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Abstract

Apache Kafka is a scalable message broker, and Apache Samza is a stream processing framework built
upon Kafka. They are widely used as infrastructure for implementing personalized online services and
real-time predictive analytics. Besides providing high throughput and low latency, Kafka and Samza are
designed with operational robustness and long-term maintenance of applications in mind. In this paper
we explain the reasoning behind the design of Kafka and Samza, which allow complex applications to be
built by composing a small number of simple primitives – replicated logs and stream operators. We draw
parallels between the design of Kafka and Samza, batch processing pipelines, database architecture, and
the design philosophy of Unix.

1 Introduction

In recent years, online services have become increasingly personalized. For example, in a service such as
LinkedIn there are many activity-based feedback loops, automatically adapting the site to make it more relevant
to individual users: recommendation systems such as “people you may know” or “jobs you might be interested
in” [30], collaborative filtering [33] or ranking of search results [23, 26] are personalized based on analyses of
user behavior (e.g. click-through rates of links) and user-profile information. Other feedback loops include abuse
prevention (e.g. blocking spammers, fraudsters and other users who violate the terms of service), A/B tests and
user-facing analytics (e.g. “who viewed your profile”).

Such personalization makes a service better for users, as they are likely to find what they need faster than if
the service presented them with static information. However, personalization has also opened new challenges:
a huge amount of data about user activity needs to be collected, aggregated and analyzed [8]. Timeliness is
important: after the service learns a new fact, the personalized recommendations and rankings should be swiftly
updated to reflect the new fact, otherwise their utility is diminished.

In this paper we describe Kafka and Samza, two related projects that were originally developed at LinkedIn
as infrastructure for solving these data collection and processing problems. The projects are now open source,
and maintained within the Apache Software Foundation as Apache Kafka1 and Apache Samza2, respectively.
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1.1 Implementing Large-Scale Personalized Services

In a large-scale service with many features, the maintainability and the operational robustness of an implemen-
tation are of paramount importance. The system should have the following properties:

System scalability: Supporting an online service with hundreds of millions of registered users, handling mil-
lions of requests per second.

Organizational scalability: Allowing hundreds or even thousands of software engineers to work on the system
without excessive coordination overhead.

Operational robustness: If one part of the system is slow or unavailable, the rest of the system should continue
working normally as much as possible.

Large-scale personalized services have been successfully implemented as batch jobs [30], for example using
MapReduce [6]. Performing a recommendation system’s computations in offline batch jobs decouples them from
the online systems that serve user requests, making them easier to maintain and less operationally sensitive.

The main downside of batch jobs is that they introduce a delay between the time the data is collected and
the time its effects are visible. The length of the delay depends on the frequency with which the job is run, but
it is often on the order of hours or days.

Even though MapReduce is a lowest-common-denominator programming model, and has fairly poor perfor-
mance compared to specialized massively parallel database engines [2], it has been a remarkably successful tool
for implementing recommendation systems [30]. Systems such as Spark [34] overcome some of the performance
problems of MapReduce, although they remain batch-oriented.

1.2 Batch Workflows

A recommendation and personalization system can be built as a workflow, a directed graph of MapReduce
jobs [30]. Each job reads one or more input datasets (typically directories on the Hadoop Distributed Filesystem,
HDFS), and produces one or more output datasets (in other directories). A job treats its input as immutable
and completely replaces its output. Jobs are chained by directory name: the same name is configured as output
directory for the first job and input directory for the second job.

This method of chaining jobs by directory name is simple, and is expensive in terms of I/O, but it provides
several important benefits:

Multi-consumer. Several different jobs can read the same input directory without affecting each other. Adding
a slow or unreliable consumer affects neither the producer of the dataset, nor other consumers.

Visibility. Every job’s input and output can be inspected by ad-hoc debugging jobs for tracking down the cause
of an error. Inspection of inputs and outputs is also valuable for audit and capacity planning purposes, and
monitoring whether jobs are providing the required level of service.

Team interface. A job operated by one team of people can produce a dataset, and jobs operated by other teams
can consume the dataset. The directory name thus acts as interface between the teams, and it can be
reinforced with a contract (e.g. prescribing the data format, schema, field semantics, partitioning scheme,
and frequency of updates). This arrangement helps organizational scalability.

Loose coupling. Different jobs can be written in different programming languages, using different libraries, but
they can still communicate as long as they can read and write the same file format for inputs and outputs.
A job does not need to know which jobs produce its inputs and consume its outputs. Different jobs can be
run on different schedules, at different priorities, by different users.
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Data provenance. With explicitly named inputs and outputs for each job, the flow of data can be tracked
through the system. A producer can identify the consumers of its dataset (e.g. when making forward-
incompatible changes), and a consumer can identify its transitive data sources (e.g. in order to ensure
regulatory compliance).

Failure recovery. If the 46th job in a chain of 50 jobs failed due to a bug in the code, it can be fixed and restarted
at the 46th job. There is no need to re-run the entire workflow.

Friendly to experimentation. Most jobs modify only to their designated output directories, and have no other
externally visible side-effects such as writing to external databases. Therefore, a new version of a job
can easily be run with a temporary output directory for testing purposes, without affecting the rest of the
system.

1.3 From Batch to Streaming

When moving from a high-latency batch system to a low-latency streaming system, we wish to preserve the
attractive properties listed in Section 1.2.

By analogy, consider how Unix tools are composed into complex programs using shell scripts [21]. A
workflow of batch jobs is comparable to a shell script in which there is no pipe operator, so each program must
read its input from a file on disk, and write its output to a different (temporary) file on disk. In this scenario, one
program must finish writing its output file before another program can start reading that file.

To move from a batch workflow to a streaming data pipeline, the temporary files would need to be replaced
with something more like Unix pipes, which support incrementally passing one program’s output to another
program’s input without fully materializing the intermediate result [1]. However, Unix pipes do not have all the
properties we want: they connect exactly one output to exactly one input (not multi-consumer), and they cannot
be repaired if one of the processes crashes and restarts (no failure recovery).

Kafka and Samza provide infrastructure for low-latency distributed stream processing in a style that resem-
bles a chain of Unix tools connected by pipes, while also preserving the aforementioned benefits of chained
batch jobs. In the following sections we will discuss the design decisions that this approach entails.

1.4 Relationship of Kafka and Samza

Kafka and Samza are two separate projects with a symbiotic relationship. Kafka provides a message broker
service, and Samza provides a framework for processing messages. A Samza job uses the Kafka client library to
consume input streams from the Kafka message broker, and to produce output streams back to Kafka. Although
either system can be used without the other, they work best together. We introduce Kafka in more detail in
Section 2, and Samza in Section 3.

At the time of writing, there is an effort underway to add a feature called Kafka Streams to the Kafka client
library [31]. This feature provides a stream processing capability similar to Samza, but it differs in that Kafka
Streams does not prescribe a deployment mechanism, whereas Samza currently relies on Hadoop YARN. Most
other high-level architecture choices are similar in Samza and Kafka Streams; for purposes of this paper, they
can be regarded as equivalent.

2 Apache Kafka

Kafka has been described in detail in prior work [8, 16, 19, 32]. In this section we present a brief high-level
overview of the principles behind Kafka’s design.

Kafka provides a publish-subscribe messaging service, as illustrated in Figure 1. Producer (publisher) clients
write messages to a named topic, and consumer (subscriber) clients read messages in a topic.
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Figure 1: A Kafka topic is divided into partitions, and each partition is a totally ordered sequence of messages.

A topic is divided into partitions, and messages within a partition are totally ordered. There is no ordering
guarantee across different partitions. The purpose of partitioning is to provide horizontal scalability: different
partitions can reside on different machines, and no coordination across partitions is required. The assignment of
messages to partitions may be random, or it may deterministic based on a key, as described in Section 3.2.

Broker nodes (Kafka servers) store all messages on disk. Each partition is physically stored as a series
of segment files that are written in an append-only manner. A Kafka partition is also known as a log, since
it resembles a database’s transaction commit log [12]: whenever a new message is published to a topic, it is
appended to the end of the log. The Kafka broker assigns an offset to the message, which is a per-partition
monotonically increasing sequence number.

A message in Kafka consists of a key and a value, which are untyped variable-length byte strings. For richer
datatypes, any encoding can be used. A common choice is Apache Avro,3 a binary encoding that uses explicit
schemas to describe the structure of messages in a topic, providing a statically typed (but evolvable) interface
between producers and consumers [10, 15].

A Kafka consumer client reads all messages in a topic-partition sequentially. For each partition, the client
tracks the offset up to which it has seen messages, and it polls the brokers to await the arrival of messages
with a greater offset (akin to the Unix tool tail -f, which watches a file for appended data). The offset is
periodically checkpointed to stable storage; if a consumer client crashes and restarts, it resumes reading from its
most recently checkpointed offset.

Each partition is replicated across multiple Kafka broker nodes, so that the system can tolerate the failure
of nodes without unavailability or data loss. One of a partition’s replicas is chosen as leader, and the leader
handles all reads and writes of messages in that partition. Writes are serialized by the leader and synchronously
replicated to a configurable number of replicas. On leader failure, one of the in-sync replicas is chosen as the
new leader.

2.1 Performance and Scalability

Kafka can write millions of messages per second on modest commodity hardware [14], and the deployment at
LinkedIn handles over 1 trillion unique messages per day [20]. Message length is typically low hundreds of

3http://avro.apache.org/
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bytes, although smaller or larger messages are also supported.
In many deployments, Kafka is configured to retain messages for a week or longer, limited only by available

disk space. Segments of the log are discarded when they are older than a configurable threshold. Alternatively,
Kafka supports a log compaction mode, in which the latest message with a given key is retained indefinitely,
but earlier messages with the same key are garbage-collected. Similar ideas are found in log-structured filesys-
tems [25] and database storage engines [18].

When multiple producers write to the same topic-partition, their messages are interleaved, so there is no
inherent limit to the number of producers. The throughput of a single topic-partition is limited by the computing
resources of a single broker node – the bottleneck is usually either its NIC bandwidth or the sequential write
throughput of the broker’s disks. Higher throughput can be achieved by creating more partitions and assigning
them to different broker nodes. As there is no coordination between partitions, Kafka scales linearly.

It is common to configure a Kafka cluster with approximately 100 topic-partitions per broker node [22].
When adding nodes to a Kafka cluster, some partitions can be reassigned to the new nodes, without changing
the number of partitions in a topic. This rebalancing technique allows the cluster’s computing resources to be
increased or decreased without affecting partitioning semantics.

On the consumer side, the work of consuming a topic can be shared between a group of consumer clients
(illustrated in Figure 1). One consumer client can read several topic-partitions, but any one topic-partition must
be read sequentially by a consumer process – it is not possible to consume only a subset of messages in a
partition. Thus, the maximum number of processes in a consumer group equals the number of partitions of the
topic being consumed.

Different consumer groups maintain their offsets independently, so they can each read the messages at their
own pace. Thus, like multiple batch jobs reading the same input directory, multiple groups of consumers can
independently read the same Kafka topic without affecting each other.

3 Apache Samza

Samza is a framework that helps application developers write code to consume streams, process messages,
and produce derived output streams. In essence, a Samza job consists of a Kafka consumer, an event loop
that calls application code to process incoming messages, and a Kafka producer that sends output messages
back to Kafka. In addition, the framework provides packaging, cluster deployment (using Hadoop YARN),
automatically restarting failed processes, state management (Section 3.1), metrics and monitoring.

For processing messages, Samza provides a Java interface StreamTask that is implemented by application
code. Figure 2 shows how to implement a streaming word counter with Samza: the first operator splits every
input string into words, and the second operator counts how many times each word has been seen.

For a Samza job with one input topic, the framework instantiates one StreamTask for each partition of
the input topic. Each task instance independently consumes one partition, no matter whether the instances
are running in the same process, or distributed across multiple machines. As processing is always logically
partitioned by input partition, even if several partitions are physically processed on the same node, a job’s
allocated computing resources can be scaled up or down without affecting partitioning semantics.

The framework calls the process()method for each input message, and the application code may emit any
number of output messages as a result. Output messages can be sent to any partition, which allows re-partitioning
data between jobs. For example, Figure 3 illustrates the use of partitions in the word-count example: by using
the word as message key, the SplitWords task ensures that all occurrences of the same word are routed to the
same partition of the words topic (analogous to the shuffle phase of MapReduce [6]).

Unlike many other stream-processing frameworks, Samza does not implement its own network protocol for
transporting messages from one operator to another. Instead, a job usually uses one or more named Kafka topics
as input, and other named Kafka topics as output. We discuss the implications of this design in Section 4.
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class SplitWords implements StreamTask {

  static final SystemStream WORD_STREAM =

    new SystemStream("kafka", "words");

  public void process(

        IncomingMessageEnvelope in,

        MessageCollector out,

        TaskCoordinator _) {

    String str = (String) in.getMessage();

    for (String word : str.split(" ")) {

      out.send(

        new OutgoingMessageEnvelope(

          WORD_STREAM, word, 1));

    }

  }

}

class CountWords implements StreamTask,

                            InitableTask {

  private KeyValueStore<String, Integer> store;

  public void init(Config config,

                   TaskContext context) {

    store = (KeyValueStore<String, Integer>)

      context.getStore("word-counts");

  }

  public void process(

        IncomingMessageEnvelope in, 

        MessageCollector out,

        TaskCoordinator _) {

    String word = (String) in.getKey();

    Integer inc = (Integer) in.getMessage();

    Integer count = store.get(word);

    if (count == null) count = 0;

    store.put(word, count + inc);

  }

}

Figure 2: The two operators of a streaming word-frequency counter using Samza’s StreamTask API.
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Figure 3: An instance of a Samza task consumes input from one partition, but can send output to any partition.
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Figure 4: A task’s local state is made durable by emitting a changelog to Kafka.
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3.1 State Management

Many stream-processing jobs need to maintain state, e.g. in order to perform joins (Section 3.2) or aggregations
(such as the counters in CountWords, Figure 2). Any transient state can simply be maintained in instance
variables of the StreamTask; since messages of a partition are processed sequentially on a single thread, these
data structures need not be thread-safe. However, any state that must survive the crash of a stream processor
must be written to durable storage.

Samza implements durable state through the KeyValueStore abstraction, exemplified in Figure 2. Each
StreamTask instance has a separate store that it can read and write as required. Samza uses the RocksDB4

embedded key-value store, which provides low-latency, high-throughput access to data on local disk. To make
the embedded store durable in the face of disk and node failures, every write to the store is also sent to a dedicated
topic-partition in Kafka, as illustrated in Figure 4.

This changelog topic acts as a durable replication log for the store: when recovering after a failure, a task can
rebuild its store contents by replaying its partition of the changelog from the beginning. Kafka’s log compaction
mode (see Section 2.1) prevents unbounded growth of the changelog topic: if the same key is repeatedly over-
written (as with a counter), Kafka eventually garbage-collects overwritten values, and retains the most recent
value for any given key indefinitely. Rebuilding a store from the log is only necessary if the RocksDB database
is lost or corrupted.

Writing the changelog to Kafka is not merely an efficient way of achieving durability, it can also be a useful
feature for applications: other stream processing jobs can consume the changelog topic like any other stream,
and use it to perform further computations. For example, the word counts topic of Figure 4 could be consumed
by another job to determine trending keywords (in this case, the changelog stream is also the CountWords
operator’s output – no separate output topic is required).

3.2 Stream Joins

One characteristic form of stateful processing is a join of two or more input streams, most commonly an equi-
join on a key (e.g. user ID). One type of join is a window join, in which messages from input streams A and B
are matched if they have the same key, and occur within some time interval ∆t of one another. Alternatively,
a stream may be joined against tabular data: for example, user clickstream events could be joined with user
profile data, producing a stream of clickstream events with embedded information about the user.

Stream-table joins can be implemented by querying an external database within a StreamTask, but the net-
work round-trip time for database queries soon becomes a bottleneck, and this approach can easily overload the
external database [13]. A better option is to make the table data available in the form of a log-compacted stream.
Processing tasks can consume this stream to build an in-process replica of a database table partition, using the
same approach as the recovery of durable local state (Section 3.1), and then query it with low latency.

For example, in the case of a database of user profiles, the log-compacted stream would contain a snapshot
of all user profiles as of some point in time, and an update message every time a user subsequently changes their
profile information. Such a stream can be extracted from an existing database using change data capture [5, 32].

When joining partitioned streams, Samza expects that all input streams are partitioned in the same way, with
the same number of partitions n, and deterministic assignment of messages to partitions based on the same join
key. The Samza job then co-partitions its input streams: for any partition k (with 0 ≤ k < n), messages from
partition k of input stream A and from partition k of input stream B are delivered to the same StreamTask instance.
The task can then use local state to maintain the data that is required to perform the join.

Multi-way joins on several different keys may require different partitioning for each join. Such joins can be
implemented with a multi-stage pipeline, where the output of each job partitions messages according to the next
stage’s join key. The same approach is used in MapReduce workflows.

4http://rocksdb.org/
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4 Discussion

In Sections 2 and 3 we outlined the architecture of Kafka and Samza. We now examine the design decisions
behind that architecture in the light of our goals discussed in Section 1, namely creating large-scale personalized
services in a way that is scalable, maintainable and operationally robust.

4.1 Use of Replicated Logs

Stream processing with Samza relies heavily on fault-tolerant, partitioned logs as implemented by Kafka. Kafka
topics are used for input, output, messaging between operators, durability of local state, replicating database
tables, checkpointing consumer offsets, collecting metrics, and disseminating configuration information.

An append-only log with optional compaction is one of the simplest data structures that is useful in prac-
tice [12]. Kafka focuses on implementing logs in a fault-tolerant and scalable way. Since the only access
methods supported by a log are an appending write and a sequential read from a given offset, Kafka avoids the
complexity of implementing random-access indexes. By doing less work, Kafka is able to provide much better
performance than systems with richer access methods [14, 16]. Kafka’s focus on the log abstraction is reminis-
cent of the Unix philosophy [17]: “Make each program do one thing well. To do a new job, build afresh rather
than complicate old programs by adding new ‘features’.”

Real systems do require indexes and caches, but these can be derived from the log by a Kafka consumer that
writes messages to an indexed store, either in-process (for local access) or to a remote database (for access by
other applications). Because all consumers see messages in the same partition in the same order, deterministic
consumers can independently construct views that are consistent with each other – an approach known as state
machine replication [27]. The truth is in the log, and a database is a cached subset of the log [9].

4.2 Composing Stream Operators

Each Samza job is structurally simple: it is just one step in a data processing pipeline, with Kafka topics as
inputs and outputs. If Kafka is like a streaming version of HDFS, then Samza is like a streaming version of
MapReduce. The pipeline is loosely coupled, since a job does not know the identity of the jobs upstream or
downstream from it, only the topic names. This principle again evokes a Unix maxim [17]: “Expect the output
of every program to become the input to another, as yet unknown, program.”

However, there are some key differences between Kafka topics and Unix pipes. In particular, Kafka preserves
the advantages of batch workflows discussed in Section 1.2: a topic can have any number of consumers that
do not interfere with each other (including consumers operated by different teams, or special consumers for
debugging or monitoring), it tolerates failure of producers, consumers or brokers, and a topic is a named entity
that can be used for tracing data provenance.

Kafka topics deliberately do not provide backpressure: the on-disk log acts as an almost-unbounded buffer of
messages. If a slow consumer falls behind the producer, the producers and other consumers continue operating
at full speed. Thus, one faulty process does not disrupt the rest of the system, which improves operational
reliability. Since Kafka stores all messages on disk anyway, buffering messages for a slow consumer does not
incur additional overhead. The slow consumer can catch up without missing messages, as long as it does not fall
behind further than Kafka’s retention period of log segments, which is usually on the order of days or weeks.

Moreover, Kafka offers the ability for a consumer to jump back to an earlier point in the log, or to rebuild the
entire state of a database replica by consuming from the beginning of a log-compacted topic. This facility makes
it feasible to use stream processors not only for ephemeral event data, but also for database-like use cases.

Even though the intermediate state between two Samza stream processing operators is always materialized
to disk, Samza is able to provide good performance: a simple stream processing job can process over 1 million
messages per second on one machine, and saturate a gigabit Ethernet NIC [7].
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4.3 Unix as a Role Model

Unix and databases are both data management systems [24], allowing data to be stored (in files or tables) and
processed (through command-line tools or queries). Unix tools are famously well suited for implementing ad-
hoc, experimental, short-running data processing tasks [21], whereas databases have traditionally been the tool
of choice for building complex, long-lived applications. If our goal is to build stream processing applications
that will run reliably for many years, is Unix really a good role model?

The database tradition favors clean high-level semantics (the relational model) and declarative query lan-
guages. While this approach has been very successful in many domains, it has not worked well in the context
of building large-scale personalized services, because the algorithms required for these use cases (such as statis-
tical machine learning and information retrieval methods) are not amenable to implementation using relational
operators [28, 29].

Moreover, different use cases have different access patterns, which require different indexing and storage
methods. It may be necessary to store the same data in both a traditional row-oriented fashion with indexes,
as well as columnar storage, pre-aggregated OLAP cubes, inverted full-text search indexes, sparse matrices or
array storage. Rather than trying to implement everything in a single product, most databases specialize in
implementing one of these storage methods well (which is hard enough already).

In the absence of a single database system that can provide all the necessary functionality, application de-
velopers are forced to combine several data storage and processing systems that each provide a portion of the
required application functionality. However, many traditional database systems are not designed for such compo-
sition: they focus on providing strong semantics internally, rather than integration with external systems. Mech-
anisms for integrating with external systems, such as change data capture, are often ad-hoc and retrofitted [5].

By contrast, the log-oriented model of Kafka and Samza is fundamentally built on the idea of composing
heterogeneous systems through the uniform interface of a replicated, partitioned log. Individual systems for data
storage and processing are encouraged to do one thing well, and to use logs as input and output. Even though
Kafka’s logs are not the same as Unix pipes, they encourage composability, and thus Unix-style thinking.

4.4 Limitations

Kafka guarantees a total ordering of messages per partition, even in the face of crashes and network failures.
This guarantee is stronger than most “eventually consistent” datastores provide, but not as strong as serializable
database transactions.

The stream-processing model of computation is fundamentally asynchronous: if a client issues a write to the
log, and then reads from a datastore that is maintained by consuming the log, the read may return a stale value.
This decoupling is desirable, as it prevents a slow consumer from disrupting a producer or other consumers
(Section 4.2). If linearizable data structures are required, they can fairly easily be implemented on top of a
totally ordered log [3].

If a Kafka consumer or Samza job crashes and restarts, it resumes consuming messages from the most
recently checkpointed offset. Thus, any messages processed between the last checkpoint and the crash are
processed twice, and any non-idempotent operations (such as the counter increment in CountWords, Figure 2)
may yield non-exact results. There is work in progress to add a multi-partition atomic commit protocol to
Kafka [11], which will allow exactly-once semantics to be achieved.

Samza uses a low-level one-message-at-a-time programming model, which is very flexible, but also harder to
use, more error-prone and less amenable to automatic optimization than a high-level declarative query language.
Work is currently in progress in the Kafka project to implement a high-level dataflow API called Kafka Streams,
and the Samza project is developing a SQL query interface, with relational operators implemented as stream
processing tasks. These higher-level programming models enable easier development of applications that fit the
model, while retaining the freedom for applications to use the lower-level APIs when required.
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5 Conclusion

We present the design philosophy behind Kafka and Samza, which implement stream processing by composing
a small number of general-purpose abstractions. We draw analogies to the design of Unix, and batch processing
pipelines. The approach reflects broader trends: the convergence between batch and stream processing [1, 4],
and the decomposition of monolithic data infrastructure into a collection of specialized services [12, 28].

In particular, we advocate a style of application development in which each data storage and processing com-
ponent focuses on “doing one thing well”. Heterogeneous systems can be built by composing such specialised
tools through the simple, general-purpose interface of a log. Compared to monolithic systems, such composable
systems provide better scalability properties thanks to loose coupling, and allow easier adaptation of a system to
a wide range of different workloads, such as recommendation systems.
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