
Handling Shared, Mutable State in Stream Processing
with Correctness Guarantees

Nesime Tatbul1,2, Stan Zdonik3, John Meehan3, Cansu Aslantas3,
Michael Stonebraker2, Kristin Tufte4, Chris Giossi4, Hong Quach4

1Intel Labs 2MIT 3Brown University 4Portland State University
{tatbul,stonebraker}@csail.mit.edu, {sbz,john,cpa}@cs.brown.edu, {tufte,cgiossi,htquach}@pdx.edu

Abstract

S-Store is a next-generation stream processing system that is being developed at Brown, Intel, MIT,
and Portland State University. It is designed to achieve very high throughput, while maintaining a
number of correctness guarantees required to handle shared, mutable state in streaming applications.
This paper explores these correctness criteria and describes how S-Store achieves them, including a new
model of stream processing that provides support for ACID transactions.

1 Introduction

Stream processing has been around for a long time. Over a decade ago, the database community explored the
topic of near-real-time processing by building a number of prototype systems [6, 9, 15]. These systems were
based on a variant of the standard relational operators that were modified to deal with the unbounded nature of
streams.

Additionally, streaming applications require support for storage and historical queries. In our view, the
early systems did not properly address storage-related issues. In particular, they largely ignored the handling of
shared, mutable state. They were missing the guarantees that one would expect of any serious OLTP DBMS.
These correctness guarantees are needed in addition to those that streaming systems typically provide, such as
exactly-once processing (which requires that, upon recovery, the system will not lose or duplicate data).

We believe that it is time to take a look at streaming through the lens of these processing guarantees. In
this paper, we present S-Store, which is designed to address the correctness aspects of streaming applications.
We show that it is possible to support correctness without serious performance degradation. We also show
that the only way to achieve good performance is by tightly integrating storage management with the streaming
infrastructure. Some modern streaming systems require the use of an external storage manager to provide needed
services [2, 3, 22, 27]. As we will show, using external storage comes at a cost.

We begin with describing a motivating use case, and proceed to discuss S-Store’s correctness guarantees,
computational model and implementation to achieve these guarantees, followed by an experimental comparison
with the state of the art.

Copyright 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

94



Figure 1: Multiple Streaming Dataflows Sharing State: A MIMIC-based Example [16, 26]

2 Example Use Case

In this section, we present a selected use case of S-Store, based on a recent demonstration of the BigDAWG
polystore system [16], in which S-Store was used for real-time alert monitoring over streaming patient wave-
forms from an ICU (intensive care unit). This use case illustrates the need for consistently managing state shared
among multiple streaming dataflows.

In a hospital environment, proper tracking of patient medications is critical to avoid overdoses and bad drug
interactions. Studies have estimated that preventable “adverse drug events” (with patient injury) in hospitals to
be between 380,000 and 450,000 per year [20]. We observe that different types of events may trigger medication
administration: an emergency alert, a periodic doctor visit, or a periodic medication administration schedule.
These events all require reading and updating of the list of medication administrations for a patient. In the
MIMIC ICU data set [26], this data is stored in a medication events (MedEvents) table. Thus, separate dataflow
graphs must update a single shared table, which requires transactional consistency to avoid patient injury.

Figure 1 diagrams potential S-Store dataflow graphs that update the MedEvents table. The upper dataflow
represents an emergency alert notification, while the lower dataflow represents periodic doctor visits and medica-
tion administrations. In the emergency alert dataflow, a stored procedure (SP1) reads incoming patient waveform
data (e.g., Pulmonary Arterial Pressure (PAP)), and calculates a windowed average over it. When this average
is elevated, a doctor must be notified and medication may be recommended; however, medication must not be
recommended if the medication has been recently administered. The doctor then either accepts or declines the
recommendation, and the MedEvents table is updated appropriately. In the periodic-visits dataflow, a doctor or
a schedule decides which medication is advisable. Before administering the medication, the caregiver enters the
medication to be administered. The system then checks for potential drug interactions with recent medication
administrations using the MedEvents table, and then updates MedEvents appropriately. This simpler dataflow is
similar in nature to an OLTP transaction.

For ensuring correct semantics, this example requires ordered execution of its dataflows and transactional
(ACID) access to the MedEvents table. More specifically, SP1 must read the MedEvents table before an alert
is sent to the doctor; the MedEvents table needs to remain locked so that other updates – such as from SP4 –
cannot interfere. Thus, SP1, SP2, and SP3 must be part of an ordered dataflow within a single nested transac-
tion. Furthermore, SP1, SP2, SP3 cannot be a single stored procedure due to the human interaction. Note that
this example could be extended with other similar emergency-alert dataflows, as different types of analysis are
needed on different waveform streams, e.g., cardiac anomalies to be detected from ECG-waveform streams.

A similar workload pattern can be found in other domains such as transportation, wherein one or more
shared tables must be read and updated by multiple dataflows, as might be seen in the display of messages on
Variable Message Signs and Adaptive Signal Control. In this case, transactional processing support would be

95



required to avoid inconsistencies, garbled messages, and incorrect signal timing. We note that in most of these
examples, the dataflows are fully automated (i.e., human-in-the-loop is not necessarily a critical requirement as
in the medical setting).

3 Correctness

Transaction-processing systems normally provide ACID (Atomicity, Consistency, Isolation, and Durability) guar-
antees. These guarantees broadly protect against data corruption of two kinds: (i) interference of concurrent
transactions, and (ii) transaction failures. Consistency and Isolation primarily address interference, while Atom-
icity and Durability address failures. It is widely understood that failures can cause data inconsistencies. Thus,
most stream processing engines also cover this case by incorporating failure-recovery facilities. However, it
is less widely acknowledged that any streaming computation that shares mutable data with other computations
(e.g., a separate streaming dataflow graph) must guard against interference from those computations as in stan-
dard OLTP.

In addition to ACID, there are other correctness requirements from stream processing that must be consid-
ered. First, a transaction execution must conform to some logical order specified by the user. The scheduler
should be free to produce a schedule that interleaves transactions in a variety of ways, but the results must be
equivalent to the specified logical order. Secondly, it has been shown that, in streaming systems, failures may
lead to lost or duplicated tuples. It puts a burden on the application to detect and react to such problems appropri-
ately. Thus, streaming systems typically strive to provide exactly-once semantics as part of their fault-tolerance
mechanisms.

For correctly handling hybrid workloads, S-Store provides efficient scheduling and recovery mechanisms
that maintain three complementary correctness guarantees that are needed by both streaming and transactional
processing. In what follows, we discuss these guarantees.

3.1 ACID Guarantees

We regard a transaction as the basic unit of computation. As in conventional OLTP, a transaction T must take a
database from one consistent state to another. In S-Store, the database state consists of streaming data (streams
and windows) in addition to non-streaming data (tables). Accordingly, we make a distinction between two types
of transactions: (i) OLTP transactions that only access tables, and are activated by explicit transaction requests
from a client, and (ii) streaming transactions that access streams and windows as well as tables, and are activated
by the arrival of new data on their input streams. Both types of transactions are subject to the same interference
and failure issues discussed above. Thus, first and foremost, S-Store strives to provide ACID guarantees for
individual OLTP and streaming transactions in the same way traditional OLTP systems do. Furthermore, access
to streams and windows require additional isolation restrictions, in order to ensure that such streaming state is
not publicly available to arbitrary transactions that might endanger the streaming semantics.

3.2 Ordered Execution Guarantees

Stream-based computation requires ordered execution for two primary reasons: (i) streaming data itself has an
inherent order (e.g., timestamps indicating order of occurrence or arrival), and (ii) processing over streaming data
has to follow a number of consecutive steps (e.g., expressed as directed acyclic dataflow graphs as illustrated
in Figure 1). Respecting (i) is important for achieving correct semantics for order-sensitive operations such as
sliding windows. Likewise, respecting (ii) is important for achieving correctness for complex dataflow graphs
as a whole.

Traditional ACID-based models do not provide any order-related guarantees. In fact, transactions can be
executed in any order as long as the result is equivalent to a serial schedule. Therefore, S-Store provides an ad-

96



ditional correctness guarantee that ensures that every transaction schedule meets the following two constraints:
(i) for a given streaming transaction T , atomic batches of an input stream S must be processed in order (a.k.a.,
stream order constraint), and (ii) for a given atomic batch of stream S that is input to a dataflow graph G, trans-
actions that constitute G must be processed in a valid topological order of G (a.k.a., dataflow order constraint).

For coarser-grained isolation, S-Store also allows the user to define nested transactions as part of a dataflow
graph (e.g., see the Emergency Alert Dataflow in Figure 1), which may introduce additional ordering constraints
[23]. S-Store’s scheduler takes all of these constraints into account in order to create correct execution schedules.

3.3 Exactly-once Processing Guarantees

Failures in streaming applications may lead to lost state. Furthermore, recovering from failures typically involves
replicating and replaying streaming state, which, if not applied with care, may lead to redundant executions and
duplicated state. To avoid these problems, streaming systems strive to provide fault tolerance mechanisms
that will ensure “exactly-once” semantics. Note that exactly-once may refer either (i) to external delivery of
streaming results, or (ii) to processing of streams within the system. The former typically implies the latter,
but the latter not necessarily implies the former. In this work, we have so far mainly focused on the latter (i.e.,
exactly-once processing, not delivery), as that is more directly relevant in terms of database state management.

Exactly-once processing is not a concern in traditional OLTP. Any failed transaction that was partially ex-
ecuted is undone (Atomicity), and it is up to the user to reinvoke such a transaction (i.e., the system is not
responsible for loss due to such transactions). On the other hand, any committed transaction that was not per-
manently recorded must be redone by the system (Durability). State duplication is not an issue, since successful
transactions are made durable effectively only once. This approach alone is not sufficient to ensure exactly-
once processing in case of streaming transactions, mainly because of the order and data dependencies among
transaction executions. First, any failed transaction must be explicitly reinvoked to ensure continuity of the exe-
cution without any data loss. Second, it must be ensured that redoing a committed transaction does not lead to
redundant invocations on others that depend on it.

S-Store provides exactly-once processing guarantees for all streaming state kept in the database. This guar-
antee ensures that each atomic batch on a given stream S that is an input to a streaming transaction T is processed
exactly once by T . Note that such a transaction execution, once it commits, will likely modify the database state
(streams, windows, or tables). Thus, even if a failure happens and some transaction executions are undone or
redone during recovery, the database state must be “equivalent” to one that is as if S were processed exactly
once by T .

Note that executing a streaming transaction may have an external side effect other than modifying the
database state (e.g., delivering an output tuple to a sink that is external to S-Store). It is possible that such
a side effect may get executed multiple times during recovery. Thus, our exactly-once processing guarantee
applies only to state that is internal to S-Store. This is similar to other exactly-once processing systems such
as Spark Streaming [28]. Exactly-once delivery might also be important in some application scenarios (e.g.,
dataflow graphs that involve a human-in-the-loop computation as in the medical use case described in Section
2). We plan to investigate this guarantee in more detail as part of our future work.

4 Model Overview

We now describe our model, which allows us to seamlessly mix OLTP transactions and streaming transactions.
The basic computational unit in S-Store is a transaction, and all transactions are pre-declared as stored proce-
dures. A stored procedure is written in both SQL (to interact with tables that store database state) and in Java (to
allow arbitrary processing logic). Streaming transactions are those that take finite batches of tuples from streams
as input and may produce finite batches of tuples as output. As one would expect, all transactions (streaming or

97



(a) Processing of Atomic Batches (b) Nested Transactions

Figure 2: Example Dataflows

not), preserve the standard ACID properties of OLTP database systems.
As mentioned earlier, S-Store manages three kinds of state: (i) streams, (ii) windows, and (iii) tables. S-

Store models a stream as an unbounded sequence of tuples. These tuples arrive in some order and are processed
in chunks (called atomic batches). An atomic batch is a contiguous, non-overlapping subsequence of a stream
in which all tuples in the batch share a common batch-id. A typical example is to group tuples with a common
application timestamp or time-interval into the same batch [9, 28]. We assume that batches over a stream should
be processed in ascending order of their batch-id’s; however the order of tuples within a single batch does not
matter since each batch is always processed as an indivisible atomic unit.

A window over a stream is also a contiguous subsequence of that stream, but different from atomic batches,
windows come with a set of rules for deriving a new window from an old one. Windows are defined in units
of batches (as opposed to time or tuple count), and can slide and tumble much as in previous generations of
streaming systems [11], so, we will not go into detail here. It is important to note that defining windows in batch
units ensures that windows are processed in a deterministic way, avoiding the “evaporating tuples” problem
discussed in previous work [9, 12].

Streams, windows, and tables differ in terms of which transactions are allowed to access them. Tables can
be publicly read or written by any transaction, while windows are private to the transaction in which they are
defined, and streams are private to their “producer” and “consumer” transactions.

Streaming systems typically push data from input to output. This arrangement reduces latency, since there is
no need to poll the inputs to determine if the next input batch is ready. S-Store, like other systems, captures the
notion of the next action to perform through a dataflow graph. In the case of S-Store, the actions are transactions,
making the dataflow graph a DAG with transaction definitions as nodes, and a directed arc from node Ti to node
T j if T j should follow Ti in the processing order. That is to say, when Ti commits, T j should be triggered next.

Figure 2a shows a two-stored-procedure (i.e., SP1 and SP2) dataflow graph. The batch of tuples labeled A is
the input to SP1, all with the same batch-id b1. SP1 begins execution as a transaction with the 3-tuple batch as
input. Suppose that SP1 commits with the batch labeled B as output. The tuples in batch B would be assigned
the batch-id of the inputs that they were derived from (b1), and the process repeats with batch B as input to SP2
and batch C as the output batch for SP2.

Stored procedures that take multiple streams as input or emit multiple streams as output are processed in a
similar way. In this case, a stored procedure begins execution with atomic batches from all of its input streams
with a common batch-id and the same batch-id carries over to any output batches that result from this execution.

For each transaction definition, there could be many transaction executions (TEs). If stream S is the input
to transaction T, a TE is created every time a new batch of tuples arrives on stream S. Windows are created in
TEs. Since they are the principal data structure that reacts to the unbounded nature of a stream, the ith TE for
a transaction T will inherit any window state that is active in the (i − 1)st TE for T. Aside from this exception,

98



windows are private and cannot be shared with TEs for other transactions, since that would break the isolation
requirement for ACID transactions. Similarly, streams can only be shared by the TE’s of their producer and
consumer transactions in a dataflow (e.g., only TE’s of SP1 and SP2 can share the stream that flows between
them in Figure 2a).

We also provide a nested transaction facility that allows the application programmer to build higher-level
transactions out of smaller ones, giving her the ability to create coarser isolation units among transactions, as
illustrated in Figure 2b. In this example, two streaming transactions, SP1 and SP2, in a dataflow graph access
a shared table P. SP1 writes to the table and SP2 reads from it. If another OLTP transaction also writes to P in
a way to interleave between SP1 and SP2, then SP2 may get unexpected results. Creating a nested transaction
with SP1 and SP2 as its children will isolate the behavior of SP1 and SP2 as a group from other transactions
(i.e., other OLTP or streaming). Note that nested transactions also isolate multiple instances of a given streaming
dataflow graph (or subgraph) from one another.

S-Store transactions can be executed in any order as long as this order obeys the ordering constraints imposed
by: (i) the relative order of atomic batches on each input stream, (ii) the topological ordering of the stored
procedures in the dataflow graph, (iii) any additional constraints due to nested transactions. Assuming that
transaction definitions themselves are deterministic, this is the only source of potential non-determinism in S-
Store transaction schedules. For example, for the simple dataflow in Figure 2a, both of the following would
be valid schedules: [T E1(b1); T E1(b2); T E2(b1); T E2(b2)] or [T E1(b1); T E2(b1); T E1(b2); T E2(b2)]. On the
other hand, for the dataflow in Figure 2b, the former schedule would not be allowed due to the nesting.

A more detailed description of our model can be found in a recent publication [23].

5 Implementation

Our S-Store implementation seeks to prove that we can provide all of the correctness guarantees mentioned
above without major loss of performance. Implementation of the mechanisms to provide these guarantees must
be native to the system to minimize overhead.

S-Store is built on top of H-Store [21], a high-throughput main-memory OLTP system, in order to take
advantage of its extremely light-weight transaction mechanism. Thus, like H-Store, S-Store follows a typical
two-layer distributed DBMS architecture (see Figure 3). Transactions are initiated in the partition engine (PE),
which is responsible for managing transaction distribution, scheduling, coordination, and recovery. The PE
manages the use of another layer called the execution engine (EE), which is responsible for the local execution
of SQL queries. As mentioned earlier, transactions are predefined as stored procedures which are composed of
Java and SQL statements. When a stored procedure is invoked with input parameters, a transaction execution
(TE) is instantiated and runs to completion before committing. A client program connects to the PE via a stored-
procedure execution request. If the stored procedure requires SQL processing, then the EE is invoked with those
sub-requests.

While we chose H-Store to serve as our foundation, our architectural extensions and mechanisms could
be implemented on any main-memory OLTP engine, thereby directly inheriting the required ACID guarantees
discussed in Section 3.1. We are able to achieve our desired correctness guarantees due to the implementation
additions described in the following subsections.

5.1 ACID Implementation

In order to maintain the transactional properties inherited from H-Store, we implement our dataflow graph as
a series of stored procedures connected by streams. All streaming state, including both streams and windows,
are implemented as time-varying tables, which are accessed within stored procedures. Thus, it is impossible to
access streaming state in a non-transactional manner.

99



Figure 3: S-Store Architecture

The stored procedures within the dataflow are connected by streams, and activated via partition engine (PE)
triggers. When a transaction commits and places a new batch of tuples into its output stream, any downstream
transactions in the dataflow are immediately scheduled for execution using that output batch as their input.

In addition to PE triggers, S-Store includes execution engine (EE) triggers. These allow SQL statements
to be invoked upon the availability of a new tuple in a stream or the slide of a window. Unlike PE triggers, EE
triggers execute within the same transaction as the insertion that activated them.

5.2 Ordering Implementation

Because S-Store breaks down a dataflow into multiple discrete stored procedures, multiple simultaneous trans-
action requests must be scheduled in such a way that ordering is maintained between stored procedures within a
dataflow, and between dataflow instantiations. S-Store provides such a streaming scheduler.

In single-node S-Store, transactions are scheduled serially, meaning that a batch will be processed to com-
pletion within a dataflow graph before the next batch is considered. This simple scheduling policy ensures that
both stream and dataflow order constraints will always be satisfied for a given dataflow graph. In our ongoing
work, we are extending the streaming scheduler to operate over multiple nodes.

5.3 Exactly-Once Implementation

Within single-node S-Store, our primary concern regarding exactly-once processing lies within internal message
passing via streams, so we provide the guarantee primarily through fault tolerance. We provide two alternative
fault-tolerance mechanisms, both of which guarantee exactly-once processing semantics.

In strong recovery, each transaction execution is logged using H-Store’s command-logging mechanism.
When recovering in this mode, the original execution order of the transactions will be replayed in exactly the
same way as in the log. To ensure the exactly-once processing guarantee, PE triggers are turned off during
recovery; all transactions are replayed from the log, but no transactions will be repeated.

In weak recovery, only “border” transactions (i.e., transactions that begin a dataflow graph) are command-
logged. Upon recovery, these transactions are re-executed, but with PE triggers kept turned-on. The streaming
scheduler will execute the full dataflow graph in a legal order according to ordering and data isolation rules, but
not necessarily in the exact order that they were originally executed before the failure. This alternative recovery
mode improves both run-time and recovery performance, while still providing the ordered execution (via the

100



(a) Leaderboard Maintenance Dataflow (b) Experiment Result

Figure 4: Performance vs. Correctness Guarantees

scheduler) and exactly-once processing guarantees.
For more information about the implementation of S-Store, please refer to our PVLDB paper [23].

6 State-of-the-Art Comparison

When evaluating S-Store’s performance, it is once again important to consider the three guarantees described in
Section 3. In modern state-of-the-art systems, it is challenging to provide all three processing guarantees. More
specifically, OLTP systems are able to process ACID transactions with high performance, but have no concept
of dataflow graphs, and thus no inherent support for ordering or exactly-once processing. In contrast, stream
processing systems are able to provide dataflow ordering and exactly-once processing, but do not support ACID
transactions. Thus, in both cases, achieving all three guarantees with high performance is a major challenge.

To test S-Store’s performance in comparison to current state of the art, we created a simple leaderboard-
maintenance benchmark. This benchmark mimics a singing competition in which users vote for their favorite
contestants, and periodically, the lowest contestant is removed until a winner is selected. As shown in Figure
4a, the benchmark’s dataflow graph is composed of three stored procedures that each access shared table state,
and thus requires data isolation (i.e., a nested transaction) across all three. For the purposes of simplifying
comparison across systems, we considered a batch to be a single vote, and we record our throughput numbers in
terms of “input batches per second.”

The leaderboard-maintenance benchmark requires all three of S-Store’s processing guarantees to be executed
correctly. We first compared S-Store’s performance to its OLTP predecessor, H-Store. As an OLTP system, by
default H-Store only provides the first guarantee, ACID, and thus maintains an impressive throughput (over 5000
input batches per second, as shown in the first row of Figure 4b). However, the results it provides are incorrect;
a wrong candidate may win the contest since votes may be processed in a different order than the one that is
required by the benchmark. For H-Store to provide correct results, the ordering guarantee must also be provided.

We can force H-Store to provide an ordering guarantee across the dataflow graph by insisting that H-Store
process the whole dataflow graph serially. In this case, the client has to manage the order in which the transac-
tions are executed, by waiting for a response from the engine before it can submit the next transaction request
(i.e., submitting requests in a synchronous manner). As one would expect, performance suffers drastically as a
result. H-Store’s throughput plummets to around 200 input batches per second, when ordering constraints are
enforced via synchronous requests.

Both single-node streaming engines (e.g., Esper [3]) and distributed stream processing engines (e.g., Storm
[27]) also struggle to provide all three processing guarantees. In the case of streaming engines, dataflow graphs

101



are core functionality, and the ordering guarantee is provided. Exactly-once processing can also be added to
many systems possibly with some loss in performance (e.g., Storm with Trident [4]). However, ACID transac-
tions are not integrated into streaming systems. Instead, they must use an additional OLTP database to store
and share the mutable state consistently. For our experiments, we used VoltDB [5] (the commercial version of
H-Store) to provide this functionality to Esper and Storm.

Similarly to H-Store, providing all three processing guarantees degrades throughput. To provide both order-
ing and ACID, the streaming systems must submit requests to the OLTP database and wait for the response to
move on. Even with a main-memory OLTP system such as VoltDB, this additional communication takes time
and prevents the stream system from performing meaningful work in the meantime. As shown in Figure 4b, both
Esper and Storm with Trident were only able to manage about 600 input batches per second, when providing
ACID guarantees through VoltDB.

By contrast, S-Store is able to maintain 2200 input batches per second on the same workload, while natively
providing all three processing guarantees. S-Store manages both dataflow graph ordering and consistent mutable
state in the same engine. This combination allows S-Store to handle multiple asynchronous transaction requests
from the client and still preserve the right processing order within the partition engine. Meanwhile, each opera-
tion performed on any state is transactional, guaranteeing that the data is consistent every time it is accessed –
even in presence of failures.

7 Related Work

First-generation streaming systems provided relational-style query processing models and system architectures
for purely streaming workloads [3, 6, 9, 15]. The primary focus was on low-latency processing over push-based,
unbounded, and ordered data arriving at high or unpredictable rates. State management mostly meant efficiently
supporting joins and aggregates over sliding windows, and correctness was only a concern in failure scenarios
[10, 19].

Botan et al. proposed extensions to the traditional database transaction model to enable support for continu-
ous queries over both streaming and stored data sources [13]. While this work considered ACID-style access to
shared data, its focus was limited to correctly ordering individual read and write operations for a single continu-
ous query rather than transaction-level ordering for complex dataflow graphs as in S-Store.

More recently, a new breed of streaming systems has emerged, which commonly aim at providing a MapRedu-
ce-like distributed and fault-tolerant framework for real-time computations over streaming data. Examples in-
clude S4 [25], Storm [27], Twitter Heron [22], Spark Streaming [28], Samza [2], Naiad [24], Flink [1], and
MillWheel [7]. These systems significantly differ in terms of the way they manage persistent state and the
correctness guarantees that they provide, but none of them is capable of handling streaming applications with
shared mutable state with sufficient consistency guarantees as provided by S-Store.

S4, Storm, and Twitter Heron neither support fault-tolerant persistent state nor can guarantee exactly once
processing. Storm when used with Trident can ensure exactly-once semantics, yet with significant degradation
in performance [4]. Likewise, Google MillWheel can persist state with the help of a backend data store (e.g.,
BigTable or Spanner), and can deal with out-of-order data with exactly once processing guarantees using a
low-watermark mechanism [7].

Several recent systems adopt a stateful dataflow model with support for in-memory state management. SEEP
decouples a streaming operators state from its processing logic, thereby making state directly manageable by
the system via a well-defined set of primitive scale-out and fault-tolerance operations [17, 18]. Naiad extends
the MapReduce model with support for structured cycles and streaming based on a timely dataflow model that
uses logical timestamps for coordination [24]. Samza isolates multiple processors by localizing their state and
disallowing them from sharing data, unless data is explicitly written to external storage [2]. Like S-Store, all of
these systems treat state as mutable and explicitly manageable, but since they all focus on analytical and cyclic

102



dataflow graphs, they do not provide inherent support for transactional access to shared state.
There are a number of systems have explicitly been designed for handling hybrid workloads that include

streaming. Spark Streaming extends the Spark batch processing engine with support for discretized streams
(D-Streams) [28]. All state is stored in partitioned, immutable, in-memory data structures called Resilient Dis-
tributed Datasets (RDDs). Spark Streaming provides exactly-once consistency semantics, but is not a good fit
for transactional workloads that require many fine-grained update operations. Microsoft Trill is another hybrid
engine designed for a diverse spectrum of analytical queries with real-time to offline latency requirements [14].
Trill is based on a tempo-relational query model that incrementally processes events in batches organized as
columns. Like Spark Streaming, its focus lies more on OLAP settings with read-mostly state. Last but not least,
the Google Dataflow Model provides a single unified processing model for batch, micro-batch, and streaming
workloads [8]. It generalizes the windowing, triggering, and ordering models found in MillWheel [7] in a way
to enable programmers to make flexible tradeoffs between correctness and performance.

8 Conclusion

In this paper, we have described an approach to stream processing for applications that have shared, mutable state.
These applications require guarantees for correct execution. We discussed ACID guarantees as in OLTP systems.
We also described the idea of exactly-once processing, exactly-once delivery, and transactional workflows that
obey ordering constrains as expressed in a dataflow graph. The paper also describes how we implement these
guarantees on top of the H-Store OLTP main-memory database system.

In the future, we intend to look at extending our single-node prototype to run in a multi-node environment.
This, of course, will preserve the guarantees mentioned above. We will re-examine recovery for our distributed
extensions.

We are also studying how to adapt S-Store to effectively act as a real-time ETL system. Rather than loading
data from flat files, S-Store will accept batches of tuples and install them transactionally in a persistent data store
(either within S-Store or externally). During this process, its stored procedures can perform data cleaning and
alerting. Each batch, possibly from multiple sources, must be processed to completion or not all. Furthermore,
as tuples are being loaded, other transactions should not be allowed to see a partially loaded state. S-Store’s
ability to manage shared state makes it an ideal candidate for real-time ETL.

Acknowledgments. This research was funded in part by the Intel Science and Technology Center for Big Data,
and by the NSF under grants NSF IIS-1111423 and NSF IIS-1110917.

References
[1] Apache Flink. https://flink.apache.org/.
[2] Apache Samza. http://samza.apache.org/.
[3] Esper. http://www.espertech.com/esper/.
[4] Trident Tutorial. https://storm.apache.org/documentation/Trident-tutorial.html.
[5] VoltDB. http://www.voltdb.com/.
[6] D. Abadi et al. Aurora: A New Model and Architecture for Data Stream Management. VLDB Journal, 12(2), 2003.
[7] T. Akidau et al. MillWheel: Fault-Tolerant Stream Processing at Internet Scale. PVLDB, 6(11), 2013.
[8] T. Akidau et al. The Dataflow Model: A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-

Scale, Unbounded, Out-of-Order Data Processing. PVLDB, 8(12), 2015.
[9] A. Arasu et al. STREAM: The Stanford Data Stream Management System. In Data Stream Management: Processing

High-Speed Data Streams, 2004.
[10] M. Balazinska et al. Fault-tolerance in the Borealis Distributed Stream Processing System. ACM TODS, 33(1), 2008.

103

https://flink.apache.org/
http://samza.apache.org/
http://www.espertech.com/esper/
https://storm.apache.org/documentation/Trident-tutorial.html
http://www.voltdb.com/


[11] I. Botan et al. SECRET: A Model for Analysis of the Execution Semantics of Stream Processing Systems. PVLDB,
3(1), 2010.

[12] N. Jain et al. Towards a Streaming SQL Standard. PVLDB, 1(2), 2008.
[13] I. Botan et al. Transactional Stream Processing. In EDBT, 2012.
[14] B. Chandramouli et al. Trill: A High-Performance Incremental Query Processor for Diverse Analytics. PVLDB, 8(4),

2014.
[15] S. Chandrasekaran et al. TelegraphCQ: Continuous Dataflow Processing for an Uncertain World. In CIDR, 2003.
[16] A. Elmore et al. A Demonstration of the BigDAWG Polystore System. PVLDB, 8(12), 2015.
[17] R. C. Fernandez et al. Integrating Scale-out and Fault-tolerance in Stream Processing using Operator State Manage-

ment. In SIGMOD, 2013.
[18] R. C. Fernandez et al. Making State Explicit for Imperative Big Data Processing. In USENIX ATC, 2014.
[19] J.-H. Hwang et al. High-Availability Algorithms for Distributed Stream Processing. In ICDE, 2005.
[20] Institute of Medicine of the National Academies. Preventing Medication Errors .

https://iom.nationalacademies.org//̃media/Files/Report%20Files/2006/Preventing-Medication-Errors-Quality-
Chasm-Series/medicationerrorsnew.pdf.

[21] R. Kallman et al. H-Store: A High-Performance, Distributed Main Memory Transaction Processing System. PVLDB,
1(2), 2008.

[22] S. Kulkarni et al. Twitter Heron: Stream Processing at Scale. In SIGMOD, 2015.
[23] J. Meehan et al. S-Store: Streaming Meets Transaction Processing. PVLDB, 8(13), 2015.
[24] D. G. Murray et al. Naiad: A Timely Dataflow System. In SOSP, 2013.
[25] L. Neumeyer et al. S4: Distributed Stream Computing Platform. In KDCloud, 2010.
[26] PhysioNet. MIMIC II Data Set. https://physionet.org/mimic2/.
[27] A. Toshniwal et al. Storm @Twitter. In SIGMOD, 2014.
[28] M. Zaharia et al. Discretized Streams: Fault-tolerant Streaming Computation at Scale. In SOSP, 2013.

104

https://physionet.org/mimic2/

