argmaxl p(l|wu,n, bu,n, ψ, ϕ, ϕ

′, θ). Here, ψ, ϕ, ϕ′, and θ are learned using Equations 36-39. We further
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compute p(l|wu,n, bu,n, ψ, ϕ, ϕ
′, θ) as follows.

p(l|wu,n, bu,n, ψ, ϕ, ϕ
′, θ) ∝ p(l)p(wu,n, bu,n|l)

= p(l)
∑
z

p(z|l)p(wu,n, bu,n|z)

= p(l)
∑
z

θl,zp(wu,n|z)p(bu,n|z)

= p(l)
∑
z

θl,zψz,bu,n

∏
w∈wu,n

ϕz,w (40)

For simplicity, we assume all the words are topic-specific, and we approximate p(l) by using the popularity of
location l.

Recall that we use 90% of all tweets for learning and that we have held out 10% of all tweets for testing.
For each tweet in the test data, we compute its probability of belonging to a certain location l using the above
method. We then sort the locations based on the probabilities. The higher the real location of the tweet is ranked,
the better our method is. We consider three baseline methods:

1. Random. By using random guessing, the expected ranking of the real locations will average at around
50%.

2. Majority. The majority baseline always ranks the locations by their popularity. This works well when the
held-out tweet locations are from popular locations.

3. Clustering method. This method treats all tweets with the same location as a cluster, and for a new tweet,
we compute its similarity to all the clusters and rank all the locations according to the similarity scores. To
measure the similarity between a tweet and a cluster of tweets, we use the averaged Jaccard index score.

As for evaluation, we use these metrics: average ranking raverage (the lower the better), median rank-
ing rmedian (the lower the better), and mean reciprocal rank MRR (the higher the better), defined as follows.
raverage = 1

|Dtest|
∑

d∈Dtest

rd
|L| , MRR = 1

|Dtest|
∑

d∈Dtest

1
rd

. Metric rmedian is similar to raverage, but uses the
median ranking instead of average. Here, rd refers to the real location’s ranking for tweet d, |L| is the total
number of locations, and Dtest is the test set. These criteria have also been used for a similar task, followee
recommendation [4, 19].

Table 4 shows the results. The majority method performs worse than the random method. This means that
the held-out tweet locations are often from less frequent locations. By Wilcoxon signed-rank test [5] and the
results in Table 4, we obtain that the clustering method outperforms both majority and random methods at 0.1%
significance level. This implies that many locations indeed have their own location-specific behavioral topics.
Our method also outperforms the other methods at 0.1% significance level by Wilcoxon signed-rank test. Using
average ranking, our method ranks the real locations in the top 12.6% of all the locations, and with a median
ranking at around 2.7% that means that the real location of a given tweet is ranked in the top 2.7% of all the
locations. Since the location set size is large in our data set, the findings show that our method can learn good
location specific topics and topic specific words.

Metric Our Model Random Majority Clustering
raverage 0.126 0.5 0.55 0.132
rmedian 0.027 0.5 0.54 0.103
MRR 0.090 0.0001 0.0003 0.015

Table 4: Comparison of the methods used for location prediction.
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A given tweet may not necessarily be location-specific but could be user-specific or time-specific. To address
this, we propose a simple way to compute a confidence score to measure whether a tweet is location-specific
or not. We define the confidence score s(d) as the aggregated probability of the tweet d belonging to a certain
location: s(d) =

∑
l p(l|wd, bd, ψ, ϕ, ϕ

′, θ). Below we show the results of our model in terms of different
confidence scores.

Metric 10% 20% 50% 80% 100%
raverage 0.076 0.104 0.126 0.130 0.126
rmedian 0.034 0.036 0.039 0.034 0.027
MRR 0.073 0.071 0.070 0.081 0.090

Table 5: Findings for location prediction. We use set of tweets with different confidence scores. Thus, n% means
that the tweets with the n% highest confidence scores are used.

Using raverage, our method is best at tweets with top 10% confidence scores. Our method ranks the real
locations in the top 7.6% when using the top 10% most confident tweets, while our method ranks the real
locations in the top 12.6% when considering all tweets. Results at 10% are better than at 20% and 50% in terms
of both rmedian and MRR, which indicates that top confident tweets often benefit location prediction. The table
also shows that the MRR score at 10% is not as high as at 100%. The reason may be that on the tweets with top
80–100% confidence scores, the variance is smaller than that using tweets with top 10–50% confidence scores.
Similar observation can be found for rmedian, and the results also show that rmedian seems to be rather insensitive
to the percentage.

5 Conclusion and Future Work

In this study, we propose to model space and time dependent behavioral topics of microblog posts that associated
with text, timestamps, geographical locations, and user behaviors with users. The experiments on Twitter data
demonstrate our model is able to identify useful and insightful user behavioral topics with a fine spatial and
temporal granularity.

There may exist a range of applications of our model, including user location inference, link prediction, user
or location profiling by the changes of topics over time, burst event detection, and automatic tagging semantic
text to geographical locations. Applications such as these deserve exploration in future work. Moreover, it may
also be promising to integrate other contextual types, such as popularity of images on Instagram, in our model,
or to find a generalized way to integrate social context with textual content in the model.
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Abstract

Motivated by the wide popularity of microblog services (e.g., Twitter and Facebook) along with the
sheer sizes of microblogs issued every second, this article introduces Taqreer as a scalable and efficient
system for auto-generation of spatio-temporal analysis reports on microblogs. Taqreer is composed of
two main modules: The Taghreed query engine, which is a scalable and efficient query processing engine
for spatio-temporal keyword queries on microblogs and a Report Generation Tool, which receives the
user analytic report request and divides it into a set of queries sent to the Taghreed engine, and a set
of analysis tasks executed on top of the returned query answers. As of now, Taqreer is able to produce
three analysis report types, namely comparative reports, categorical reports, and image gallery reports.
Other report types will be added in the future.

1 Introduction

Microblogs, e.g., tweets and Facebook comments, have become incredibly popular in the last few years. Ev-
eryday, over a billion of users post about four billions microblogs on Twitter and Facebook [5, 20]. As user-
generated data, microblogs are associated with various types of rich contents, including user locations, used
language, event updates, news items, opinions, reviews, and/or discussions. With the importance of temporal
aspect in microblogs [4, 11] (i.e., more recent microblogs are more important than older ones), and the wide
availability of location information of microblogs [3, 12], a high fraction of analysis applications on microblogs
rely on spatio-temporal analysis. Examples of such analysis include user analysis for geo-targeted advertis-
ing [14], event detection [1, 7, 13, 16, 21], news extraction [2, 15, 17], and analysis [6, 18, 19]. Unfortunately,
existing systems cannot manage microblogs data efficiently as they are designed for managing either fast or
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Figure 1: Taqreer Architecture.

large data. Thus, none of existing systems provide indexing-based data management for data that is fast and
large simultaneously, like microblogs.

In this article, we report on our work for the Taqreer system. Taqreer is a system for generic spatio-temporal
analysis and report generation on large numbers of microblogs. Taqreer users can generate an analysis report
that tracks the appearance of a certain keyword over space and time. Taqreer is so scalable that it can generate
such report for the whole world over a period of more than a year. Such reporting functionality is important for
tracking interest in diseases (e.g., Ebola) or natural disasters (e.g., Nepal earthquake). Taqreer users can also
generate scalable and interactive comparison reports that compares the trending of various keywords over space
and time, which can be used to analyze the status of election candidates, the interest in various soccer teams,
or other comparisons based on social media discussions. Other Taqreer reports include categorical reports that
study the used languages over space and time, which is a powerful report in understanding the diversity of
various countries and cities worldwide. In general, Taqreer is an extensible system as it provides a rich platform
that allows adding various reports easily.

2 System Overview of Taqreer

Figure 1 gives Taqreer system architecture, which is composed of two main system components, the Taghreed
query engine [8, 9] (detailed in Section 3) and a Report Generation Tool (detailed in Section 4). Taqreer users
submit their report generation requests to a User Web Interface module. Then, the report parameters are for-
warded to a Report Composer module, which parses the parameters and divides the report into: (a) a set of
spatio-temporal keyword queries that retrieve the necessary data to generate the requested report, and (b) a set
of analysis tasks to run on the retrieved answer of the spatio-temporal keyword queries. All spatio-temporal
keyword queries are sent to the Taghreed query engine through a Query Dispatcher module.

Meanwhile, the Taghreed query engine continuously receives an incoming stream of microblogs with high
arrival rates of up to 5,000 microblogs per second. The incoming stream is processed and digested in a highly
scalable and efficient main-memory index structure. Once the memory becomes full, a flushing policy is invoked
to move a portion of memory contents to the disk storage in another disk-based highly scalable and efficient index
structure. The Taghreed query engine answers its incoming spatio-temporal queries from both in-memory and
disk-based index structures, based on where the data needed for the query answer reside. Once the query answer
is collected, it is sent back to the Report Generation Tool, which invokes the Data Analyzer module to perform
the required data analysis tasks. Finally, the report composer gets the analysis output, composes the report in its
final form as an interactive web page and sends it back to the requesting user.
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3 Taghreed Query Engine

Taghreed [8,9] is the query engine behind Taqreer, which has two main responsibilities: (1) Digesting incoming
stream of microblogs with high arrival rates, and (2) Efficient support for spatio-temporal keyword queries over
large set of microblogs. Taghreed is composed of five main components, namely, in-memory index structure,
disk-based index structure, flushing policy, query optimizer, and recovery manager, described below.

In-memory index structure. Taghreed employs two in-memory index structures; a keyword index and a spatial
index. Both indexes are segmented into temporal segments that partition data based on arrival timestamp. Fig-
ure 2(a) gives the organization of the memory indexes. Each index is segmented into disjoint segments, where
each segment includes the data of the last T hours, where T is a system parameter. Incoming microblogs are
digested in the most recent segment. Once the segment spans T hours of data, it is concluded and a new empty
segment is introduced to digest the new data. Index segmentation has two main advantages: (a) new microblogs
are digested in a smaller index, which is the most recent one, and hence we can support higher digestion rates,
and (b) it makes it easier to flush data from memory to disk.

Disk-based index structure. Similar to main-memory index structures, disk-based indexing supports both
spatial and keywords attributes, where each index embeds the temporal aspect in its organization. However, the
disk-based index structures are a bit different from the main-memory ones. Figure 2(b) gives the organization
of Taghreed disk-based spatial index structure. The disk-based keyword index has a similar structure. The index
is organized in temporally partitioned segments. The temporal segments are replicated in a hierarchy of three
levels, namely, daily segments, weekly segments, and monthly segments. The daily segments level stores data
of each calendar day in a separate segment. Each weekly segment level consolidates the data in daily segments
of one calendar week. Similarly, each monthly segment level consolidates data of weekly segments of a whole
calendar month. The main reason behind the three levels replication is to minimize the number of accessed index
segments while processing queries for different temporal periods. For example, for an incoming query asking
about data of two months, if only daily segments are stored, then the query processor would access sixty index
structures to answer the query. On the contrary, the query processor would access only two index structures of
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the two months time horizon of the query. This significantly reduces the query processing time for queries on
relatively long periods.

Flushing policy. The main goal of Taghreed flushing policy is to determine which microblogs should be flushed
from main-memory indexes to disk indexes when the memory becomes full. Taghreed flushing manager allows
the system administrator to employ one of multiple available flushing policies. The default flushing policy is
flush-temporal, which depends only on timestamps to select its victim microblogs to be flushed. In particular, we
expel a portion of the oldest microblogs to empty a room for the newly real-time incoming microblogs. To reduce
the flushing overhead, this policy requires the main-memory indexing to partition the data into segments with the
same flushing unit. Referring to the main-memory index organization in Figure 2(a), the flushing unit is defined
as T hours, i.e., the oldest T hours of data are flushed periodically. T is adjusted by a system administrator based
on the available memory resources, the rate of incoming microblogs, and the desired frequency of flushing.

Query optimizer. Taghreed query optimizer selects which index segment(s) should be accessed to retrieve the
query answer. Specifically, Taghreed provides two index structures in both main-memory and disk: a keyword
index and a spatial index. In addition, disk-resident data is replicated in three temporal levels, daily, weekly,
and monthly index segments. Consequently, the query processor may have different ways to process the same
query based on: (1) the order of hitting keyword or spatial indexes, and (2) the number of disk index segments
to hit. For example, a query that spans from May 1 to May 9 can be answered from disk indexes by either
accessing nine daily index segments, or accessing one weekly and two daily index segments. Each of these is
called a query plan. The costs of different query plans are different. The main task of the query optimizer is
to generate a plan to execute so that the estimated cost is minimal. To this end, the query optimizer employs
two cost estimation models, one for estimating the cost of accessing a keyword index segment and the other for
estimating the cost of accessing a spatial index segment. Using these cost models, the query optimizer proposes
two selection criteria, one for the main-memory index, where each index has a single level of disjoint segments,
and one for the disk index, where each index has three levels of overlapped segments.

Recovery manager. With millions of microblogs managed in main-memory, Taghreed system accounts for
memory failures that may lead to data loss. Taghreed employs a simple, yet effective, triple-redundancy model
where the main-memory data is replicated three times over different machines. The core idea of this model
is similar to Hadoop redundancy model that replicates the data three times. In particular, when Taghreed is
launched, all the main-memory modules are initiated on three different machines. Each machine is fed with ex-
actly the same stream of microblogs, thus they form two backup copies of the main-memory system status. Any
flushing from memory to disk leads to throwing the data out from the memory of backup machines. On memory
failure, the backup machines continue to digest the real-time microblogs and one of them work as a replacement
to the system memory contents. Replicating the data three times significantly reduces the probability of having
the three machines down simultaneously and lose all the main-memory data.

4 Taqreer Report Generation Tool

Taqreer report generation tool is composed of four modules, namely, User Web Interface, Report Composer,
Query Dispatcher, and Data Analyzer. The user web interface is the interfacing module between Taqreer and
its end users. The user input parameters are forwarded to the report composer module to sync the work among
other modules. In particular, the composer goes through the following four steps: (1) Based on the report type
and parameters, the composer determines the set of queries that retrieve the required data and a set of analysis
tasks to be performed on that data, (2) The report composer calls the query dispatcher module to submit spatio-
temporal keyword queries to Taghreed query engine, (3) The retrieved query answers are forwarded to the data
analyzer module to perform the required analysis, (4) The report composer adds all the output to an interactive
web page and sends it as the final report to the user.
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Report Type Parameters Queries Analysis Tasks
Comparative
Reports

• n spatial regions Ri, 1 ≤ i ≤ n
•m keywords (topics/entities) Wj , 1 ≤
j ≤ m
• Time range [Ts,Te]

n×m queries, each takes:
• Spatial region Ri

• Keyword Wj

• Time range [Ts,Te]

None

Categorical
Reports

• Spatial region R, auto divided into n
sub-regions of fixed default area
• Time range [Ts,Te]
• Categorical attribute A
• Optionalm keywordsWj , 1 ≤ j ≤ m

n queries, each takes:
• Spatial region Ri ⊂ R
• Time range [Ts,Te]
• Optionalm keywordsWj , 1 ≤ j ≤
m

• Count categories of at-
tribute A for each query mi-
croblogs
• Aggregate counts over less
granular spatial levels

Image Gallery
Reports

•m keywords Wj , 1 ≤ j ≤ m
• Time range [Ts,Te]
• Optional spatial region R

One query that takes:
•m keywords Wj , 1 ≤ j ≤ m
• Time range [Ts,Te]
• Optional spatial region R

• Extract photos

Table 6: Parameters, Queries, and Analysis of Different Report Types

Taqreer supports three types of spatio-temporal reports, namely, Comparative Reports, Categorical Reports,
and Image Gallery Reports. Table 6 gives the parameters, queries, and analysis tasks for each of the three
reports. Details of these reports are described in the rest of this section.

4.1 Comparative Reports

Comparative reports aim to compare individual microblogs that are related to different topics (or entities) in dif-
ferent spatial regions within a certain time range. Topics (or entities) are defined by a set of keywords/hashtags.
An example of these reports is to compare tweets about the two Spanish soccer teams Real Madrid C.F. and
FC Barcelona in different cities in Spain during the week of their soccer game. This can also include analy-
sis related to presidential candidates, political parties, product trademarks, or events. The first row in Table 6
gives the parameters, queries, and analysis tasks of comparative reports. The user inputs n spatial regions of
interest Ri, 1 ≤ i ≤ n, m entities or topics (identified by keywords Wj , 1 ≤ j ≤ m), and an arbitrary time
range [Ts,Te]. A set of n ×m queries are submitted to Taghreed query engine to retrieve the report data, each
query takes a spatial region Ri, a keyword Wj , and the time range [Ts,Te]. The retrieved data is displayed in
an interactive web page that allows arbitrarily inclusion/exclusion of microblogs of certain spatial regions and
navigation along the whole report timeline, either for a single point of time or on a time range. The analysis of
these reports include creating a heatmap for the microblogs, optional pie charts that show percentage analysis for
the displayed microblogs, optional tag cloud that shows popular topics in the displayed microblogs, and locating
and displaying individual microblogs on a geographical map with full text and user information. In the rest of
this section, we present using comparative reports for two purposes: (1) analyzing event-specific tweets, and
(2) general-purpose social media analysis.

Analyzing event-specific tweets. One of the most important and consistent behavior of Twitter users is
posting a plethora of tweets about events of different types, e.g., Oscars ceremony, soccer games, and natural
disasters. For such kind of event-specific tweets, geotagged tweets grab a high attention as all events, by nature,
have a spatial extent. For example, while Boston Marathon explosions were going on in April 2013, users rush
to Twitter seeking tweets from the marathon location [2]. An event is generally defined by a temporal horizon,
a set of hashtags, and a spatial extent. Events fall in one of two categories: (a) multi-side events, e.g., sports
games or elections, and (b) independent events, e.g., Oscars ceremony or New Year Eve. Figure 3 gives two
examples of event-specific reports. Figure 3(a) gives a heatmap for New Year Eve tweets over different points
of time. The figure shows popular hashtags in a tag cloud and enables going through exact tweets with full text
and user information. Figure 3(b) gives tweets of a soccer game in Saudi Arabia, where an extra option is added
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(a) New Year Eve 2015 tweets (b) Soccer game tweets

Figure 3: Spatio-temporal Analysis of Event-specific Tweets.

Figure 4: Analyzing tweets mentioning different car brands in Saudi cities.

to classify visualized tweets based on local cities and show percentage of tweets that support each team.
General-purpose social media analysis. With its generic usage, comparative reports can be used as a

powerful tool to analyze social media contents. Figure 4 gives an example for a generated report by Taqreer that
has: (1) January-March 2015 as the temporal horizon, (2) Riyadh, West, East, and North districts as sub-regions
within Saudi Arabia, and (3) Toyota, Nissan, and Ford as entities to analyze. The figure shows heatmap as well
as individual tweets of each car brand on a geographical map, a time line that allows navigation in different time
instances and/or ranges, percentage of tweets that mention each car brand in a pie chart, and spatial filters to
include/exclude tweets of each district. Such a generic tool for analyzing social media contents is very helpful
in getting insights from the public discussions in different contexts and applications.

4.2 Categorical Reports

The plethora of social media active users enables meaningful analysis tasks that can deduce fruitful conclusions
for actual population. One of the underutilized attributes are the categorical attributes: the attributes that can take
one of multiple discrete values. Prime examples of important categorical attributes in Twitter data include the
language attribute that indicates the language used in each tweet and the tweet source attribute, which determines
from which operating system, device, or application the tweet is posted. Categorical reports in Taqreer perform
spatial aggregate analysis over a categorical attribute for microblogs that lie within certain spatial and temporal
ranges. As the second row in Table 6 shows, the user inputs a spatial region of interest R, an arbitrary time
range [Ts,Te], a categorical attribute A, and an optional set of keywords. The report composer divides the space

73



Figure 5: Tweets Languages Spatial Analysis in Arab Gulf Countries.

into n small spatial regions of default fixed size. Then, a set of n queries are submitted to Taghreed, each query
takes one of the small regions, the time range [Ts,Te], and the set of keywords. Each query retrieves individual
microblogs that lie within the query parameters. The retrieved data is forwarded to the data analyzer module to
count microblogs in different categories of attribute A. After counting is performed for all queries, the counts
are then aggregated at higher levels of spatial granularity to support zoom in/out analysis in the final report.
Finally, the report composer puts all the aggregates on pie charts aligned with latitude/longitude coordinates of
a geographical map and embed all of this in a web page. This forms an interactive web page that is sent as the
final report to the user.

Figure 5 gives an example of analyzing tweets languages in Arab Gulf countries. The figure gives a pie chart
for each sub-region/city. Each pie chart shows the distribution of tweets languages in its region. Zooming in/out
gives a finer/coarser granular analysis for language distributions up to the street level. Users can arbitrarily in-
clude/exclude languages from the top bar to focus on a subset of all languages. This language analysis, combined
with ground truth data enables a full study on language diversity and minorities in local communities [10].

4.3 Image Gallery Reports

Image gallery reports exploit the availability of many photos on the social media to summarize certain topics
or entities through creating a photo gallery for their microblogs. An example of such reports is to extract and
organize photos that are posted in response to a certain event, e.g., human crisis, terrorist attack, elections, or
sports game. Topics and entities are defined by a set of keywords/hashtags. Analyzed microblogs should lie
within a certain time range and can optionally be filtered based on a spatial region of interest. As described
in the third row in Table 6, users input m keywords Wj , 1 ≤ j ≤ m, a time range [Ts,Te], and an optional
spatial region R. A single query with the input parameters is submitted to Taghreed to retrieve the report data.
The retrieved microblogs are scanned to extract their images. Extracted images are organized and displayed in
an interactive web page that allow users to navigate, enlarge, and share portions of the report on social media
websites. Figure 6 gives an image gallery for the event of 2015 Chapel Hill Shooting. The shown images
are extracted for the hashtag #ChapelHillShooting for 11 days after the accident happened. Thus, Taghreed is
queried with time range of February 10 to February 20, 2015 and hashtag #ChapelHillShooting. The returned
tweets are analyzed to extract their images and organized them as the figure shows.
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Figure 6: Tweets Image Gallery for 2015 Chapel Hill Shooting.

5 Conclusion

This article presented Taqreer; a scalable and efficient system for auto-generation of spatio-temporal analysis
reports on microblogs. Taqreer is composed of two main modules, the Taghreed query engine, which is respon-
sible for efficiently supporting spatio-temporal keyword queries on microblogs, and a Report Generation tool,
which is responsible for receiving the user requests, extracting the required queries for the report, sending them
to the Taghreed query engine, and performing a set of analysis and visualization tasks on top of the returned
query results. We have presented three report types as example of what Taqreer can generate, namely, com-
parative reports, categorical reports, and image gallery reports. For each report type, we show the user input
parameters, the queries that will be sent to the Taghreed query engine, and the set of analysis tasks that will be
performed on top of the returned query answers. Other report types can be defined within the Taqreer system in
a similar way.
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