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Abstract

Elasticity describes the ability of any distributed system to scale to a varying number of hosts in response
to workload changes. It has become a mandatory architectural property for state of the art cloud-based
data stream processing systems, as it allows treatment of unexpected load peaks and cost-efficient execu-
tion at the same time. Although such systems scale automatically, the user still needs to set configuration
parameters of a scaling policy. This configuration is cumbersome and error-prone.

In this paper we propose an approach that tries to remove this burden from the user. We present our
data stream processing system FUGU, which optimizes the selected scaling policy automatically using
an online parameter optimization approach. In addition, we demonstrate how our system considers
user-defined end to end latency constraints during the scaling process.

1 Introduction

Data stream processing systems [1] continuously produce output for a set of standing queries and potentially
unbounded input streams. Many real-world workloads for data stream processing systems have a high variability,
which means that the data rates of the input streams and the selectivities of query operators are frequently
changing in unpredictable ways. Several authors [5, 7, 8] have proposed data stream processing prototypes that
automatically scale in or out based on workload characteristics to handle such dynamic workloads. Such systems
are called elastic [11] and support increasing system utilization by using only the minimum required number of
hosts. However, in all these prototypes, the user needs to manually specify a scaling strategy, which controls
when and how the system scales.

The challenge of correctly configuring the scaling strategy has been studied for many cloud-based systems [4,
12, 13, 16]. A large number of solutions exist, including auto-scaling techniques [13, 16] and task-classification
approaches [4, 12]. These systems can be classified into three major algorithmic categories: prediction-based,
sampling-based, and adaptive (learning-based) solutions. Both sampling and prediction-based approaches are
hard to apply in a data stream processing system, because its workload is hard to predict or sample due to its
high variability. An adaptive auto-scaling technique is able to improve the utilization of such a system, but
degrades the quality of service [9]. Each reconfiguration decision in a data stream processing system interferes

Copyright 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

73



�
�
�
�
�
�
�

���������	


���� ����

������������

�����������������
�����������

���������	
��

���������	
��

������
����

��
�������

�	�
���

���	�	���

Figure 1: Architecture of FUGU

with the data processing and as a result has a high impact on major quality of service metrics such as end to end
latency [8]. Therefore, this characteristic needs to be reflected in the scaling strategy to achieve a good trade-off
between the spent monetary cost and the achieved quality of service.

In the context of our elastic data stream processing prototype FUGU, we study how we can relieve the user
from configuring these parameters and how to support different quality of service levels. In this paper, we outline
the two major concepts we use to realize this vision in context of FUGU: (1) the latency-aware scaling strategy
and (2) online parameter optimization. The latency-aware scaling strategy introduces a model to estimate the
latency peak created by a scaling decision. This information is used to derive scaling decisions with a minimal
latency peak and avoid scaling decisions with a too high latency peak. Online parameter optimization presents a
white-box model to study the influence of different parameters on scaling behaviour. This white-box model can
be used to search for good parameter settings for the current workload.

In the following, we describe both techniques in the context of an existing data stream processing system. In
addition, we present a real-world evaluation to demonstrate the strength of the presented techniques.

2 Background

The concepts presented here are implemented as an extension of the elastic data stream processing prototype
FUGU [8, 9] (see Figure 1). The existing system consists of a centralized management component, which
dynamically allocates a varying number of hosts. The manager executes on top of a distributed data stream
processing engine, which is based on the Borealis semantic [1].

The data stream processing system processes continuous queries, which can be modeled as directed acyclic
graphs of operators. Our system supports primitive relational algebra operators (selection, projection, join, and
aggregation) as well as additional data stream processing specific operators (sequence, source, and sink). Each
operator can be executed on an arbitrary host and a query can be partitioned over multiple hosts. The number of
hosts is variable and dynamically adapted by the management component to changing resource requirements.

The centralized management component serves two major purposes: (1) it derives scaling decisions, in-
cluding decisions on allocating new hosts or releasing existing hosts, and assigns operators to hosts; and (2) it
coordinates the construction of the operator network in the distributed data stream processing engine.

The management component constantly receives statistics from all running operators in the system. Based
on these measurements and a set of thresholds and parameters, it decides when to scale and where to move
operators. Typically, these thresholds and parameters are manually specified by the user. Our system supports
the movement of both stateful (join and aggregation) and stateless operators (selection, sink, and source). A
state of the art movement protocol [8, 15] ensures an operator moves to the new host without information loss.
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Figure 2: Scaling Strategy of FUGU

3 Threshold-based Elastic Scaling

The scaling approach used by the FUGU server is illustrated in Figure 2. A vector of node utilization measure-
ments (CPU, memory, and network consumption) and a vector of operator utilizations are used as input to the
Scaling Algorithm. The Scaling Algorithm derives decisions that mark a host as overloaded or the system as
underloaded. The Operator Selection algorithm decides which operators to move and the Operator Placement
algorithm determines where to move these operators.

The default scaling strategy of FUGU is threshold-based, namely, a set of threshold rules are used to de-
fine when the system needs to scale. These thresholds mark either the entire system or an individual host as
over/underloaded. A threshold rule describes an exceptional condition for the consumption of one major system
resource (CPU, network, or memory), which triggers a scaling decision in FUGU. Some examples for these
rules include:

1. A host is marked as overloaded if the CPU utilization of the host is above 80% for three seconds.

2. A host is marked as underloaded if the CPU utilization of the host is below 30% for five seconds.

The threshold-based rules need to be used carefully [6]. In particular, the frequent alternating allocation and
deallocation of virtual machines, called thrashing, should be prevented. Several steps are taken in FUGU to avoid
thrashing. First of all, each threshold needs to be exceeded for a certain number of consecutive measurements
before a violation is reported. This number is called the threshold duration. In addition, after a threshold
violation is reported, no additional scaling actions are done for the corresponding host for a certain time interval
called a grace period (or cool-down time). The system checks for overloaded or underloaded host each time a
new batch of utilization measurements for all operators has been received. Our scaling strategy checks all hosts
using the overload criteria first, afterwards it tests if the system is underloaded. This order avoids to first release
a host due to an underload and afterwards allocate a new host to solve an overload.

The load in a data stream processing system is partitioned among all operator instances running in the system.
Therefore, each scaling decision needs to be translated into a set of moved operators. The first problem is to
identify which operators to move. This identification is done by the Operator Selection algorithm. If the system
is marked as underloaded, it selects all operators running on the least loaded hosts. For an overloaded host, the
Operator Selection algorithm chooses a subset of operators to move in a way, that the summed load remaining on
the host is smaller than the given threshold. FUGU models this decision as a subset sum problem [14], where the
operators on the host are the possible items and the threshold represents the maximum sum. We use a heuristic,
which identifies the subset of all operator instances whose accumulated load is smaller than the threshold and
no other subset with a larger accumulated load fulfilling this condition exists. All operators selected by this
algorithm are kept on the host; the remaining operators are selected for movement.

The selected operators are the input of the Operator Placement algorithm, which decides where the operators
should be moved. We solve this problem using different bin packing algorithms [3]. The goal of a bin-packing
algorithm is to assign each item to exactly one bin in a way that (1) the number of bins is minimized and (2)
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Figure 3: Latency Peak Estimation

the sum of the weights of all assigned items is smaller than the capacity of the bin. In the context of FUGU, an
operator represents an item and its CPU usage is its weight. A host is modeled as a bin with its CPU resource
as the capacity. In addition, we use network and memory consumption as sub-constraints. The bin-packing
problem is known to be NP-complete [14], however, many efficient heuristics have been proposed to solve it.
For FUGU we implemented two well-known bin-packing heuristics, FirstFit and BestFit.

4 Latency-aware Elastic Scaling

As illustrated in the previous section, a set of operators needs to be moved between hosts in the system in re-
sponse to a scaling decision. This movement has to ensure that no information is lost. This condition requires the
usage of an operator movement protocol [15], which guarantees that an operator and its state are moved together.
For each operator to be moved, the protocol used first pauses the processing of the predecessor operators, which
causes all newly arriving events to be enqueued. Then, a new instance of the operator is created and the operator
state is moved. When the state movement is completed, the predecessor operator is restarted. As the processing
of the enqueued events at the predecessor operator is delayed, a latency peak can be observed. Existing scaling
strategies [5, 7] optimize the scaling decision based only on the CPU load moved or the state size moved and
ignore the resulting latency peak.

In FUGU we deal with this problem by introducing a model to estimate the latency peak created by an
operator movement. The model (see Figure 3) estimates the queue length ql(oppred, t) of the predecessor operator
created during the movement, which determines the observed latency peak. As input for this estimation two
major factors are considered: workload characteristics such as the current input rate inputRate of the predecessor
operator oppred and the movement time moveTime of the moved operator opmoved. The major challenge is that
the movement time of an operator depends on multiple factors such as the state size, the operator type, and
the current host load [8]. Therefore, we collect a set of samples of these characteristics together with the
corresponding latency peak online. The samples are clustered based on these factors, and for a new operator
movement, the cluster of samples with the highest similarity is identified. That subset of samples is used to
estimate the movement time for new movements.

This estimation model is used to extend the Operator Selection algorithm presented in Section 3. Our system
allows the user to define a latency threshold, which is considered when the scaling decisions are computed. We
classify scaling decisions into two categories (1) mandatory and (2) optional movements. All scaling decisions
necessary to avoid an overload of the system are mandatory scaling decisions. The release of a host due to
underload is an optional scaling decision. Any optional scaling decision can be postponed or canceled in case
the estimated latency peak would be too high. Thereby, unnecessary violations of the latency constraints can
be avoided. The operator selection for an overloaded host is modified to identify a set of candidate solutions
whose summed operator loads are above a certain CPU threshold. Among all candidates, the solution with the
minimum estimated latency peak is chosen. In addition, the way in which the system handles CPU underload is
changed. Normally, if the system detects a system underload, the host with the minimal CPU load is released
and all operators running on this host are moved to other hosts. In our latency-aware elastic scaling the system
releases the host, that minimizes the estimated latency peak for moving all operators on the host. If no host with
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Figure 4: Architecture of Online Parameter Optimization

an estimated latency peak below the user-defined threshold exists, only a subset of the operators on the host with
the smallest estimated latency peak is moved.

5 Online Parameter Optimization

The configuration of a threshold-based scaling strategy is very difficult for an inexperienced user, as he typically
has a limited understanding of the system and the influence of the possible parameter settings on system per-
formance. Therefore, we introduce an online parameter optimization approach, which chooses these parameter
settings automatically based on current workload characteristics.

Online parameter optimization adds two new components to the existing elastic scaling data stream process-
ing engine (see Figure 4): a parameter optimization component and an online profiler. We identified a set of six
major parameters for our system, such as utilization thresholds and the bin packing method used, that primarily
influence the scaling behaviour of the system and describe the parameter configuration of the scaling strategy.
For each parameter, we determine a reasonable domain. In total, 720,000 parameter configurations exist [10].

Our optimization component automatically discovers a good parameter configuration based on a short-term
utilization history of the running system. In this approach we use a cost function [10], that models the influ-
ence of these parameters on the scaling behaviour. Threshold-based scaling deterministically derives a scaling
decision for a given operator assignment of operator instances, current utilization values and a setting of the
mentioned parameters. For the cost function, we input a time series of utilization values and assignments and
get as a result a set of scaling decisions for the given parameter settings. From these scaling decisions, we can
determine both the amount of resources used and the latency peaks created by the scaling decisions.

We determine possible parameter configurations using an improved random search algorithm [17] and iden-
tify a configuration with a good trade-off between resources used and latency based on the short term utilization
history. Finally, we compare these results with the results of the current parameter configuration of the system
and adapt the parameters, if a configuration with less host use and a less or equal number of moved operators
was found.

The previously mentioned online profiler determines the frequency of triggering the parameter optimization.
It monitors changes of the workload pattern based on the overall CPU load using an adaptive window [2]. The
system periodically adds a new value to the window. If this new value is similar to the existing values, it is simply
appended at the head of the window. If a significant change is detected, values from the tail are deleted until all
values in the window are similar again. Parameter optimization is triggered each time a change is detected. The
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Figure 5: Latency Results for Different Operator Selection Strategies

length of the window also specifies the length of the short-term history of current load characteristics to use for
the online parameter optimization. This approach allows adaptively identifying a good parameter setting for the
system.

6 Evaluation

We implemented both latency-aware elastic scaling and online parameter optimization as extensions of FUGU.
During an evaluation with three real-world scenarios, we tried to answer two major questions:

1. Does latency-aware elastic scaling improve latency compared to other operator selection strategies?

2. Does online parameter optimization provide a good trade-off between system utilization and query pro-
cessing latency, thus relieving the user of the burden of manually configuring the parameters?

In the evaluation we use a private, shared cloud environment with one master node and up to twelve workers.
We run three different real-world scenarios [10]: a scenario with financial data, one with Twitter messages, and
a third with smart meter measurements. For each case we use three different traces, which make up in total nine
workloads. Each experiment lasts for 90 minutes, where end to end latency and host utilization are measured
roughly every five seconds. For a single measurement point, we use the average utilization of all hosts and
average latency of all queries to quantify the utilization of the system and the quality of service, respectively.

6.1 Latency-aware Elastic Scaling

We compare our latency-aware operator selection strategy with two alternative operator selection strategies [8]:
CPULoad and StateSize. The CPULoad strategy selects operators to move in a way that minimize the total CPU
load moved. In contrast, the StateSize strategy minimizes the total state size moved, when moving operators
between hosts. For each strategy we evaluated six different thresholds and average the results to avoid any
influence of the chosen threshold configurations on the results. We present the resulting latency in Figure 5 and
the measured utilization values in Figure 6.

For the latency results we show the 95th, 96th, 97th, 98th, and 99th percentiles of all measurements. The
measured results for the 95th, 96th and 97th percentile for the three strategies differ only very marginally, which
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Figure 6: Utilization Results for Different Operator Selection Strategies
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Figure 7: Comparison of Online Parameter Optimization and Manually Tuned Thresholds

demonstrates that the operator selection strategy used influences only the measured latency peaks. The latency-
aware operator selection we presented outperforms the two other strategies in seven out of nine scenarios. On
average, over all nine scenarios, the latency-aware selection strategy has a 18% and 19% lower 98th percentile
latency than the CPULoad and StateSize strategies, respectively. For the 99th percentile our strategy’s latency is
16% and 22% lower than for the CPULoad or StateSize strategies.

Figure 6 shows a comparison of the utilization results, where we present a comparison of the average uti-
lization for the three different strategies using a boxplot. The operator selection strategy used has only a small
influence on the utilization achieved. The latency-aware strategy has only a two percent point smaller utilization
than the CPULoad or the StateSize strategy.

6.2 Online Parameter Optimization

As a baseline for online parameter optimization, we manually tuned the thresholds. We evaluated 16 different
threshold configurations and compared the results achieved for our parameter optimization over three different
runs. We show the average node utilization and the 98th percentile of the averaged latency in Figure 7.

The results show a significant variance in both the average utilization and the latency for different config-
urations: the minimal and maximal utilization differ by 20 percentage points. From the 16 measurements, we
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extract the average to estimate the results that an inexperienced user might achieve. Online parameter optimiza-
tion shows a five percentage point better utilization with only a slight increase of the 98th percentile latency (231
ms) averaged over all scenarios.

Subsequently, we selected the three best configurations per workload and compared them to the configuration
derived by online parameter optimization. Online parameter optimization shows comparable utilization results
(0.02% worse) and again only a small increase of the 98th percentile latency (330 ms).

From these results we conclude that our online parameter optimization provides a good trade-off between
system utilization and query processing latency. It also removes the burden of manually choosing the thresholds
from the user.

7 Summary

Elastic scaling allows a data stream processing system to react to unexpected load spikes and reduce the amount
of idling resources in the system. Although several authors proposed different approaches for elastic scaling
of a data stream processing system, these systems require a manual tuning of the thresholds used, which is an
error-prone task and requires detailed knowledge about the workload.

In this paper we introduce a model to estimate the latency peak created by a scaling decision and present
an approach to minimize that peak accordingly. In addition, we propose an online parameter optimization
approach, which automatically adjusts the scaling strategy of an elastic scaling data stream processing system.
Our system minimizes the number of hosts used and at the same time keeps the number of latency peaks low.
Both approaches have been evaluated in the context of several real-world use cases and have demonstrated their
applicability for such use cases.
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