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Abstract

Twitter generates tens of billions of events per hour when users interact with it. Analyzing these
events to surface relevant content and to derive insights in real-time is a challenge. To address this, we
developed Heron, a new real time distributed streaming engine. In this paper, we first describe the design
goals of Heron and show how the Heron architecture achieves task isolation and resource reservation
to ease debugging, troubleshooting, and seamless use of shared cluster infrastructure with other critical
Twitter services. We subsequently explore how a topology self adjusts using back pressure so that the
pace of the topology goes as its slowest component. Finally, we outline how Heron implements at-most-
once and at-least-once semantics and we describe a few operational stories based on running Heron in
production.

1 Introduction

Stream-processing platforms enable enterprises to extract business value from data in motion, similar to batch
processing platforms that facilitated the same with data at rest [42]. The goal of stream processing is to enable
real-time or near real-time decision making by providing capabilities to inspect, correlate and analyze data as
it flows through data-processing pipelines. There is an emerging trend to transition from predominant batch
analytics to streaming analytics driven by a combination of increased data collection in real-time and the need
to make decisions instantly. Several scenarios in different industries require stream processing capabilities that
can process millions and even hundreds of millions of events per second. Twitter is no exception.

Twitter is synonymous with real-time. When a user tweets, his or her tweet can reach millions of users
instantly. Twitter users post several hundred million tweets every day. These tweets vary in diversity of content
[28] including but not limited to news, pass along (information or URL sharing), status updates (daily chatter),
and real-time conversations surrounding events such as the Super Bowl, and the Oscars. Due to the volume
and variety of tweets, it is necessary to surface relevant content in the form of break-out moments and trending
#hashtags to users in real time. In addition, there are several real-time use cases including but not limited to
analyzing user engagements, extract/transform/load (ETL), and model building.

In order to power the aforementioned crucial use cases, Twitter developed an entirely new real-time dis-
tributed stream-processing engine called Heron. Heron is designed to provide
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• Ease of Development and Troubleshooting: Users can easily debug and identify the issues in their
topologies (also called standing queries), allowing them to iterate quickly during development. This
improvement in visibility is possible because of the fundamental change in architecture in Heron from
thread based to process based. Users can easily reason about how their topologies work, and profile and
debug their components in isolation.

• Efficiency and Performance: Heron is 2-5x more efficient than Storm [40]. This improvement resulted
in significant cost savings for Twitter both in capital and operational expenditures.

• Scalability and Reliability: Heron is highly scalable both in the ability to execute large numbers of
components for each topology and the ability to launch and track large numbers of topologies. This large
scale results from the clean separation of topology scheduling and monitoring.

• Compatibility with Storm: Heron is API compatible with Storm and hence no code change is required
for migration.

• Simplified and Responsive UI: The Heron UI gives a visual overview of each topology. The UI uses
metrics to show at a glance where the hot spots are and provides detailed counters for tracking progress
and troubleshooting.

• Capacity Allocation and Management: Users can take a topology from development to production in
a shared-cluster infrastructure instantly, since Heron runs as yet another framework of the scheduler that
manages capacity allocation.

The remainder of this paper is organized as follows. Section 2 presents related work on streaming systems.
The following section, Section 3 describes the Heron data model. Section 4 describes the Heron architecture
followed by how the architecture meets the design goals in Section 5. Section 6 discusses some of the operational
aspects that we encountered while running Heron at Twitter specifically back-pressure issues in Section 6.1, load
shedding in Section 6.2, and Kestrel spout issues in Section 6.3. Finally, Section 7 contains our conclusions and
points to a few directions for future work.

2 Related Work

The importance of stream-processing systems was recognized in the late 1990s and early 2000s. From then
on, these systems have gone through three generations of evolution. First-generation systems were either main-
memory database systems or rule engines that evaluate rules expressed as condition-action pairs when new events
arrive. When a rule is triggered, it might produce alerts or modify the internal state, which could trigger other
rules. These systems were limited in functionality and also did not scale with large-data-volume streams. Some
of the systems in this generation include HiPAC [29], Starburst [43], Postgres [37], Ode [31], and NiagaraCQ
[27].

Second-generation systems were focused on extending SQL for processing streams by exploiting the simi-
larities between a stream and a relation. A stream is considered as an instantaneous relation [22] and streams can
be processed using relational operators. Furthermore, the stream and stream results can be stored in relations
for later querying. TelegraphCQ [25] focused on developing novel techniques for processing streams of con-
tinuous queries over large volume of data using Postgres. Stanford stream manager STREAM [21] proposed a
data model integrating streams into SQL. Aurora [18] used operator definitions to form a directed acyclic graph
(DAG) for processing stream data in a single node system. Borealis [17] extended Aurora for distributed stream
processing with a focus on fault tolerance and distribution. Cayuga [30] is a stateful publishe-subscribe system
that developed a query language for event processing based on an algebra using non-deterministic finite state
automaton.
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Because these second-generation systems were not designed to handle incoming data in a distributed fashion,
a need for a third generation arose as Internet companies began producing data at a high velocity and volume.
These third-generation systems were developed with the key focus on scalable processing of streaming data.
Yahoo S4 [3] is one of the earliest distributed streaming systems that is near real-time, scalable and allows for
easy implementation of streaming applications. Apache Storm [40] is a widely popular distributed streaming
system open sourced by Twitter. It models a streaming analytics job as a DAG and runs each node of the DAG
as several tasks distributed across a cluster of machines. MillWheel [19] is a key-value based streaming system
that supports exactly once semantics. It uses BigTable [26] for storing state and checkpointing. Apache Samza
[4] developed at LinkedIn, is a real-time, asynchronous computational framework for stream processing. It uses
several independent single-stage computational tasks for stitching together a topology similar to Storm. Each
stage reads one or more streams from Apache Kafka [32] and writes the output stream to Kafka for stitching
together a processing DAG.

Apache Spark [5] supports streaming using a high-level abstraction called a discretized stream, Spark runs
short tasks to process these discretized streams and output results to other systems. In contrast, Apache Flink [2]
uses a distributed streaming dataflow engine and asynchronous snapshots for achieving exactly once semantics.
Pulsar [35] is a real time analytics engine open sourced by eBay and its unique feature is its SQL interface.
Some of the other notable systems include S-Store [34] Akka [1], Photon [20], and Reactive Streams [11]. In
addition to these platforms, several commercial streaming systems are available in the market [7], [8], [9], [12],
[13]i, [14], and [15].

3 Heron Data Model

Heron uses a directed acyclic graph (DAG) for representing a real-time computation. The graph is referred to as
a topology. Each node in the topology contains processing logic, and the links between the nodes indicate how
the data flows between them. These data flows are called streams. A stream is an unbounded sequence of tuples.
Nodes take one or more streams and transform them into one or more new new streams. There are two types
of nodes: spouts and bolts. Spouts are the sources of streams. For example, a Kafka [32] spout can tap into
a Kafka queue and emit it as a stream. A bolt consumes tuples from streams, applies its processing logic and
emits tuples in outgoing streams. Typical processing logic includes filtering, joining and aggregation of streams.
An example topology is shown in Figure 1.

Figure 1: Heron Topology

In this topology, the spouts S1 taps into its data source and emits two streams consumed by the first stage
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bolts B1, and B2. These bolts transform the streams and emit three new streams feeding bolts B3 and B4.
Since the incoming data rate might be higher than the processing capability of a single process or even a single
machine, each spout and bolt of the topology is run as multiple tasks. The number of tasks for each spout and
bolt is specified in the topology configuration by the programmer. Such a task specification is referred to as the
degree of parallelism. The topology shown in Figure 1, when instantiated at run time is illustrated in Figure 2.
The topology, the task parallelism for each node and the specification about how data should be routed form the
physical execution plan of the topology.

Figure 2: Physical Execution of a Heron Topology

4 Heron Architecture

The design goals for Heron are multifold. First, the spout and bolt tasks need to be executed in isolation. Such
isolation will provide the ability to debug and profile a task when needed. Second, the resources allocated to
the topology should not be exceeded during the execution of the topology. This requirement enables Heron
topologies to be run in a shared cluster environment alongside other critical services. Third, the Heron API
should be backward compatible with Storm and a migrated topology should run unchanged. Fourth, Heron
topologies should adjust themselves automatically when some of their components are executing slowly. Fifth,
Heron should be able to provide high throughput and low latency. While these goals are often mutually exclusive,
Heron should expose the appropriate knobs so that users can balance throughput and latency needs. Sixth, Heron
should support the processing semantics of at most once and at least once. Finally, Heron should be able to
achieve high throughput and/or low latency while consuming a minimal amount of resources.

To meet the aforementioned design goals, Heron uses the architecture as shown in Figure 3. A user writes
his or her topology using the Heron API and submits to a scheduler. The scheduler acquires the resources (CPU
and RAM) as specified by the topology and spawns multiple containers on different nodes. The first container,
referred to as the master container, runs the topology master. The other containers each run a stream manager,
a metrics manager and several processes called instances that execute the processing logic of spouts and bolts.

The topology master is responsible for managing the entire topology. Furthermore, it assigns a role or group
based on the user who launched the topology. This role is used to track the resource usage of topologies across
different teams and calcuate the cost of running them for reporting. In addition, the topology master acts as
the gateway to access the metrics and status of the topology. Once the topology master comes up in the master
container, it advertises its location in the form of a host and port via an ephemeral Zookeeper [6] node. This
node allows other containers to discover the location of the topology master and also prevents multiple topology
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Figure 3: Heron Topology Architecture

masters becoming master during network partitioning. We use an ephemeral node in Zookeeper because when
the topology master dies, it detects the loss of session and automatically removes the node.

A network of stream managers route data tuples from one Heron instance to other Heron instances. Each
container has a stream manager and the Heron instances in that container send and receive data from it. Even
data tuples destined for local Heron instances in a container are routed through the stream manager. When a
container is scheduled, the stream manager comes up and discovers where the topology master is running. The
stream manager forms a handshake request that includes the host and port on which it is listening and sends it
to the topology master. This host and port information allows the topology master to assemble the physical plan
and push the plan to all the stream managers. Once stream managers get the physical plan, they connect with
other stream managers to form a fully connected graph, as shown in Figure 3.

Figure 4: Dataflow in Heron

19



A Heron instance runs the processing logic in spouts or bolts. Each Heron instance is a process running a
single spout task or a bolt task. The instance process runs two threads –the gateway thread and the task-execution
thread. The gateway thread communicates with the stream manager to send and receive data tuples from the
stream manager. The task-execution thread runs the user code of the spout or bolt. When the gateway thread
receives tuples, it passes them to the task-execution thread. The task-execution thread applies the processing
logic and emits tuples, if needed. These emitted tuples are sent to the gateway thread, which passes them to the
stream manager. In addition to tuples, the task-execution thread collects several metrics. These are passed to the
gateway thread, which routes them to the metrics manager.

The metrics manager is responsible for collecting metrics from all instances and exporting them to the
metrics-collection system. The metrics-collection system stores those raw metrics and allows for later analysis.
Since there are several popular metrics-collection systems, the metrics manager exposes a generic abstraction.
This abstraction facilitates ease of implementation for routing metrics to various different metrics-collection
systems.

5 Achieving Design Goals

As mentioned in the previous section, Heron was developed with certain design goals in mind. In this section,
we examine how we achieved each one of them in detail.

5.1 Task Isolation

Since a Heron instance executes a single task in a dedicated process, it is entirely isolated from other spout and
bolt tasks. Such task isolation provides several advantages. First, it is easy to debug an offending task, since the
logs from its instance are written to a file of its own providing a time ordered view of events. This ordering helps
simplify debugging. Second, one can use performance-tracking tools (such as YourKit [16], etc) to identify the
functions consuming substantial time, when a spout or bolt task is running slowly. Third, it allows examination
of the memory of the process to identify large objects and provide insights. Finally, it facilitates the examination
of execution state of all threads in the process to identify synchronization issues.

5.2 Resource Reservation

In Heron, a topology requests its resources in the form of containers, and the scheduler spawns those contain-
ers on the appropriate machines. Each container is assigned the requested number of CPU cores and memory.
Once a certain amount of resources (CPU and RAM) are assigned to a topology, Heron ensures that they are
not exceeded. This monitoring is needed when Heron topologies are run alongside other critical services in
a shared infrastructure. Furthermore, when fragments of multiple topologies are executing in the same ma-
chine, resource reservation ensures that one topology does not influence other topologies by consuming more
resources temporarily. If resource reservation is not enforced, it would lead to unpredictability in the behavior
of other topologies, making it harder to track the underlying performance issues. Each container is mapped to a
Linux cgroup. This ensures that the container does not exceed the allocated resources. If there is an attempt to
temporarily consume more resources, the container will be throttled, leading to a slowdown of the topology.

5.3 Self Adjustment

A typical problem seen in streaming systems, similar to what is seen in batch systems, is that of stragglers. Since
the topology can process data only as fast as its slowest component, stragglers cause lag in the input data to build
up. In such scenarios, a streaming system tends to drop data at different stages of the DAG. This dropping of
results in either data loss or replay of data multiple times. A topology needs to adjust its pace depending on the
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prevailing situations. Some of these situations are data skew, where a bolt instance is receiving more data than
it can process, and when a fragment of the topology is scheduled on a slow node.

During such scenarios, some feedback mechanism should be incorporated to slow down the topology tem-
porarily so that the data drops are minimized. Heron implements a full fledged back-pressure mechanism to
ensure that the topology is self adjusting. We investigated two back-pressure approaches –TCP-based back
pressure and spout-based back pressure.

The TCP protocol uses slow-start and sliding-window mechanisms to ensure that the sender is transmitting
at the rate the receiver can consume. Hence it is natural to ask whether Heron could leverage the TCP protocol
for back pressure. But due to the multiplexing nature of the stream manager, where multiple logical transport
channels are mapped on a single physical channel, TCP-based back pressure could slow upstream or downstream
spouts or bolts. To illustrate this possibility, consider the physical execution of the topology in Figure 1 with four
containers as shown in Figure 5. Assume that an instance of Bolt B3 in Container A is going slow. As shown in
Figure 1, Bolt B3 receives input from Bolt B1 which means all instances of Bolt B3 will receive input from all
instances of B1. Hence, the stream manager in Container A will receive input from bolt instances of B1 running
in Containers C and D. Since the instance of Bolt B3 in Container A is going slow, its stream manager will not
take any additional input from the stream managers of the containers C and D. Since the connection between
stream managers use TCP sockets, eventually the socket send buffers in stream managers in Containers C and D
will fill up. As a result, the data exchange between Bolt B1 and B2 (shown in green) in containers C and D with
bolt B4 (shown in green) in Container A is affected. We found that for some topologies, such situations could
eventually drive the throughput to zero.

Figure 5: TCP Back Pressure

We considered another approach called spout-based back pressure. This approach is based on the observation
that spouts are the sources of data and we can manage when they emit or suspend the injection of data. In other
words, whenever a stream manager detects one of the instances is going slow, it will explicitly send an initiate-
back-pressure message to all the other stream managers. When a stream manager receives this message, it
examines the physical plan and, if there are any spouts running in the container, it will not consume data from
them. To illustrate, again consider the physical execution of topology in Figure 1 as shown in Figure 6. When
the Bolt B3 in Container A goes slower, its stream manager sends the initiate-back-pressure message to stream
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managers of all the containers. Upon receiving this message, the stream managers in Containers B and C do not
consume data from their spouts, in this case, Spout S1 (shown in blue). This action reduces the data inflow into
the topology thereby self adjusting. Once the Bolt B3 picks up pace, its stream manager sends a relieve-back-
pressure message to all other stream managers. They act on this message by starting to consume from their local
spouts. More details about the back pressure mechanism can be found in Kulkarni, et al. [33].

Figure 6: Spout Back Pressure

5.4 Processing Semantics

In order to provide predictability, a stream processing system needs to provide guarantees on the data that passes
through it. Heron supports two different types of processing semantics:

• At most once: In this semantics, the processing is best effort. In the presence of node or process failures,
the data processed by the streaming system could be lost. Hence, the number of data tuples processed
might be lower than the actual number of data tuples, which could affect the results.

• At least once: In this semantics, the system guarantees that the data is processed at least once. If the
data is dropped during node or process failures, it is reprocessed. It is possible that the same data tuple
is processed more than once. Hence, the number of data tuples processed might be higher than the actual
number of data tuples, again potentially affecting the results.

Incorporating at-most-once semantics in Heron is straight forward. A Heron topology continuously pro-
cesses data and, during processing, the data moves from instance to stream manager and between stream man-
agers. When an instance in a container fails, the state accumulated by the bolt or spout is lost. After restart, it
connects with the stream manager and continues to receive and process data thereby, accumulating new state.
Similarly, when a stream manager in a container dies, it restarts and reconnects to other stream managers and
resumes processing. If an entire container fails due to node failure, the container is relocated to another node.
Once the stream manager and instances in the relocated container come up, the data processing continues. Dur-
ing relocation, the data intended for the failed stream manager from other stream managers could be dropped or
if the data is buffered, the buffers could overflow, eventually dropping data.
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6 Heron in Practice

Heron has been in production at Twitter for over two years. It is used for diverse use cases such as real-time
business intelligence, real-time machine-learning, real-time classification, real-time engagements, computing
real-time trends, real-time media, and real-time monitoring. In this section, we will explore some of operational
issues that occur in practice and how we solve them.

6.1 Back Pressure

Spout-based back pressure helped us reduce data loss significantly as stragglers are the norm in multi-tenant
distributed systems. The Heron back-pressure recovery mechanism allows us to process data at a maximal rate
such that the recovery times are very low. Since most topologies are provisioned with extra capacity to handle
increased traffic during well-known events (such as the Super Bowl and the Oscars), the recovery rate is usually
much higher than the steady state. In cases where the topologies have not been provisioned to handle increased
traffic, the back pressure mechanisms act as a shock absorber to handle any temporary spikes. In cases where
these spikes are not temporary, back pressure also allows users to add more capacity and restart their topologies
with minimal loss of data.

We have encouraged topology writers to test their back pressure (and recovery) mechanism in staging envi-
ronments by artificially creating traffic spikes (e.g., by reading from older offsets in Kafka). This practice allows
them to understand the dynamic behavior of back pressure and measure the recovery time. To monitor this pro-
cess in real time, several metrics have been exposed on the dashboard. Back pressure also helps topology writers
in tuning their topology. Since we do not have auto tuning (yet), users are required to use trial and error to get
the correct values for resource allocation and parallelism of the components. By looking at the back pressure
metrics, they can identify which of the components are under back pressure and correspondingly increase the
resources or parallelism until there is no back pressure in steady state.

In our experience, we have found that in most scenarios, back pressure recovers without manual intervention.
However, there are cases where a particular component in topology gets scheduled on a faulty host or goes into
irrecoverable garbage-collection cycles (for various reasons). Under such scenarios, users get paged, upon
which they usually restart those components to get the problem fixed. While most users see back pressure as a
requirement, some users prefer dropping data as they only care about the latest data. To handle such cases, we
added the load-shedding feature in spouts as decribed in the following section.

6.2 Load Shedding

Load shedding has been studied extensively in the context of second-generation streaming systems [23, 24,
36, 38, 39, 41]. Most of the proposed alternatives fall into two broad categories, sampling-based approaches
and data-dropping-based approaches. The idea behind sampling-based approaches is that if the system can
automatically downsample an incoming stream in a predictable way, the user can potentially scale up the results
of the computation in order to compensate. For example, if a Heron topology is counting widgets and the stream
is being downsampled by 50%, the user can simply multiply the widget counts by two for each widget that is
present in the stream and therefore still get approximately correct results.

The common theme of sampling approaches is that a more uniformly sampled stream is easier to reason
about and a user could also use the information about the sampling rate to scale the output of the computations,
which is a very desirable property. However, for sampling to be useful to applications, it would be important
that the sampling was done on a global level.

If each spout instance was individually sampling at different times and different rates the value of uniform
sampling to applications programmers is pretty much negated. The system would lose the property that it is
easy to reason about the sampling that is happening and also the ability to properly scale the output of the

23



computation based on the sampling rate. Due to these limitations and its considerably higher complexity, we did
not implement the sampling-based approach.

On the other hand, the idea behind dropping-based approaches is that the system will simply drop older data
and prefer more recent data when the Heron topology is unable to keep up. Heron spouts are modified such that
the user can configure a lag threshold and a lag-adjustment value. The lag threshold will indicate how much lag
is tolerable before the spout drops any data. The lag-adjustment value will indicate how much of the old data
the system will drop when this threshold is reached.

Given the two values described above, the system will monitor the lag for each individual spout instance
and periodically skip ahead by the lag adjustment value whenever the lag is above the threshold value. A key
point here is that the decision to drop data is a completely local decision in each spout instance. There will
be no attempt made to synchronize amongst different spouts or otherwise coordinate such that the spouts work
together in deciding what data to drop. Each spout drops data from its associated Kafka or Eventbus partition
and no communication between spouts will occur.

6.3 Kestrel Spout

Kestrel [10] is a simple distributed message-queuing system. Each Kestrel host handles a set of reliable, and
ordered, message queues. A Kestrel cluster consists of several such hosts with no communication between them.
Whenever a client is interested in enqueuing or dequeuing an item, it randomly picks a host, thereby providing
reliable, loosely ordered message queue behavior. An attractive property of Kestrel is its ability to scale, since
servers do not communicate with each other and have no need for any coordination.

Unlike Kafka [32], Kestrel is stateful. In order to maintain state, Kestrel replicates data for every consumer.
In other words, Kestrel assumes only one consumer per physical queue. An item in the queue is removed only
after a client dequeues and then acknowledges it. If two different instances of a consumer are consuming from
the same Kestrel queue, it is guaranteed that they will never receive same item, given that they acknowledge
their respective items. If the item is not acknowledged within a specified amount of time, it is placed back in the
queue for the next instance to receive.

We started with the open source Kestrel spout and it worked reasonably well. However, as traffic grew,
Heron topologies using Kestrel spouts faced several issues, such as:

• One or more Kestrel hosts would start accumulating data and not drain. The immediate resolution is to
manually mark those servers as read only until they drain, and enable writes once the number of items to
be consumed goes below a certain threshold. This approach presents an operational challenge, especially
during non-working hours. When a host is not getting drained, it affects the performance of other queues
it needs to service as well. One possible solution is to set maxItems (the maximum number of items held
in queue) and maxAge (maximum amount of time an item stays in the queue before it is deleted) limits
on the queues to be small, so that the size of queue does not grow to affect other queues on the host. But
this solution results in data loss for the job consuming this queue.

• A Kestrel spout would pack the Kestrel client (or connection) along with the data in a tuple. This would
cause the spout to become stateless, because when the tuple came back to the spout to get acknowledged,
it just extracted the client from the tuple and acknowledged it back to Kestrel host to retire the tuple. The
problem with this approach was that the tuple size grew, and it carried extra load for no reason, which
resulted in extra data transfers, and more serialization and deserialization costs.

• A Kestrel spout would create a new connected client every time it requested the next batch of items from
Kestrel. While this behavior has no effect on topologies with low throughput, for more data-heavy topolo-
gies, the number of connections to a host grew without bound. Some of the spout-related configurations,
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such as maximum spout pending (limits the number of tuples in flight in a topology, so the spouts do not re-
quest an unbounded number of tuples) often hid this problem. Furthermore, creation of many connections
exacerbated garbage-collection issues.

The root cause for one or more Kestrel hosts not draining was triggered by the use of Zookeeper to discover
Kestrel hosts. Specifically, the Kestrel spout used a service factory for creating a connection to one of the Kestrel
hosts in the server set, The factory did not provide any guarantees that all the hosts would be connected and read
evenly. As a result, some of the servers were occasionally left out, causing items from those servers to not be
consumed. Our initial solution was to fetch all the hosts from the Kestrel server set, and read from each server
in a round-robin fashion. This practice ensured that no server is left unread, while giving all the hosts equal
priority. This approach worked even during times of high load, because it is assumed that to achieve steady state,
the read rate has to be higher than the write rate. So even in case of high load, round robin would drain the full
queues, and bring the system to steady state.

Soon we saw an issue where instead of one Kestrel host lagging, all of the hosts were backing up. This issue
was traced to one host being unable to respond and because of the round robin policy, all the hosts were read
at the pace of the slowest one. The actual slow down of the host was due to disk writes for logging. Hence, an
approach was needed to decouple a slow host from others temporarily. To solve the issue, each spout instance
is assigned a configurable number of Kestrel hosts. These assignments were not mutually exclusive, and had
overlaps. The three main properties of these assignments are:

• Each spout instance reads from a subset (more than one) of Kestrel hosts.

• Each Kestrel host is read by a subset (more than one) spout instances.

• If any two Kestrel hosts, A and B, are read by one spout instance, then there exists a spout instance that
reads from host A and not B, and another instance that reads from host B and not A.

The last property ensures that if one Kestrel host slows down, the rest of the hosts will be read without any
penalties. And using round-robin reads ensures that the slow host will not be left out, and will still be drained.

The issue of passing a Kestrel client was fixed by mapping each tuple to its Kestrel client using a combination
of a generated unique identifier and the original item identifier provided by the Kestrel host. This approach also
prevented the creation of several client objects by reusing existing Kestrel client objects. Finally, we added
configuration parameters to control both the number of connections per Kestrel host from a spout instance and
the number of pending items per connection, which helped in playing nice with Kestrel.

7 Conclusion

Heron has become the de-facto real-time streaming system at Twitter. It runs several hundred development and
production topologies and been in production for more than two years. Several teams in Twitter use Heron for
making real-time data-driven decisions that are business critical. Heron is used for several diverse use cases
ranging from ETL to building machine-learning models and is expanding rapidly. These use cases require
additional future work to evolve Heron.

First, manual resource assignment for a topology when it goes production currently requires several itera-
tions. Each iteration involves changing the configuration parameters, recompiling and redeploying. For large
topologies, each iteration is very expensive. We want to explore an elegant solution for estimating initial re-
source requirements using a combination of data-source characteristics, sampling and linear regression. Second,
the topologies are often overprovisioned to accommodate peak loads during popular events to avoid manual
intervention. This policy led to resource wastage and hence we are investigating approaches where the topology
can expand automatically and shrink depending on traffic variations. Third, we want to support a declarative
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query paradigm that allows users to write queries faster and be more productive. Fourth, in some uses cases, we
have to guarantee data processing by the topology is exactly once. The problems of auto-scaling and exactly
once will require distributed partitionable state and additional Heron APIs.
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