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Abstract

Complex event analytics systems continuously evaluate massive workloads of pattern queries on
high volume event streams to detect and extract complex events of interest to the application. Such
time-critical stream-based applications range from real-time fraud detection to personalized health mon-
itoring. Achieving near real-time system responsiveness when processing these workloads composed of
complex event pattern queries is their main challenge. In this article, we first review several unique opti-
mization opportunities that we have identified for complex event analytics. We then introduce a family of
optimization strategies that consider event correlation over time to maximally leverage sharing opportu-
nities in event pattern detection and aggregation. Lastly, we describe the event-stream transaction model
we designed to ensure high performance shared pattern processing on modern multi-core architectures.

1 Introduction

Many streaming systems from sensor networks to financial transaction processing generate high-volume, high-
velocity event streams. These events have many dimensions (such as time, location, dollar amount). Each
dimension may be hierarchical in nature (such as time measured in years, months, days and so on). In many
monitoring applications, it is imperative that a huge workload of expressive event-pattern queries analyze these
event streams to detect complex event patterns, aggregate trends and derive actionable insights in near real time.

Motivating Example. Consider an evacuation system where RFID technology is used to track the mass
movement of people and goods during natural disasters. Terabytes of RFID data could be generated by such a
system. Facing this huge volume of data, an emergency management system must detect and aggregate complex
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Figure 1: Event pattern queries supporting emergency management at different levels of abstraction [36]

event patterns across multiple dimensions at different granularities in real time. For example, the emergency
personnel may monitor people movement as well as traffic patterns of needed resources (such as medicine, food,
and blankets) at different levels of abstraction (e.g., bus station, Austin, Texas). Consider Figure 1, where during
a hurricane the federal government may monitor people fleeing from Texas to Oklahoma for global resource
distribution planning (query q1); while the local authorities in Dallas may focus on people movement starting
from the Dallas bus station, traveling through the Tulsa bus station, and ending in the Tulsa hospital, to determine
the need for additional means of transportation (query q5).

These event queries tend to contain similar or sometimes even identical sub-patterns. Hence, techniques
that exploit their similarities for optimization can save computational resources and improve the system respon-
siveness. Many event-stream-based applications from online advertising, click-stream analytics, social network
services to financial fraud detection all feature these huge workloads composed of similar event queries. Thus,
performance gains due to leveraging such customized event-optimization technology for shared computations
among such event queries could have a tremendous benefit across this wide range of applications.

Challenges. To design an effective event-analytics infrastructure, we must tackle the following challenges.
Rich Application Semantics. Streaming applications have rich semantics. This semantics involves event-

sequence construction of arbitrary length; event conjunction, disjunction and negation; expressive predicates;
time-, count- or predicate-based windows; event-pattern grouping and aggregation. Therefore, we must develop
efficient processing techniques for a large workload of such expressive event-pattern queries.

Real-time System Responsiveness. We target time-critical applications in which milliseconds can make a
difference in decision making. Thus, event query computations should be shared or even completely eliminated
if we can do so without compromising result quality. These computational savings speed up the decision-making
process, improve resource allocation, reduce environmental pollution and even save human lives. However,
sharing is not always beneficial. Even if two event queries syntactically share a sub-pattern, the actual sets of
matches of these queries may not overlap at runtime [43]. Sharing computations across such event queries may
result in negligible performance gain at the cost of adding significant synchronization overhead. Fortunately,
while the number of identical sub-patterns in a query workload at times may be limited, other hierarchical
relationships among event queries can be exploited for optimization [36].

Correct Event-Stream Execution. Sharing common or similar sub-patterns between several event queries
makes these queries interdependent. Indeed, the shared sub-pattern must be computed before the queries that
share it. An efficient runtime execution infrastructure should process a workload of such interdependent event
queries while leveraging the concurrent execution capabilities of modern multi-core machines. Thus, a concur-
rency control mechanism is needed that ensures correct concurrent stream processing. Furthermore, if we strive
to delay or even skip event-sequence construction while computing event-sequence aggregations, we must assure
that no potential event sequence matches are missed under the premise that aggregation is computed on-the-fly

83



and events are instantly pruned upon their aggregation.
State of the Art. Multi-query optimization is an established technology in relational databases [8, 11, 21].

Unfortunately, these techniques cannot be applied directly to shared event-query processing because streaming
data is continuously under flux. Thus, the data-driven approach of event processing may trigger the pattern
matching process to be spawned in diverse orders based on the arrival of events. The nature of continuous event-
stream-processing systems stands in contrast to the traditional static processing frameworks where all data is
given a priori and execution can be fully orchestrated.

Many complex-event-processing systems do not exploit sharing opportunities across the event-query work-
load [7, 13, 35, 50]. While XML-filtering approaches leverage some sharing opportunities, such as shared
prefix-matching, they disregard other sharing opportunities [14, 15]. While the approaches proposed in [2, 47]
share sub-patterns in the distributed context, they do not provide any guarantee to produce a globally optimal
plan for multiple event queries. Several approaches [12, 38] are devoted to the optimization of multiple event
queries. However, these approaches neglect inter-query event correlations and thus may miss optimization op-
portunities. Existing solutions to processing multiple concurrent event queries over different abstraction levels,
online event pattern aggregation, and general stream transaction models are either missing or limited by having
assumptions that do not hold in our event context.

Key Innovations. In this article, we present an overview of four orthogonal innovations for the optimization
of complex event analytics developed by members at WPI and collaborators. Each of these innovations leverages
shared processing opportunities unique to event analytics. These innovations include:

1) Event-Sequence Pattern Sharing. We analyze the benefit of sharing event-sequence construction consid-
ering both intra- and inter-event pattern correlations over time [43]. We show that the problem of optimizing a
workload of event-sequence patterns to minimize its CPU processing time is equivalent to the NP-hard Minimum
Substring Cover problem [28]. This result then leads us to apply the polynomial-time approximate Local-Ratio
algorithm to our problem with proven acceptable bounds on optimality [28].

2) Hierarchical-Event Pattern Sharing. Event queries, even if not identical, can still be related to each other
in terms of both concept abstractions and pattern refinements. These relations open up unique opportunities for
shared processing of similar event-sequence patterns. This pattern similarity leads us to establish the E-Cube
hierarchy composed of event queries at different levels of abstraction [36]. Our efficient processing strategies
evaluate all event patterns in the workload in a specific order to reuse their intermediate results.

3) Shared Event-Pattern Aggregation. Since all event sequences are discarded once their aggregation is com-
puted, we aggregate event-sequences without constructing them. We achieve such on-the-fly event-sequence
aggregation by dynamically maintaining a prefix counter and instantly discarding events after their aggrega-
tion. Thus, we reduce the event-sequence aggregation costs from polynomial to linear [42]. This optimization
technique is exploited while sharing the aggregation of common sub-patterns in the query workload.

4) Stream Transaction Model. Given concurrent accesses and updates to shared event pattern matches, we
avoid race conditions by designing an appropriate concurrency-control mechanism. To this end, we introduce
our stream transaction model [49]. Since the classical Strict-Two-Phase-Locking algorithm incurs a large syn-
chronization delay due to its rigorous order preservation, we introduce event-centric scheduling methods for
real-time streaming applications to maximize concurrent execution.

Our thorough experimental studies using both synthetic and real data sets reveal that these optimization
techniques achieve several orders of magnitude performance gain compared to state-of-the-art solutions [36,
42, 43, 49]. Furthermore, our technology was tested out successfully in a real-world setting. In particular, we
installed our complex event analytics software in the intensive care units at UMASS Memorial Hospital under
leadership of Dr. Ellison, head of infection control at UMASS. We analyzed the results of a clinical evaluation
of this technology for improving health-care hygiene [16, 17, 49].

Outline. This article is organized as follows. We start with our event-analytics model in Section 2. After-
wards, we present our sharing techniques for sequence patterns in Section 3 and abstraction patterns in Section 4.
Section 5 is devoted to the shared processing of aggregations over event patterns. We propose our stream trans-
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action model in Section 6. Related work is discussed in Section 7, while Section 6 concludes this article.

2 Event-Analytics Model

Event Data Model. Time is represented by a linearly ordered set of time points (T,≤), where T ⊆ Q+ the
non-negative rational numbers. An event is a message indicating that something of interest happened in the real
world. An event e has an occurrence time e.time ∈ T assigned by the event source. Each event e belongs to a
particular event type E, denoted e.type = E. An event type E is described by a schema that specifies the set of
event attributes and the domains of their values. Events are sent by event producers (e.g., RFID tag readers) to
event consumers (e.g., an emergency management system) on event streams.

Event Pattern Query. Event queries in our event-analytics model consist of clauses similar to other event
query languages, for example, SASE+ [1, 50]. These clauses are the following:

Window (WITHIN clause) specifies the portion of the potentially unbounded input event stream to be processed
by one event-query invocation. Our language supports both fixed-length time or count-based tumbling or sliding
windows [3, 33] and variable-length predicate-based windows [19].

Pattern (PATTERN clause) defines the structure of event occurrences in the input event stream that must match
in order for a complex event to be detected [36, 50]. Let E be an event type, P and P′ be event patterns. Then,
an event pattern is defined by a composition of operators including event occurrence of type E, event-pattern
non-occurrence !P, event-pattern conjunction AND(P, P′) and disjunction OR(P, P′), event sequence of fixed
length S EQ(P, P′), and event pattern of arbitrary length P+.

Predicates (WHERE clause) impose additional constraints on event-pattern matches. These constraints are
boolean expressions composed of arithmetical and comparison operators on event attribute values and constants.

Grouping and Aggregation (GROUPBY and AGG clauses) can be applied to event pattern matches. Event pattern
matches are grouped, for instance, by the attribute values of matched events. Our language supports common
aggregation functions such as count, sum, avg, min and max.

For example, query q1 in Figure 1 counts the number of people (AGG Count) who fled from Texas to Okla-
homa (PATTERN SEQ(TX, OK) WHERE TX.person id = OK.person id) within 48 hours (WITHIN 48 h) per age
group (GROUPBY age-group). Other event queries in Figure 1 behave similarly.

3 Event-Sequence Pattern Sharing

Event Correlations. We target the efficient detection of event-sequence patterns in data streams via shared
concurrent pattern execution [43]. Our solution takes as input a set of pattern queries. It estimates the benefit
of sharing the computation of sub-patterns based on the time-ordering across events and the inter-query event
correlation hidden in the event streams. Sharing an event sub-pattern between multiple queries is not always
beneficial. It may even cause more harm than good by incurring unnecessary concurrency-control overhead.
Based on this observation, we design a lightweight yet effective method for estimating the time-sensitive co-
occurrence properties of event streams to accurately capture the benefit of sharing event patterns. The proposed
method takes the following two types of event correlations into consideration: (1) Intra-query event correlation
estimates the number of event sub-pattern matches per time interval, e.g., the percentage of events of type A
that follow an event of type B. This ratio estimates the number of matches produced by a single event pattern.
(2) Inter-query event correlation estimates the sharing potential across multiple event patterns as the ratio of the
number of shared sub-pattern matches to the total number of matches.

Benefit of Event Pattern Sharing. We analyze the degree of sharing of sub-pattern matches in a sample
time period by tracking the number of matches for a sub-pattern within this time period. This process is period-
ically repeated to provide the up-to-date statistics. Figure 2 shows that the number of matches of a sub-pattern
S P = S EQ(A, B) produced by the two patterns P1 and P2 may vary over time. Consequently, the number of
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Figure 2: Distribution of event pattern matches over time [43]

Figure 3: Shared plan of event-sequence patterns [43]

pattern matches for S P that can be shared across P1 and P2 also varies over time. This observation leads us to
two insights essential for the sub-pattern sharing task: (1) The crests and troughs of P1 and P2 never align in
this example, even though their average cardinalities over time happen to be similar. Hence, the inter-query cor-
relation between P1 and P2 is low. Thus, sharing this sub-pattern between P1 and P2 may cause more harm than
good due to concurrency control overhead. (2) Even if the cardinalities of the sub-pattern matches happen to be
the same for two patterns over time, the match re-use is still not guaranteed since the sub-patterns may not be
common for these patterns at the event-instance level. Indeed, the benefit of sub-pattern sharing depends on the
occurrences of the other sub-patterns in these patterns. In short, cardinality alone is no reliable indicator since in-
dividual matches may be non-overlapping. Based on these observations, we design a cost model that accurately
estimates the ratio of the cost to compute matches of a shared sub-pattern S P for all its parent patterns to the
cost of producing all matches of the sub-pattern S P for each parent pattern separately as the redundancy-ratio
score. The lower the score, the higher the benefit of sharing this event sub-pattern.

Shared Event Pattern Plan. Leveraging this redundancy ratio scoring model, we can now tackle the prob-
lem of sub-pattern sharing optimization. Namely, we aim to find a subset of sub-patterns such that all queries
in the given workload share the processing of this subset and the redundancy ratio of this subset is minimal
compared to all other possible subsets. We can show that this problem is equivalent to the Minimum Substring
Cover problem [43]. Thus, our optimizer can leverage the polynomial-time approximate Local-Ratio algorithm
for the Minimum Substring Cover problem to produce the set of sub-patterns to share [28]. Once the set of
event sub-patterns is selected, our optimizer iteratively builds up a shared-pattern plan for the workload in a
bottom-up fashion. This shared-pattern plan is a graph in which each node is a (sub-)pattern. For example,
the original patterns S EQ(A, B,C), S EQ(A, B,C,D), and S EQ(A, B, X) are decomposed into the shared sub-
patterns S EQ(A, B), S EQ(B,C), D and X (Figure 3).

4 Hierarchical Event Pattern Sharing

Event-Sequence-Pattern Abstraction Hierarchy. As motivated in Section 1, the number of event-sequence
patterns that have syntactically identical sub-patterns (as assumed in Section 3) may be limited. Thus, we now
explore effective sharing strategies that also consider hierarchical event queries. This hierarchy is essential for
performance optimization in multi-query evaluation since it provides a blueprint for shared online event-query
matching. We differentiate between the concept and the pattern hierarchy [23, 36].

A concept hierarchy (Figure 4) is used to summarize information at different levels of abstraction. Many
dimensions (e.g., time, location, object type) are hierarchical in nature and thus create a concept hierarchy of
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Figure 4: Concept hierarchy of primitive event types [36]

the corresponding event types. Event concept hierarchies for primitive event types are predefined by system
administrators based on domain knowledge. An event concept hierarchy is a tree with the most-specific event
types as leafs and more-general event types as inner nodes. An event type Ek that is a descendant of an event type
E j is at a finer level of abstraction than E j, denoted by Ek <c E j. The non-existence (existence) of a negative
(positive) event type at a coarser (finer) concept level enforces more constraints as compared to a negative
(positive) event type at a finer (coarser) concept level. In Figure 1, the query q1 is at a coarser concept level than
the query q2 because TX >c D and OK >c T. The query q4 is at a coarser concept level than the query q7 since
the negative type D in q4 is coarser than DBusStation in q7 (D >c DBusStation).

A pattern hierarchy is defined as follows: A query qk can be drilled-down to a finer-level query q j by
inserting additional event types into the pattern of qk, denoted by qk >p q j. For example, q6 is at a finer level
than q3 because q3 enforces the existence of less event types and sequential event relationships than q6 (Figure 1).

An E-Cube hierarchy is a directed acyclic graph where each node is a query qi and each edge corresponds
to a pairwise refinement relationship between two queries in terms of either concept or pattern refinement. Each
directed edge (qi, q j) is labeled with either the label “concept” if qi <c q j, “pattern” if qi <p q j, or both to indicate
the refinement relationship between the queries [25]. Figure 1 shows an example E-Cube hierarchy.

Advanced Event Analytics via Event Pattern Exploration. We now illustrate that a concept or a pattern
can be drilled-down into or rolled-up such that we can navigate from one node (with its respective matches)
to another node in the E-Cube hierarchy by skipping, adding or replacing sub-patterns. For example in Fig-
ure 1, we apply a pattern-drill-down operation on q3 = S EQ(G, A, T ) by adding a !D constraint and get q7 =

S EQ(G, !D, A, T ). Similarly, we apply a concept-roll-up operation on q2 = S EQ(D,T ) by one level from Dallas
to Texas and from Tulsa to Oklahoma and get q1 = S EQ(T X,OK).

Optimal E-Cube Evaluation. This E-Cube hierarchy represents the sharing plan for all hierarchical event-
pattern queries. For each query q in the E-Cube hierarchy, we have a choice between: (1) Computing q in-
dependently from other queries, (2) Conditionally computing q from one of its ancestors or (3) Conditionally
computing q from one of its descendants. Our cost model [24, 36] estimates the cost of each option and as-
signs this cost as a weight on each corresponding directed edge between a pair of queries. Having this directed
weighted graph, our goal is to determine an optimal query-evaluation plan ordering, i.e., an ordering of sub-
patterns with minimal total execution costs. We show that we can reduce this problem to the Minimal Spanning
Tree problem. This reduction allows us to apply the Gabow algorithm [18] to achieve our goal.

5 Shared Event Pattern Aggregation

Online Event Pattern Aggregation. The computation of aggregation over event sequences such as in Figure 1
in our motivating example opens unique opportunities as we illustrate next. We compute an event sequence
count without ever constructing the actual event sequences. Such online event sequence count can be computed
correctly by continuously updating a prefix counter in constant time upon the arrival of each new event such that
a new event, once processed, can be discarded instantly [42].

For example, event sequences matched by the pattern S EQ(A, B,C) are counted in Figure 5. When the
events shown on top arrive, the prefix counter for the patterns shown on the left are updated as follows. When
the event b2 arrives, 3 new sub-sequences (a1, b2), (a2, b2) and (a3, b2) are formed using previously arrived events
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Figure 5: Prefix counters

Figure 6: Prefix counters for snapshots [42]

a1, a2 and a3. Thus, the total count of event sequences matched by the pattern S EQ(A, B) is now 4, including
the 3 newly formed sequences and a1, b1 that we had found before. We observe that when b2 arrives, we can
obtain the count of the event sequences by adding two counts: (1) The count of the sub-pattern S EQ(A) where
b2 would be appended to the matches of this sub-pattern, and (2) The count of the sub-pattern S EQ(A, B). We
notice that the actual event sequences do not have to be constructed to update the count. Omitting event sequence
construction reduces the aggregation computation costs from polynomial to linear [42].

Other aggregation functions can be supported analogously. For example for sum, we maintain an extra sum
field in each prefix counter on the event type the attribute value of which is to be summed. When an event arrives
and causes an update of a count, its respective sum field will also be updated.

Negation. Negation requires the non-occurrence of events of the negated event types at certain positions
within the event sequences. The arrival of such events can invalidate potential matches. Therefore, when an
event arrives whose occurrence is negated in the query, we simply reset the corresponding prefix counter.

Predicates. Local predicates impose constraints on the attribute values of events, for example, age>20. Such
predicates can filter events before they are aggregated. Equivalence predicates correlate events in a sequence [50].
For example, to monitor people’s movement during an emergency, we require the same value of the person
identifier attribute in all events contributing to one event sequence matched by the queries in Figure 1. Such
predicates partition the event stream into several sub-streams. This partitioning then allows us to compute
aggregation separately for each partition using the above described principles.

Sliding Window. When the window slides, multiple events expire and multiple new events become relevant.
One expired event might invalidate an arbitrary number of event sequences and thus require an update of the
aggregation results. However, the expiration of most events has no affect on the aggregated value. We determine
the minimum subset of events whose expiration could indeed affect the aggregation result in [42].

Aggregation Sharing. Shared aggregation of single events is well-studied [30, 34, 51]. However, shared
aggregation of event sequences poses new challenges such as pushing the aggregation through the sequence-
construction process to save the resources. We could consider the sharing of common sub-sequences between
multiple similar queries (Section 3). To minimize the CPU costs, event queries that have common sub-patterns
are chopped into sub-patterns to aggregate them separately using the highly scalable techniques introduced
above. We then stitch these partial results together to get the final results for the original pattern requests.
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Figure 7: Lock incompatibility [49]

However, events expire over time. Let #s1 and #s2 be the counts of the sub-patterns s1 and s2 respectively.
When a triggering event of s2 arrives, #s1 might become invalid due to the expiration of some of the matches
aggregated by s1. This situation risks causing erroneous aggregation results. To support event expiration, we
maintain snapshots for each sub-pattern. The idea is the following: For each first event in a sequence, we store
the expiration time point and the number of sequences that start with this event in the snapshot. When a first
event expires, we ignore its respective count, since all the sequences it participates in expire too. For example,
assume the pattern S EQ(A, B,C,D, E, F,G) is chopped into 3 sub-patterns s1 = S EQ(A, B,C), s2 = S EQ(D, E),
and s3 = S EQ(F,G). When the event f1 arrives at time t = 12s, we consider only non-expired counts (they
are highlighted in Figure 6). First, we multiply the count of each match of the sub-pattern S EQ(D, E) with the
counts in its respective snapshot of the sub-pattern S EQ(A, B,C). Second, we sum up the counts for the same
first event across all matches (a2 in our example). Third, we store the resulting counts in the snapshot of the
sub-pattern S EQ(A, B,C,D, E) for future reference.

6 Facilitating Concurrency for Efficient Complex Event Analytics

Stream Transactions. In prior sections we have illustrated various strategies to detect shared sub-patterns and
then to reuse their partial results. To achieve high system responsiveness, we leverage modern multi-threaded
solutions on multi-core architectures instead of forcing all computation to proceed sequentially. Thus, to avoid
race conditions, read and write operations on shared storage (e.g., results of a shared sub-pattern) must be
synchronized. Traditional transaction models should be reexamined since: (1) Events are not static, rather
they continuously arrive on streams. (2) Event queries are standing, they continuously monitor these event
streams [6]. (3) Neither abort nor restart of a transaction at a later time point (used in MVCC [5]) may be
acceptable for externally visible output or actions typical for real-time streaming applications [45, 49].

Towards Event-Stream Transactions. Here we briefly introduce an appropriate notion of transactions in
the context of event streams, which we henceforth refer to as stream transaction. A stream transaction is a
sequence of all system changes that are triggered by a single input event. Two operations are called conflicting
if they are performed on the same data item and at least one of them is a Write. An algorithm for scheduling
operations on a shared data item performed by event queries is then considered to be correct if every schedule
produced by the algorithm processes conflicting operations in order by their application time stamps.

Let us now examine one simple transaction model in this context. Similarly to the classical MVCC [5], the
historic records of each shared data item could be maintained. We then define the low-water-mark as the oldest
time stamp among all the time stamps of Write locks. A Read lock is granted if all Writes earlier than the Read
have completed. A Write lock is granted if it is the oldest Write lock among all Write locks on this data item.
Given this lock-granting strategy, we can relax the lock incompatibility in two ways (Figure 7): (1) A Read lock
does not block acquiring a Write lock since the previous version is read while a new one is created. (2) A Write
lock does not necessarily block a Read lock if earlier versions can be read. This modification allows for faster
responsiveness compared to the sequential Strickt Two Phase Locking (S2PL) [49].

This stream transaction model is generic since it is applicable to the sharing techniques described above.
However, a customized transaction model that considers the semantics of the view-maintenance operations on a
shared common view might be more efficient. Ray et al. [43] introduce a customized stream transaction model
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for shared views. This model defines the compatibility of read, append, and purge operations on shared views. It
then uses S2PL to schedule transactions composed of such operations. Future work could focus on developing
concurrent processing models that best support each of the different shared analytics optimization scenarios.

7 Related Work

Complex Event Query Processing. Existing event processing systems focus on the specification and optimiza-
tion of automaton-based [1, 13, 50] and query-plan-based [40] execution paradigms. Liu et al. [35] consider
nested event patterns and introduce a top-down iterative approach for processing such queries. However, these
approaches neither address the issue of supporting queries at different concept and pattern hierarchy levels nor
do they develop efficient computation strategies for the shared execution of multiple event queries.

Sharing Multiple Event Queries. Shared event query processing is part of the native architecture of Tele-
graphCQ [9]. Madden et al. [38] proposed an adaptive tuple-level sharing technique. However, routing individ-
ual tuples among operators introduces considerable overhead. Instead, our approach produces a stable sharing
plan and re-optimizes only if there is significant change in statistics [31].

Hong et al. [29] introduce materialization-based optimization techniques into XML-stream query processing.
This approach does not consider windows, event correlations, view maintenance and concurrent query access to
these views. YFilter [14] is limited to prefix-matching. In contrast, our technique shares sub-patterns at arbitrary
positions. Ray et al. [44] propose continuous sliding-view maintenance over event streams for a single query.
Sharing such views among multiple queries is not considered.

Hierarchical Event-Query Sharing. Traditional OLAP technologies focus on static pre-computed and
indexed data sets. They aim to quickly provide answers to analytical queries that are multi-dimensional in
nature [10, 22, 27]. OLAP techniques allow users to navigate the data at different abstraction levels. However,
these solutions either do not support real-time streams [20, 26, 37], or they are set-based instead of sequence-
based [22]. Furthermore, these approaches do not support concept hierarchies. They provide neither result reuse
strategies nor any cost analysis for patterns expressing event sequence and negation.

Shared Event Query Aggregation. The optimization of CEP aggregation is critical for high performance
pattern matching over event streams [1, 13, 40, 50]. However, no specific technique has been proposed to
date to optimize the on-the-fly computations of event-sequence aggregation. Instead, existing approaches apply
aggregation as a post-processing step that takes place after all event sequences have been constructed. Obviously,
this is an inefficient solution. Incremental techniques [30, 34] have been proposed to avoid re-computations
among overlapping sliding windows. Zhang et al. [51] maintain aggregates using multiple levels of temporal
granularity: older data is aggregated using coarser granularity while more recent data is aggregated with fine
detail. However, these approaches do not address our sequence aggregation problem, that is, they compute
aggregation over individual events rather than over event sequences that are continuously detected in real time.

Aggregation is well-supported in static sequence databases [32, 37]. These approaches assume that the data
is statically stored and indexed prior to processing. In contrast, our approach targets dynamic streaming data
where results are produced continuously upon event arrival and events are discarded once they are aggregated.

Range-based aggregation approaches [32, 48] aggregate independent data records within a certain time range.
Some approaches [41, 46] consider aggregation for patterns with recursion. However, these approaches work
with independent individual data records. In contrast to that, our approach aggregates event sequences matched
by expressive event patterns, i.e., interdependent multi-record matches.

Stream Transaction Models. Botan et al. [6] adapt the traditional database transaction model to event
stream processing. That is, a transaction is a sequence of user-defined operations. Events must be processed in
order by their arrival time stamps. Other stream transaction models [4, 39] define a transaction as a sequence
of operations triggered by one or more input events. Events are usually batched and their processing is ordered
by event time stamps. However, these approaches are too restrictive, since they process events in strict order
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and disallow concurrent operations on the same data item, unlike our proposed Low-Water-Mark scheduler [49].
This strictly ordered processing strategy slows down execution and results in poorer system responsiveness.

8 Conclusion and Future Work

In this article, we have presented an overview of four innovative techniques for scaling shared event analytics,
namely: (1) To effectively share identical sub-patterns, we consider intra- and inter-query correlation, match
distribution over time and match sharing at the event instance level. (2) Since the number of identical sub-
patterns in an event query workload may be limited, we also share computations among hierarchical event
queries. (3) While computing event sequence aggregation, we do not construct the actual event sequences and
thus reduce the computation costs from polynomial to linear. Multiple aggregation event queries share the
aggregation computation of their common sub-patterns. (4) Our stream transaction model guarantees correct
concurrent execution of multiple inter-dependent event queries sharing their intermediate results.

In the future, we will extend our online shared aggregation approach to a broader class of event queries. For
time-critical decision making applications, certain urgent insights are useful only if derived within a strict time
constraint. Thus, we will define different consistency levels and propose prioritized scheduling algorithms to
ensure prompt responsiveness using limited resources. Furthermore, these techniques have been proposed in the
context of a central albeit possibly multi-threaded architecture. The next logical step would be to explore their
effectiveness in context of deploying complex event analytics on an distributed computing platform.
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