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Abstract

Social media data streams are an invaluable source for timely and up-to-date information about current
events. As a consequence, several event detection techniques have been proposed in the literature in
order to tap this information source. However, most of these proposals focus on the information extrac-
tion aspect of the problem and tend to ignore the streaming nature of the input. The work conducted
in our research group therefore intends to address these stream-related challenges, such as detecting
events incrementally, reporting them in (near) real-time, and coping with fluctuations and spikes in the
social media data stream. In this article, we report on the results that we obtained so far and outline our
research agenda for the remainder of this work.

1 Introduction

Twitter currently has 320 million monthly active users who author over 500 million tweets per day that consist of
up to 140 characters each.1 These impressive usage statistics make Twitter the most popular and fastest-growing
microblogging service on the planet. In the domain of social media, microblogging enables users to send short
messages, links, and audiovisual content to a network of followers, as well as to their own public timeline. Due
to their brevity, tweets are an ideal mobile communication medium, which is evidenced by the fact that 80% of
Twitter’s active users are on mobile devices. As a consequence, several proposals have been made to leverage
social media data streams as “social sensors” [15] in order to obtain information about current events as they
unfold. For example, Twitter data has been used to alert people in case of an outbreak of an infectious disease [9],
to quickly respond to natural disasters [15], and to monitor political elections [21].

The problem of detecting events in text-based corpora is not a novel one and has been addressed by research
from the area of Topic Detection and Tracking (TDT) for traditional media such as newspaper archives and
news websites. In these domains, an event is defined as a real-world occurrence that takes place in a certain
geographical location and over a certain time period [3]. In comparison to these information sources, social me-
dia data streams such as Twitter introduce additional challenges. First, tweets are much shorter than traditional
documents and therefore harder to classify. Second, tweets do not undergo an editorial process and can thus
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contain a substantial amount of spam, typos, slang, etc. Finally, the rate at which tweets are produced is very
bursty and continually increases as more people adopt Twitter every day.

The techniques that have been proposed for event detection in social media and, in particular, for Twitter
have more or less focused exclusively on the information extraction aspect of the problem. Because of this
research direction, the challenges that are related to the streaming nature of the input data have so far been
largely ignored by these approaches. For example, many techniques use (large) tumbling windows to process
the stream, rather than online or streaming algorithms, and are therefore often unable to report events in (near)
real-time. Furthermore, event detection often depends on a complex set of parameters, such as thresholds that
control what is considered to be an event. Existing approaches typically assume that these parameters can be
calibrated empirically by running the technique on sample data until it produces the desired result. Since the
data in the stream may change both qualitatively and quantitatively over time, we argue that techniques that are
based on fixed parameters are neither realistic nor feasible.

The work that our research group conducts on this topic intends to address this need for streaming and
adaptive event detection techniques for Twitter. Due to this focus, our work is situated in the area of Data
Stream Management Systems (DSMS) research. Since event detection and tracking is a vast field of research
in itself, we concentrate on the specific task of first story detection, i.e., the detection of general (unknown)
events, which has been defined as a subtask of TDT [3]. In this article, we report results that we obtained so
far and outline future research directions. We begin in Section 2 by giving a brief overview over the state of the
art in event detection techniques for Twitter, including our own. Section 3 presents an evaluation platform that
supports the systematic study and comparison of such techniques. In our work, we use this platform in order
to gain a better understanding of how different parameter settings affect the trade-off between processing time
and result quality in existing event detection techniques. In Section 4, we outline how this empirical research
will contribute to building event detection techniques that can adapt to content and volume changes in the social
media data stream. Finally, we give concluding remarks in Section 5.

2 Event Detection Techniques

In recent years, numerous techniques to detect events in social media data streams and, in particular, Twitter have
been proposed. Rather than presenting a comprehensive survey of event detection techniques, we introduce five
examples in this section. The first three examples are existing approaches that we studied in detail in previous
work [18, 19]. The remaining two examples are approaches that we proposed ourselves in an effort to develop
techniques that process their input in a fully streaming and incremental manner. For a more detailed discussion
of the state of the art, we refer the interested reader to one of the existing surveys on this subject. For example,
the survey of Nurwidyantoro and Winarko [14] summarizes 11 techniques to detect disaster, traffic, outbreak,
and news events. The survey of Madani et al. [12] presents 13 techniques that each address one of the four
challenges of health epidemics identification, natural events detection, trending topics detection, and sentiment
analysis. A more general survey with a wide variety of research topics related to sense making in social media
data is presented by Bontcheva and Rout [7]. Finally, Farzindar and Khreich [10] conducted an extensive survey
of techniques that are specifically intended to detect events in the Twitter social media data stream.

EDCoW (Event Detection with Clustering of Wavelet-based Signals) [21] is one of the most-cited event
detection techniques. In the first step, this algorithm applies a time-based tumbling window of size s to the
stream to partition it into non-overlapping segments. For each window instance, it then builds the DF-IDF
signals for each distinct term in the segment. The DF-IDF is similar to the TF-IDF that is commonly used in
information retrieval to measure the importance of a word (term). Since multiple occurrences of the same term
in one document (tweet) are typically associated with the same event, the DF-IDF only counts the number of
documents that contain the term. On each of these signals, a discrete wavelet analysis is performed in order
to build a second signal in which each data point summarizes a sequence of values of length ∆ from the first
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signal. Trivial terms are filtered out in the next step by checking the corresponding signal auto-correlations
against a threshold γ. A modularity-based graph partitioning technique is then applied to the remaining terms
in order to form events by clustering them. Finally, another threshold ϵ is used to filter out insignificant events.
In the original paper, EDCoW is evaluated on a month’s worth of Twitter data that was gathered in June 2010
by collecting the tweets from the top 1000 Singapore-based users and their friends within two hops. The initial
window size s was set to a whole day.

The WATIS (Wavelet Analysis Topic Inference Summarization) [8] event detection technique is similar to
EDCoW in that it first segments the stream into time-based windows of size s and then builds the DF-IDF signals
for each distinct term. However, before these signals are further analyzed, they are smoothed using an Adaptive
Kolmogorov-Zurbenko (KZA) [22] low-pass filter that calculates a moving average with ikz iterations over n
intervals. Based on these smoothed signals a time-frequency representation is constructed using continuous
wavelet transformation. On this representation two wavelet analyses are performed in order to detect unexpected
shifts in the frequency of a term: the tree map of the continuous wavelet extrema and the local maxima detection.
Finally, Latent Dirichlet Allocation (LDA) [6] with ilda iterations is used to enrich event terms with co-occurring
terms. The technique is evaluated by applying it to a dataset consisting of 13.6 million tweets, which were
gathered over a period of eight days. In this evaluation, the technique was used to process the entire dataset at
once, i.e., the initial window has a size s of 192 hours.

As the previous approaches, enBlogue [4] uses a time-based tumbling window of size s to segment the stream
before processing it.2 For each window, so-called “seed tags” are identified based on their popularity, which is
computed as the relative frequency of a term in a window. Topics are modeled as pairs of tags, which are formed
by measuring the correlation between two documents that contain the tags using the Jaccard coefficient. A topic
is considered to be an emergent event if its current behavior is different from its previous behavior, i.e., if there
is an unexpected shift in its popularity. All topics are then ranked according to their degree of emergence and
the top k topics are reported as events. In the original evaluation, the size s of the initial window is set to one
hour and the result quality of the detected events is assessed based on a user study.

To conclude this section, we present two simple event detection techniques that we developed in previous
work. The goal of both techniques is to reduce the latency with which events can be reported, but each technique
follows a different approach to do so. In contrast to the techniques described above, LLH [20] reduces the
processing required to detect events. It simply calculates a log-likelihood measure for the frequency of all
distinct terms in the current time-based tumbling window (s = 1 hour) against their frequency in the previous
window. For the top N terms ranked according to this ratio, the corresponding top four most co-occurring terms
are computed and the resulting term set is reported as an event. Our second technique, Shifty [17], aims to reduce
latency by using both shorter and sliding windows to segment the stream. It detects events by monitoring the
IDF values of distinct terms in successive sliding windows. For each term in a (tumbling) window of size s = 1
minute, Shifty computes the IDF value and filters out terms with an IDF value above the window average. In
order to calculate the IDF shift for each remaining term from one window to the next, a window with size s1 that
slides with range r1 is built in the next step. Only terms with a shift above the average shift are retained. In the
last step, another sliding window with size s2 that slides with range r2 is built. This window is used to calculate
the total shift value as the sum of all shift values of the sub-windows. Terms with a total shift value greater than
Ω are detected as events and reported together with their top four co-occurring terms.

2In their original paper, Alvanaki et al. [4] state that enBlogue uses sliding windows. However, only the value for the size of the
window is given, while the value for the slide range is never mentioned. Personal communication with one of the authors confirmed that
indeed a tumbling window is used.
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Figure 1: Overview of the evaluation platform for Twitter event detection techniques.

3 Evaluation Platform

In order to understand how our own approaches compete with the current state of the art, we designed and devel-
oped an evaluation platform for event detection techniques. Figure 1 gives a schematic overview of this platform
and its components. The first component is a tweet repository that we host on our servers, which contains a
randomly sampled 10% sub-stream of the public live stream of Twitter. The repository is continuously updated
with new tweets that we have been gathering since 2012 using the Twitter Streaming API3 with the so-called
“Gardenhose” access level. At the moment, the repository contains about 10 TB of data, which corresponds to
over 50 billion tweets at an average rate of 2.5 million tweets/hour.

The next component of our evaluation platform is a toolkit that can be used to experiment with existing
and new event detection techniques in a controlled environment. In order to obtain reliable performance mea-
surements that can be compared fairly, we propose to realize all studied event detection techniques in a DSMS.
For this purpose, we currently use Niagarino4, a lightweight and extensible DSMS that we develop and main-
tain in our research group. The main purpose of Niagarino is to serve as an easy-to-use research platform for
streaming applications such as the ones presented in this article. Many of its concepts can be traced back to a
series of pioneering data stream management systems, such as Aurora [2], Borealis [1], and STREAM/CQL [5].
In particular, Niagarino is an offshoot of NiagaraST [11], with which it shares the most common ground. The
representation of event detection techniques as query plans is one of the key benefits of our approach. Using
Niagarino’s textual plan description format or the graphical plan builder that we are currently developing, new
techniques can be easily developed by modifying existing plans or by creating new ones. In order to further
simplify this task, our toolkit already provides a number of building blocks that are common to many event
detection techniques, such as operators to tag tweets with their languages, to filter tweets that contain spam, and
to remove terms that are considered noise or stop-words. Finally, additional operators that cannot be assembled
from already existing ones can be added to our toolkit with limited programming overhead due to Niagarino’s
modular architecture.

The last component of our platform is a toolkit to evaluate event detection techniques. By providing this
toolkit, we address two shortcomings of the current state of the art. First, very few authors of existing event
detection techniques have evaluated the performance of their approach in comparison to other techniques. Nev-
ertheless, factors such as throughput, latency, and memory usage are particularly crucial to the feasibility of
an approach in a highly volatile streaming setting such as Twitter. Our toolkit therefore provides a number of
measures that can be used to study and compare these performance characteristics of event detection techniques.
Second, the quality of the results, i.e., the validity of the detected events, is another factor that is paramount to
the usefulness of an approach. While some authors of previous approaches have evaluated the results of their
technique using a manually crafted ground truth or based on a user study, very few have compared their results

3https://dev.twitter.com (November 24, 2015)
4http://www.informatik.uni-konstanz.de/grossniklaus/software/niagarino/ (November 24, 2015)
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Figure 2: Niagarino query plans for the preprocessing and the five example event detection techniques.

to competing approaches. One reason for this lack of comparative and systematic evaluation is that crafting a
ground truth manually does not scale to the volume of the Twitter data stream and conducting user studies is
time-consuming and expensive. In our work [18, 19], we have therefore focused on quality measures that can
be applied automatically. For example, we propose to measure precision by matching detected events to a com-
bination of Web search-engine results and knowledge bases such as DBpedia5. We follow a similar approach
to measure recall by crawling the daily headlines of new archives such as Bloomberg and the New York Times.
Based on precision and recall, we are able to calculate the F1 score for a studied technique. It is important to
note that values computed by these measures cannot be used to support any absolute conclusions about a single
technique. However, they can be used to draw relative conclusions by comparing different techniques or multiple
configurations of the same technique.

We have used this platform to conduct an extensive study of the event detection techniques introduced in the
previous section. Figure 2 shows the corresponding Niagarino query plans as well as the preprocessing subplan
that is common to all approaches. As a complete discussion of the results is out of the scope of this article,
we refer the interested reader to our previous work. Weiler et al. [18] presents the evaluation measures that
we defined. In order to demonstrate that these measure are useful, we apply them to both well-known event
detection techniques and baseline approaches. The comparison of the results clearly show that our measures
can discriminate between actual event detection techniques and approaches that, for example, simply select
random or most frequently occurring terms. In Weiler et al. [19], we use these measures to study a number of
event detection techniques in terms of performance and result quality. With respect to result quality (F1 score)
our study confirms that the status of both EDCoW and WATIS as frequently cited event detection techniques
is well-deserved as they detect events more reliably than other techniques. However, this result quality comes
at the price of lower throughput (tweets/second). In particular, WATIS would not be capable of handling the
full 100% stream of Twitter on current server hardware, owing to the expensive LDA operator towards the
end of the query network. In contrast, our own techniques, LLH and Shifty, score very well with respect to
this performance measure. While LLH scores quite low in terms of result quality, Shifty is a close runner-up
behind the more complex event detection techniques. We therefore conclude that Shifty represents an interesting
trade-off between performance and result quality that we will investigate further in the future.

5http://dbpedia.org (November 24, 2015)
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4 Future Work

Building on the work presented in this article, we are currently conducting research to address the need for
adaptive event detection techniques for the Twitter social media data stream. In order to do so, we follow two
lines of work.

First, we are studying methods to automatically determine the parameter settings of event detection tech-
niques. As outlined in Section 2, current techniques depend on a number of parameters that directly affect
performance and result quality of an approach. The ability to determine and adjust these parameters automati-
cally is important for several reasons. On the one hand, it is unrealistic to assume that such parameter values can
be determined based on a small sample of the stream during the design of the technique. This assumption has
often been criticized before, for instance by Farzindar and Khreich [10]. On the other hand, the social media data
stream may undergo qualitative and quantitative changes, which require parameter adjustments. Using our im-
plementations of existing techniques that we described in this article, we study the effects of different parameter
settings for each technique on a number of segments of the real-life Twitter data stream. The goal of this initial
empirical study is to develop quality-of-service models for selected techniques that describe the relationship
between performance and result quality. Based on these quality-of-service models, we envision that adaptive
techniques can trade-off result quality for performance in case of changes in the volume of tweets that need to
be processed. In the past, quality-of-service models have been used successfully to control load shedding [16].
Rather than shedding load, we are interested in using such models to shed processing time, i.e., to dynamically
reconfigure techniques to perform, for example, fewer LDA iterations or low-pass filter steps.

Our second line of work researches new forms of content-based stream segmentation for event detection
techniques. All existing techniques use (large) time-based windows to process the unbounded stream of tweets.
In previous and ongoing work [13], we criticized the use of simple time and tuple-based windows in today’s
complex data-stream applications and instead proposed data-driven windows, so-called frames. We are inter-
ested in studying whether frames as a method to segment streams can contribute to better result quality of event
detection techniques. The quality improvements that can be obtained with frames stem from the fact that frames
adapt the segmentation of the stream to the observed data rather than segmenting it into predefined intervals as
windows do. Therefore, in order to use frames in the setting of streaming social media data analysis, the data
that can drive the framing of the stream need to be identified. Since a portion of the Twitter stream contains
GPS coordinates, it could, for example, make sense to use a position grid to segment the stream to track how
(information about) an event spreads geographically.

5 Summary and Conclusion

Since their inception, DSMSs have been used to realize ever more complex stream processing applications,
which often demanded new or extended functionality at the system level. In this article, we focussed on event
detection in social media data streams, a relatively new application domain for DSMSs. Unfortunately, most ex-
isting event detection techniques have been developed without the support of a DSMS, which makes it difficult to
reason about their practical feasibility, in particular with respect to their performance. Therefore, we introduced
some well-known event detection techniques in this article and showed how they can be realized as query plans
in a DSMS. This representation is one of the key benefits of our approach as it greatly simplifies the creation and
modification of event detection techniques. In order to further promote the use of DSMSs in researching such
techniques, we have designed and developed a platform that provides toolkits for both the implementation and
evaluation of existing and novel approaches. Finally, we outlined open research challenges in this area, such as
the need for fully streaming and adaptive event detection techniques. We believe that tackling these challenges
will again require new DSMS concepts as, for example, new methods to deal with changes in data volume or to
segment the stream in a more flexible manner.
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