
Letter from the Special Issue Editors

The precursors of data-stream systems began to show up in the late 1980s and early 1990s in the form of
“reactive” extensions to data management systems. With such extensions, there was a reversal of sorts between
the roles of data and query. Database requests – in the form of continuous queries, materialized views, event-
condition-action rules, subscriptions, and so forth – became persistent entities that responded to newly arriving
data.

The initial generation of purpose-built stream systems addressed many issues: appropriate languages, deal-
ing with unbounded input, handling delay and disorder, dealing with high data rates, load balancing and shed-
ding, resiliency, and, to some extent, distribution and parallelism. However, integration with other system com-
ponents, such as persistent storage and messaging middleware, was often rudimentary or left to the application
programmer.

The most recent generation of stream systems have the benefit of a better understanding of application re-
quirements and execution platforms, by virtue of lessons learned through experimentation with earlier systems.
Scaling, in cloud, fog, and cluster environments, has been at the forefront of design considerations. Systems
need to scale not just in terms of stream rate and number of streams, but also to large numbers of queries.
Application tuning, operation, and maintenance have also come to the forefront. Support for tradeoffs among
throughput, latency, accuracy, and availability is important for application requirements, such as meeting service-
level agreements. Resource management at run time is needed to enable elasticity of applications as well as for
managing multi-tenancy both with other stream tasks and other application components. Many stream applica-
tions require long-term deployment, possibly on the order of years. Thus, the ability to maintain the underlying
stream systems as well as evolve applications that run on them is critical. State management is also a concern,
both within stream operators and in interactions with other state managers, such as transactional storage. There
has also been a focus on broadening the use of stream-processing systems, but through programming models for
non-specialists and by supporting more complex analyses over streams, such as machine-learning techniques.

This issue is devoted to this next generation of stream-processing, looking at particular systems, specific
optimization and evaluation techniques, and programming models.

The first three papers discuss frameworks that support composing reliable and distributed stream (and batch)
processing networks out of individual operators, but are somewhat agnostic about what the particular operators
are. Samza (Kleppman, et al.) is a stream-processing framework developed initially at LinkedIn that supports
stream operators loosely coupled using the Kafka message broker. The use of Kafka reduces dependencies
between stream stages, and provides replicated logs that support multiple consumers running at different rates.
The next paper (Fu, et al.) introduces Heron, whose API is compatible with Twitters early streaming platform,
Storm. Heron features support sustained deployment and maintenance, such as resource reservations and task
isolation. The paper discusses alternative back-pressure mechanisms, and how Heron supports at-least-once
and at-most-once messaging semantics. Apache Flink (Carbone, et al.) is a framework that supports a general
pipelined dataflow architecture that handles both live stream and historical batch data (and combinations) for sim-
ple queries as well as complex iterative scripts as found in machine-learning. The paper discusses mechanisms
for trading latency with throughput; the use of in-stream control events to help checkpointing, track progress and
coordinate iterations; and low-interference fault-tolerance taking consistent snapshots across operators without
pausing execution.

The next three papers deal with complete systems that include specific query languages. In Connected
Streaming Analytics (CSA) from Cisco (Shen, et al.), stream-processing components can be embedded in net-
work elements such as routers and switches to support Internet-of-Things applications. Given this execution
environment, it is important that stream queries not interfere with high-priority network tasks. CSA uses a con-
tainer mechanism to constrain resources and promote portability. The language is SQL with window extensions.
CSA supports different kinds of window joins: best-effort join combines data immediately on receipt, whereas
coordinated join matches items based on application time, which may require buffering. Trill (Chandramouli, et

2



al.) shares goals with Flink in seeking a single engine that can work for online, incremental and offline process-
ing, and supports latency-throughput tradeoffs as appropriate for different contexts. It takes a library approach
that allows mutual embedding with applications written in high-level languages. Trill queries are written in a
LINQ-based language that supports tempo-relational operations, along with timestamp manipulation capabil-
ities. For performance, it uses a columnar in-memory representation of data batches. The subsequent paper
looks at language runtime support for the IBM Stream Processing Language (SPL) (Schneider, et al.). The SPL
runtime provides certain execution guarantees, such as isolation of operator state and in-order delivery, and sat-
isfies performance goals such as long-term query execution without degradation and efficient parallel execution.
Performance optimizations include both “fusion” (combining operators into a single Processing Element) and
“fission” (replicating a portion of the query graph).

The next three papers consider stream-processing optimizations and guarantees. While several of the sys-
tems in the foregoing papers provide a means to make performance tradeoffs, in practice it can be difficult for
a user to determine the best way to adjust the control knobs. The FUGU stream-processing system (Heinze, et
al.) employs strategies that automate the adjustment of these parameters, based on on-line profiling of query
execution and user-provided latency specifications. The paper from Worchester Polytechnic Institute (Runden-
steiner, et al.) looks at several methods to improve performance of pattern-matching queries, using a variety
of sharing strategies. Examples are Event-Sequence Pattern Sharing, which determines temporal correlations
between sub-patterns in order to decide whether sharing is beneficial, and Shared Event-Pattern Aggregation,
which looks for shared aggregation opportunities at the sub-pattern level. Several early stream systems had
the ability to access stored data in some form, for example, to augment stream events with information from a
look-up table. However, these systems gave limited consistency guarantees, either between the stream and the
stored data, or between shared access to stored data across stream operators. The S-Store system (Tatbul, et
al.) develops a stream-processing model that provides several correctness guarantees, such as traditional ACID
semantics, order-of-execution conditions and exactly-once semantics.

The last two papers are oriented towards application development. Most stream systems require queries
to be written in a special request language or a general-purpose programming language, either of which is a
hurdle for non-CS experts. The Event Model (TEM) (Etzion, et al.) allows a user to specify an event-driven
application by concentrating on application logic, expressed in diagrams and associated condition tables. The
TEM environment can fill in low-level details and manage the conversion to a particular stream-processing
system. “Live” analytics are a major driver of next-generation stream systems. Our final paper looks at mining
for events in a text stream (Grossniklaus, et al.). It adopts a tool-kit approach that allows easy implementation of
many of the published approaches in this domain. In addition, it describes an evaluation platform for comparing
alternative event-detection techniques.

David Maier, Badrish Chandramouli
Portland State University (Maier), Microsoft Corporation (Chandramouli)

3


