
Bulletin of the Technical Committee on

Data
Engineering
December 2015 Vol. 38 No. 4 IEEE Computer Society

Letters
Letter from the Editor-in-Chief . David Lomet 1
Letter from the Special Issue Editors . David Maier, Badrish Chandramouli 2

Special Issue on Next-Generation Stream Processing
Kafka, Samza and the Unix Philosophy of Distributed Data Martin Kleppmann, Jay Kreps 4
Streaming@Twitter . Maosong Fu, Sailesh Mittal, Vikas Kedigehalli, Karthik

Ramasamy, Michael Barry, Andrew Jorgensen, Christopher Kellogg, Neng Lu, Bill Graham, Jingwei Wu 15
Apache Flink™: Stream and Batch Processing in a Single Engine .

. Paris Carbone, Stephan Ewen, Seif Haridi, Asterios Katsifodimos, Volker Markl, Kostas Tzoumas 28
CSA: Streaming Engine for Internet of Things . Zhitao Shen, Vikram Kumaran,

Michael J. Franklin, Sailesh Krishnamurthy, Amit Bhat, Madhu Kumar, Robert Lerche, Kim Macpherson 39
Trill: Engineering a Library for Diverse Analytics .

. Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, James F. Terwilliger 51
Language Runtime and Optimizations in IBM Streams Scott Schneider, Buğra Gedik, Martin Hirzel 61
FUGU: Elastic Data Stream Processing with Latency Constraints . Thomas

Heinze, Yuanzhen Ji, Lars Roediger, Valerio Pappalardo, Andreas Meister, Zbigniew Jerzak, Christof Fetzer 73
Exploiting Sharing Opportunities for Real-time Complex Event Analytics .

. Elke A. Rundensteiner, Olga Poppe, Chuan Lei, Medhabi Ray, Lei Cao, Yingmei Qi, Mo Liu, Di Wang 82
Handling Shared, Mutable State in Stream Processing with Correctness Guarantees Nesime Tatbul,

Stan Zdonik, John Meehan, Cansu Aslantas, Michael Stonebraker, Kristin Tufte, Chris Giossi, Hong Quach 94
“The Event Model” for Situation Awareness Opher Etzion, Fabiana Fournier, Barbara von Halle 105
Towards Adaptive Event Detection Techniques for the Twitter Social Media Data Stream

. Michael Grossniklaus, Marc H. Scholl, Andreas Weiler 116

Conference and Journal Notices
TCDE Membership Form .back cover

Editorial Board

Editor-in-Chief

David B. Lomet

Microsoft Research

One Microsoft Way

Redmond, WA 98052, USA

lomet@microsoft.com

Associate Editors

Christopher Jermaine

Department of Computer Science

Rice University

Houston, TX 77005

Bettina Kemme

School of Computer Science

McGill University

Montreal, Canada

David Maier

Department of Computer Science

Portland State University

Portland, OR 97207

Xiaofang Zhou

School of Information Tech. & Electrical Eng.

The University of Queensland

Brisbane, QLD 4072, Australia

Distribution

Brookes Little

IEEE Computer Society

10662 Los Vaqueros Circle

Los Alamitos, CA 90720

eblittle@computer.org

The TC on Data Engineering
Membership in the TC on Data Engineering is open to

all current members of the IEEE Computer Society who

are interested in database systems. The TCDE web page is

http://tab.computer.org/tcde/index.html.

The Data Engineering Bulletin
The Bulletin of the Technical Committee on Data Engi-

neering is published quarterly and is distributed to all TC

members. Its scope includes the design, implementation,

modelling, theory and application of database systems and

their technology.

Letters, conference information, and news should be sent

to the Editor-in-Chief. Papers for each issue are solicited

by and should be sent to the Associate Editor responsible

for the issue.

Opinions expressed in contributions are those of the au-

thors and do not necessarily reflect the positions of the TC

on Data Engineering, the IEEE Computer Society, or the

authors’ organizations.

The Data Engineering Bulletin web site is at

http://tab.computer.org/tcde/bull_about.html.

TCDE Executive Committee

Chair
Xiaofang Zhou

School of Information Tech. & Electrical Eng.

The University of Queensland

Brisbane, QLD 4072, Australia

zxf@itee.uq.edu.au

Executive Vice-Chair
Masaru Kitsuregawa

The University of Tokyo

Tokyo, Japan

Secretary/Treasurer
Thomas Risse

L3S Research Center

Hanover, Germany

Vice Chair for Conferences
Malu Castellanos

HP Labs

Palo Alto, CA 94304

Advisor
Kyu-Young Whang

Computer Science Dept., KAIST

Daejeon 305-701, Korea

Committee Members
Amr El Abbadi

University of California

Santa Barbara, California

Erich Neuhold

University of Vienna

A 1080 Vienna, Austria

Alan Fekete

University of Sydney

NSW 2006, Australia

Wookey Lee

Inha University

Inchon, Korea

Chair, DEW: Self-Managing Database Sys.
Shivnath Babu

Duke University

Durham, NC 27708

Co-Chair, DEW: Cloud Data Management
Hakan Hacigumus

NEC Laboratories America

Cupertino, CA 95014

VLDB Endowment Liason
Paul Larson

Microsoft Research

Redmond, WA 98052

SIGMOD Liason
Anastasia Ailamaki

École Polytechnique Fédérale de Lausanne

Station 15, 1015 Lausanne, Switzerland

i

Letter from the Editor-in-Chief

Delayed Publication

This December, 2015 issue of the Bulletin is, as some of you may notice, being published in July of 2016, after
the March and June, 2016 issues have been published. Put simply, the issue is late, and the March and June
issues were published in their correct time slots. The formatting of the issue, and the surrounding editorial
material, e.g. the inside front cover and copyright notice, are set to the December, 2015 timeframe. Indeed, the
only mention of this inverted ording of issues is in this paragraph. Things do not always go as planned. However,
I am delighted that the current issue is being published, and I have high confidence that you will enjoy reading
about next-generation stream processing, the topic of the issue.

The Current Issue

At one point a few years ago, the research community had lost interest in stream processing. The first streaming
systems had been built and these early systems demonstrated their feasibility. Commercial interest had been
generated, with a number of start-ups and major vendors entering the market. Even using a declarative database-
style query language had become an accepted part of the technology landscape. Job done, right? Actually,
wrong!

As we have seen with the database field itself, innovation and a changing technological environment can
lead to an “encore” of interest in a field. Such is the case with stream processing. The issue title: “Next-
Generation Stream Processing” captures that. The issue itself captures a whole lot more about the state of the
field. Streaming systems have evolved, sometimes in revolutionary ways. Applications of streaming technology
have exploded, both in number and in importance. As much as at any time in the past, the streams area is a hive
of activity. New technology is opening new application areas, while new application areas create a pull for new
technology.

David Maier has worked with Badrish Chandramouli to assemble this current issue devoted to presenting
the diversity of work now in progress in the streaming area. Streaming technology is at the core of much of their
recent research. This makes them ideal editors for the current issue. They have brought together papers that not
only provide insights into new streaming technology, but also illustrate where technology might be taking us in
its enabling of new applications. Streams are here as a permanent part of the technology environment in a way
similar to databases. Thanks to both David and Badrish for bringing this issue together on a topic that will, I am
convinced, become a fixture of both the research and the application environment of our field.

David Lomet
Microsoft Corporation

1

Letter from the Special Issue Editors

The precursors of data-stream systems began to show up in the late 1980s and early 1990s in the form of
“reactive” extensions to data management systems. With such extensions, there was a reversal of sorts between
the roles of data and query. Database requests – in the form of continuous queries, materialized views, event-
condition-action rules, subscriptions, and so forth – became persistent entities that responded to newly arriving
data.

The initial generation of purpose-built stream systems addressed many issues: appropriate languages, deal-
ing with unbounded input, handling delay and disorder, dealing with high data rates, load balancing and shed-
ding, resiliency, and, to some extent, distribution and parallelism. However, integration with other system com-
ponents, such as persistent storage and messaging middleware, was often rudimentary or left to the application
programmer.

The most recent generation of stream systems have the benefit of a better understanding of application re-
quirements and execution platforms, by virtue of lessons learned through experimentation with earlier systems.
Scaling, in cloud, fog, and cluster environments, has been at the forefront of design considerations. Systems
need to scale not just in terms of stream rate and number of streams, but also to large numbers of queries.
Application tuning, operation, and maintenance have also come to the forefront. Support for tradeoffs among
throughput, latency, accuracy, and availability is important for application requirements, such as meeting service-
level agreements. Resource management at run time is needed to enable elasticity of applications as well as for
managing multi-tenancy both with other stream tasks and other application components. Many stream applica-
tions require long-term deployment, possibly on the order of years. Thus, the ability to maintain the underlying
stream systems as well as evolve applications that run on them is critical. State management is also a concern,
both within stream operators and in interactions with other state managers, such as transactional storage. There
has also been a focus on broadening the use of stream-processing systems, but through programming models for
non-specialists and by supporting more complex analyses over streams, such as machine-learning techniques.

This issue is devoted to this next generation of stream-processing, looking at particular systems, specific
optimization and evaluation techniques, and programming models.

The first three papers discuss frameworks that support composing reliable and distributed stream (and batch)
processing networks out of individual operators, but are somewhat agnostic about what the particular operators
are. Samza (Kleppman, et al.) is a stream-processing framework developed initially at LinkedIn that supports
stream operators loosely coupled using the Kafka message broker. The use of Kafka reduces dependencies
between stream stages, and provides replicated logs that support multiple consumers running at different rates.
The next paper (Fu, et al.) introduces Heron, whose API is compatible with Twitters early streaming platform,
Storm. Heron features support sustained deployment and maintenance, such as resource reservations and task
isolation. The paper discusses alternative back-pressure mechanisms, and how Heron supports at-least-once
and at-most-once messaging semantics. Apache Flink (Carbone, et al.) is a framework that supports a general
pipelined dataflow architecture that handles both live stream and historical batch data (and combinations) for sim-
ple queries as well as complex iterative scripts as found in machine-learning. The paper discusses mechanisms
for trading latency with throughput; the use of in-stream control events to help checkpointing, track progress and
coordinate iterations; and low-interference fault-tolerance taking consistent snapshots across operators without
pausing execution.

The next three papers deal with complete systems that include specific query languages. In Connected
Streaming Analytics (CSA) from Cisco (Shen, et al.), stream-processing components can be embedded in net-
work elements such as routers and switches to support Internet-of-Things applications. Given this execution
environment, it is important that stream queries not interfere with high-priority network tasks. CSA uses a con-
tainer mechanism to constrain resources and promote portability. The language is SQL with window extensions.
CSA supports different kinds of window joins: best-effort join combines data immediately on receipt, whereas
coordinated join matches items based on application time, which may require buffering. Trill (Chandramouli, et

2

al.) shares goals with Flink in seeking a single engine that can work for online, incremental and offline process-
ing, and supports latency-throughput tradeoffs as appropriate for different contexts. It takes a library approach
that allows mutual embedding with applications written in high-level languages. Trill queries are written in a
LINQ-based language that supports tempo-relational operations, along with timestamp manipulation capabil-
ities. For performance, it uses a columnar in-memory representation of data batches. The subsequent paper
looks at language runtime support for the IBM Stream Processing Language (SPL) (Schneider, et al.). The SPL
runtime provides certain execution guarantees, such as isolation of operator state and in-order delivery, and sat-
isfies performance goals such as long-term query execution without degradation and efficient parallel execution.
Performance optimizations include both “fusion” (combining operators into a single Processing Element) and
“fission” (replicating a portion of the query graph).

The next three papers consider stream-processing optimizations and guarantees. While several of the sys-
tems in the foregoing papers provide a means to make performance tradeoffs, in practice it can be difficult for
a user to determine the best way to adjust the control knobs. The FUGU stream-processing system (Heinze, et
al.) employs strategies that automate the adjustment of these parameters, based on on-line profiling of query
execution and user-provided latency specifications. The paper from Worchester Polytechnic Institute (Runden-
steiner, et al.) looks at several methods to improve performance of pattern-matching queries, using a variety
of sharing strategies. Examples are Event-Sequence Pattern Sharing, which determines temporal correlations
between sub-patterns in order to decide whether sharing is beneficial, and Shared Event-Pattern Aggregation,
which looks for shared aggregation opportunities at the sub-pattern level. Several early stream systems had
the ability to access stored data in some form, for example, to augment stream events with information from a
look-up table. However, these systems gave limited consistency guarantees, either between the stream and the
stored data, or between shared access to stored data across stream operators. The S-Store system (Tatbul, et
al.) develops a stream-processing model that provides several correctness guarantees, such as traditional ACID
semantics, order-of-execution conditions and exactly-once semantics.

The last two papers are oriented towards application development. Most stream systems require queries
to be written in a special request language or a general-purpose programming language, either of which is a
hurdle for non-CS experts. The Event Model (TEM) (Etzion, et al.) allows a user to specify an event-driven
application by concentrating on application logic, expressed in diagrams and associated condition tables. The
TEM environment can fill in low-level details and manage the conversion to a particular stream-processing
system. “Live” analytics are a major driver of next-generation stream systems. Our final paper looks at mining
for events in a text stream (Grossniklaus, et al.). It adopts a tool-kit approach that allows easy implementation of
many of the published approaches in this domain. In addition, it describes an evaluation platform for comparing
alternative event-detection techniques.

David Maier, Badrish Chandramouli
Portland State University (Maier), Microsoft Corporation (Chandramouli)

3

Kafka, Samza and the Unix Philosophy of Distributed Data

Martin Kleppmann
University of Cambridge

Computer Laboratory

Jay Kreps
Confluent, Inc.

Abstract

Apache Kafka is a scalable message broker, and Apache Samza is a stream processing framework built
upon Kafka. They are widely used as infrastructure for implementing personalized online services and
real-time predictive analytics. Besides providing high throughput and low latency, Kafka and Samza are
designed with operational robustness and long-term maintenance of applications in mind. In this paper
we explain the reasoning behind the design of Kafka and Samza, which allow complex applications to be
built by composing a small number of simple primitives – replicated logs and stream operators. We draw
parallels between the design of Kafka and Samza, batch processing pipelines, database architecture, and
the design philosophy of Unix.

1 Introduction

In recent years, online services have become increasingly personalized. For example, in a service such as
LinkedIn there are many activity-based feedback loops, automatically adapting the site to make it more relevant
to individual users: recommendation systems such as “people you may know” or “jobs you might be interested
in” [30], collaborative filtering [33] or ranking of search results [23, 26] are personalized based on analyses of
user behavior (e.g. click-through rates of links) and user-profile information. Other feedback loops include abuse
prevention (e.g. blocking spammers, fraudsters and other users who violate the terms of service), A/B tests and
user-facing analytics (e.g. “who viewed your profile”).

Such personalization makes a service better for users, as they are likely to find what they need faster than if
the service presented them with static information. However, personalization has also opened new challenges:
a huge amount of data about user activity needs to be collected, aggregated and analyzed [8]. Timeliness is
important: after the service learns a new fact, the personalized recommendations and rankings should be swiftly
updated to reflect the new fact, otherwise their utility is diminished.

In this paper we describe Kafka and Samza, two related projects that were originally developed at LinkedIn
as infrastructure for solving these data collection and processing problems. The projects are now open source,
and maintained within the Apache Software Foundation as Apache Kafka1 and Apache Samza2, respectively.

Copyright 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1http://kafka.apache.org/
2http://samza.apache.org/

4

http://kafka.apache.org/
http://samza.apache.org/

1.1 Implementing Large-Scale Personalized Services

In a large-scale service with many features, the maintainability and the operational robustness of an implemen-
tation are of paramount importance. The system should have the following properties:

System scalability: Supporting an online service with hundreds of millions of registered users, handling mil-
lions of requests per second.

Organizational scalability: Allowing hundreds or even thousands of software engineers to work on the system
without excessive coordination overhead.

Operational robustness: If one part of the system is slow or unavailable, the rest of the system should continue
working normally as much as possible.

Large-scale personalized services have been successfully implemented as batch jobs [30], for example using
MapReduce [6]. Performing a recommendation system’s computations in offline batch jobs decouples them from
the online systems that serve user requests, making them easier to maintain and less operationally sensitive.

The main downside of batch jobs is that they introduce a delay between the time the data is collected and
the time its effects are visible. The length of the delay depends on the frequency with which the job is run, but
it is often on the order of hours or days.

Even though MapReduce is a lowest-common-denominator programming model, and has fairly poor perfor-
mance compared to specialized massively parallel database engines [2], it has been a remarkably successful tool
for implementing recommendation systems [30]. Systems such as Spark [34] overcome some of the performance
problems of MapReduce, although they remain batch-oriented.

1.2 Batch Workflows

A recommendation and personalization system can be built as a workflow, a directed graph of MapReduce
jobs [30]. Each job reads one or more input datasets (typically directories on the Hadoop Distributed Filesystem,
HDFS), and produces one or more output datasets (in other directories). A job treats its input as immutable
and completely replaces its output. Jobs are chained by directory name: the same name is configured as output
directory for the first job and input directory for the second job.

This method of chaining jobs by directory name is simple, and is expensive in terms of I/O, but it provides
several important benefits:

Multi-consumer. Several different jobs can read the same input directory without affecting each other. Adding
a slow or unreliable consumer affects neither the producer of the dataset, nor other consumers.

Visibility. Every job’s input and output can be inspected by ad-hoc debugging jobs for tracking down the cause
of an error. Inspection of inputs and outputs is also valuable for audit and capacity planning purposes, and
monitoring whether jobs are providing the required level of service.

Team interface. A job operated by one team of people can produce a dataset, and jobs operated by other teams
can consume the dataset. The directory name thus acts as interface between the teams, and it can be
reinforced with a contract (e.g. prescribing the data format, schema, field semantics, partitioning scheme,
and frequency of updates). This arrangement helps organizational scalability.

Loose coupling. Different jobs can be written in different programming languages, using different libraries, but
they can still communicate as long as they can read and write the same file format for inputs and outputs.
A job does not need to know which jobs produce its inputs and consume its outputs. Different jobs can be
run on different schedules, at different priorities, by different users.

5

Data provenance. With explicitly named inputs and outputs for each job, the flow of data can be tracked
through the system. A producer can identify the consumers of its dataset (e.g. when making forward-
incompatible changes), and a consumer can identify its transitive data sources (e.g. in order to ensure
regulatory compliance).

Failure recovery. If the 46th job in a chain of 50 jobs failed due to a bug in the code, it can be fixed and restarted
at the 46th job. There is no need to re-run the entire workflow.

Friendly to experimentation. Most jobs modify only to their designated output directories, and have no other
externally visible side-effects such as writing to external databases. Therefore, a new version of a job
can easily be run with a temporary output directory for testing purposes, without affecting the rest of the
system.

1.3 From Batch to Streaming

When moving from a high-latency batch system to a low-latency streaming system, we wish to preserve the
attractive properties listed in Section 1.2.

By analogy, consider how Unix tools are composed into complex programs using shell scripts [21]. A
workflow of batch jobs is comparable to a shell script in which there is no pipe operator, so each program must
read its input from a file on disk, and write its output to a different (temporary) file on disk. In this scenario, one
program must finish writing its output file before another program can start reading that file.

To move from a batch workflow to a streaming data pipeline, the temporary files would need to be replaced
with something more like Unix pipes, which support incrementally passing one program’s output to another
program’s input without fully materializing the intermediate result [1]. However, Unix pipes do not have all the
properties we want: they connect exactly one output to exactly one input (not multi-consumer), and they cannot
be repaired if one of the processes crashes and restarts (no failure recovery).

Kafka and Samza provide infrastructure for low-latency distributed stream processing in a style that resem-
bles a chain of Unix tools connected by pipes, while also preserving the aforementioned benefits of chained
batch jobs. In the following sections we will discuss the design decisions that this approach entails.

1.4 Relationship of Kafka and Samza

Kafka and Samza are two separate projects with a symbiotic relationship. Kafka provides a message broker
service, and Samza provides a framework for processing messages. A Samza job uses the Kafka client library to
consume input streams from the Kafka message broker, and to produce output streams back to Kafka. Although
either system can be used without the other, they work best together. We introduce Kafka in more detail in
Section 2, and Samza in Section 3.

At the time of writing, there is an effort underway to add a feature called Kafka Streams to the Kafka client
library [31]. This feature provides a stream processing capability similar to Samza, but it differs in that Kafka
Streams does not prescribe a deployment mechanism, whereas Samza currently relies on Hadoop YARN. Most
other high-level architecture choices are similar in Samza and Kafka Streams; for purposes of this paper, they
can be regarded as equivalent.

2 Apache Kafka

Kafka has been described in detail in prior work [8, 16, 19, 32]. In this section we present a brief high-level
overview of the principles behind Kafka’s design.

Kafka provides a publish-subscribe messaging service, as illustrated in Figure 1. Producer (publisher) clients
write messages to a named topic, and consumer (subscriber) clients read messages in a topic.

6

T
o
p
ic

 A
1Partition 0 2 3 4 5 6 7 8 9 10 11 12

1Partition 1 2 3 4 5 6 7 8 9 10

1Partition 0 2 3 4

1Partition 2 2 3 4 5 6 7 8 9 10 11 12 13 14

T
o
p
ic

 B

1Partition 1 2 3 4 5 6 7 8 9

Producer client

Producer client

Consumer client

Consumer client

offsets: (B.1: 4, B.2: 7)

offsets: (B.3: 11)

read sequentially

append

Consumer group

Figure 1: A Kafka topic is divided into partitions, and each partition is a totally ordered sequence of messages.

A topic is divided into partitions, and messages within a partition are totally ordered. There is no ordering
guarantee across different partitions. The purpose of partitioning is to provide horizontal scalability: different
partitions can reside on different machines, and no coordination across partitions is required. The assignment of
messages to partitions may be random, or it may deterministic based on a key, as described in Section 3.2.

Broker nodes (Kafka servers) store all messages on disk. Each partition is physically stored as a series
of segment files that are written in an append-only manner. A Kafka partition is also known as a log, since
it resembles a database’s transaction commit log [12]: whenever a new message is published to a topic, it is
appended to the end of the log. The Kafka broker assigns an offset to the message, which is a per-partition
monotonically increasing sequence number.

A message in Kafka consists of a key and a value, which are untyped variable-length byte strings. For richer
datatypes, any encoding can be used. A common choice is Apache Avro,3 a binary encoding that uses explicit
schemas to describe the structure of messages in a topic, providing a statically typed (but evolvable) interface
between producers and consumers [10, 15].

A Kafka consumer client reads all messages in a topic-partition sequentially. For each partition, the client
tracks the offset up to which it has seen messages, and it polls the brokers to await the arrival of messages
with a greater offset (akin to the Unix tool tail -f, which watches a file for appended data). The offset is
periodically checkpointed to stable storage; if a consumer client crashes and restarts, it resumes reading from its
most recently checkpointed offset.

Each partition is replicated across multiple Kafka broker nodes, so that the system can tolerate the failure
of nodes without unavailability or data loss. One of a partition’s replicas is chosen as leader, and the leader
handles all reads and writes of messages in that partition. Writes are serialized by the leader and synchronously
replicated to a configurable number of replicas. On leader failure, one of the in-sync replicas is chosen as the
new leader.

2.1 Performance and Scalability

Kafka can write millions of messages per second on modest commodity hardware [14], and the deployment at
LinkedIn handles over 1 trillion unique messages per day [20]. Message length is typically low hundreds of

3http://avro.apache.org/

7

http://avro.apache.org/

bytes, although smaller or larger messages are also supported.
In many deployments, Kafka is configured to retain messages for a week or longer, limited only by available

disk space. Segments of the log are discarded when they are older than a configurable threshold. Alternatively,
Kafka supports a log compaction mode, in which the latest message with a given key is retained indefinitely,
but earlier messages with the same key are garbage-collected. Similar ideas are found in log-structured filesys-
tems [25] and database storage engines [18].

When multiple producers write to the same topic-partition, their messages are interleaved, so there is no
inherent limit to the number of producers. The throughput of a single topic-partition is limited by the computing
resources of a single broker node – the bottleneck is usually either its NIC bandwidth or the sequential write
throughput of the broker’s disks. Higher throughput can be achieved by creating more partitions and assigning
them to different broker nodes. As there is no coordination between partitions, Kafka scales linearly.

It is common to configure a Kafka cluster with approximately 100 topic-partitions per broker node [22].
When adding nodes to a Kafka cluster, some partitions can be reassigned to the new nodes, without changing
the number of partitions in a topic. This rebalancing technique allows the cluster’s computing resources to be
increased or decreased without affecting partitioning semantics.

On the consumer side, the work of consuming a topic can be shared between a group of consumer clients
(illustrated in Figure 1). One consumer client can read several topic-partitions, but any one topic-partition must
be read sequentially by a consumer process – it is not possible to consume only a subset of messages in a
partition. Thus, the maximum number of processes in a consumer group equals the number of partitions of the
topic being consumed.

Different consumer groups maintain their offsets independently, so they can each read the messages at their
own pace. Thus, like multiple batch jobs reading the same input directory, multiple groups of consumers can
independently read the same Kafka topic without affecting each other.

3 Apache Samza

Samza is a framework that helps application developers write code to consume streams, process messages,
and produce derived output streams. In essence, a Samza job consists of a Kafka consumer, an event loop
that calls application code to process incoming messages, and a Kafka producer that sends output messages
back to Kafka. In addition, the framework provides packaging, cluster deployment (using Hadoop YARN),
automatically restarting failed processes, state management (Section 3.1), metrics and monitoring.

For processing messages, Samza provides a Java interface StreamTask that is implemented by application
code. Figure 2 shows how to implement a streaming word counter with Samza: the first operator splits every
input string into words, and the second operator counts how many times each word has been seen.

For a Samza job with one input topic, the framework instantiates one StreamTask for each partition of
the input topic. Each task instance independently consumes one partition, no matter whether the instances
are running in the same process, or distributed across multiple machines. As processing is always logically
partitioned by input partition, even if several partitions are physically processed on the same node, a job’s
allocated computing resources can be scaled up or down without affecting partitioning semantics.

The framework calls the process()method for each input message, and the application code may emit any
number of output messages as a result. Output messages can be sent to any partition, which allows re-partitioning
data between jobs. For example, Figure 3 illustrates the use of partitions in the word-count example: by using
the word as message key, the SplitWords task ensures that all occurrences of the same word are routed to the
same partition of the words topic (analogous to the shuffle phase of MapReduce [6]).

Unlike many other stream-processing frameworks, Samza does not implement its own network protocol for
transporting messages from one operator to another. Instead, a job usually uses one or more named Kafka topics
as input, and other named Kafka topics as output. We discuss the implications of this design in Section 4.

8

class SplitWords implements StreamTask {

 static final SystemStream WORD_STREAM =

 new SystemStream("kafka", "words");

 public void process(

 IncomingMessageEnvelope in,

 MessageCollector out,

 TaskCoordinator _) {

 String str = (String) in.getMessage();

 for (String word : str.split(" ")) {

 out.send(

 new OutgoingMessageEnvelope(

 WORD_STREAM, word, 1));

 }

 }

}

class CountWords implements StreamTask,

 InitableTask {

 private KeyValueStore<String, Integer> store;

 public void init(Config config,

 TaskContext context) {

 store = (KeyValueStore<String, Integer>)

 context.getStore("word-counts");

 }

 public void process(

 IncomingMessageEnvelope in,

 MessageCollector out,

 TaskCoordinator _) {

 String word = (String) in.getKey();

 Integer inc = (Integer) in.getMessage();

 Integer count = store.get(word);

 if (count == null) count = 0;

 store.put(word, count + inc);

 }

}

Figure 2: The two operators of a streaming word-frequency counter using Samza’s StreamTask API.

Partition 0

Partition 1

Kafka topic strings

“hello world” “hello samza” “hello” “hello”

“world” “samza” “samza” “is”

“interesting”

“samza is interesting”

Count

Count

Split

Split

Kafka topic wordsSamza job
SplitWords

Samza job
CountWords

Figure 3: An instance of a Samza task consumes input from one partition, but can send output to any partition.

“hello” “hello”

“world” “samza” “samza” “is”

“interesting”

³KHOOR´�:�� ³KHOOR´�:��

³ZRUOG´��:��

Output stream

Output stream

³VDP]D´�:�� ³VDP]D´�:�� ³LV´�:��

³LQWHUHVWLQJ´�:��

Kafka topic words Kafka topic word_countsSamza job CountWords

Count

Count

Figure 4: A task’s local state is made durable by emitting a changelog to Kafka.

9

3.1 State Management

Many stream-processing jobs need to maintain state, e.g. in order to perform joins (Section 3.2) or aggregations
(such as the counters in CountWords, Figure 2). Any transient state can simply be maintained in instance
variables of the StreamTask; since messages of a partition are processed sequentially on a single thread, these
data structures need not be thread-safe. However, any state that must survive the crash of a stream processor
must be written to durable storage.

Samza implements durable state through the KeyValueStore abstraction, exemplified in Figure 2. Each
StreamTask instance has a separate store that it can read and write as required. Samza uses the RocksDB4

embedded key-value store, which provides low-latency, high-throughput access to data on local disk. To make
the embedded store durable in the face of disk and node failures, every write to the store is also sent to a dedicated
topic-partition in Kafka, as illustrated in Figure 4.

This changelog topic acts as a durable replication log for the store: when recovering after a failure, a task can
rebuild its store contents by replaying its partition of the changelog from the beginning. Kafka’s log compaction
mode (see Section 2.1) prevents unbounded growth of the changelog topic: if the same key is repeatedly over-
written (as with a counter), Kafka eventually garbage-collects overwritten values, and retains the most recent
value for any given key indefinitely. Rebuilding a store from the log is only necessary if the RocksDB database
is lost or corrupted.

Writing the changelog to Kafka is not merely an efficient way of achieving durability, it can also be a useful
feature for applications: other stream processing jobs can consume the changelog topic like any other stream,
and use it to perform further computations. For example, the word counts topic of Figure 4 could be consumed
by another job to determine trending keywords (in this case, the changelog stream is also the CountWords
operator’s output – no separate output topic is required).

3.2 Stream Joins

One characteristic form of stateful processing is a join of two or more input streams, most commonly an equi-
join on a key (e.g. user ID). One type of join is a window join, in which messages from input streams A and B
are matched if they have the same key, and occur within some time interval ∆t of one another. Alternatively,
a stream may be joined against tabular data: for example, user clickstream events could be joined with user
profile data, producing a stream of clickstream events with embedded information about the user.

Stream-table joins can be implemented by querying an external database within a StreamTask, but the net-
work round-trip time for database queries soon becomes a bottleneck, and this approach can easily overload the
external database [13]. A better option is to make the table data available in the form of a log-compacted stream.
Processing tasks can consume this stream to build an in-process replica of a database table partition, using the
same approach as the recovery of durable local state (Section 3.1), and then query it with low latency.

For example, in the case of a database of user profiles, the log-compacted stream would contain a snapshot
of all user profiles as of some point in time, and an update message every time a user subsequently changes their
profile information. Such a stream can be extracted from an existing database using change data capture [5, 32].

When joining partitioned streams, Samza expects that all input streams are partitioned in the same way, with
the same number of partitions n, and deterministic assignment of messages to partitions based on the same join
key. The Samza job then co-partitions its input streams: for any partition k (with 0 ≤ k < n), messages from
partition k of input stream A and from partition k of input stream B are delivered to the same StreamTask instance.
The task can then use local state to maintain the data that is required to perform the join.

Multi-way joins on several different keys may require different partitioning for each join. Such joins can be
implemented with a multi-stage pipeline, where the output of each job partitions messages according to the next
stage’s join key. The same approach is used in MapReduce workflows.

4http://rocksdb.org/

10

http://rocksdb.org/

4 Discussion

In Sections 2 and 3 we outlined the architecture of Kafka and Samza. We now examine the design decisions
behind that architecture in the light of our goals discussed in Section 1, namely creating large-scale personalized
services in a way that is scalable, maintainable and operationally robust.

4.1 Use of Replicated Logs

Stream processing with Samza relies heavily on fault-tolerant, partitioned logs as implemented by Kafka. Kafka
topics are used for input, output, messaging between operators, durability of local state, replicating database
tables, checkpointing consumer offsets, collecting metrics, and disseminating configuration information.

An append-only log with optional compaction is one of the simplest data structures that is useful in prac-
tice [12]. Kafka focuses on implementing logs in a fault-tolerant and scalable way. Since the only access
methods supported by a log are an appending write and a sequential read from a given offset, Kafka avoids the
complexity of implementing random-access indexes. By doing less work, Kafka is able to provide much better
performance than systems with richer access methods [14, 16]. Kafka’s focus on the log abstraction is reminis-
cent of the Unix philosophy [17]: “Make each program do one thing well. To do a new job, build afresh rather
than complicate old programs by adding new ‘features’.”

Real systems do require indexes and caches, but these can be derived from the log by a Kafka consumer that
writes messages to an indexed store, either in-process (for local access) or to a remote database (for access by
other applications). Because all consumers see messages in the same partition in the same order, deterministic
consumers can independently construct views that are consistent with each other – an approach known as state
machine replication [27]. The truth is in the log, and a database is a cached subset of the log [9].

4.2 Composing Stream Operators

Each Samza job is structurally simple: it is just one step in a data processing pipeline, with Kafka topics as
inputs and outputs. If Kafka is like a streaming version of HDFS, then Samza is like a streaming version of
MapReduce. The pipeline is loosely coupled, since a job does not know the identity of the jobs upstream or
downstream from it, only the topic names. This principle again evokes a Unix maxim [17]: “Expect the output
of every program to become the input to another, as yet unknown, program.”

However, there are some key differences between Kafka topics and Unix pipes. In particular, Kafka preserves
the advantages of batch workflows discussed in Section 1.2: a topic can have any number of consumers that
do not interfere with each other (including consumers operated by different teams, or special consumers for
debugging or monitoring), it tolerates failure of producers, consumers or brokers, and a topic is a named entity
that can be used for tracing data provenance.

Kafka topics deliberately do not provide backpressure: the on-disk log acts as an almost-unbounded buffer of
messages. If a slow consumer falls behind the producer, the producers and other consumers continue operating
at full speed. Thus, one faulty process does not disrupt the rest of the system, which improves operational
reliability. Since Kafka stores all messages on disk anyway, buffering messages for a slow consumer does not
incur additional overhead. The slow consumer can catch up without missing messages, as long as it does not fall
behind further than Kafka’s retention period of log segments, which is usually on the order of days or weeks.

Moreover, Kafka offers the ability for a consumer to jump back to an earlier point in the log, or to rebuild the
entire state of a database replica by consuming from the beginning of a log-compacted topic. This facility makes
it feasible to use stream processors not only for ephemeral event data, but also for database-like use cases.

Even though the intermediate state between two Samza stream processing operators is always materialized
to disk, Samza is able to provide good performance: a simple stream processing job can process over 1 million
messages per second on one machine, and saturate a gigabit Ethernet NIC [7].

11

4.3 Unix as a Role Model

Unix and databases are both data management systems [24], allowing data to be stored (in files or tables) and
processed (through command-line tools or queries). Unix tools are famously well suited for implementing ad-
hoc, experimental, short-running data processing tasks [21], whereas databases have traditionally been the tool
of choice for building complex, long-lived applications. If our goal is to build stream processing applications
that will run reliably for many years, is Unix really a good role model?

The database tradition favors clean high-level semantics (the relational model) and declarative query lan-
guages. While this approach has been very successful in many domains, it has not worked well in the context
of building large-scale personalized services, because the algorithms required for these use cases (such as statis-
tical machine learning and information retrieval methods) are not amenable to implementation using relational
operators [28, 29].

Moreover, different use cases have different access patterns, which require different indexing and storage
methods. It may be necessary to store the same data in both a traditional row-oriented fashion with indexes,
as well as columnar storage, pre-aggregated OLAP cubes, inverted full-text search indexes, sparse matrices or
array storage. Rather than trying to implement everything in a single product, most databases specialize in
implementing one of these storage methods well (which is hard enough already).

In the absence of a single database system that can provide all the necessary functionality, application de-
velopers are forced to combine several data storage and processing systems that each provide a portion of the
required application functionality. However, many traditional database systems are not designed for such compo-
sition: they focus on providing strong semantics internally, rather than integration with external systems. Mech-
anisms for integrating with external systems, such as change data capture, are often ad-hoc and retrofitted [5].

By contrast, the log-oriented model of Kafka and Samza is fundamentally built on the idea of composing
heterogeneous systems through the uniform interface of a replicated, partitioned log. Individual systems for data
storage and processing are encouraged to do one thing well, and to use logs as input and output. Even though
Kafka’s logs are not the same as Unix pipes, they encourage composability, and thus Unix-style thinking.

4.4 Limitations

Kafka guarantees a total ordering of messages per partition, even in the face of crashes and network failures.
This guarantee is stronger than most “eventually consistent” datastores provide, but not as strong as serializable
database transactions.

The stream-processing model of computation is fundamentally asynchronous: if a client issues a write to the
log, and then reads from a datastore that is maintained by consuming the log, the read may return a stale value.
This decoupling is desirable, as it prevents a slow consumer from disrupting a producer or other consumers
(Section 4.2). If linearizable data structures are required, they can fairly easily be implemented on top of a
totally ordered log [3].

If a Kafka consumer or Samza job crashes and restarts, it resumes consuming messages from the most
recently checkpointed offset. Thus, any messages processed between the last checkpoint and the crash are
processed twice, and any non-idempotent operations (such as the counter increment in CountWords, Figure 2)
may yield non-exact results. There is work in progress to add a multi-partition atomic commit protocol to
Kafka [11], which will allow exactly-once semantics to be achieved.

Samza uses a low-level one-message-at-a-time programming model, which is very flexible, but also harder to
use, more error-prone and less amenable to automatic optimization than a high-level declarative query language.
Work is currently in progress in the Kafka project to implement a high-level dataflow API called Kafka Streams,
and the Samza project is developing a SQL query interface, with relational operators implemented as stream
processing tasks. These higher-level programming models enable easier development of applications that fit the
model, while retaining the freedom for applications to use the lower-level APIs when required.

12

5 Conclusion

We present the design philosophy behind Kafka and Samza, which implement stream processing by composing
a small number of general-purpose abstractions. We draw analogies to the design of Unix, and batch processing
pipelines. The approach reflects broader trends: the convergence between batch and stream processing [1, 4],
and the decomposition of monolithic data infrastructure into a collection of specialized services [12, 28].

In particular, we advocate a style of application development in which each data storage and processing com-
ponent focuses on “doing one thing well”. Heterogeneous systems can be built by composing such specialised
tools through the simple, general-purpose interface of a log. Compared to monolithic systems, such composable
systems provide better scalability properties thanks to loose coupling, and allow easier adaptation of a system to
a wide range of different workloads, such as recommendation systems.

Acknowledgements

Large portions of the development of Kafka and Samza were funded by LinkedIn. Many people have contributed,
and the authors would like to thank the committers on both projects: David Arthur, Sriharsha Chintalapani, Yan
Fang, Jakob Homan, Joel Koshy, Prashanth Menon, Neha Narkhede, Yi Pan, Navina Ramesh, Jun Rao, Chris
Riccomini, Gwen Shapira, Zhijie Shen, Chinmay Soman, Joe Stein, Sriram Subramanian, Garry Turkington,
and Guozhang Wang. Thank you to Garry Turkington, Yan Fang and Alastair Beresford for feedback on a draft
of this article.

References
[1] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, et al. The dataflow model: A practical approach

to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data processing. Proceedings
of the VLDB Endowment, 8(12):1792–1803, August 2015. doi:10.14778/2824032.2824076.

[2] Shivnath Babu and Herodotos Herodotou. Massively parallel databases and MapReduce systems. Foundations and
Trends in Databases, 5(1):1–104, November 2013. doi:10.1561/1900000036.

[3] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, et al. Tango: Distributed data structures over a
shared log. In 24th ACM Symposium on Operating Systems Principles (SOSP), pages 325–340, November 2013.
doi:10.1145/2517349.2522732.

[4] Raul Castro Fernandez, Peter Pietzuch, Jay Kreps, Neha Narkhede, et al. Liquid: Unifying nearline and offline big
data integration. In 7th Biennial Conference on Innovative Data Systems Research (CIDR), January 2015.

[5] Shirshanka Das, Chavdar Botev, Kapil Surlaker, Bhaskar Ghosh, et al. All aboard the Databus! In 3rd ACM
Symposium on Cloud Computing (SoCC), October 2012.

[6] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large clusters. In 6th USENIX
Symposium on Operating System Design and Implementation (OSDI), December 2004.

[7] Tao Feng. Benchmarking Apache Samza: 1.2 million messages per second on a single node, Au-
gust 2015. URL http://engineering.linkedin.com/performance/benchmarking-apache-samza-12-
million-messages-second-single-node.

[8] Ken Goodhope, Joel Koshy, Jay Kreps, Neha Narkhede, et al. Building LinkedIn’s real-time activity data pipeline.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 35(2):33–45, June 2012.

[9] Pat Helland. Immutability changes everything. In 7th Biennial Conference on Innovative Data Systems Research
(CIDR), January 2015.

[10] Martin Kleppmann. Schema evolution in Avro, Protocol Buffers and Thrift, December 2012. URL http://martin.
kleppmann.com/2012/12/05/schema-evolution-in-avro-protocol-buffers-thrift.html.

[11] Joel Koshy. Transactional messaging in Kafka, July 2014. URL https://cwiki.apache.org/confluence/
display/KAFKA/Transactional+Messaging+in+Kafka.

[12] Jay Kreps. I Heart Logs. O’Reilly Media, September 2014. ISBN 978-1-4919-0932-4.

13

http://dx.doi.org/10.14778/2824032.2824076
http://dx.doi.org/10.1561/1900000036
http://dx.doi.org/10.1145/2517349.2522732
http://engineering.linkedin.com/performance/benchmarking-apache-samza-12-million-messages-second-single-node
http://engineering.linkedin.com/performance/benchmarking-apache-samza-12-million-messages-second-single-node
http://martin.kleppmann.com/2012/12/05/schema-evolution-in-avro-protocol-buffers-thrift.html
http://martin.kleppmann.com/2012/12/05/schema-evolution-in-avro-protocol-buffers-thrift.html
https://cwiki.apache.org/confluence/display/KAFKA/Transactional+Messaging+in+Kafka
https://cwiki.apache.org/confluence/display/KAFKA/Transactional+Messaging+in+Kafka

[13] Jay Kreps. Why local state is a fundamental primitive in stream processing, July 2014. URL
http://radar.oreilly.com/2014/07/why-local-state-is-a-fundamental-primitive-in-stream-

processing.html.
[14] Jay Kreps. Benchmarking Apache Kafka: 2 million writes per second (on three cheap machines),

April 2014. URL https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-
writes-second-three-cheap-machines.

[15] Jay Kreps. Putting Apache Kafka to use: a practical guide to building a stream data platform (part 2), February 2015.
URL http://blog.confluent.io/2015/02/25/stream-data-platform-2/.

[16] Jay Kreps, Neha Narkhede, and Jun Rao. Kafka: a distributed messaging system for log processing. In 6th Interna-
tional Workshop on Networking Meets Databases (NetDB), June 2011.

[17] M D McIlroy, E N Pinson, and B A Tague. UNIX time-sharing system: Foreword. The Bell System Technical Journal,
57(6):1899–1904, July 1978.

[18] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. The log-structured merge-tree (LSM-Tree).
Acta Informatica, 33(4):351–385, June 1996. doi:10.1007/s002360050048.

[19] Todd Palino. Running Kafka at scale, March 2015. URL https://engineering.linkedin.com/kafka/
running-kafka-scale.

[20] Kartik Paramasivam. How we’re improving and advancing Kafka at LinkedIn, September 2015. URL
http://engineering.linkedin.com/apache-kafka/how-we%E2%80%99re-improving-and-advancing-

kafka-linkedin.
[21] Rob Pike and Brian W Kernighan. Program design in the UNIX environment. AT&T Bell Laboratories Technical

Journal, 63(8):1595–1605, October 1984. doi:10.1002/j.1538-7305.1984.tb00055.x.
[22] Jun Rao. How to choose the number of topics/partitions in a Kafka cluster?, March 2015. URL http://www.

confluent.io/blog/how-to-choose-the-number-of-topicspartitions-in-a-kafka-cluster/.
[23] Azarias Reda, Yubin Park, Mitul Tiwari, Christian Posse, and Sam Shah. Metaphor: A system for related search

recommendations. In 21st ACM International Conference on Information and Knowledge Management (CIKM),
October 2012.

[24] Dennis M Ritchie and Ken Thompson. The UNIX time-sharing system. Communications of the ACM, 17(7), July
1974. doi:10.1145/361011.361061.

[25] Mendel Rosenblum and John K Ousterhout. The design and implementation of a log-structured file system. ACM
Transactions on Computer Systems (TOCS), 10(1):26–52, February 1992. doi:10.1145/146941.146943.

[26] Sriram Sankar. Did you mean “Galene”?, June 2014. URL https://engineering.linkedin.com/search/did-
you-mean-galene.

[27] Fred B Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial. ACM Comput-
ing Surveys, 22(4):299–319, December 1990.

[28] Margo Seltzer. Beyond relational databases. Communications of the ACM, 51(7):52–58, July 2008.
doi:10.1145/1364782.1364797.

[29] Michael Stonebraker and Uğur Çetintemel. “One size fits all”: An idea whose time has come and gone. In 21st
International Conference on Data Engineering (ICDE), April 2005.

[30] Roshan Sumbaly, Jay Kreps, and Sam Shah. The “Big Data” ecosystem at LinkedIn. In ACM International Confer-
ence on Management of Data (SIGMOD), July 2013.

[31] Guozhang Wang. KIP-28 — add a processor client, July 2015. URL https://cwiki.apache.org/confluence/
display/KAFKA/KIP-28+-+Add+a+processor+client.

[32] Guozhang Wang, Joel Koshy, Sriram Subramanian, Kartik Paramasivam, et al. Building a replicated log-
ging system with Apache Kafka. Proceedings of the VLDB Endowment, 8(12):1654–1655, August 2015.
doi:10.14778/2824032.2824063.

[33] Lili Wu, Sam Shah, Sean Choi, Mitul Tiwari, and Christian Posse. The browsemaps: Collaborative filtering at
LinkedIn. In 6th Workshop on Recommender Systems and the Social Web (RSWeb), October 2014.

[34] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, et al. Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing. In 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), April 2012.

14

http://radar.oreilly.com/2014/07/why-local-state-is-a-fundamental-primitive-in-stream-processing.html
http://radar.oreilly.com/2014/07/why-local-state-is-a-fundamental-primitive-in-stream-processing.html
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
http://blog.confluent.io/2015/02/25/stream-data-platform-2/
http://dx.doi.org/10.1007/s002360050048
https://engineering.linkedin.com/kafka/running-kafka-scale
https://engineering.linkedin.com/kafka/running-kafka-scale
http://engineering.linkedin.com/apache-kafka/how-we%E2%80%99re-improving-and-advancing-kafka-linkedin
http://engineering.linkedin.com/apache-kafka/how-we%E2%80%99re-improving-and-advancing-kafka-linkedin
http://dx.doi.org/10.1002/j.1538-7305.1984.tb00055.x
http://www.confluent.io/blog/how-to-choose-the-number-of-topicspartitions-in-a-kafka-cluster/
http://www.confluent.io/blog/how-to-choose-the-number-of-topicspartitions-in-a-kafka-cluster/
http://dx.doi.org/10.1145/361011.361061
http://dx.doi.org/10.1145/146941.146943
https://engineering.linkedin.com/search/did-you-mean-galene
https://engineering.linkedin.com/search/did-you-mean-galene
http://dx.doi.org/10.1145/1364782.1364797
https://cwiki.apache.org/confluence/display/KAFKA/KIP-28+-+Add+a+processor+client
https://cwiki.apache.org/confluence/display/KAFKA/KIP-28+-+Add+a+processor+client
http://dx.doi.org/10.14778/2824032.2824063

Streaming@Twitter

Maosong Fu, Sailesh Mittal, Vikas Kedigehalli, Karthik Ramasamy, Michael Barry,
Andrew Jorgensen, Christopher Kellogg, Neng Lu, Bill Graham, Jingwei Wu

Twitter, Inc.

Abstract

Twitter generates tens of billions of events per hour when users interact with it. Analyzing these
events to surface relevant content and to derive insights in real-time is a challenge. To address this, we
developed Heron, a new real time distributed streaming engine. In this paper, we first describe the design
goals of Heron and show how the Heron architecture achieves task isolation and resource reservation
to ease debugging, troubleshooting, and seamless use of shared cluster infrastructure with other critical
Twitter services. We subsequently explore how a topology self adjusts using back pressure so that the
pace of the topology goes as its slowest component. Finally, we outline how Heron implements at-most-
once and at-least-once semantics and we describe a few operational stories based on running Heron in
production.

1 Introduction

Stream-processing platforms enable enterprises to extract business value from data in motion, similar to batch
processing platforms that facilitated the same with data at rest [42]. The goal of stream processing is to enable
real-time or near real-time decision making by providing capabilities to inspect, correlate and analyze data as
it flows through data-processing pipelines. There is an emerging trend to transition from predominant batch
analytics to streaming analytics driven by a combination of increased data collection in real-time and the need
to make decisions instantly. Several scenarios in different industries require stream processing capabilities that
can process millions and even hundreds of millions of events per second. Twitter is no exception.

Twitter is synonymous with real-time. When a user tweets, his or her tweet can reach millions of users
instantly. Twitter users post several hundred million tweets every day. These tweets vary in diversity of content
[28] including but not limited to news, pass along (information or URL sharing), status updates (daily chatter),
and real-time conversations surrounding events such as the Super Bowl, and the Oscars. Due to the volume
and variety of tweets, it is necessary to surface relevant content in the form of break-out moments and trending
#hashtags to users in real time. In addition, there are several real-time use cases including but not limited to
analyzing user engagements, extract/transform/load (ETL), and model building.

In order to power the aforementioned crucial use cases, Twitter developed an entirely new real-time dis-
tributed stream-processing engine called Heron. Heron is designed to provide

Copyright 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

15

• Ease of Development and Troubleshooting: Users can easily debug and identify the issues in their
topologies (also called standing queries), allowing them to iterate quickly during development. This
improvement in visibility is possible because of the fundamental change in architecture in Heron from
thread based to process based. Users can easily reason about how their topologies work, and profile and
debug their components in isolation.

• Efficiency and Performance: Heron is 2-5x more efficient than Storm [40]. This improvement resulted
in significant cost savings for Twitter both in capital and operational expenditures.

• Scalability and Reliability: Heron is highly scalable both in the ability to execute large numbers of
components for each topology and the ability to launch and track large numbers of topologies. This large
scale results from the clean separation of topology scheduling and monitoring.

• Compatibility with Storm: Heron is API compatible with Storm and hence no code change is required
for migration.

• Simplified and Responsive UI: The Heron UI gives a visual overview of each topology. The UI uses
metrics to show at a glance where the hot spots are and provides detailed counters for tracking progress
and troubleshooting.

• Capacity Allocation and Management: Users can take a topology from development to production in
a shared-cluster infrastructure instantly, since Heron runs as yet another framework of the scheduler that
manages capacity allocation.

The remainder of this paper is organized as follows. Section 2 presents related work on streaming systems.
The following section, Section 3 describes the Heron data model. Section 4 describes the Heron architecture
followed by how the architecture meets the design goals in Section 5. Section 6 discusses some of the operational
aspects that we encountered while running Heron at Twitter specifically back-pressure issues in Section 6.1, load
shedding in Section 6.2, and Kestrel spout issues in Section 6.3. Finally, Section 7 contains our conclusions and
points to a few directions for future work.

2 Related Work

The importance of stream-processing systems was recognized in the late 1990s and early 2000s. From then
on, these systems have gone through three generations of evolution. First-generation systems were either main-
memory database systems or rule engines that evaluate rules expressed as condition-action pairs when new events
arrive. When a rule is triggered, it might produce alerts or modify the internal state, which could trigger other
rules. These systems were limited in functionality and also did not scale with large-data-volume streams. Some
of the systems in this generation include HiPAC [29], Starburst [43], Postgres [37], Ode [31], and NiagaraCQ
[27].

Second-generation systems were focused on extending SQL for processing streams by exploiting the simi-
larities between a stream and a relation. A stream is considered as an instantaneous relation [22] and streams can
be processed using relational operators. Furthermore, the stream and stream results can be stored in relations
for later querying. TelegraphCQ [25] focused on developing novel techniques for processing streams of con-
tinuous queries over large volume of data using Postgres. Stanford stream manager STREAM [21] proposed a
data model integrating streams into SQL. Aurora [18] used operator definitions to form a directed acyclic graph
(DAG) for processing stream data in a single node system. Borealis [17] extended Aurora for distributed stream
processing with a focus on fault tolerance and distribution. Cayuga [30] is a stateful publishe-subscribe system
that developed a query language for event processing based on an algebra using non-deterministic finite state
automaton.

16

Because these second-generation systems were not designed to handle incoming data in a distributed fashion,
a need for a third generation arose as Internet companies began producing data at a high velocity and volume.
These third-generation systems were developed with the key focus on scalable processing of streaming data.
Yahoo S4 [3] is one of the earliest distributed streaming systems that is near real-time, scalable and allows for
easy implementation of streaming applications. Apache Storm [40] is a widely popular distributed streaming
system open sourced by Twitter. It models a streaming analytics job as a DAG and runs each node of the DAG
as several tasks distributed across a cluster of machines. MillWheel [19] is a key-value based streaming system
that supports exactly once semantics. It uses BigTable [26] for storing state and checkpointing. Apache Samza
[4] developed at LinkedIn, is a real-time, asynchronous computational framework for stream processing. It uses
several independent single-stage computational tasks for stitching together a topology similar to Storm. Each
stage reads one or more streams from Apache Kafka [32] and writes the output stream to Kafka for stitching
together a processing DAG.

Apache Spark [5] supports streaming using a high-level abstraction called a discretized stream, Spark runs
short tasks to process these discretized streams and output results to other systems. In contrast, Apache Flink [2]
uses a distributed streaming dataflow engine and asynchronous snapshots for achieving exactly once semantics.
Pulsar [35] is a real time analytics engine open sourced by eBay and its unique feature is its SQL interface.
Some of the other notable systems include S-Store [34] Akka [1], Photon [20], and Reactive Streams [11]. In
addition to these platforms, several commercial streaming systems are available in the market [7], [8], [9], [12],
[13]i, [14], and [15].

3 Heron Data Model

Heron uses a directed acyclic graph (DAG) for representing a real-time computation. The graph is referred to as
a topology. Each node in the topology contains processing logic, and the links between the nodes indicate how
the data flows between them. These data flows are called streams. A stream is an unbounded sequence of tuples.
Nodes take one or more streams and transform them into one or more new new streams. There are two types
of nodes: spouts and bolts. Spouts are the sources of streams. For example, a Kafka [32] spout can tap into
a Kafka queue and emit it as a stream. A bolt consumes tuples from streams, applies its processing logic and
emits tuples in outgoing streams. Typical processing logic includes filtering, joining and aggregation of streams.
An example topology is shown in Figure 1.

Figure 1: Heron Topology

In this topology, the spouts S1 taps into its data source and emits two streams consumed by the first stage

17

bolts B1, and B2. These bolts transform the streams and emit three new streams feeding bolts B3 and B4.
Since the incoming data rate might be higher than the processing capability of a single process or even a single
machine, each spout and bolt of the topology is run as multiple tasks. The number of tasks for each spout and
bolt is specified in the topology configuration by the programmer. Such a task specification is referred to as the
degree of parallelism. The topology shown in Figure 1, when instantiated at run time is illustrated in Figure 2.
The topology, the task parallelism for each node and the specification about how data should be routed form the
physical execution plan of the topology.

Figure 2: Physical Execution of a Heron Topology

4 Heron Architecture

The design goals for Heron are multifold. First, the spout and bolt tasks need to be executed in isolation. Such
isolation will provide the ability to debug and profile a task when needed. Second, the resources allocated to
the topology should not be exceeded during the execution of the topology. This requirement enables Heron
topologies to be run in a shared cluster environment alongside other critical services. Third, the Heron API
should be backward compatible with Storm and a migrated topology should run unchanged. Fourth, Heron
topologies should adjust themselves automatically when some of their components are executing slowly. Fifth,
Heron should be able to provide high throughput and low latency. While these goals are often mutually exclusive,
Heron should expose the appropriate knobs so that users can balance throughput and latency needs. Sixth, Heron
should support the processing semantics of at most once and at least once. Finally, Heron should be able to
achieve high throughput and/or low latency while consuming a minimal amount of resources.

To meet the aforementioned design goals, Heron uses the architecture as shown in Figure 3. A user writes
his or her topology using the Heron API and submits to a scheduler. The scheduler acquires the resources (CPU
and RAM) as specified by the topology and spawns multiple containers on different nodes. The first container,
referred to as the master container, runs the topology master. The other containers each run a stream manager,
a metrics manager and several processes called instances that execute the processing logic of spouts and bolts.

The topology master is responsible for managing the entire topology. Furthermore, it assigns a role or group
based on the user who launched the topology. This role is used to track the resource usage of topologies across
different teams and calcuate the cost of running them for reporting. In addition, the topology master acts as
the gateway to access the metrics and status of the topology. Once the topology master comes up in the master
container, it advertises its location in the form of a host and port via an ephemeral Zookeeper [6] node. This
node allows other containers to discover the location of the topology master and also prevents multiple topology

18

Figure 3: Heron Topology Architecture

masters becoming master during network partitioning. We use an ephemeral node in Zookeeper because when
the topology master dies, it detects the loss of session and automatically removes the node.

A network of stream managers route data tuples from one Heron instance to other Heron instances. Each
container has a stream manager and the Heron instances in that container send and receive data from it. Even
data tuples destined for local Heron instances in a container are routed through the stream manager. When a
container is scheduled, the stream manager comes up and discovers where the topology master is running. The
stream manager forms a handshake request that includes the host and port on which it is listening and sends it
to the topology master. This host and port information allows the topology master to assemble the physical plan
and push the plan to all the stream managers. Once stream managers get the physical plan, they connect with
other stream managers to form a fully connected graph, as shown in Figure 3.

Figure 4: Dataflow in Heron

19

A Heron instance runs the processing logic in spouts or bolts. Each Heron instance is a process running a
single spout task or a bolt task. The instance process runs two threads –the gateway thread and the task-execution
thread. The gateway thread communicates with the stream manager to send and receive data tuples from the
stream manager. The task-execution thread runs the user code of the spout or bolt. When the gateway thread
receives tuples, it passes them to the task-execution thread. The task-execution thread applies the processing
logic and emits tuples, if needed. These emitted tuples are sent to the gateway thread, which passes them to the
stream manager. In addition to tuples, the task-execution thread collects several metrics. These are passed to the
gateway thread, which routes them to the metrics manager.

The metrics manager is responsible for collecting metrics from all instances and exporting them to the
metrics-collection system. The metrics-collection system stores those raw metrics and allows for later analysis.
Since there are several popular metrics-collection systems, the metrics manager exposes a generic abstraction.
This abstraction facilitates ease of implementation for routing metrics to various different metrics-collection
systems.

5 Achieving Design Goals

As mentioned in the previous section, Heron was developed with certain design goals in mind. In this section,
we examine how we achieved each one of them in detail.

5.1 Task Isolation

Since a Heron instance executes a single task in a dedicated process, it is entirely isolated from other spout and
bolt tasks. Such task isolation provides several advantages. First, it is easy to debug an offending task, since the
logs from its instance are written to a file of its own providing a time ordered view of events. This ordering helps
simplify debugging. Second, one can use performance-tracking tools (such as YourKit [16], etc) to identify the
functions consuming substantial time, when a spout or bolt task is running slowly. Third, it allows examination
of the memory of the process to identify large objects and provide insights. Finally, it facilitates the examination
of execution state of all threads in the process to identify synchronization issues.

5.2 Resource Reservation

In Heron, a topology requests its resources in the form of containers, and the scheduler spawns those contain-
ers on the appropriate machines. Each container is assigned the requested number of CPU cores and memory.
Once a certain amount of resources (CPU and RAM) are assigned to a topology, Heron ensures that they are
not exceeded. This monitoring is needed when Heron topologies are run alongside other critical services in
a shared infrastructure. Furthermore, when fragments of multiple topologies are executing in the same ma-
chine, resource reservation ensures that one topology does not influence other topologies by consuming more
resources temporarily. If resource reservation is not enforced, it would lead to unpredictability in the behavior
of other topologies, making it harder to track the underlying performance issues. Each container is mapped to a
Linux cgroup. This ensures that the container does not exceed the allocated resources. If there is an attempt to
temporarily consume more resources, the container will be throttled, leading to a slowdown of the topology.

5.3 Self Adjustment

A typical problem seen in streaming systems, similar to what is seen in batch systems, is that of stragglers. Since
the topology can process data only as fast as its slowest component, stragglers cause lag in the input data to build
up. In such scenarios, a streaming system tends to drop data at different stages of the DAG. This dropping of
results in either data loss or replay of data multiple times. A topology needs to adjust its pace depending on the

20

prevailing situations. Some of these situations are data skew, where a bolt instance is receiving more data than
it can process, and when a fragment of the topology is scheduled on a slow node.

During such scenarios, some feedback mechanism should be incorporated to slow down the topology tem-
porarily so that the data drops are minimized. Heron implements a full fledged back-pressure mechanism to
ensure that the topology is self adjusting. We investigated two back-pressure approaches –TCP-based back
pressure and spout-based back pressure.

The TCP protocol uses slow-start and sliding-window mechanisms to ensure that the sender is transmitting
at the rate the receiver can consume. Hence it is natural to ask whether Heron could leverage the TCP protocol
for back pressure. But due to the multiplexing nature of the stream manager, where multiple logical transport
channels are mapped on a single physical channel, TCP-based back pressure could slow upstream or downstream
spouts or bolts. To illustrate this possibility, consider the physical execution of the topology in Figure 1 with four
containers as shown in Figure 5. Assume that an instance of Bolt B3 in Container A is going slow. As shown in
Figure 1, Bolt B3 receives input from Bolt B1 which means all instances of Bolt B3 will receive input from all
instances of B1. Hence, the stream manager in Container A will receive input from bolt instances of B1 running
in Containers C and D. Since the instance of Bolt B3 in Container A is going slow, its stream manager will not
take any additional input from the stream managers of the containers C and D. Since the connection between
stream managers use TCP sockets, eventually the socket send buffers in stream managers in Containers C and D
will fill up. As a result, the data exchange between Bolt B1 and B2 (shown in green) in containers C and D with
bolt B4 (shown in green) in Container A is affected. We found that for some topologies, such situations could
eventually drive the throughput to zero.

Figure 5: TCP Back Pressure

We considered another approach called spout-based back pressure. This approach is based on the observation
that spouts are the sources of data and we can manage when they emit or suspend the injection of data. In other
words, whenever a stream manager detects one of the instances is going slow, it will explicitly send an initiate-
back-pressure message to all the other stream managers. When a stream manager receives this message, it
examines the physical plan and, if there are any spouts running in the container, it will not consume data from
them. To illustrate, again consider the physical execution of topology in Figure 1 as shown in Figure 6. When
the Bolt B3 in Container A goes slower, its stream manager sends the initiate-back-pressure message to stream

21

managers of all the containers. Upon receiving this message, the stream managers in Containers B and C do not
consume data from their spouts, in this case, Spout S1 (shown in blue). This action reduces the data inflow into
the topology thereby self adjusting. Once the Bolt B3 picks up pace, its stream manager sends a relieve-back-
pressure message to all other stream managers. They act on this message by starting to consume from their local
spouts. More details about the back pressure mechanism can be found in Kulkarni, et al. [33].

Figure 6: Spout Back Pressure

5.4 Processing Semantics

In order to provide predictability, a stream processing system needs to provide guarantees on the data that passes
through it. Heron supports two different types of processing semantics:

• At most once: In this semantics, the processing is best effort. In the presence of node or process failures,
the data processed by the streaming system could be lost. Hence, the number of data tuples processed
might be lower than the actual number of data tuples, which could affect the results.

• At least once: In this semantics, the system guarantees that the data is processed at least once. If the
data is dropped during node or process failures, it is reprocessed. It is possible that the same data tuple
is processed more than once. Hence, the number of data tuples processed might be higher than the actual
number of data tuples, again potentially affecting the results.

Incorporating at-most-once semantics in Heron is straight forward. A Heron topology continuously pro-
cesses data and, during processing, the data moves from instance to stream manager and between stream man-
agers. When an instance in a container fails, the state accumulated by the bolt or spout is lost. After restart, it
connects with the stream manager and continues to receive and process data thereby, accumulating new state.
Similarly, when a stream manager in a container dies, it restarts and reconnects to other stream managers and
resumes processing. If an entire container fails due to node failure, the container is relocated to another node.
Once the stream manager and instances in the relocated container come up, the data processing continues. Dur-
ing relocation, the data intended for the failed stream manager from other stream managers could be dropped or
if the data is buffered, the buffers could overflow, eventually dropping data.

22

6 Heron in Practice

Heron has been in production at Twitter for over two years. It is used for diverse use cases such as real-time
business intelligence, real-time machine-learning, real-time classification, real-time engagements, computing
real-time trends, real-time media, and real-time monitoring. In this section, we will explore some of operational
issues that occur in practice and how we solve them.

6.1 Back Pressure

Spout-based back pressure helped us reduce data loss significantly as stragglers are the norm in multi-tenant
distributed systems. The Heron back-pressure recovery mechanism allows us to process data at a maximal rate
such that the recovery times are very low. Since most topologies are provisioned with extra capacity to handle
increased traffic during well-known events (such as the Super Bowl and the Oscars), the recovery rate is usually
much higher than the steady state. In cases where the topologies have not been provisioned to handle increased
traffic, the back pressure mechanisms act as a shock absorber to handle any temporary spikes. In cases where
these spikes are not temporary, back pressure also allows users to add more capacity and restart their topologies
with minimal loss of data.

We have encouraged topology writers to test their back pressure (and recovery) mechanism in staging envi-
ronments by artificially creating traffic spikes (e.g., by reading from older offsets in Kafka). This practice allows
them to understand the dynamic behavior of back pressure and measure the recovery time. To monitor this pro-
cess in real time, several metrics have been exposed on the dashboard. Back pressure also helps topology writers
in tuning their topology. Since we do not have auto tuning (yet), users are required to use trial and error to get
the correct values for resource allocation and parallelism of the components. By looking at the back pressure
metrics, they can identify which of the components are under back pressure and correspondingly increase the
resources or parallelism until there is no back pressure in steady state.

In our experience, we have found that in most scenarios, back pressure recovers without manual intervention.
However, there are cases where a particular component in topology gets scheduled on a faulty host or goes into
irrecoverable garbage-collection cycles (for various reasons). Under such scenarios, users get paged, upon
which they usually restart those components to get the problem fixed. While most users see back pressure as a
requirement, some users prefer dropping data as they only care about the latest data. To handle such cases, we
added the load-shedding feature in spouts as decribed in the following section.

6.2 Load Shedding

Load shedding has been studied extensively in the context of second-generation streaming systems [23, 24,
36, 38, 39, 41]. Most of the proposed alternatives fall into two broad categories, sampling-based approaches
and data-dropping-based approaches. The idea behind sampling-based approaches is that if the system can
automatically downsample an incoming stream in a predictable way, the user can potentially scale up the results
of the computation in order to compensate. For example, if a Heron topology is counting widgets and the stream
is being downsampled by 50%, the user can simply multiply the widget counts by two for each widget that is
present in the stream and therefore still get approximately correct results.

The common theme of sampling approaches is that a more uniformly sampled stream is easier to reason
about and a user could also use the information about the sampling rate to scale the output of the computations,
which is a very desirable property. However, for sampling to be useful to applications, it would be important
that the sampling was done on a global level.

If each spout instance was individually sampling at different times and different rates the value of uniform
sampling to applications programmers is pretty much negated. The system would lose the property that it is
easy to reason about the sampling that is happening and also the ability to properly scale the output of the

23

computation based on the sampling rate. Due to these limitations and its considerably higher complexity, we did
not implement the sampling-based approach.

On the other hand, the idea behind dropping-based approaches is that the system will simply drop older data
and prefer more recent data when the Heron topology is unable to keep up. Heron spouts are modified such that
the user can configure a lag threshold and a lag-adjustment value. The lag threshold will indicate how much lag
is tolerable before the spout drops any data. The lag-adjustment value will indicate how much of the old data
the system will drop when this threshold is reached.

Given the two values described above, the system will monitor the lag for each individual spout instance
and periodically skip ahead by the lag adjustment value whenever the lag is above the threshold value. A key
point here is that the decision to drop data is a completely local decision in each spout instance. There will
be no attempt made to synchronize amongst different spouts or otherwise coordinate such that the spouts work
together in deciding what data to drop. Each spout drops data from its associated Kafka or Eventbus partition
and no communication between spouts will occur.

6.3 Kestrel Spout

Kestrel [10] is a simple distributed message-queuing system. Each Kestrel host handles a set of reliable, and
ordered, message queues. A Kestrel cluster consists of several such hosts with no communication between them.
Whenever a client is interested in enqueuing or dequeuing an item, it randomly picks a host, thereby providing
reliable, loosely ordered message queue behavior. An attractive property of Kestrel is its ability to scale, since
servers do not communicate with each other and have no need for any coordination.

Unlike Kafka [32], Kestrel is stateful. In order to maintain state, Kestrel replicates data for every consumer.
In other words, Kestrel assumes only one consumer per physical queue. An item in the queue is removed only
after a client dequeues and then acknowledges it. If two different instances of a consumer are consuming from
the same Kestrel queue, it is guaranteed that they will never receive same item, given that they acknowledge
their respective items. If the item is not acknowledged within a specified amount of time, it is placed back in the
queue for the next instance to receive.

We started with the open source Kestrel spout and it worked reasonably well. However, as traffic grew,
Heron topologies using Kestrel spouts faced several issues, such as:

• One or more Kestrel hosts would start accumulating data and not drain. The immediate resolution is to
manually mark those servers as read only until they drain, and enable writes once the number of items to
be consumed goes below a certain threshold. This approach presents an operational challenge, especially
during non-working hours. When a host is not getting drained, it affects the performance of other queues
it needs to service as well. One possible solution is to set maxItems (the maximum number of items held
in queue) and maxAge (maximum amount of time an item stays in the queue before it is deleted) limits
on the queues to be small, so that the size of queue does not grow to affect other queues on the host. But
this solution results in data loss for the job consuming this queue.

• A Kestrel spout would pack the Kestrel client (or connection) along with the data in a tuple. This would
cause the spout to become stateless, because when the tuple came back to the spout to get acknowledged,
it just extracted the client from the tuple and acknowledged it back to Kestrel host to retire the tuple. The
problem with this approach was that the tuple size grew, and it carried extra load for no reason, which
resulted in extra data transfers, and more serialization and deserialization costs.

• A Kestrel spout would create a new connected client every time it requested the next batch of items from
Kestrel. While this behavior has no effect on topologies with low throughput, for more data-heavy topolo-
gies, the number of connections to a host grew without bound. Some of the spout-related configurations,

24

such as maximum spout pending (limits the number of tuples in flight in a topology, so the spouts do not re-
quest an unbounded number of tuples) often hid this problem. Furthermore, creation of many connections
exacerbated garbage-collection issues.

The root cause for one or more Kestrel hosts not draining was triggered by the use of Zookeeper to discover
Kestrel hosts. Specifically, the Kestrel spout used a service factory for creating a connection to one of the Kestrel
hosts in the server set, The factory did not provide any guarantees that all the hosts would be connected and read
evenly. As a result, some of the servers were occasionally left out, causing items from those servers to not be
consumed. Our initial solution was to fetch all the hosts from the Kestrel server set, and read from each server
in a round-robin fashion. This practice ensured that no server is left unread, while giving all the hosts equal
priority. This approach worked even during times of high load, because it is assumed that to achieve steady state,
the read rate has to be higher than the write rate. So even in case of high load, round robin would drain the full
queues, and bring the system to steady state.

Soon we saw an issue where instead of one Kestrel host lagging, all of the hosts were backing up. This issue
was traced to one host being unable to respond and because of the round robin policy, all the hosts were read
at the pace of the slowest one. The actual slow down of the host was due to disk writes for logging. Hence, an
approach was needed to decouple a slow host from others temporarily. To solve the issue, each spout instance
is assigned a configurable number of Kestrel hosts. These assignments were not mutually exclusive, and had
overlaps. The three main properties of these assignments are:

• Each spout instance reads from a subset (more than one) of Kestrel hosts.

• Each Kestrel host is read by a subset (more than one) spout instances.

• If any two Kestrel hosts, A and B, are read by one spout instance, then there exists a spout instance that
reads from host A and not B, and another instance that reads from host B and not A.

The last property ensures that if one Kestrel host slows down, the rest of the hosts will be read without any
penalties. And using round-robin reads ensures that the slow host will not be left out, and will still be drained.

The issue of passing a Kestrel client was fixed by mapping each tuple to its Kestrel client using a combination
of a generated unique identifier and the original item identifier provided by the Kestrel host. This approach also
prevented the creation of several client objects by reusing existing Kestrel client objects. Finally, we added
configuration parameters to control both the number of connections per Kestrel host from a spout instance and
the number of pending items per connection, which helped in playing nice with Kestrel.

7 Conclusion

Heron has become the de-facto real-time streaming system at Twitter. It runs several hundred development and
production topologies and been in production for more than two years. Several teams in Twitter use Heron for
making real-time data-driven decisions that are business critical. Heron is used for several diverse use cases
ranging from ETL to building machine-learning models and is expanding rapidly. These use cases require
additional future work to evolve Heron.

First, manual resource assignment for a topology when it goes production currently requires several itera-
tions. Each iteration involves changing the configuration parameters, recompiling and redeploying. For large
topologies, each iteration is very expensive. We want to explore an elegant solution for estimating initial re-
source requirements using a combination of data-source characteristics, sampling and linear regression. Second,
the topologies are often overprovisioned to accommodate peak loads during popular events to avoid manual
intervention. This policy led to resource wastage and hence we are investigating approaches where the topology
can expand automatically and shrink depending on traffic variations. Third, we want to support a declarative

25

query paradigm that allows users to write queries faster and be more productive. Fourth, in some uses cases, we
have to guarantee data processing by the topology is exactly once. The problems of auto-scaling and exactly
once will require distributed partitionable state and additional Heron APIs.

8 Acknowledgements

Thanks to David Maier and Kristin Tufte for providing comments on the initial draft of the paper that helped
improved its presentation. Thanks to Jeff Naughton, Deep Medhi and Jignesh Patel for reading the pre-final
draft and help improve the presentation. Thanks to Arun Kejariwal for help with LaTeX including setting it up,
patiently answering several questions and providing several comments on the first draft.

References
[1] Akka. http://akka.io/.
[2] Apache Flink. https://flink.apache.org/.
[3] Apache S4. http://incubator.apache.org/s4/.
[4] Apache Samza. https://samza.apache.org/.
[5] Apache Spark. https://spark.apache.org/.
[6] Apache Zookeeper. http://zookeeper.apache.org/.
[7] Apama Streaming Analytics. http://www.softwareag.com/corporate/products/apama_webmethods/

analytics/overview/default.asp.
[8] Informatica Vibe Data Stream. https://www.informatica.com/products/data-integration/real-time-
integration/vibe-data-stream.html#fbid=v8VRdfhc8YI.

[9] InfoSphere Streams: Capture and analyze data in motion. http://www-03.ibm.com/software/products/en/
infosphere-streams.

[10] Kestrel: A simple, distributed message queue system. http://twitter.github.io/kestrel.
[11] Reactive Streams. http://incubator.apache.org/s4/.
[12] SAP Event Stream Processor. http://www.sap.com/pc/tech/database/software/sybase-complex-event-

processing/index.html.
[13] SQLstream Blaze. http://www.sqlstream.com/blaze/.
[14] TIBCO StreamBase. http://www.streambase.com/.
[15] Vitria OI For Streaming Big Data Analytics. http://www.vitria.com/solutions/streaming-big-data-

analytics/benefits/.
[16] YourKit. https://www.yourkit.com/.
[17] D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J. hyon Hwang, W. Lindner, A. S. Maskey, E. Rasin, E. Ryvk-

ina, N. Tatbul, Y. Xing, and S. Zdonik. The design of the Borealis stream processing engine. In Proceedings of the
Conference on Innovative Data Systems Research, pages 277–289, 2005.

[18] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik.
Aurora: A new model and architecture for data stream management. The VLDB Journal, 12(2), Aug. 2003.

[19] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman, R. Lax, S. McVeety, D. Mills, P. Nordstrom, and
S. Whittle. Millwheel: Fault-tolerant stream processing at internet scale. Proceedings of the VLDB Endowment,
6(11):1033–1044, Aug. 2013.

[20] R. Ananthanarayanan, V. Basker, S. Das, A. Gupta, H. Jiang, T. Qiu, A. Reznichenko, D. Ryabkov, M. Singh, and
S. Venkataraman. Photon: Fault-tolerant and scalable joining of continuous data streams. In Proceedings of the 2013
International Conference on Management of Data, pages 577–588, 2013.

[21] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa, J. Rosenstein, and J. Widom. STREAM: The
stanford stream data manager (demonstration description). In Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, pages 665–665, 2003.

[22] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data stream systems. In Proceedings
of the Symposium on Principles of Database Systems, pages 1–16, Madison, Wisconsin, 2002.

26

http://akka.io/
https://flink.apache.org/
http://incubator.apache.org/s4/
https://samza.apache.org/
https://spark.apache.org/
http://zookeeper.apache.org/
http://www.softwareag.com/corporate/products/apama_webmethods/analytics/overview/default.asp
http://www.softwareag.com/corporate/products/apama_webmethods/analytics/overview/default.asp
https://www.informatica.com/products/data-integration/real-time-integration/vibe-data-stream.html#fbid=v8VRdfhc8YI
https://www.informatica.com/products/data-integration/real-time-integration/vibe-data-stream.html#fbid=v8VRdfhc8YI
http://www-03.ibm.com/software/products/en/infosphere-streams
http://www-03.ibm.com/software/products/en/infosphere-streams
http://twitter.github.io/kestrel
http://incubator.apache.org/s4/
http://www.sap.com/pc/tech/database/software/sybase-complex-event-processing/index.html
http://www.sap.com/pc/tech/database/software/sybase-complex-event-processing/index.html
http://www.sqlstream.com/blaze/
http://www.streambase.com/
http://www.vitria.com/solutions/streaming-big-data-analytics/benefits/
http://www.vitria.com/solutions/streaming-big-data-analytics/benefits/
https://www.yourkit.com/

[23] B. Babcock, M. Datar, and R. Motwani. Load shedding techniques for data stream systems. In Proceedings of the
2003 Workshop on Management and Processing of Data Streams MPDS, 2003.

[24] B. Babcock, M. Datar, and R. Motwani. Load shedding in data stream systems. In C. Aggarwal, editor, Data Streams,
volume 31 of Advances in Database Systems, pages 127–147. Springer US, 2007.

[25] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. R.
Madden, F. Reiss, and M. A. Shah. TelegraphCQ: Continuous dataflow processing. In Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, pages 668–668, 2003.

[26] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.
Bigtable: A distributed storage system for structured data. ACM Transactions on Computer Systems, 26(2), June
2008.

[27] J. Chen, D. J. Dewitt, F. Tian, and Y. Wang. Niagara CQ: A scalable continuous query system for internet databases.
In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pages 379–390, 2000.

[28] S. Dann. Twitter content classification. First Monday, 15(12), December 2010. http://firstmonday.org/ojs/
index.php/fm/article/view/2745/2681.

[29] U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy, M. Hsu, R. Ledin, D. McCarthy, A. Rosenthal, S. Sarin, M. J.
Carey, M. Livny, and R. Jauhari. The HiPAC project: Combining active databases and timing constraints. SIGMOD
Rec., 17(1):51–70, March 1988.

[30] A. Demers, J. Gehrke, M. Hong, B. Panda, M. Riedewald, V. Sharma, and W. White. Cayuga: A general purpose
event monitoring system. In Proceedings of the Conference on Innovative Data Systems Research, 2007.

[31] N. Gehani and H. V. Jagdish. Ode as an active database: Constraints and triggers. In Proceedings of the 17th
International Conference on Very Large Data Bases, Barcelona, Spain, 1991.

[32] N. N. Jay Kreps and J. Rao. Kafka: A distributed messaging system for log processing. In SIGMOD Workshop on
Networking Meets Databases, 2011.

[33] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M. Patel, K. Ramasamy, and S. Taneja. Twitter
Heron: Streaming at scale. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data, Melbourne, Australia, 2015.

[34] J. Meehan, N. Tatbul, S. Zdonik, C. Aslantas, U. Cetintemel, J. Du, T. Kraska, S. Madden, D. Maier, A. Pavlo,
M. Stonebraker, K. Tufte, and H. Wang. S-Store: streaming meets transaction processing. Proceedings of VLDB
Endowment, 8(13):2134–2145, Sept. 2015.

[35] S. Murthy and T. Ng. Announcing Pulsar: Real-time Analytics at Scale. http://www.ebaytechblog.com/2015/
02/23/announcing-pulsar-real-time-analytics-at-scale, Feb. 2015.

[36] S. Senthamilarasu and M. Hemalatha. Load shedding using window aggregation queries on data streams. Interna-
tional Journal of Computer Applications, 54(9):42–49, September 2012.

[37] M. Stonebraker and G. Kemnitz. The POSTGRES next generation database management system. Communications
of the ACM, 34(10):78–92, October 1991.

[38] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker. Load shedding in a data stream manager.
In Proceedings of the 29th International Conference on Very Large Data Bases, pages 309–320, 2003.

[39] N. Tatbul and S. Zdonik. Window-aware Load Shedding for Aggregation Queries over Data Streams. In Proceedings
of the 32nd International Conference on Very Large Data Bases (VLDB’06).

[40] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham,
N. Bhagat, S. Mittal, and D. Ryaboy. Storm@twitter. In Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, pages 147–156, 2014.

[41] Y.-C. Tu, S. Liu, S. Prabhakar, and B. Yao. Load shedding in stream databases: A control-based approach. In
Proceedings of the 32nd International Conference on Very Large Data Bases, pages 787–798, 2006.

[42] J. Vijayan. Streaming Analytics: Business Value from Real-Time Data. http://www.datamation.com/data-
center/streaming-analytics-business-value-from-real-time-data.html.

[43] J. Widom. The Starburst rule system: Language design, implementation, and applications. IEEE Data Engineering
Bulletin, Special Issue on Active Databases, 15:1–4, 1992.

27

http://firstmonday.org/ojs/index.php/fm/article/view/2745/2681
http://firstmonday.org/ojs/index.php/fm/article/view/2745/2681
http://www.ebaytechblog.com/2015/02/23/announcing-pulsar-real-time-analytics-at-scale
http://www.ebaytechblog.com/2015/02/23/announcing-pulsar-real-time-analytics-at-scale
http://www.datamation.com/data-center/streaming-analytics-business-value-from-real-time-data.html
http://www.datamation.com/data-center/streaming-analytics-business-value-from-real-time-data.html

Apache Flink™: Stream and Batch Processing in a Single Engine

Paris Carbone†

Asterios Katsifodimos*

†KTH & SICS Sweden
parisc,haridi@kth.se

Stephan Ewen‡

Volker Markl*

‡data Artisans
first@data-artisans.com

Seif Haridi†

Kostas Tzoumas‡

*TU Berlin & DFKI
first.last@tu-berlin.de

Abstract

Apache Flink1 is an open-source system for processing streaming and batch data. Flink is built on the
philosophy that many classes of data processing applications, including real-time analytics, continu-
ous data pipelines, historic data processing (batch), and iterative algorithms (machine learning, graph
analysis) can be expressed and executed as pipelined fault-tolerant dataflows. In this paper, we present
Flink’s architecture and expand on how a (seemingly diverse) set of use cases can be unified under a
single execution model.

1 Introduction
Data-stream processing (e.g., as exemplified by complex event processing systems) and static (batch) data pro-
cessing (e.g., as exemplified by MPP databases and Hadoop) were traditionally considered as two very different
types of applications. They were programmed using different programming models and APIs, and were exe-
cuted by different systems (e.g., dedicated streaming systems such as Apache Storm, IBM Infosphere Streams,
Microsoft StreamInsight, or Streambase versus relational databases or execution engines for Hadoop, including
Apache Spark and Apache Drill). Traditionally, batch data analysis made up for the lion’s share of the use cases,
data sizes, and market, while streaming data analysis mostly served specialized applications.

It is becoming more and more apparent, however, that a huge number of today’s large-scale data processing
use cases handle data that is, in reality, produced continuously over time. These continuous streams of data come
for example from web logs, application logs, sensors, or as changes to application state in databases (transaction
log records). Rather than treating the streams as streams, today’s setups ignore the continuous and timely nature
of data production. Instead, data records are (often artificially) batched into static data sets (e.g., hourly, daily, or
monthly chunks) and then processed in a time-agnostic fashion. Data collection tools, workflow managers, and
schedulers orchestrate the creation and processing of batches, in what is actually a continuous data processing
pipeline. Architectural patterns such as the ”lambda architecture” [21] combine batch and stream processing
systems to implement multiple paths of computation: a streaming fast path for timely approximate results, and a
batch offline path for late accurate results. All these approaches suffer from high latency (imposed by batches),

Copyright 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1The authors of this paper make no claim in being the sole inventors or implementers of the ideas behind Apache Flink, but rather a
group of people that attempt to accurately document Flink’s concepts and their significance. Consult Section 7 for acknowledgements.

28

parisc,haridi@kth.se
first@data-artisans.com
fist.last@tu-berlin.de

high complexity (connecting and orchestrating several systems, and implementing business logic twice), as well
as arbitrary inaccuracy, as the time dimension is not explicitly handled by the application code.

Apache Flink follows a paradigm that embraces data-stream processing as the unifying model for real-time
analysis, continuous streams, and batch processing both in the programming model and in the execution engine.
In combination with durable message queues that allow quasi-arbitrary replay of data streams (like Apache
Kafka or Amazon Kinesis), stream processing programs make no distinction between processing the latest
events in real-time, continuously aggregating data periodically in large windows, or processing terabytes of
historical data. Instead, these different types of computations simply start their processing at different points
in the durable stream, and maintain different forms of state during the computation. Through a highly flexible
windowing mechanism, Flink programs can compute both early and approximate, as well as delayed and accu-
rate, results in the same operation, obviating the need to combine different systems for the two use cases. Flink
supports different notions of time (event-time, ingestion-time, processing-time) in order to give programmers
high flexibility in defining how events should be correlated.

At the same time, Flink acknowledges that there is, and will be, a need for dedicated batch processing
(dealing with static data sets). Complex queries over static data are still a good match for a batch processing
abstraction. Furthermore, batch processing is still needed both for legacy implementations of streaming use
cases, and for analysis applications where no efficient algorithms are yet known that perform this kind of pro-
cessing on streaming data. Batch programs are special cases of streaming programs, where the stream is finite,
and the order and time of records does not matter (all records implicitly belong to one all-encompassing win-
dow). However, to support batch use cases with competitive ease and performance, Flink has a specialized API
for processing static data sets, uses specialized data structures and algorithms for the batch versions of opera-
tors like join or grouping, and uses dedicated scheduling strategies. The result is that Flink presents itself as a
full-fledged and efficient batch processor on top of a streaming runtime, including libraries for graph analysis
and machine learning. Originating from the Stratosphere project [4], Flink is a top-level project of the Apache
Software Foundation that is developed and supported by a large and lively community (consisting of over 180
open-source contributors as of the time of this writing), and is used in production in several companies.

The contributions of this paper are as follows:

• we make the case for a unified architecture of stream and batch data processing, including specific opti-
mizations that are only relevant for static data sets,
• we show how streaming, batch, iterative, and interactive analytics can be represented as fault-tolerant

streaming dataflows (in Section 3),
• we discuss how we can build a full-fledged stream analytics system with a flexible windowing mechanism

(in Section 4), as well as a full-fledged batch processor (in Section 4.1) on top of these dataflows, by show-
ing how streaming, batch, iterative, and interactive analytics can be represented as streaming dataflows.

2 System Architecture
In this section we lay out the architecture of Flink as a software stack and as a distributed system. While Flink’s
stack of APIs continues to grow, we can distinguish four main layers: deployment, core, APIs, and libraries.

Flink’s Runtime and APIs. Figure 1 shows Flink’s software stack. The core of Flink is the distributed dataflow
engine, which executes dataflow programs. A Flink runtime program is a DAG of stateful operators connected
with data streams. There are two core APIs in Flink: the DataSet API for processing finite data sets (often
referred to as batch processing), and the DataStream API for processing potentially unbounded data streams
(often referred to as stream processing). Flink’s core runtime engine can be seen as a streaming dataflow engine,
and both the DataSet and DataStream APIs create runtime programs executable by the engine. As such, it serves
as the common fabric to abstract both bounded (batch) and unbounded (stream) processing. On top of the core

29

DataSet API
Batch	Processing

DataStream	 API
Stream	Processing

Runtime
Distributed	Streaming	Dataflow

Local
Single	 JVM,	
Embedded

Cluster
Standalone,	YARN

Cloud
Google	Comp.	Engine,

EC2

Fl
in
k
M
L

M
ac
hi
ne
	L
ea
rn
in
g

G
el
ly

G
ra
ph

	A
PI
/L
ib
ra
ry

Ta
bl
e	
AP

I
Ba

tc
h

CE
P

Co
m
pl
ex
	E
ve
nt
	

Pr
oc
es
si
ng

De
pl
oy

Co
re

AP
Is	
&
	Li
br
ar
ie
s

Ta
bl
e	
AP

I
St
re
am

in
g

Figure 1: The Flink software stack.

Flink Client

Job	Manager

Task	Manager	#1
Task	
Slot

Ac
to
r	S
ys
te
m

Memory/IO	Manager

Network	Manager

Task	
Slot

Task	
Slot

Scheduler

Checkpoint	Coordinator

Data
Streams

f i n a l E xe cu ti on En vi ro nm en t en v = Ex ec ut io nE nv ir on me nt .g et Ex ec ut io nE nv ir on me nt () ;

/ / C r e a te i ni ti al I te ra ti ve Da ta Se t
I t e r a t i ve Da ta Se t< In te ge r> i ni ti al = e nv .f ro mE le me nt s(0) .i te ra te (1 00 00);

D a t a S e t <I nt eg er > it er at io n = in it ia l. ma p(ne w Ma pF un ct io n< In te ge r, I nt eg er >() {
@ O v er ri de
p u b li c In te ge r ma p(In te ge r i) t hr ow s Ex ce pt io n {

d ou bl e x = Ma th .r an do m();

d ou bl e y = Ma th .r an do m();

r et ur n i + ((x * x + y * y < 1) ? 1 : 0);
}

}) ; Flink Program

Dataflow	Graph

Task	Manager	#2
Task	
Slot

Ac
to
r	S
ys
te
m

Memory/IO	Manager

Network	Manager

Task	
Slot

Task	
Slot

Graph	 Builder	&	Optimizer

Ac
to
r	S
ys
te
m

D
at
af
lo
w
	G
ra
ph Ac

to
r	S
ys
te
m

Ta
sk
	S
ta
tu
s

H
ea
rt
be
at
s

St
at
is
ti
cs

Tr
ig
ge
r	
Ch
ec
kp
oi
nt
s,
	…

…

Figure 2: The Flink process model.

APIs, Flink bundles domain-specific libraries and APIs that generate DataSet and DataStream API programs,
currently, FlinkML for machine learning, Gelly for graph processing and Table for SQL-like operations.

As depicted in Figure 2, a Flink cluster comprises three types of processes: the client, the Job Manager, and
at least one Task Manager. The client takes the program code, transforms it to a dataflow graph, and submits
that to the JobManager. This transformation phase also examines the data types (schema) of the data exchanged
between operators and creates serializers and other type/schema specific code. DataSet programs additionally
go through a cost-based query optimization phase, similar to the physical optimizations performed by relational
query optimizers (for more details see Section 4.1).

The JobManager coordinates the distributed execution of the dataflow. It tracks the state and progress of each
operator and stream, schedules new operators, and coordinates checkpoints and recovery. In a high-availability
setup, the JobManager persists a minimal set of metadata at each checkpoint to a fault-tolerant storage, such that
a standby JobManager can reconstruct the checkpoint and recover the dataflow execution from there. The actual
data processing takes place in the TaskManagers. A TaskManager executes one or more operators that produce
streams, and reports on their status to the JobManager. The TaskManagers maintain the buffer pools to buffer or
materialize the streams, and the network connections to exchange the data streams between operators.

3 The Common Fabric: Streaming Dataflows
Although users can write Flink programs using a multitude of APIs, all Flink programs eventually compile down
to a common representation: the dataflow graph. The dataflow graph is executed by Flink’s runtime engine, the
common layer underneath both the batch processing (DataSet) and stream processing (DataStream) APIs.

3.1 Dataflow Graphs
The dataflow graph as depicted in Figure 3 is a directed acyclic graph (DAG) that consists of: (i) stateful
operators and (ii) data streams that represent data produced by an operator and are available for consumption
by operators. Since dataflow graphs are executed in a data-parallel fashion, operators are parallelized into
one or more parallel instances called subtasks and streams are split into one or more stream partitions (one
partition per producing subtask). The stateful operators, which may be stateless as a special case implement
all of the processing logic (e.g., filters, hash joins and stream window functions). Many of these operators
are implementations of textbook versions of well known algorithms. In Section 4, we provide details on the
implementation of windowing operators. Streams distribute data between producing and consuming operators
in various patterns, such as point-to-point, broadcast, re-partition, fan-out, and merge.

30

SRC1 IS1

SRC2

OP1

SNK2IS2

Stateful	Operator Materialized	Intermediate
Data	Stream
(blocking	data	exchange)

SNK1IS3

Transient	Intermediate
Data	Stream	(pipelined	data	exchange)

Control	Event
Data	Record
Operator	State

Figure 3: A simple dataflow graph.

0

10

20

30

40

50

60

70

80

90

100

0

20

40

60

80

100

120

0 5 10 50 100

Th
ro
ug
hp

ut
	

(A
ve
ra
ge
	in
	m
ill
io
ns
	o
f	e
ve
nt
s/
se
c)

La
te
nc
y

99
th
-p
er
ce
nt
ile
	in
	m
ill
ise

co
nd

s

Buffer timeout (milliseconds)

Figure 4: The effect of buffer-timeout
in latency and throughput.

3.2 Data Exchange through Intermediate Data Streams

Flink’s intermediate data streams are the core abstraction for data-exchange between operators. An intermediate
data stream represents a logical handle to the data that is produced by an operator and can be consumed by one
or more operators. Intermediate streams are logical in the sense that the data they point to may or may not be
materialized on disk. The particular behavior of a data stream is parameterized by the higher layers in Flink
(e.g., the program optimizer used by the DataSet API).

Pipelined and Blocking Data Exchange. Pipelined intermediate streams exchange data between concurrently
running producers and consumers resulting in pipelined execution. As a result, pipelined streams propagate
back pressure from consumers to producers, modulo some elasticity via intermediate buffer pools, in order
to compensate for short-term throughput fluctuations. Flink uses pipelined streams for continuous streaming
programs, as well as for many parts of batch dataflows, in order to avoid materialization when possible. Blocking
streams on the other hand are applicable to bounded data streams. A blocking stream buffers all of the producing
operator’s data before making it available for consumption, thereby separating the producing and consuming
operators into different execution stages. Blocking streams naturally require more memory, frequently spill to
secondary storage, and do not propagate backpressure. They are used to isolate successive operators against
each other (where desired) and in situations where plans with pipeline-breaking operators, such as sort-merge
joins may cause distributed deadlocks.

Balancing Latency and Throughput. Flink’s data-exchange mechanisms are implemented around the ex-
change of buffers. When a data record is ready on the producer side, it is serialized and split into one or more
buffers (a buffer can also fit multiple records) that can be forwarded to consumers. A buffer is sent to a consumer
either i) as soon as it is full or ii) when a timeout condition is reached. This enables Flink to achieve high
throughput by setting the size of buffers to a high value (e.g., a few kilobytes), as well as low latency by setting
the buffer timeout to a low value (e.g., a few milliseconds). Figure 4 shows the effect of buffer-timeouts on the
throughput and latency of delivering records in a simple streaming grep job on 30 machines (120 cores). Flink
can achieve an observable 99th-percentile latency of 20ms. The corresponding throughput is 1.5 million events
per second. As we increase the buffer timeout, we see an increase in latency with an increase in throughput,
until full throughput is reached (i.e., buffers fill up faster than the timeout expiration). At a buffer timeout of
50ms, the cluster reaches a throughput of more than 80 million events per second with a 99th-percentile latency
of 50ms.

Control Events. Apart from exchanging data, streams in Flink communicate different types of control events.
These are special events injected in the data stream by operators, and are delivered in-order along with all other

31

Figure 5: Asynchronous Barrier Snapshotting.

data records and events within a stream partition. The receiving operators react to these events by performing
certain actions upon their arrival. Flink uses lots of special types of control events, including:

• checkpoint barriers that coordinate checkpoints by dividing the stream into pre-checkpoint and post-
checkpoint (discussed in Section 3.3),
• watermarks signaling the progress of event-time within a stream partition (discussed in Section 4.1),
• iteration barriers signaling that a stream partition has reached the end of a superstep, in Bulk/Stale-

Synchronous-Parallel iterative algorithms on top of cyclic dataflows (discussed in Section 5.3).

As mentioned above, control events assume that a stream partition preserves the order of records. To this end,
unary operators in Flink that consume a single stream partition, guarantee a FIFO order of records. However,
operators receiving more than one stream partition merge the streams in arrival order, in order to keep up with
the streams’ rates and avoid back pressure. As a result, streaming dataflows in Flink do not provide ordering
guarantees after any form of repartitioning or broadcasting and the responsibility of dealing with out-of-order
records is left to the operator implementation. We found that this arrangement gives the most efficient design, as
most operators do not require deterministic order (e.g., hash-joins, maps), and operators that need to compensate
for out-of-order arrivals, such as event-time windows can do that more efficiently as part of the operator logic.

3.3 Fault Tolerance
Flink offers reliable execution with strict exactly-once-processing consistency guarantees and deals with failures
via checkpointing and partial re-execution. The general assumption the system makes to effectively provide
these guarantees is that the data sources are persistent and replayable. Examples of such sources are files and
durable message queues (e.g., Apache Kafka). In practice, non-persistent sources can also be incorporated by
keeping a write-ahead log within the state of the source operators.

The checkpointing mechanism of Apache Flink builds on the notion of distributed consistent snapshots
to achieve exactly-once-processing guarantees. The possibly unbounded nature of a data stream makes re-
computation upon recovery impractical, as possibly months of computation will need to be replayed for a long-
running job. To bound recovery time, Flink takes a snapshot of the state of operators, including the current
position of the input streams at regular intervals.

The core challenge lies in taking a consistent snapshot of all parallel operators without halting the execution
of the topology. In essence, the snapshot of all operators should refer to the same logical time in the computation.
The mechanism used in Flink is called Asynchronous Barrier Snapshotting (ABS [7]). Barriers are control
records injected into the input streams that correspond to a logical time and logically separate the stream to the
part whose effects will be included in the current snapshot and the part that will be snapshotted later.

An operator receives barriers from upstream and first performs an alignment phase, making sure that the
barriers from all inputs have been received. Then, the operator writes its state (e.g., contents of a sliding window,
or custom data structures) to durable storage (e.g., the storage backend can be an external system such as HDFS).
Once the state has been backed up, the operator forwards the barrier downstream. Eventually, all operators will

32

register a snapshot of their state and a global snapshot will be complete. For example, in Figure 5 we show that
snapshot t2 contains all operator states that are the result of consuming all records before t2 barrier. ABS bears
resemblances to the Chandy-Lamport algorithm for asynchronous distributed snapshots [11]. However, because
of the DAG structure of a Flink program, ABS does not need to checkpoint in-flight records, but solely relies on
the aligning phase to apply all their effects to the operator states. This guarantees that the data that needs to be
written to reliable storage is kept to the theoretical minimum (i.e., only the current state of the operators).

Recovery from failures reverts all operator states to their respective states taken from the last successful snap-
shot and restarts the input streams starting from the latest barrier for which there is a snapshot. The maximum
amount of re-computation needed upon recovery is limited to the amount of input records between two consecu-
tive barriers. Furthermore, partial recovery of a failed subtask is possible by additionally replaying unprocessed
records buffered at the immediate upstream subtasks [7].
ABS provides several benefits: i) it guarantees exactly-once state updates without ever pausing the computation
ii) it is completely decoupled from other forms of control messages, (e.g., by events that trigger the computation
of windows and thereby do not restrict the windowing mechanism to multiples of the checkpoint interval) and
iii) it is completely decoupled from the mechanism used for reliable storage, allowing state to be backed up to
file systems, databases, etc., depending on the larger environment in which Flink is used.

3.4 Iterative Dataflows
Incremental processing and iterations are crucial for applications, such as graph processing and machine learn-
ing. Support for iterations in data-parallel processing platforms typically relies on submitting a new job for
each iteration or by adding additional nodes to a running DAG [6, 25] or feedback edges [23]. Iterations in
Flink are implemented as iteration steps, special operators that themselves can contain an execution graph (Fig-
ure 6). To maintain the DAG-based runtime and scheduler, Flink allows for iteration “head” and “tail” tasks
that are implicitly connected with feedback edges. The role of these tasks is to establish an active feedback
channel to the iteration step and provide coordination for processing data records in transit within this feedback
channel. Coordination is needed for implementing any type of structured parallel iteration model, such as the
Bulk Synchronous Parallel (BSP) model and is implemented using control event. We explain how iterations are
implemented in the DataStream and DataSet APIs in Section 4.4 and Section 5.3, respectively.

4 Stream Analytics on Top of Dataflows
Flink’s DataStream API implements a full stream-analytics framework on top of Flink’s runtime, including the
mechanisms to manage time such as out-of-order event processing, defining windows, and maintaining and
updating user-defined state. The streaming API is based on the notion of a DataStream, a (possibly unbounded)
immutable collection of elements of a given type. Since Flink’s runtime already supports pipelined data transfers,
continuous stateful operators, and a fault-tolerance mechanism for consistent state updates, overlaying a stream
processor on top of it essentially boils down to implementing a windowing system and a state interface. As
noted, these are invisible to the runtime, which sees windows as just an implementation of stateful operators.

4.1 The Notion of Time
Flink distinguishes between two notions of time: i) event-time, which denotes the time when an event originates
(e.g., the timestamp associated with a signal arising from a sensor, such as a mobile device) and ii) processing-
time, which is the wall-clock time of the machine that is processing the data.

In distributed systems there is an arbitrary skew between event-time and processing-time [3]. This skew
may mean arbitrary delays for getting an answer based on event-time semantics. To avoid arbitrary delays, these
systems regularly insert special events called low watermarks that mark a global progress measure. In the case
of time progress for example, a watermark includes a time attribute t indicating that all events lower than t have

33

Figure 6: The iteration model of Apache Flink.

already entered an operator. The watermarks aid the execution engine in processing events in the correct event
order and serialize operations, such as window computations via a unified measure of progress.

Watermarks originate at the sources of a topology, where we can determine the time inherent in future
elements. The watermarks propagate from the sources throughout the other operators of the data flow. Operators
decide how they react to watermarks. Simple operations, such as map or filter just forward the watermarks they
receive, while more complex operators that do calculations based on watermarks (e.g., event-time windows)
first compute results triggered by a watermark and then forward it. If an operation has more than one input, the
system only forwards the minimum of the incoming watermarks to the operator thereby ensuring correct results.

Flink programs that are based on processing-time rely on local machine clocks, and hence possess a less
reliable notion of time, which can lead to inconsistent replays upon recovery. However, they exhibit lower
latency. Programs that are based on event-time provide the most reliable semantics, but may exhibit latency
due to event-time-processing-time lag. Flink includes a third notion of time as a special case of event-time
called ingestion-time, which is the time that events enter Flink. That achieves a lower processing latency than
event-time and leads to more accurate results in comparison to processing-time.

4.2 Stateful Stream Processing
While most operators in Flink’s DataStream API look like functional, side-effect-free operators, they provide
support for efficient stateful computations. State is critical to many applications, such as machine-learning
model building, graph analysis, user session handling, and window aggregations. There is a plethora of different
types of states depending on the use case. For example, the state can be something as simple as a counter or
a sum or more complex, such as a classification tree or a large sparse matrix often used in machine-learning
applications. Stream windows are stateful operators that assign records to continuously updated buckets kept in
memory as part of the operator state.

In Flink state is made explicit and is incorporated in the API by providing: i) operator interfaces or an-
notations to statically register explicit local variables within the scope of an operator and ii) an operator-state
abstraction for declaring partitioned key-value states and their associated operations. Users can also configure
how the state is stored and checkpointed using the StateBackend abstractions provided by the system, thereby
allowing highly flexible custom state management in streaming applications. Flink’s checkpointing mechanism
(discussed in Section 3.3) guarantees that any registered state is durable with exactly-once update semantics.

4.3 Stream Windows
Incremental computations over unbounded streams are often evaluated over continuously evolving logical views,
called windows. Apache Flink incorporates windowing within a stateful operator that is configured via a flexible
declaration composed out of three core functions: a window assigner and optionally a trigger and an evictor.
All three functions can be selected among a pool of common predefined implementations (e.g., sliding time
windows) or can be explicitly defined by the user (i.e., user-defined functions).

More specifically, the assigner is responsible for assigning each record to logical windows. For example,
this decision can be based on the timestamp of a record when it comes to event-time windows. Note that in
the case of sliding windows, an element can belong to multiple logical windows. An optional trigger defines

34

when the operation associated with the window definition is performed. Finally, an optional evictor determines
which records to retain within each window. Flink’s window assignment process is uniquely capable of covering
all known window types such as periodic time- and count-windows, punctuation, landmark, session and delta
windows. Note that Flink’s windowing capabilities incorporate out-of-order processing seamlessly, similarly
to Google Cloud Dataflow [3] and, in principle, subsume these windowing models. For example, below is a
window definition with a range of 6 seconds that slides every 2 seconds (the assigner). The window results are
computed once the watermark passes the end of the window (the trigger).

stream

.window(SlidingTimeWindows.of(Time.of(6, SECONDS), Time.of(2, SECONDS))

.trigger(EventTimeTrigger.create())

A global window creates a single logical group. The following example defines a global window (i.e., the
assigner) that invokes the operation on every 1000 events (i.e., the trigger) while keeping the last 100 elements
(i.e., the evictor).

stream

.window(GlobalWindow.create())

.trigger(Count.of(1000))

.evict(Count.of(100))

Note that if the stream above is partitioned on a key before windowing, the window operation above is local
and thus does not require coordination between workers. This mechanism can be used to implement a wide
variety of windowing functionality [3].

4.4 Asynchronous Stream Iterations
Loops in streams are essential for several applications, such as incrementally building and training machine
learning models, reinforcement learning and graph approximations [9, 15]. In most such cases, feedback loops
need no coordination. Asynchronous iterations cover the communication needs for streaming applications and
differ from parallel optimisation problems that are based on structured iterations on finite data. As presented in
Section 3.4 and Figure 6, the execution model of Apache Flink already covers asynchronous iterations, when
no iteration control mechanism is enabled. In addition, to comply with fault-tolerance guarantees, feedback
streams are treated as operator state within the implicit-iteration head operator and are part of a global snapshot
[7]. The DataStream API allows for an explicit definition of feedback streams and can trivially subsume support
for structured loops over streams [23] as well as progress tracking [9].

5 Batch Analytics on Top of Dataflows
A bounded data set is a special case of an unbounded data stream. Thus, a streaming program that inserts all of
its input data in a window can form a batch program and batch processing should be fully covered by Flink’s
features that were presented above. However, i) the syntax (i.e., the API for batch computation) can be simplified
(e.g., there is no need for artificial global window definitions) and ii) programs that process bounded data sets are
amenable to additional optimizations, more efficient book-keeping for fault-tolerance, and staged scheduling.

Flink approaches batch processing as follows:
• Batch computations are executed by the same runtime as streaming computations. The runtime executable

may be parameterized with blocked data streams to break up large computations into isolated stages that
are scheduled successively.
• Periodic snapshotting is turned off when its overhead is high. Instead, fault recovery can be achieved by

replaying the lost stream partitions from the latest materialized intermediate stream (possibly the source).
• Blocking operators (e.g., sorts) are simply operator implementations that happen to block until they have

consumed their entire input. The runtime is not aware of whether an operator is blocking or not. These

35

operators use managed memory provided by Flink (either on or off the JVM heap) and can spill to disk if
their inputs exceed their memory bounds.
• A dedicated DataSet API provides familiar abstractions for batch computations, namely a bounded fault-

tolerant DataSet data structure and transformations on DataSets (e.g., joins, aggregations, iterations).
• A query optimization layer transforms a DataSet program into an efficient executable.

Below we describe these aspects in greater detail.

5.1 Query Optimization
Flink’s optimizer builds on techniques from parallel database systems such as plan equivalence, cost modeling
and interesting-property propagation. However, the arbitrary UDF-heavy DAGs that make up Flink’s dataflow
programs do not allow a traditional optimizer to employ database techniques out of the box [17], since the
operators hide their semantics from the optimizer. For the same reason, cardinality and cost-estimation methods
are equally difficult to employ. Flink’s runtime supports various execution strategies including repartition and
broadcast data transfer, as well as sort-based grouping and sort- and hash-based join implementations. Flink’s
optimizer enumerates different physical plans based on the concept of interesting properties propagation [26],
using a cost-based approach to choose among multiple physical plans. The cost includes network and disk I/O
as well as CPU cost. To overcome the cardinality estimation issues in the presence of UDFs, Flink’s optimizer
can use hints that are provided by the programmer.

5.2 Memory Management
Building on database technology, Flink serializes data into memory segments, instead of allocating objects in the
JVMs heap to represent buffered in-flight data records. Operations such as sorting and joining operate as much
as possible on the binary data directly, keeping the serialization and deserialization overhead at a minimum and
partially spilling data to disk when needed. To handle arbitrary objects, Flink uses type inference and custom
serialization mechanisms. By keeping the data processing on binary representation and off-heap, Flink manages
to reduce the garbage collection overhead, and use cache-efficient and robust algorithms that scale gracefully
under memory pressure.

5.3 Batch Iterations
Iterative graph analytics, parallel gradient descent and optimisation techniques have been implemented in the
past on top of Bulk Synchronous Parallel (BSP) and Stale Synchronous Parallel (SSP) models, among others.
Flink’s execution model allows for any type of structured iteration logic to be implemented on top, by using
iteration-control events. For instance, in the case of a BSP execution, iteration-control events mark the begin-
ning and the end of supersteps in an iterative computation. Finally, Flink introduces further novel optimisation
techniques such as the concept of delta iterations [14], which can exploit sparse computational dependencies
Delta iterations are already exploited by Gelly, Flink’s Graph API.

6 Related work
Today, there is a wealth of engines for distributed batch and stream analytical processing. We categorise the
main systems below.

Batch Processing. Apache Hadoop is one of the most popular open-source systems for large-scale data analy-
sis that is based on the MapReduce paradigm [12]. Dryad [18] introduced embedded user-defined functions in
general DAG-based dataflows and was enriched by SCOPE [26], which a language and an SQL optimizer on
top of it. Apache Tez [24] can be seen as an open source implementation of the ideas proposed in Dryad. MPP
databases [13], and recent open-source implementations like Apache Drill and Impala [19], restrict their API
to SQL variants. Similar to Flink, Apache Spark [25] is a data-processing framework that implements a DAG-
based execution engine, provides an SQL optimizer, performs driver-based iterations, and treats unbounded

36

computation as micro-batches. In contrast, Flink is the only system that incorporates i) a distributed dataflow
runtime that exploits pipelined streaming execution for batch and stream workloads, ii) exactly-once state con-
sistency through lightweight checkpointing, iii) native iterative processing, iv) sophisticated window semantics,
supporting out-of-order processing.

Stream Processing. There is a wealth of prior work on academic and commercial stream processing systems,
such as SEEP, Naiad, Microsoft StreamInsight, and IBM Streams. Many of these systems are based on research
in the database community [1, 5, 8, 10, 16, 22, 23]. Most of the above systems are either i) academic prototypes,
ii) closed-source commercial products, or iii) do not scale the computation horizontally on clusters of commodity
servers. More recent approaches in data streaming enable horizontal scalability and compositional dataflow
operators with weaker state consistency guarantees (e.g., at-least-once processing in Apache Storm and Samza).
Notably, concepts such as “out of order processing” (OOP) [20] gained significant attraction and were adopted
by MillWheel [2], Google’s internal version of the later offered commercial executor of Apache Beam/Google
Dataflow [3]. Millwheel served as a proof of concept for exactly-once low latency stream processing and OOP,
thus, being very influential to the evolution of Flink. To the best of our knowledge, Flink is the only open-source
project that: i) supports event time and out-of-order event processing ii) provides consistent managed state with
exactly-once guarantees iii) achieves high throughput and low latency, serving both batch and streaming

7 Acknowledgements
The development of the Apache Flink project is overseen by a self-selected team of active contributors to the
project. A Project Management Committee (PMC) guides the project’s ongoing operations, including com-
munity development and product releases. At the current time of writing this, the list of Flink committers
are : Márton Balassi, Paris Carbone, Ufuk Celebi, Stephan Ewen, Gyula Fóra, Alan Gates, Greg Hogan,
Fabian Hueske, Vasia Kalavri, Aljoscha Krettek, ChengXiang Li, Andra Lungu, Robert Metzger, Maximilian
Michels, Chiwan Park, Till Rohrmann, Henry Saputra, Matthias J. Sax, Sebastian Schelter, Kostas Tzoumas,
Timo Walther and Daniel Warneke. In addition to these individuals, we want to acknowledge the broader Flink
community of more than 180 contributors.

8 Conclusion
In this paper, we presented Apache Flink, a platform that implements a universal dataflow engine designed to
perform both stream and batch analytics. Flink’s dataflow engine treats operator state and logical intermediate
results as first-class citizens and is used by both the batch and a data stream APIs with different parameters. The
streaming API that is built on top of Flink’s streaming dataflow engine provides the means to keep recoverable
state and to partition, transform, and aggregate data stream windows. While batch computations are, in theory,
a special case of a streaming computations, Flink treats them specially, by optimizing their execution using a
query optimizer and by implementing blocking operators that gracefully spill to disk in the absence of memory.

References
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin,

E. Ryvkina, et al. The design of the Borealis stream processing engine. CIDR, 2005.
[2] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman, R. Lax, S. McVeety, D. Mills, P. Nordstrom, and

S. Whittle. Millwheel: fault-tolerant stream processing at Internet scale. PVLDB, 2013.
[3] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-Moctezuma, R. Lax, S. McVeety, D. Mills,

F. Perry, E. Schmidt, et al. The dataflow model: a practical approach to balancing correctness, latency, and cost in
massive-scale, unbounded, out-of-order data processing. PVLDB, 2015.

[4] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske, A. Heise, O. Kao, M. Leich, U. Leser, V. Markl,
F. Naumann, M. Peters, A. Rheinlaender, M. J. Sax, S. Schelter, M. Hoeger, K. Tzoumas, and D. Warneke. The
stratosphere platform for big data analytics. VLDB Journal, 2014.

37

[5] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani, U. Srivastava, and J. Widom. Stream:
The stanford data stream management system. Technical Report, 2004.

[6] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. HaLoop: Efficient Iterative Data Processing on Large Clusters.
PVLDB, 2010.

[7] P. Carbone, G. Fóra, S. Ewen, S. Haridi, and K. Tzoumas. Lightweight asynchronous snapshots for distributed
dataflows. arXiv:1506.08603, 2015.

[8] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, D. Fisher, J. C. Platt, J. F. Terwilliger, and J. Wernsing. Trill:
a high-performance incremental query processor for diverse analytics. PVLDB, 2014.

[9] B. Chandramouli, J. Goldstein, and D. Maier. On-the-fly progress detection in iterative stream queries. PVLDB,
2009.

[10] S. Chandrasekaran and M. J. Franklin. Psoup: a system for streaming queries over streaming data. VLDB Journal,
2003.

[11] K. M. Chandy and L. Lamport. Distributed snapshots: determining global states of distributed systems. ACM TOCS,
1985.

[12] J. Dean et al. MapReduce: simplified data processing on large clusters. Communications of the ACM, 2008.
[13] D. J. DeWitt, S. Ghandeharizadeh, D. Schneider, A. Bricker, H.-I. Hsiao, R. Rasmussen, et al. The gamma database

machine project. IEEE TKDE, 1990.
[14] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl. Spinning Fast Iterative Data Flows. PVLDB, 2012.
[15] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph problems in a semi-streaming model.

Theoretical Computer Science, 2005.
[16] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo. Spade: the system s declarative stream processing engine.

ACM SIGMOD, 2008.
[17] F. Hueske, M. Peters, M. J. Sax, A. Rheinländer, R. Bergmann, A. Krettek, and K. Tzoumas. Opening the Black

Boxes in Data Flow Optimization. PVLDB, 2012.
[18] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-parallel programs from sequential

building blocks. ACM SIGOPS, 2007.
[19] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi, J. Erickson, M. Grund, D. Hecht, M. Jacobs,

et al. Impala: A modern, open-source sql engine for hadoop. CIDR, 2015.
[20] J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos, T. Johnson, and D. Maier. Out-of-order processing: a new architecture

for high-performance stream systems. PVLDB, 2008.
[21] N. Marz and J. Warren. Big Data: Principles and best practices of scalable realtime data systems. Manning

Publications Co., 2015.
[22] M. Migliavacca, D. Eyers, J. Bacon, Y. Papagiannis, B. Shand, and P. Pietzuch. Seep: scalable and elastic event

processing. ACM Middleware’10 Posters and Demos Track, 2010.
[23] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad: a timely dataflow system. ACM

SOSP, 2013.
[24] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C. Curino. Apache tez: A unifying framework for

modeling and building data processing applications. ACM SIGMOD, 2015.
[25] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster Computing with Working Sets.

USENIX HotCloud, 2010.
[26] J. Zhou, P.-A. Larson, and R. Chaiken. Incorporating partitioning and parallel plans into the scope optimizer. IEEE

ICDE, 2010.

38

CSA: Streaming Engine for Internet of Things

Zhitao Shen*, Vikram Kumaran*, Michael J. Franklin†, Sailesh Krishnamurthy‡, Amit Bhat*,
Madhu Kumar*, Robert Lerche* and Kim Macpherson*

*Cisco Systems, Inc
{zhitshen,vkumaran,amibhat,madhuku,rlerche,kimacphe}@cisco.com

†University of California, Berkeley
franklin@cs.berkeley.edu
‡Amazon Web Services, Inc.
sailesh@gmail.com

Abstract

The next generation Internet will contain a multitude of geographically distributed, connected de-
vices continuously generating data streams, and will require new data processing architectures that can
handle the challenges of heterogeneity, distribution, latency and bandwidth. Stream query processing is
natural technology for use in IOT applications, and embedding such processing in the network enables
processing to be placed closer to the sources of data in widely distributed environments. We propose
such a distributed architecture for Internet of Things (IoT) applications based on Cisco’s Connected
Streaming Analytics platform (CSA). In this paper describe this architecture and explain in detail how
the capabilities built in the platform address real world IoT analytics challenges.

1 Introduction

By some estimates the number of connected devices will approach 50 Billion by 2020 [1]. The Internet of Things
(IoT), driven by the explosion in number of end points that will join the Internet, has become a popular movement
in the industry today. Many recent papers have outlined the challenges introduced by the IoT (e.g,, [2, 3, 4]).
In this paper, we focus on the challenges related to data handling and processing in such an environment. The
amount of data generated scales with the number of devices, leading to potentially huge data volumes. Current
elastic cloud capabilities give us the ability to store and process large volumes of data, but given the rate, scale
and distribution of data generated by IoT devices, processing all the data in the cloud might might not be feasible.
Fortunately, however, not every sensor reading is equally important and by processing data near the point of
generation, it is possible to make intelligent trade-offs among data fidelity, latency, bandwidth and resources.

For example, in offshore oil fields the volume of data generated typically exceeds the bandwidth available [5].
Intelligent data reduction near the source can solve this problem with minimal loss of information. In other
industries such as manufacturing and transportation, where the devices connected to the network are in rapid
motion through space, any data generated needs to be analyzed in context with minimum latency to be useful [6].

Copyright 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

39

In such situations there is very little leeway in where data is processed. Shipping data back and forth to a central
cloud infrastructure over the wide area network is unacceptable to due the challenges of latency and unreliable
communication links.

Another challenge posed by the IoT is data privacy, with the need for policy-based restrictions on what
gets sent out from devices [2]. Finally, devices connected to the Internet display tremendous heterogeneity in
communication protocols, formats and content. To deal with this variety in data sources, one needs intelligence
near the data source to translate into a common representation for the system as a whole to be able to work
together [2]. The challenges described above are present in most real-life IoT deployments and need to be
considered for any successful solution.

Given that IoT devices typically generate streams of data, the ability to process those streams and to be
able to correlate and join heterogeneous data streams as they are generated are critical capabilities. The devices
generating data out in the field connect to a network gateway. A stream-processing engine, present at that edge
gateway and embedded in the network in a high fan-in system [7], is an effective architecture for supporting
these applications. Cisco’s Connected Streaming Analytics (CSA) provides an embeddable platform capable
of processing individual streams as well as stream-stream correlations and joins. It also supports tracking of
numerous independent, concurrent, data sessions, making it an ideal platform for an IoT analytics architecture.

There are many use cases across multiple verticals that highlight how stream processing can address real-
world IoT challenges.

• The oil and gas industry is increasingly being digitized, with sensors measuring the state of the entire
operation around the clock. However operations are typically in remote areas that have poor connectivity,
having limited bandwidth and relatively unreliable networks [8, 9]. The volume of data generated by an
oil and gas operation runs into gigabytes per second, and it is a losing proposition to move the raw data
into a traditional data store. Stream processing helps with intelligent data reduction at the network edge
by picking salient features and sending only necessary data for central processing.

• Communications network operators are increasingly reliant on the analysis of real-time network telemetry
for providing a disruption-free network. Traditional big data approaches focused scalability and are driven
by data volume. However, in a network, the limiting factor is data movement, as using the network to
move telemetry puts tremendous strain on its core function, namely, transmitting user data. A distributed
analytics solution with in-stream analysis performed at the data sources, embedded on network devices,
alleviates this problem [10].

• Another industry being transformed by IoT is manufacturing. Robots and machines, building products
we use everyday, are increasingly being instrumented with sensors that continuously measure operation
parameters. Distributed control is not a new concept in manufacturing, however current distributed control
systems are proprietary boxes with many I/O control points [11]. In the new world of IoT, sensors and
actuators are constantly being added and a truly distributed control system needs to be a platform that can
incrementally grow in capability and capacity. A stream-processing platform that can run at the edge on
gateway routers and switches connecting robots and machines can provide a low-latency open platform
on which to build incremental analytics as new data sources and algorithms are developed.

In the industry today many of the architectures proposed to handle the challenges created by an Internet
of Things are based on an assumption that all the data will reach and reside in the cloud [4, 12]. The elastic
scalability of cloud infrastructure is an attractive solution to the challenge of unprecedented data volume from
billions of sensors. We believe, however, that the world of IoT will evolve a very different architecture, primarily
due to the challenges described in the previous paragraphs. IoT will not have the luxury of unlimited bandwidth,
latency and connectivity in many real-life situations. Current proposed solutions treat software at the edges of
the network as simple data accumulators with the primary purpose of shipping data to a central data center for

40

off-line analysis and human consumption. While there are parts of use cases where that assumption might apply,
we strongly believe that across various industry verticals data needs to be processed at the right level of context.
In other words the intelligence needed to analyze and process data needs to exist throughout the network in a
high fan-in system.

CSA is an advanced stream-processing engine based on the Truviso technology [13, 14] that has been ex-
tended with the capability to run embedded in network elements as well as in other parts of the network and the
cloud. This approach enables an architecture where intelligence can be located across the network and placed as
close to the data source as desired. This architecture is supported by several key features built into CSA:

• Stream correlation using joins. Streaming joins are very useful to correlate streams from both homo-
geneous and heterogeneous data sources. In many IoT cases, streaming joins can be performed at the
network edge, as the data sources are mostly geographically correlated. One challenge for stream correla-
tion is out-of-order data arrival due to the complexity of network environment in IoT and because devices
may have different latencies for generating streams. The original Truviso system had limited join facilities
but we further extend these to support two types of streaming joins (best-effort joins and correlated joins)
to handle time-alignment differences between streams.

• Session windows. In CSA, we implement a new type of window operator to support session-based analy-
sis. Sessionization is critical for IoT applications and can be used to correlate streams from homogeneous
sources as well as to monitor complex events and on-going status over a single logical stream that is fed
by multiple threads of data events coming from multiple sources.

• Edge processing via containers. In CSA, we create a low-footprint version of the stream-processing
engine that has been ported to run in Cisco’s routers and switches at the edge. CSA is built into available
secondary compute resources [15] in a container, which enables analytics applications to run on routers
and switches. Consequently, no additional hardware beyond the routers and switches is required to retrieve
and process the streams from network-connected devices for edge analytics. One key benefit of edge
analytics on network devices is that stream processing can scale with network size. The computational
complexity for each edge node can be considered as bounded, as the number of devices connected in the
sub-network is limited by capacity of the network gateway device.

• Built-in time-series algorithms. CSA provides additional machine learning algorithms that can operate
over time-series streams for handling common IoT use cases. For example, we implemented an algo-
rithm to discover periodic patterns over time-series data. Also, we can use an ARIMA (Autoregressive
Integrated Moving Average) model for forecasting sensor values based on time-series streams.

In the remainder of this paper, we describe the overall architecture we have developed for edge analytics
using CSA and focus on the new features listed above. Due to space constraints, however, we do not address
time-series algorithms, which we plan to address in a later publication.

2 System Overview

2.1 Architecture

Figure 1 depicts A high-level overview of the architecture for distributed streaming intelligence in the network.
The components of the architecture are deployed on a distributed infrastructure. At the edges of the network, the
gateway routers and switches connect to sensors and devices that are the sources of data. The edge gateways have
spare compute resources that can be used to run data processing applications in the containers. A little higher up
in the stack are the fog nodes [16], having somewhat more compute and storage than the edge gateways. They

41

Operational Data Collector Sensor Data Collector

Data API

Data
Sources

Edge
Analytics

Cloud/DC
Business

Analytics &
Applications

Stream Processing Engine

Cloud Data Platform

Fog Analytics &
Applications

D
a
ta

 P
la

n
e

Sensor Data
(MTConnect, ModBus etc)

Netflow,
Syslog etc

Local Messaging Infrastructure

Stream Processing Engine

Query & Provisioning
Interface

Data export Interface

Local Data Store

Query & Provisioning
Interface

Data export Interface

Messaging Infrastructure

Edge

Fog

Data Center

Messaging Infrastructure

C
o
n
ta

in
e
r

Figure 1: Edge Analytics Architecture

extend the cloud computing paradigm closer to the edge of the network. Further up the stack we get to the cloud
or data center, where we have virtually unlimited scalability in terms of compute, storage and network. Cisco’s
CSA platform is software that can run on all the different levels in the hierarchy with appropriate resource-
constrained capability. The main components of this architecture across the hierarchy are as follows:

Data collectors. The sensors and operational data are generated in a variety of protocols and content
formats. There are no common standards for sensors and devices participating in the Internet of Things. This
lacuna creates the need to have custom adapters to hide device heterogeneity and convert custom data streams
into standard format. The data collector is a modular library of such adapters that will grow to handle the
variations across the industry. The data collectors typically run on spare compute resources available in the edge
gateways.

Stream processing engine. The data inputs transformed by the data collectors are processed by the stream-
processing engine. When running at the edge, stream processing consists typically of simple aggregations,
filtering, grouping, joins, local model scoring and prediction. As we move up the deployment hierarchy stream
processing engines take on more complex computational tasks. Some of the key fundamental capabilities of the
stream engine are discussed in detail in the later sections of this paper.

Query and provisioning interface. The interface remotely manages and monitors raw and derived streams
in the engine. The platform is truly distributed and this interface provides a programming interface for remote
administration.

Messaging infrastructure. Processing components of the architecture are sometimes distributed within a
local area network and in many instances over a wide area network. In this architecture the stream processing
engine described above exists in the data path. It consumes raw streams and emits processed data streams.
The messaging infrastructure connects the various stream processing engines and provides an infrastructure to
orchestrate the data flow.

42

Cloud data platform. In some applications the results of stream processing interact with devices and
machines directly in a closed loop; for example, to change policy and influence actions. However, in most real
world use cases, human intervention at a central location based on the visible state of the environment is still
necessary. The cloud data platform provides the ability to combine real-time and historic data, operational data
and business data for longer term visibility.

2.2 Streams and Queries

Connected Streaming Analytics (based on the Truviso engine) is designed to manage streams (i.e., unbounded,
growing, data sets) in addition to relations (i.e., finite data sets) of the kind managed by a traditional RDBMS.
CSA allows for these objects (i.e., streams and relations) to be created and queried in standard, full-featured
SQL1 of the sort supported by a typical RDBMS in an integrated fashion [13]. A SQL query that operates over
one or more streams produces a continuous stream of results, and is therefore called a continuous query. The
notion of continuous query is in contrast to a standard SQL query that operates exclusively over relations from
a static view of a database and produces a finite data set (another relation) as its output. We refer to such a
traditional query as a static query.

Streams. A continuous SQL query takes relations and streams as input, and produces streams as output.
Unlike relations in a traditional database, a stream can be thought of as an unbounded bag of tuples, traveling
though a network, where each tuple has a delineated timestamp attribute. A stream, like a table, is a database
object that has an associated schema that defines the format of the data.

Raw and Derived Streams. In CSA, streams can be categorized as two different types depending how they
are populated. Raw streams are populated by external data sources. A tuple in a raw stream can represent an
event or state of the real world at a particular timestamp. Derived streams are defined using a continuous query
on a raw stream or other derived streams, and populated by CSA.

Aggregation in CSA is computed in a shared fashion [17] and is therefore memory efficient. Additionally,
CSA provides the capability of order-independent processing [14] and is useful for handling the out-of-order
data appearing in real life IoT applications. In the reminder of this section, we briefly introduce the CSA query
language.

Query Language. In CSA, queries can be posed exclusively on relations, exclusively on streams, or on a
combination of streams and relations. Since a stream is unbounded, a streaming query that produces a stream
never ends and, as stated above, is therefore called a continuous query (CQ). The only extension to the standard
SQL syntax is a set of window (stream-to-relation) operators.

In order to process an unbounded stream of data, stream-processing engines apply windows that segment
the stream into discrete finite data sets. CSA provides rich windowing semantics to support a variety of window
definitions. For raw streams, windows may be either time-based (a specified interval of time, e.g. ‘1 minute’)
or row-based (a specified number of rows) depending on the need of the query. Derived streams, in addition
to row and time windows, can define window-based windows, where the window size is specified as a number
of windows in the underlying stream. Window based windows provide a level of abstraction, allowing the
properties of a higher-level query to be specified in terms of the windows used by a lower-level query.

CSA offers a wide range of window (stream to relation) operators.

• Chunking windows: A chunking window is also known as a tumbling window. With chunking windows,
the underlying stream is broken into successive, contiguous, and non-overlapping “chunks” of tuples.

• Sliding windows: A sliding window is expressed using an advance interval, and a visible interval. The
former defines the periodic intervals (and thus the actual window edges) at which a new visible set is

1Note that only some of the non-monotonic SQL queries are supported in streaming fashion. For example, EXCEPT is not supported
as a continuous query, while in most cases we can rewrite queries using a join operation if we only provide distinct tuples as results.

43

SELECT device_id, count(*) AS err_count

FROM message <SLICES ’1 minute’>

WHERE type = ’ERROR’

GROUP BY device_id

ORDER BY err_count DESC

LIMIT 10

Figure 2: A Simple Continuous Query

constructed from the stream, while the latter defines the interval of tuples, relative to the periodic edges,
that belong in each visible set. Note that both intervals can be either time-based or row-based intervals.

• Landmark windows: A landmark window is expressed using an advance interval, and a reset interval.
The former defines the periodic interval (“advance” edges) at which a new visible set is constructed from
the stream, while the latter defines a periodic interval that is used to compute a sequence of “reset” edges.
Each visible set consists of all tuples that have arrived in the stream after the latest reset edge.

• Session windows: A session window correlates all tuples belonging to a given group whose time interval
between consecutive tuples does not exceed a given timeout value. This window is useful to identify tuple
sequences whose total duration is unknown in advance. The details of session windows and its application
are discussed in Section 3.2.

Figure 2 shows a simple continuous query to find the top-10 devices with the most error messages in the
past minute. <SLICES ‘1 minute’> defines a 1-minute chunking window and we conceptually transform all the
messages in the past 1 minute into a relation via the window operation. Upon this resulting relation, the top-10
answers can be calculated by the standard SQL query using grouping and ordering.

2.3 Out-of-Order and Delayed Streams

Most stream-processing systems from both academia and industry assume that input streams arrive in order. This
assumption is usually not true in real environments even for a single data source. For instance, data transportation
with UDP packets may cause out-of-order delivery. In IoT environments, out of order data is the norm. One
typical approach used to deal with this issue is to have the system rely on the physical order of streams. Tuples
are timestamped using the clock time when they arrive. However, this approach is likely to produce incorrect
results when trying to detect event sequences. Exact ordering is required for sequence matching.

Delayed streams are slightly different from out-of-order arrival. They can occur even if each independent
data source is in order. The possible reasons are for delayed streams are: 1) the clocks of the local sources are
not synchronized. 2) Network latencies are different from different sources to the engine. 3) The source device
may encounter a delay while producing streaming data.

In CSA, we have two ways to handle correlating queries over out-of-order or delayed streams: 1) buffer-
and-reorder mechanisms can reorder streams before feeding order-sensitive operators such as sessionization
windows, for example, slack and drift [14] can be used to handle the streams with small degrees of out-of-
orderness. 2) Coordinated joins can be used to correlate streams in a time-aligned fashion. We discuss these
techniques in the following section.

3 Correlation, Sessionization and Joins

One of challenges for IoT analytics is the ability to correlate records from a single data source or multiple
data sources. The typical streaming queries for correlating records are the join operators inherited from the

44

relational database world, and pattern matching usually used for complex-event processing [18]. In this section,
we introduce how correlating queries are performed in CSA: streaming joins and the sessionization window
operator supporting pattern matching as well as complex-event processing.

3.1 Streaming Joins

Streaming join is a fundamental operation for relating information from different streams. Over the last decade,
a much previous work has focused on sliding-window joins [19, 20]. As streams are potentially unbounded,
an obvious issue of un-windowed streaming joins is that the join state grows continuously and will eventually
outgrow memory. Therefore, windows are usually applied to the input streams to restrict the scope of the join.
Continuous Query Language (CQL for short) [21] specifies the semantics of a sliding-window streaming join by
treating it as a view of a relational join over the sliding windows.

Consider the challenge for time alignment in IoT applications. In CSA, joins can be performed in two ways:
best-effort and coordinated.

Best-effort Joins. In best-effort fashion, the join is processed immediately once a window is emitted when
the end of the window (specified for example, in time or as a number of records) is reached. The window is
joined against the most recent windows of the other join inputs. The idea behind the best-effort joins is, where
possible, to generate the join results with minimum latency. Basically, best-effort can accept slightly out-of-order
data and is useful when the skewness of the multi-source streams is low.

In CSA, if any of the inputs to a join is a row-based or window-based window, best-effort joins are performed.
As each window of the join operand is received, the window is joined against the most recent windows of other
input streams. Hence, the results of best-effort joins can be non-deterministic and will depend on the order in
which the input streams’ windows arrive.

SELECT

s.device_id, s.torque

FROM

sensor s <VISIBLE 1000 rows

ADVANCE 1 row>,

message m <SLICES 1 row>

WHERE

s.device_id = m.device_id AND

s.torque > 100 AND

m.type=’ERROR’

Figure 3: Example for Best-effort Joins

SELECT

s.device_id, s.torque

DEOM

sensor s <VISIBLE ’1 minute’

ADVANCE ’1 second’>,

message m <SLICES ’1 second’>

WHERE

s.device_id = e.device_id AND

s.torque > 100 AND

m.type = ’ERROR’

Figure 4: Example for Coordinated Joins

An example of best-effort join is shown in Figure 3. This join specifies that a tuple from the message stream
joins with the last 1000 tuples from the sensor stream. As it is a best-effort join, the join results will output
whenever a new record arrives form either stream. In this example, the join outputs a result whenever an error
message occurs after an abnormal sensor reading (e.g., torque too high) is observed for the same device.

Coordinated Joins. In many Internet of Things applications, timestamps from the stream are generated
by the edge device collecting or generating the data. However the stream-processing engine might not receive
the tuples in the order of timestamps due to (for among other reasons) latency in the network. In such a case,
correlating streams in a time-aligned fashion is important. To this end, the join usually is processed in a syn-
chronized order from multiple stream sources. Unlike best-effort joins, time plays a very important role for
coordinated joins. To perform coordinated joins, the join operator will ensure that when a window of one of
the input streams arrives, it is joined against the latest possible windows of the other streams according to their
respective timestamps. In CSA, if all the inputs to the streaming join are time-based and their timestamps are in

45

the same domain, coordinated joins are enabled.
An example of a coordinated join is shown in Figure 4. Similar to the best-effort join, this query shows how

we join records from two streams. As both windows are time-based, the join is performed in a time-aligned
fashion, that is, for a certain time t, the join will match the the records exactly between t − 1 min and t from the
both streams based on the timestamps included in the data. Unlike best-effort joins, coordinated joins require
buffering the tuples from the faster streams.

Coordinated joins are commonly used when one of the input streams is a derived stream with order-sensitive
operators (e.g., aggregations), since the exact statistic or status for a certain time point is required.

3.2 Sessionization

The fixed-interval window operations (e.g., chunking, sliding, landmark) allow aggregates to be computed over
data stream segments that are demarcated by a predetermined (user-specified) time interval or record count.
While such windows enable many useful types of analytics, the rigidity of a given window size (time or row-
based) can be too restrictive in situations where the segments of a data stream over which to run analytics are
not known in advance. We developed techniques for sessionization to overcome such rigidity. Sessionization
provides a way to operate on independent data event threads or sessions, each having its own independent
window segments. We first describe the syntax of sessionization and then provide a simple example to introduce
the main building blocks of CSA sessionization.

< SESSION session_key[, ...]

TIMEOUT interval | NONE

[EXPIRE WHEN conditions

[RETAIN EDGE]]

[ADVANCE interval

OR

ADVANCE WHEN conditions]

>

Figure 5: Syntax of Sessionization

SELECT

device_id,

FIRST(date_time) AS start_time,

cq_close(*) AS check_time

FROM robot

<SESSION device_id TIMEOUT NONE

EXPIRE WHEN (FIRST(type) != ’START’ OR

LAST(type) != ’START’)

ADVANCE ’1 second’>

GROUP BY device_id

HAVING

cq_close(*)-first(date_time)>’10 minutes’

Figure 6: Example for Session Query

The details of the syntax of sessionization are shown in Figure 5. The session key after the SESSION
keyword specifies the keys for identifying the sessions. These keys should be same as those in the expressions
for any GROUP BY clause in the stream queries and GROUP BY is mandatory when using session windows.
Session windows are defined based on the semantic expressions rather than on fixed time intervals. Since
sessions often do not have an explicit end record, the TIMEOUT clause specifies a timeout (expiring) interval
for sessions that have no further associated tuples. If an EXPIRE WHEN condition is specified and is satisfied by
the arrival of a tuple, then the session that the tuple belongs to is expired. If the optional RETAIN EDGE clause
is specified, then after expiry, a new session is started with the current tuple as its first record. If an ADVANCE
clause with a time interval is specified in a session definition, the session aggregation emits a result triggered by
a time interval. For example ADVANCE ‘5 minutes’ will cause the aggregation to emit a result every 5 minutes.
If an ADVANCE WHEN condition is specified and is satisfied by the arrival of a tuple, then a result (projected
in the SELECT clause of a stream definition) is emitted.

Consider the example of manufacturing in IoT. Suppose that we want to monitor a robot’s status. When a
robot is started, its START message will be sent out once. But sometimes the robot runs into a failure state and
nothing is sent out after that. We need to detect such situation and reboot the device.

46

The session window definition in Figure 6 continuously computes sessions based on the individual device id
of a robot. The session starts only when we receive a START message and will be expired when we receive a
non-START message2. According to the ADVANCE clause, the calculation occurs every second and only the
sessions with duration longer than 10 minutes will be emitted, as specified in the HAVING clause.

There are several key features of CSA’s sessionization:

• It enables precise metric computation over the sessions. It supports per-session expiry as well as result
generation based on semantics that a user can specify as an aggregate (or even a complex combination
of aggregates) as opposed to simply specifying rules based on the attribute(s) of a single tuple. Such
semantics include not only CSA’s built-in aggregates, but also any user-defined aggregates, including
those that can do pattern-matching.

• Unlike the pattern-matching approach used in other stream-processing systems, the ADVANCE clause
provides the ability to peek into ongoing activity for the sessions. For example, we can list all the on-
going sessions for each hour and compute an aggregation on top of it.

• Sessionization provides a TIMEOUT clause to expire the sessions which are not active for a certain period
of time.

• Sessionization processing is memory-efficient, since we manage sessions within the shared aggregation
infrastructure [17]. Also, we can avoid storing many of the tuples of a window in memory. Aggregate
states are maintained for each session. The memory usage of sessionization depends on the number of
concurrent sessions, not on their individual length.

• As each session maintains it own state, sessionization can easily scale out to multiple instances of the
stream-processing engine for parallel computation. Key-based partitioning can be utilized to distribute
data into multiple instances.

3.3 Applicability for the Internet of Things

In real world IoT analytics applications, we have to cope with challenges such as heterogeneous sources, dif-
ferences in data formatting and temporal alignment of the streams. Joins and sessionization are useful for
addressing these challenges posed by sensor data in an IoT deployment.

Integrating Homogeneous Data Sources Homogeneous data sources can be found in IoT deployments
when similar devices and sensors are geographically collocated. Similar devices generate events with similar
data schemas. In CSA, we suggest having single raw stream for homogeneous data schema from multiple
sources. This greatly simplifies application of correlated queries, such as sessionization and joins.

Vertically Partitioned Data In many IoT protocol standards, the data is vertically partitioned. For exam-
ple, a typical schema for the sensor stream includes {Timestamp, Type, Sub Type, Name, Id, Sequence, Value}.
Self-joins on the stream are typically used to flatten attributes (correlate partitioned values) for the same device
within a small time window.

Integrating Heterogeneous Data Sources Multiple data streams generated from a variety of devices and
sensors are in many cases heterogeneous in their data schemas. A typical example is a machine that generates
both sensor streams of physical measurements and event streams of state changes. For such situations, we can
employ correlating queries on these streams, as we have shown in the preceding example. For heterogeneous
data sources, separate raw streams are suggested. Streaming joins can be used to correlate the records from
multiple streams.

2It is possible that only one START message is received. Usually heartbeats (punctuation) can be utilized to make the stream advance.

47

4 Edge Processing via Containers

Unlike traditional data-warehouse solutions where all data is collected and stored in a centralized place, the
architecture we propose enables computation to be placed throughout the network, including at the edge. The
CSA stream-processing engine is deployed on network-edge gateway routers and switches. Many of these edge
gateways have spare compute and memory that can be exploited for non-network operations. The streaming
engine is optimized for running in such constrained environments, and as majority of the processing is done in
memory, there is very limited dependency on disk storage. In typical deployments, the CSA stream-processing
engine runs inside a Linux container that is provided as a part of a Cisco edge gateway [15]. The container is
hosted on a Cisco network device. Consequently, no additional hardware is required to retrieve and process the
streams from network-connected devices for edge analytics.

There are several advantages to deploying the stream processing engine into a Linux container on a edge
gateway: 1) The resources used by processes at the network edge are in a controlled space and the container
reserves the essential resources for the network operation. 2) The application is isolated from the network OS
which helps give security guarantees, 3) Linux containers are lightweight and fast for deployment. Running
applications in the container is more efficient than running in a VM. Additionally, packaging CSA within a
container image helps us to deploy applications into devices located in different layers of network (edge, fog and
cloud) without much effort.

Another key benefit of edge processing on network devices is that streaming analytics can scale with network
size. The number of devices connected in a sub-network can be considered bounded, since network devices
normally have limited capacity and can only afford finite device connections. Therefore, we can consider the
computational demand on each edge node to be bounded.

Besides efficiency in both network bandwidth and latency, edge processing is also very important for privacy.
In many IoT applications such as Smart Cities, we are only allowed to bring processing to the streams and can
expose only summaries or conclusions rather than raw data. Also, we can scrub and validate the data to be stored
in data centers. For example, we can use CSA to anonymize sensitive personal information (information that
can be used to identify a person, e.g., client MAC addresses) on the fly at the network edge, and expose only the
data that is allowed to be stored in a data center according to local privacy laws.

5 Related Work

The Internet of Things and related applications have been widely studied [2, 3, 4]. However, streaming analytics
in the context of Internet of Things is only starting to receive much attention. Aggarwal et al. [22] discuss
how RDF streams can be handled with RDF queries and big-data facilities. Sheykh Esmaili [23] investigated
event detection and FPGA implementation for embedded environments but the system described is not a fully
functional stream-processing engine and is limited in its capabilities.

Earlier work on sliding-window joins[19, 20] does not consider time alignment and out-of-order events,
which are widely observed in the real world. Li et al.[24] discuss out-of-order processing for stream joins. Re-
cently, researchers from industry have been studying streaming joins in their respective contexts. Photon [25]
from Google applies streaming joins to continuously combine a click event from a click log with its correspond-
ing query event from a separate query log. Photon leverages distributed computing infrastructure from Google
and joins are processed through different data centers. However, Photon is specifically designed for joining
click and query streams and is not optimized for general streaming-join purposes. Also, sliding windows are not
explicitly defined for joining. In CSA, we propose both coordinated joins and best-effort joins to cope with the
challenges in correlating multiple data sources.

While sessionization was originally introduced for Web analysis [26], few implementations perform ses-
sionization over streaming data. Akidau et al.[27] define session windows in a dataflow model. However, only

48

timeouts are provided for grouping tuples into sessions. Also related to sessionization are event pattern-matching
and Complex Event Processing (CEP) for event streams. SASE [18] and Cayuga [28] are examples of systems
supporting CEP over event streams. These systems usually provide a NFA-based pattern matching implemen-
tation. A key difference between these systems and CSA is that they treat event processing as distinct from
traditional Relational query processing. In comparison, CSA is an extension of a traditional database system so
it can leverage existing feature sets (e.g. user defined functions and database extension) in the Relational world
and can easily combine streaming and static data. Sessionization in CSA is also efficient as we reuse an existing
aggregation framework [17]. NiagaraST [29] proposed T+D frames which are similar to session windows, but
did not specify a full-featured query language.

6 Conclusions

Modern Internet of Things applications are pushing traditional database and data warehousing technologies
beyond their limits due to the explosive increase in data volumes, distributed data creation and requirements for
low latency. To address these issues, we advocate an architecture deploying the Connected Streaming Analytics
(CSA) engine, inside throughout the network, on edge gateways, fog nodes and on data center machines. This
architecture enables a variety of new IoT applications.

CSA provides a query language for continuous queries over streams that supports various window operators,
efficient shared aggregations, the functionality of an integrated relational database, out-of-order stream process-
ing and correlation queries such as streaming joins and sessionization. In this paper, we showed how streaming
joins and sessionization support correlating heterogeneous data sources from the Internet of Things. The fea-
tures provided by CSA can solve important challenges in real world applications such as temporal alignment for
heterogeneous sources. For network edge processing, we deploy CSA in a Linux container on network devices.
The marriage of networking capabilites with stream query processing is unique and, we believe, can change how
we analyze data created by connected things in the emerging world of IoT.

References
[1] “Connections counter: The Internet of Everything in motion.” http://newsroom.cisco.com/feature-
content?type=webcontent&articleId=1208342, 2013.

[2] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Computer Networks, vol. 54, no. 15,
pp. 2787–2805, 2010.

[3] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context aware computing for the Internet of Things:
A survey,” Communications Surveys & Tutorials, IEEE, vol. 16, no. 1, pp. 414–454, 2014.

[4] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A vision, architectural elements, and
future directions,” Future Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[5] M. P. Mills, “Shale 2.0: Technology and the coming big-data revolution in america’s shale oil fields.” http://www.
manhattan-institute.org/html/eper_16.htm#.VgFwvnvShHK, May 2015.

[6] A. Pye, “Mining’s drive for efficiency,” Engineering & Technology, vol. 10, no. 5, pp. 80–83, 2015.
[7] M. J. Franklin, S. R. Jeffery, S. Krishnamurthy, F. Reiss, S. Rizvi, E. Wu, O. Cooper, A. Edakkunni, and W. Hong,

“Design considerations for high fan-in systems: The HiFi approach,” in CIDR, pp. 290–304, 2005.
[8] D. Bigos, “5 ways IoT technologies are enabling the oil and gas industry.” http://www.ibmbigdatahub.com/
blog/5-ways-iot-technologies-are-enabling-oil-and-gas-industry, June 2015.

[9] “Creating digital oil fields and connected refineries.” http://www.cisco.com/web/strategy/energy/
external_oil.html”, 2015.

[10] A. Clemm, M. Chandramouli, and S. Krishnamurthy, “DNA: An SDN framework for distributed network analytics,”
in Integrated Network Management (IM), 2015 IFIP/IEEE International Symposium on, pp. 9–17, IEEE, 2015.

[11] D. Brandl, “Distributed controls in the Internet of Things create control engineering resources.”

49

http://newsroom.cisco.com/feature-content?type=webcontent&articleId=1208342
http://newsroom.cisco.com/feature-content?type=webcontent&articleId=1208342
http://www.manhattan-institute.org/html/eper_16.htm#.VgFwvnvShHK
http://www.manhattan-institute.org/html/eper_16.htm#.VgFwvnvShHK
http://www.ibmbigdatahub.com/blog/5-ways-iot-technologies-are-enabling-oil-and-gas-industry
http://www.ibmbigdatahub.com/blog/5-ways-iot-technologies-are-enabling-oil-and-gas-industry
http://www.cisco.com/web/strategy/energy/external_oil.html
http://www.cisco.com/web/strategy/energy/external_oil.html

http://www.controleng.com/single-article/distributed-controls-in-the-internet-of-things-

create-control-engineering-resources/fb0eea6e0b9d0d8cd97aad4025e5c080.html, June 2014.
[12] A. Alamri, W. S. Ansari, M. M. Hassan, M. S. Hossain, A. Alelaiwi, and M. A. Hossain, “A survey on sensor-cloud:

architecture, applications, and approaches,” International Journal of Distributed Sensor Networks, vol. 2013, 2013.
[13] M. J. Franklin, S. Krishnamurthy, N. Conway, A. Li, A. Russakovsky, and N. Thombre, “Continuous analytics:

Rethinking query processing in a network-effect world,” in CIDR, www.cidrdb.org, 2009.
[14] S. Krishnamurthy, M. J. Franklin, J. Davis, D. Farina, P. Golovko, A. Li, and N. Thombre, “Continuous analytics

over discontinuous streams,” in SIGMOD Conference, pp. 1081–1092, ACM, 2010.
[15] P. Jensen, “Cisco fog computing solutions: Unleash the power of the Internet of Things.” http://www.cisco.com/

web/solutions/trends/iot/docs/computing-solutions.pdf, May 2015.
[16] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing: A platform for Internet of Things and analytics,” in

Big Data and Internet of Things: A Roadmap for Smart Environments, pp. 169–186, Springer, 2014.
[17] S. Krishnamurthy, C. Wu, and M. J. Franklin, “On-the-fly sharing for streamed aggregation,” in SIGMOD Conference

(S. Chaudhuri, V. Hristidis, and N. Polyzotis, eds.), pp. 623–634, ACM, 2006.
[18] D. Gyllstrom, E. W. 0002, H.-J. Chae, Y. Diao, P. Stahlberg, and G. Anderson, “SASE: Complex event processing

over streams (demo),” in CIDR, pp. 407–411, www.cidrdb.org, 2007.
[19] L. Golab and M. T. Özsu, “Processing sliding window multi-joins in continuous queries over data streams,” in VLDB,

pp. 500–511, 2003.
[20] U. Srivastava and J. Widom, “Memory-limited execution of windowed stream joins,” in VLDB, pp. 324–335, Morgan

Kaufmann, 2004.
[21] A. Arasu, S. Babu, and J. Widom, “The CQL continuous query language: semantic foundations and query execution,”

VLDB J, vol. 15, no. 2, pp. 121–142, 2006.
[22] C. C. Aggarwal, N. Ashish, and A. P. Sheth, “The Internet of Things: A survey from the data-centric perspective,” in

Managing and Mining Sensor Data, pp. 383–428, Springer, 2013.
[23] K. Sheykh Esmaili, Data stream processing in complex applications. PhD thesis, ETH Zürich, 2011.
[24] J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos, T. Johnson, and D. Maier, “Out-of-order processing: a new architecture

for high-performance stream systems,” PVLDB, vol. 1, no. 1, pp. 274–288, 2008.
[25] R. Ananthanarayanan, V. Basker, S. Das, A. Gupta, H. Jiang, T. Qiu, A. Reznichenko, D. Ryabkov, M. Singh, and

S. Venkataraman, “Photon: fault-tolerant and scalable joining of continuous data streams,” in SIGMOD Conference,
pp. 577–588, 2013.

[26] D. Gayo-Avello, “A survey on session detection methods in query logs and a proposal for future evaluation,” Infor-
mation Sciences, vol. 179, pp. 1822–1843, May 2009.

[27] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. Fernández-Moctezuma, R. Lax, S. McVeety, D. Mills,
F. Perry, E. Schmidt, and S. Whittle, “The dataflow model: A practical approach to balancing correctness, latency,
and cost in massive-scale, unbounded, out-of-order data processing,” PVLDB, vol. 8, no. 12, pp. 1792–1803, 2015.

[28] A. J. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, and W. M. White, “Cayuga: A general purpose event
monitoring system,” in CIDR, pp. 412–422, www.cidrdb.org, 2007.

[29] D. Maier, M. Grossniklaus, S. Moorthy, and K. Tufte, “Capturing episodes: may the frame be with you,” in DEBS,
pp. 1–11, ACM, 2012.

50

http://www.controleng.com/single-article/distributed-controls-in-the-internet-of-things-create-control-engineering-resources/fb0eea6e0b9d0d8cd97aad4025e5c080.html
http://www.controleng.com/single-article/distributed-controls-in-the-internet-of-things-create-control-engineering-resources/fb0eea6e0b9d0d8cd97aad4025e5c080.html
http://www.cisco.com/web/solutions/trends/iot/docs/computing-solutions.pdf
http://www.cisco.com/web/solutions/trends/iot/docs/computing-solutions.pdf

Trill: Engineering a Library for Diverse Analytics

Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, James F. Terwilliger
Microsoft

{badrishc, jongold, mbarnett, jamest}@microsoft.com

Abstract

Trill is a streaming query processor that fulfills three requirements to serve the diverse big data an-
alytics space: (1) Query Model: Trill is based on the tempo-relational model that enables it to handle
streaming and relational queries with early results, across the latency spectrum from real-time to offline;
(2) Fabric and Language Integration: Trill is architected as a high-level language library that supports
rich data-types and user libraries, and integrates well with existing distribution fabrics and applications;
and (3) Performance: Trill’s throughput is high across the latency spectrum. For streaming data, Trill’s
throughput is 2-4 orders of magnitude higher than comparable traditional streaming engines. For offline
relational queries, Trill’s throughput is comparable to modern columnar database systems. Trill uses
a streaming batched-columnar data representation with a new dynamic compilation-based system ar-
chitecture that addresses all these requirements. Trill’s ability to support diverse analytics has resulted
in its adoption across many usage scenarios at Microsoft. In this article, we provide an overview of
Trill: how we engineered it as a library that achieves seamless language integration with a rich query
language at high performance, while executing in the context of a high-level programming language.

1 Introduction

Cloud applications accumulate data from a variety of data sources, such as machine telemetry and user-activity
logs. This accumulation has resulted in an increasing need to derive value in an efficient and timely manner from
such data. At Microsoft, we have seen a variety of cloud applications with a diverse range of analytics scenarios:

• An application may monitor telemetry (e.g., user clicks on advertisements or memory usage of a service)
and raise alerts when problems are detected.

• An application may wish to correlate live data streams with historical activity (e.g., from one week back).

• Users may wish to develop the initial monitoring query using logs, before deploying it in a real-time
system. Conversely, they may want to back-test their live monitoring queries over historical logs, perhaps
with different parameters (in a what-if style of analysis).

• Analysts may want to run relational analyses (in the form of business intelligence queries) over historical
logs. Further, they may prefer quick approximate results by streaming the data, as that better fits an
exploratory environment.

Copyright 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

51

This diverse and interconnected nature of cloud analytics has resulted in an ecosystem of disparate tools,
data formats, and techniques [13]. Combining these tools with application-specific glue logic is a tedious and
error-prone process, with poor performance and the need for translation at each step. The lack of a unified data
model across these scenarios precludes the ability to reuse logic, e.g., by developing queries on historical data
and deploying them directly to live streams.

In order to alleviate the complexities outlined above, we built Trill [14], a single analytics engine that can
serve a diverse analytics space. Trill simultaneously addresses three requirements present in the scenarios above:

• Query Model: Trill is based on a unifying temporal data model based on application time, which en-
ables the diverse spectrum of analytics described earlier: real-time, offline, temporal [7], relational, and
progressive (approximate) [8] queries.

• Fabric & Language Integration: Trill is written as a library in the high-level-language (HLL) C#, and
thus benefits from arbitrary HLL data-types, a rich library ecosystem, integration with arbitrary program
logic, ingesting data without “handing off” to a server or copying to native memory, and easy embedding
within scale-out fabrics and as part of cloud application workflows.

• Performance: Trill handles the entire space of analytics described earlier, at best-of-breed or better levels
of performance. In Chandramouli et al. [14], we showed that Trill processes streaming temporal queries
at rates that are 2 to 4 orders-of-magnitude higher than traditional streaming engines. Further, for the case
of offline relational (non-temporal) queries over logs, Trill’s query performance is comparable to modern
columnar databases, while supporting a richer query model and language integration. Trill is very fast for
simple payload types (common for early parts of a pipeline), and degrades gracefully as payloads become
complex, such as machine learning models (common on reduced data).

Trill achieves these requirements using a hybrid system architecture that exposes a latency-throughput trade-
off to users. Users specify a latency requirement, and Trill repacks streams into a sequence of batches with a
goal of meeting the requirement. Unlike other batched streaming systems, such as Spark Streaming [21], our
query model allows batching to be purely physical (not commingled with application time) and therefore easily
variable: query results are always identical to the case of per-event processing, regardless of batch sizes or data-
arrival rates. The user’s query is converted into a directed acyclic graph of streaming operators that each receive
and produce streams of data batches. Further, within each batch, Trill uses a columnar data organization when
possible, along with new and highly efficient columnar streaming operators that work directly on the columnar
batches. Engineering such a query processor as a high-level language library introduced several challenges; this
article describes how we addressed these problems as we built a generally usable engine.

• Trill operators expect data to be batched in timestamp order for high performance. On the other hand,
real-time data may arrive one event-at-a-time, and may have inherent disorder. Section 4 describes our
data model that makes batching a purely physical construct, and our ingress-egress design that provides
users with control for handling disorder and other requirements.

• Queries in Trill are language-integrated. Users expect a powerful query language capable of both relational-
style operations and temporal manipulations such as data-dependent windowing, while staying in the con-
text of a HLL and type system. Section 3 uses a running example to describe several key Trill language
elements that enable expressive query specification seamlessly in a HLL.

• Section 4 covers our design of dynamic code generation to enable user-transparent columnar batched exe-
cution in a HLL. Further, it discusses Trill’s threading choices and features such as checkpointing, which
are necessary to use the engine in the context of a distributed fabric for resilient real-time processing.

We conclude the article in Section 5 with a brief overview of the ways Trill is used in practice, and some
lessons learned from these scenarios.

52

Running Example

As our running example in this article, we consider an advertising platform that tracks advertisement (ad) im-
pressions shown to users, and clicks on the ads. We can use a C# type to capture the event contents as below.
struct AdInfo {

long Timestamp; long UserId;

long AdId; bool IsClick;

}

Here, IsClick is a boolean value that denotes whether the event is a click (true) or an impression (false).
We wish to ingest such a data stream arriving at Trill from diverse sources, execute a variety of temporal queries
over the stream, and output results, for example, to a dashboard or console.

2 Trill Data Model, Ingress, and Egress

Logically, we view a stream as a temporal database (TDB) [12] that is presented incrementally [3, 11, 14]. Each
event is associated with a data window (or interval of application time) that denotes its period of validity. This
association creates a sequence of snapshots across time, where a snapshot at time t is a collection of events that
are valid at time t. The user query is logically executed against these snapshots in an incremental manner.

2.1 Event Representation

Consider an event with a data window of [s, e). This event may arrive directly as an interval, at application time
s. We call s the sync-time of the interval event. Alternatively, the event may arrive broken up into a separate
insert into the TDB (called a start-edge) at time s, optionally followed by a delete from the TDB (called an
end-edge) at a later time, e. The start-edge and the end-edge have sync-times of s and e respectively. Sync-time
is an important concept in Trill; it denotes the logical instant when a fact about the stream content becomes
known. Events are always processed by Trill in strictly non-decreasing sync-time order (we discuss the handling
of late-arriving events in Section 2.2.1). Because time in Trill is just a long (64-bit integer) type, we can, for
example, re-interpret time to mean query progress when executing progressive relational queries [8].
StreamEvent<T> is a Trill struct that represents an event with payload type T, and includes static methods

to create interval, start-edge, and end-edge events. We may also create a point event, an interval event with an
data window of one chronon (the smallest unit of time). In our example, users may ingest clicks and impressions
as point events: StreamEvent<AdInfo>.CreatePoint(timestamp, new AdInfo { ... }).

Further, users can ingest a special kind of event called a punctuation. A punctuation is associated with a
timestamp t, and serves two purposes: (1) It denotes the passage of application time until t, in the absence
of data, and allows operators to clean up system state; and (2) Each operator internally batches events (up to
the maximum batch size) before sending the batch to the next operator. A punctuation enforces the immediate
flushing of batches through Trill, to force processing and output generation until t.

2.2 Event Ingress

Data is available for querying in Trill by representing the source as an instance of a special generic interface
that we call IStreamable<T>. This interface is Trill’s variant of IObservable<T> [17], the standard .NET
interface for pushing data. Briefly, IObservable<T> provides the ability for a data source to push objects of
type T to a downstream observer o that ”subscribes” to the observable via a Subscribe(o) call.

In our running example, we could create an IObservable<StreamEvent<AdInfo>> instance to push a
sequence of individual events of type StreamEvent<AdInfo> to Trill as follows.
IObservable<StreamEvent<AdInfo>> o = Network.CreateObservable<AdInfo>(...);

53

Other ingress mechanisms supported in Trill include efficient bulk-ingress using a stream of arrays of
events (IObservable<ArraySegment<StreamEvent<T>>>), pull-based sequences (e.g., IEnumerable<T>),
and generic data-reader formats such as IDataReader [1].

We transform an instance of an input such as IObservable<StreamEvent<T>> into an IStreamable<T>
using a special ingress method, defined on the IObservable instance, called ToStreamable(...), whose
parameters specify policies for ingesting data into Trill. These policies are described next.

2.2.1 Ingress Policies

When ingesting data into Trill from the outside world, we need to: (1) specify how to handle disorder in the
stream; (2) automate the flushing of data into the system as (columnar) batches; and (3) specify system behavior
when the input stream comes to an end. These transformations are driven by three user-defined policies that are
provided as part of the ToStreamable(...) call:

• Disorder: Trill processes data in timestamp order for efficiency. We provide multiple ways of handling
disorder, using a disorder policy. We support the policies of adjust (modify the late-arriving event to have
the current sync-time as its timestamp), drop (drop the late event), and throw (throw an exception on
encountering a late event). Further, each of these policies takes a reorder latency argument that is used to
buffer and reorder late-arriving events within the provided reorder latency budget. Later-arriving events
are handled using the specified policy of drop, adjust, or throw.

• Flush: The flush policy allows Trill to automate the injection of punctuation into the stream, in order to
flush partially filled batches in the system. Supported policies include (1) count, which takes a parameter
c and flushes the stream every c events; and (2) time, which takes a time duration argument d, and flushes
the stream every d units of application time.

• Completed: When a stream completes, we can (1) halt the query without flushing partial batches in the
system; (2) flush partial batches, but not force the current sync-time to move forward; or (3) move the
current sync-time to∞ (possibly producing new output) and flush the system.

In our running example, we could reorder late-arriving events within a timespan of r units (dropping later
events), and issue flushes every 1000 events, while ingesting into Trill, as follows.
var s0 = o.ToStreamable(OnCompletedPolicy.EndOfStream(), DisorderPolicy.Drop(r),

PeriodicPunctuationPolicy.Count(1000));

2.3 Query Specification and Egress

An IStreamable instance such as s0 is returned by the ToStreamable(...) call. Trill’s query specification
hangs off this instance in the form of functional method invocations. Each method returns a new IStreamable
instance, allowing users to chain an entire query plan. We describe query specification in detail in Section 3. Note
that query specification itself does not start query execution; this is done by subscribing to a Trill query using a
variety of techniques. A common use case is to egress results as an observable sequence of StreamEvent<T>
instances using a ToStreamEventObservable(...) method. We support an optional egress policy called
CoalesceEdges: when set, this policy indicates that Trill will coalesce start-edge and end-edge pairs into
intervals before outputting them. Since Trill emits events in sync-time order, this egress policy can incur latency
because output has to be held back when we encounter a start-edge, until a matching end-edge is seen (in order
to construct and emit the corresponding interval event). In our running example, we could output all the events
to the console (as a pass-through) as follows.
s0.ToStreamEventObservable().Subscribe(e => Console.WriteLine(e.ToString()));

54

3 The Trill Query Language, by Example

Any values of type IStreamable, such as s0, are stream endpoints over which a Trill query can be written.
Trill’s query language, called Trill-LINQ, is modeled after LINQ [19], with temporal interpretation of the stan-
dard relational operations, along with new operations for temporal manipulation. In this section, we cover
several language constructs in Trill using our running example.

3.1 Filtering and Projection

Assume that we want to consider only a 5% sample of users in the stream. We use the Where operator in Trill to
filter the stream as follows:
var s1 = s0.Where(e => e.UserId % 100 < 5);

The expression in parentheses is called a lambda expression [10]; it is an anonymous function, in this case
from the type AdInfo to a boolean value specifying for each row (event) e in the stream that it is to be kept in
the output stream, s1, if its UserId modulo 100 is less than 5. Each Trill operator is a function from stream to
stream which allows for easy functional composition of queries.

We can also transform the data to a different type, using the Select operator to perform a projection:
var s2 = s1.Select(e => e.AdId);

In this case, the lambda expression is a function from AdInfo to long indicating how the input payload type is
transformed into a new output payload type by taking the result of the previous query, s1, and dropping the fields
other than AdId to form a stream with exactly one field. Thus, stream s2 has the type IStreamable<long>.

3.2 Windowing

Trill supports the notion of altering event lifetimes to support windowed operations and correlating data across
time. In its most basic form, this is accomplished using the AlterEventLifetime operation. This operation
accepts two expressions as input: a start-time selector which maps an interval’s start-time to a new start-time, and
a duration selector, which maps a start-time and end-time to a new duration. We limit timestamp modifications
to those that preserve output sync-time order. Trill also provides macros that allow users to easily create hopping,
tumbling, and sliding windows using AlterEventLifetime and its variants such as AlterEventDuration,
which serves to alter an event’s duration, leaving the start-time unmodified. For example, we can create a
5-minute tumbling window over the (sampled) stream s1 as follows.
var s3 = s1.TumblingWindow(fiveMinutes);

3.3 Aggregation

Aggregation in Trill is done using an operator framework called user-defined snapshot, which enables the in-
tegration of custom incremental HLL logic into stream processing without sacrificing performance. It handles
the class of operations that incrementally compute a result per time snapshot. In fact, all our built-in aggregates
(including complex multi-valued aggregates such as top-k) are implemented using this general framework, de-
scribed in Chandramouli et al. [14]. For example, we can compute a 5-minute tumbling window count of events
using s3, as follows.
var s4 = s3.Aggregate(w => w.Count());

We also support the simultaneous application of multiple aggregates in a single snapshot operator, with the
ability to combine results on a per-snapshot basis (see Chandramouli et al. [14] for details).

55

3.4 Grouped Computation

Trill supports a GroupApply operation, where the user specifies a grouping key selector and a sub-query. Log-
ically, GroupApply executes the given sub-query on each sub-stream corresponding to each distinct key, as
determined by the grouping key selector. For example, we could compute the five-minute tumbling window
count on a per-ad basis as follows:
var s5 = s1.GroupApply(e => e.AdId,

s => s.TumblingWindow(fiveMinutes)

.Aggregate(w => w.Count()),

(g, p) => new { AdId = g, Count = p });

Here, the first lambda expression specifies the grouping key, and the second lambda expression specifies the
query to be executed per key. The final lambda allows the user to combine the grouping key and the per-group
payload into a single result payload.

3.5 Correlation and Set Difference

The temporal join operator in Trill allows one to correlate (or join) two streams based on time overlap, with
an (optional) equality predicate on payloads. Suppose we wish to augment the filtered AdInfo stream s1 with
additional information from another reference stream ref1 that contains per-user demographics data such as
age. We would express such a query in Trill as follows:
var s6 = s1.Join(ref1, l => l.UserId, r => r.UserId,

(l, r) => new Result { l.AdId, l.UserId, r.Age });

The second and third parameters to Join represent the equi-join predicate on the left and right inputs (UserId
in this case), while the final parameter is a lambda expression that specifies how matching input tuples (from
the left and right) are combined to construct the result events of payload type Result, yields a stream of type
IStreamable<Result>. As a more complex example, suppose we wish to join ad impressions to clicks on the
same ad, and by the same user, within 10 minutes. This query is written as:
var s7 = s1.GroupApply(e => new { e.UserId, e.AdId },

s => s.Where(e => !e.IsClick)

.AlterEventDuration(tenMinutes)

.Join(str.Where(e => e.IsClick), (l, r) => r),

(g, p) => p);

Trill also support a temporal set difference operator called WhereNotExists. For instance, we can output
all clicks that were not preceded by an impression within 10 minutes, as follows:
var s8 = s1.GroupApply(e => new { e.UserId, e.AdId },

s => s.Where(e => e.IsClick)

.WhereNotExists(str.Where(e => !e.IsClick)

.AlterEventDuration(tenMinutes),

(l, r) => r),

(g, p) => p);

3.6 Data-Dependent Windowing

Trill supports the creation of windows based on data. Such windows can, for instance, be used to create session
windows that limit an event’s influence to the end of the session. For example, suppose we wanted to take
impressions and restrict their lifetime to be either 10 minutes or the first click after the impression, whichever
comes earlier. We express this query using the ClipEventDuration operator, which clips the duration of an

56

event E to end at the start-time of the first matching event on the right-side input that falls within E’s time
interval.

var s9 = s1.GroupApply(e => new { e.UserId, e.AdId },

s => s.Where(e => !e.IsClick)

.AlterEventDuration(tenMinutes)

.ClipEventDuration(str.Where(e => e.IsClick),

(l, r) => r),

(g, p) => p);

4 Internal Architecture

4.1 Batching with Columnar Organization

As mentioned earlier, we physically batch events before feeding them to Trill, based on the user-specified latency
requirement. Batches allows system overhead to be amortized over many events. While batching is advantageous
in its own right, it enables us to re-organize data within batches. We store batch content in columnar format. A
columnar batch (referred to hereafter just as batch) is a structure of that holds one array for each column in the
event. For example, one array holds the sync-time values for all events in the batch, while another array holds
a second timestamp associated with events (called the other-time). Internally, every event is associated with a
grouping key in order to enable efficient grouped operations. We precompute and store the grouping key (and
its hash) as two additional arrays in the batch. We also include an absentee bitvector to identify which rows in
the batch are currently active. The bitvector allows filter operations to logically remove rows without having to
physically reorganize the batch. For instance, the Where query in Section 3 just sets the bit corresponding to
each row for which the function returns false.

Being in a high-level language, we use the generic type system to get strong type safety for batches expressed
over the two types K and P for the key type and payload type, respectively.
class Batch<K,P> {

long[] SyncTime; long[] OtherTime;

K[] Key; int[] Hash;

P[] Payload; long[] BitVector;

}

As in database systems, columnar representation results in better data locality, bringing much less data to
the CPU. Further, we are able to use a custom memory allocation scheme for the arrays: for instance, the output
batch of a selection operator does not modify the sync-time of each event and so can share a reference to that
array with the input batch. We aggressively pool arrays using a global memory manager to alleviate the cost
of memory allocation and garbage collection. In a streaming setting, the system quickly achieves a steady state
with the memory allocated for output batches being reused for succeeding input batches.

Note that the payload of each event above remains a row structure. For instance, the example of Section 3
results in the Payload array being of type AdInfo1. This means that operators accessing very few fields of the
payload may not enjoy the data locality that is provided by the columnar layout of the other fields. Each operator
in Trill has an implementation that executes against this representation. We call them the row-based operators
since the payloads exist as an individual instance per row.

1In .NET, since that type was defined as a struct — a value type — the array is physically laid out in memory as a contiguous
sequence of bytes. However, if it were defined as a class — a reference type — then the array would be a contiguous sequence of
pointers, with the storage for each instance individually allocated somewhere in the heap.

57

4.2 Code Generation

We can adopt a columnar data layout for payload fields as well, by allocating a separate array for each field in
the payload. For the type AdInfo, we have three arrays of long and one array of bool:
class ColumnarBatchForAdInfo<K> : Batch<K, AdInfo> {

// Other arrays inherited from Batch<>, Payload array ignored in base class

long[] Timestamp; long[] UserId;

long[] AdId; bool[] IsClick;

}

With this representation, an operator that accesses a single field will result in contiguous memory loads for
that field alone. If a payload type cannot be made columnar (e.g., it is a class with private fields), we revert to
the data format described in Section 4.1.

Note that there is an impedance mismatch between the user’s view of the data — the type AdInfo available
at compile-time — and the system’s view — the type ColumnarBatchForAdInfo — which is not available
at compile-time. Since queries and data are dynamic, i.e., a new query expressed over a new schema (payload
type) is not predefined, the system must be able to create the generated types and operators that use those types
during runtime. We solve this problem using dynamic code generation to create new type definitions, e.g.,
ColumnarBatchForAdInfo for batches, and optimized columnar operators that are aware of the columnar
representation, and inline operations on the columnar format. Columnar organization also enables optimized
serialization and string handling; see Chandramouli et al. [14] for details. These transformations are transparent
to users, who continue to operate with their row-based data model. For example, the Select operator generated
for the example in Section 3 computes the single payload column in each output batch in the stream s2 in
constant time; we simply copy the single pointer to the AdId column from the input batch of stream s1.

We use T4 [15], a text-templating system in Visual Studio, to create the C# source file for batch types and
operators. The source file is compiled, and the dynamic loading facilities of the .NET runtime are used to load
and instantiate the types. This technique also allows us to put breakpoints and debug generated code easily. We
cache and re-use generated types to reduce the overhead of code generation and compilation. Because we use
C# source to define the generated code, we need a way to translate user expressions such as Where predicates
into inlined C#. An expression is passed to Trill as an expression tree, a .NET object model for representing
code [10]. Expression trees do not provide a conversion to C# source, since there exist expression trees for which
such a translation cannot be done. However, since we are willing to accept a best-effort solution, we wrote our
own translator, which is now in use as a stand-alone component for other projects as well.

Columnar execution is best-effort; if we encounter a situation where an operator or type cannot execute in
columnar mode, we process the data in row-mode (see Section 4.1). If an expression cannot execute in columnar
mode (e.g., it invokes a black-box method), we reconstitute rows on-the-fly to invoke the method. If necessary,
we insert a col-to-row operator into the query plan. This generated operator converts columnar payloads back
into a single column of payload instances for downstream row-based operators. Users are notified when such
fallback occurs, so they can try to modify their query or data to remain in the more efficient columnar mode.

4.3 Other Details

Threading By default, Trill does not create any threads: it accepts data on the thread that pushes the data into
Trill’s ingress methods and executes all operators on that thread until the output (if any) is produced and the call
stack is unwound. The one exception is that, depending on a user-configurable option, Trill will use separate
threads for scaling operators across multiple cores on a single processor.
Checkpointing We support a client’s need for resiliency by offering a synchronous checkpointing service. Un-
der user control, the internal state of a running query can be persisted. The query can later be resumed by loading
this state back, possibly on a different machine, and replaying data received since the checkpoint. In conjunction

58

with Trill’s threadless library mode, checkpointing allows Trill to fit in with the existing resiliency solutions
of distributed fabrics. The fabric can decide whether it replays events exactly from the checkpoint position for
correctness, or resumes from a later (e.g., current) stream position, tolerating the resulting inaccuracy.

5 Usage Scenarios and Lessons Learned

5.1 Usage Scenarios

Trill is being used today in diverse scenarios that serve to illustrate how performance, fabric and language
integration, and query model enabled Trill to support a diverse range of use cases.

• Orleans-hosted real-time: Orleans [4] is a programming model and fabric that enables low-latency dis-
tributed computations with units of work called grains. Orleans owns threads and manages distribution,
while Trill is used as a library to express streaming queries as part of users’ grain code.

• Analytics Back-End: Trill is used as a building block for several analytics services. Tempe [9] is a Web-
based interactive analytics environment that allows users to author and visualize queries over real-time
and offline streams. It uses Trill to run temporal and progressive relational queries. We recently described
how the Halo team used Tempe and Trill to quickly analyze large amounts of real-time customer data
for hunting down bugs [18]. Azure Stream Analytics [2] is a Cloud service that uses Trill as a query
processor [20]. SCOPE [5] is a map-reduce platform that allows arbitrary .NET code as custom reducers.
As with Orleans, SCOPE owns threads and schedules reducer code; thus, analysts can embed Trill as a
library within their reducers in order to perform temporal analytics [7]. Recently, we also reported on the
use of Trill with a streaming version of SCOPE to reduce the latency of Bing Ads reporting [16].

• Monitoring Server: Trill is used to monitor system logs generated by machines in a data center, and
visualize real-time performance. Here, Trill is used as a server that processes data from multiple sources
in close to real-time (several seconds of latency).

• Trace-Log-Analysis Tools: A large number of time-oriented traces are generated by applications and
operating systems. Trill is used as part of stand-alone tools and Cloud services, to allow users to analyze
such offline traces, for example, to detect anomalies or complex patterns.

5.2 Lessons Learned

We have learned several things from building Trill and interacting with its users. Our prior work [7, 8] showed
that a single model could, in theory, handle a diverse range of analytics scenarios. However, users chose to use
specialized systems for performance reasons, which led us to re-examine streaming engine architectures with a
goal of achieving best-of-breed or better performance across the latency spectrum.

In addition, a key design decision was to create a library instead of a server. Implementing Trill as a
HLL library meant that it could be immediately integrated into diverse environments, each of which had its
own policies on thread management, distribution, scheduling, resiliency, and resource utilization. By default,
Trill is passive and performs work only on the thread that feeds data to it. This choice also simplified Trill’s
implementation considerably, since we could focus on efficient query processing. Subsequently, we created a
lightweight scheduler that takes a user-specified set of threads to efficiently use multiple cores on a machine.
With this scheduler, we made it easy to build servers using the Trill library as well.

Another crucial aspect was to directly support the HLL data model that users wish to analyze in. For instance,
users often wish to stream complex data-types such as dictionaries and machine learning models through Trill.
We extended LINQ to make query specification and execution a seamless part of user programming, and our

59

powerful query language is able to express a wide variety of data processing tasks. Further, columnar batching
and code generation needed to be automated and done under the hood, to avoid complicating the user experience.

Finally, none of these decisions would have induced users to adopt Trill as enthusiastically as they have, if
it did not work at extremely high speeds. Getting high performance meant starting with a simple for loop with
an inlined predicate, and working our way out, ensuring that performance was not lost at any step along the
way. Once the overall system architecture was decided, it was crucial to observe the resulting design patterns
throughout all system components. For example, using custom memory management for the strategic data
allocations of batches and columns, restricting the operations performed in the tight loops within each operator,
and creating custom data structures (such as hash tables) for optimizing the memory-usage of stateful operators,
were all critical to achieving and retaining high performance.

References
[1] ADO.NET DataReader. http://aka.ms/datareader. Retrieved 10/14/2015.
[2] Azure Stream Analytics. https://azure.microsoft.com/en-us/services/stream-analytics/. Retrieved

10/14/2015.
[3] R. Barga, J. Goldstein, M. Ali, and M. Hong. Consistent streaming through time: A vision for event stream process-

ing. In CIDR, 2007.
[4] P. Bernstein, S. Bykov, A. Geller, G. Kliot, and J. Thelin. Orleans: Distributed virtual actors for programmability

and scalability. Technical report, Microsoft Research, 2014.
[5] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou. SCOPE: easy and efficient parallel

processing of massive data sets. PVLDB, 1(2), 2008.
[6] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, D. Fisher, J. C. Platt, J. F. Terwilliger, and J. Wernsing. Trill:

A High-Performance Incremental Query Processor for Diverse Analytics. PVLDB, 8(4), 2014.
[7] B. Chandramouli, J. Goldstein, and S. Duan. Temporal Analytics on Big Data for Web Advertising. In ICDE, 2012.
[8] B. Chandramouli, J. Goldstein, and A. Quamar. Scalable Progressive Analytics on Big Data in the Cloud. PVLDB,

6(14), 2013.
[9] R. DeLine, D. Fisher, B. Chandramouli, J. Goldstein, M. Barnett, J. F. Terwilliger, and J. Wernsing. Tempe: Live

scripting for live data. In IEEE Symp. on Visual Languages and Human-Centric Computing, 2015.
[10] Expression Trees. https://msdn.microsoft.com/en-us/library/bb397951.aspx. Retrieved 10/14/2015.
[11] M. A. Hammad et al. Nile: A query processing engine for data streams. In ICDE, 2004.
[12] C. Jensen and R. Snodgrass. Temporal specialization. In ICDE, 1992.
[13] H. Lim et al. How to fit when no one size fits. In CIDR, 2013.
[14] D. Maier, J. Li, P. Tucker, K. Tufte, and V. Papadimos. Semantics of data streams and operators. In ICDT, 2005.
[15] Microsoft Visual Studio T4 Template System. http://aka.ms/eeg4w5. Retrieved 10/14/2015.
[16] Now Available in Bing Ads: Campaign Performance Data in Under an Hour. http://aka.ms/bing-trill. Re-

trieved 10/14/2015.
[17] Reactive Extensions for .NET. http://aka.ms/rx. Retrieved 10/14/2015.
[18] The high-tech research behind making Halo 5: Guardians multiplayer better for gamers. http://aka.ms/fenfxy.

Retrieved 10/14/2015.
[19] The LINQ Project. http://tinyurl.com/42egdn. Retrieved 10/14/2015.
[20] Trill Moves Big Data Faster, by Orders of Magnitude. http://aka.ms/w6y2kt. Retrieved 10/14/2015.
[21] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Discretized Streams: Fault-Tolerant Streaming

Computation at Scale. In SOSP, 2013.

60

http://aka.ms/datareader
https://azure.microsoft.com/en-us/services/stream-analytics/
https://msdn.microsoft.com/en-us/library/bb397951.aspx
http://aka.ms/eeg4w5
http://aka.ms/bing-trill
http://aka.ms/rx
http://aka.ms/fenfxy
http://tinyurl.com/42egdn
http://aka.ms/w6y2kt

Language Runtime and Optimizations in IBM Streams

Scott Schneider
IBM Research

scott.a.s@us.ibm.com

Buğra Gedik
Bilkent University

bgedik@cs.bilkent.edu.tr

Martin Hirzel
IBM Research

hirzel@us.ibm.com

Abstract

Stream processing is important for continuously transforming and analyzing the deluge of data that
has revolutionized our world. Given the diversity of application domains, streaming applications must
be both easy to write and performant. Both goals can be accomplished by high-level programming
languages. Dedicated language syntax helps express stream programs clearly and concisely, whereas the
compiler and runtime system of the language help optimize runtime performance. This paper describes
the language runtime for the IBM Streams Processing Language (SPL) used to program the distributed
IBM Streams platform. It gives a system overview and explains several language-based optimizations
implemented in the SPL runtime: fusion, thread placement, fission, and transport optimizations.

1 Introduction

The increase in available data, commonly referred to as big data, has caused renewed exploration in systems
for data management and processing. Processing this larger volume of data in a timely manner has necessitated
moving away from the data-at-rest model, where data is archived in a database, and external applications query
and process that data. In order to handle large volumes of data in real time, systems must exploit multiple levels
of parallelism at scale.

The MapReduce [9] programming model was widely adopted as a solution in industry to the big data prob-
lem. While it brought parallel and distributed programming out of the niche of high performance computing,
the model and its implementations have several deficiencies that make it ill-suited for handling online big data.
First, the programming model is limited, as all computations must be expressed as map and reduce operations.
In theory, one can express any arbitrary computation with sequences of such operations, but in practice the re-
sult may be difficult to understand, and will not necessarily perform well. Second, the design for MapReduce
systems were inherently batch-based, which is incongruous with continuous, online data processing. Finally,
MapReduce was still a data-at-rest solution: the data was stored in a shared file system prior to running any jobs.

Distributed stream processing is a more appropriate solution for online big data processing. Stream process-
ing systems are designed to contend with continuously arriving data that must be processed quickly. Distributing
such computations across a cluster enables the scalability required to deal with large volumes of data. Just as
important as the underlying system is the programming model exposed to programmers. The stream processing
programming model naturally exposes parallelism that is easily exploitable by the underlying runtime system.

Copyright 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

61

1 stream<CDR> Calls = TCPSource() {
2 param role: client; address: "1.2.3.0";
3 }

4 stream<CDR> UniqueCalls = Deduplicate(Calls) {
5 window Calls: sliding, time(3600.0);
6 }

7 stream<Customer> Customers = TCPSource() {
8 param role: client; address: "1.2.3.1";
9 }

10 stream<CDR, tuple<rstring fromName>> Enriched =
11 Enricher(UniqueCalls; Customers) {

12 }

13 stream<rstring fromName, float64 avgLen> Stats =
14 Aggregate(Enriched) {

15 window Enriched: sliding, time(300.0);
16 output Stats: avgLen = Average(len);
17 }

18 () as Visualize = Dashboard(Stats) {
19 }

20 () as Persist = DBSink(Enriched) {
21 param address: "1.2.3.2"; table: "calls";
22 }

Dashboard

Aggregate

TCPSource

TCPSource

Deduplicate

Enricher

DBSink

Customers

Calls

UniqueCalls

Stats

Enriched

Figure 1: SPL code (left) and corresponding stream graph (right) for telecommunications example.

By allowing programmers to define their applications as independent operators that communicate over streams,
distributed stream processing is the full realization of bringing parallel programming to application developers.

This paper presents the runtime for SPL, a stream processing language that targets the IBM Streams [15]
platform for distributed stream processing. The SPL runtime was designed with performance as a goal: it
supports low-latency, high-throughput streaming applications that execute continuously. SPL is a programming
language designed to naturally expose task, pipeline, and data parallelism. The runtime system for SPL exploits
such parallelism on hardware ranging from a single machine with many cores to many single-core machines.

Prior publications related to SPL focused on the language design [13] or specific optimizations applied in
a streaming context [11, 20]. This paper is the first to focus on the SPL runtime system itself. It identifies the
requirements for the SPL runtime, which are focused on the core semantics of the language and delivering high
performance that is scalable and configurable. It presents the runtime system that meets those requirements and
details its optimizations. These optimizations are possible because of the semantics of the stream programming
model realized in SPL.

2 Background on Streaming

This section reviews core streaming concepts as embodied by SPL. It starts with an example application, then
introduces development-time concepts, followed by runtime concepts, and wraps up with a discussion of alter-
native design choices.

Figure 1 shows a simplified version of the real-world telecommunications application presented by Bouillet
et al. [6]. The first TCPSource in lines 1–3 ingests call detail records (CDRs) from an external system such as
a telco switch. The Deduplicate in lines 4–6 drops duplicate CDRs in a 1-hour sliding window. The second
TCPSource in lines 7–9 watches changes to customer information from an external system such as a subscriber
database. The Enricher in lines 10–12 augments each CDR with a customer name, by buffering Customers infor-
mation in memory and using it to look up names by phone numbers. The Aggregate in lines 13–17 computes
statistics over a 5-minute sliding window; for simplicity, in this example, the aggregate statistics are just the
average call length. The Dashboard in lines 18–19 visualizes aggregate statistics for online monitoring, whereas
the DBSink in lines 20–22 persists them for offline analysis.

62

The code in Figure 1 exemplifies the development-time view of an application by describing the static
structure of an SPL stream graph. Each vertex of the graph is an operator invocation, such as the first TCPSource.
An operator invocation instantiates an operator, configures it (e.g. with a param clause), and connects it to streams
(e.g. the Calls stream). Streams are the edges of the directed graph of operator instances. Ports are the points
where streams connect to operator instances. Each operator instance can have zero or more input ports and zero
or more output ports, and each port can be connected to zero or more streams. An operator, such as TCPSource, is
a template that can be instantiated multiple times. Different invocations of the same operator can be configured
differently; the specifics for how SPL supports this configuration are not relevant to this paper and can be found
elsewhere [13]. What is important is that SPL poses no restrictions on permitted topologies, which can have
multiple roots (sources) and leaves (sinks) and may even be cyclic. This flexibility makes it possible to support
a broad set of applications. However, once deployed, the stream graph is fixed, to support static optimization.

The runtime view of SPL adheres to the semantics for the dynamic behavior of an SPL application. At
runtime, streams send tuples between operator instances. Most non-source operators only activate when a tuple
arrives at an input port. (Source operators activate based on external triggers; from the perspective of the appli-
cation, they appear to activate spontaneously.) Note that each tuple causes a separate activation that consumes
the tuple that triggered it; as a corollary, ports fire independently. The per-tuple activation semantics minimize
the need for synchronization and are formalized in the Brooklet calculus [22]. An operator activation typically
modifies operator-local state (if any) and submits zero or more tuples on output ports (if any), and then the oper-
ator becomes passive again waiting for the next activation. State is in-memory and operator-local, and thus state
access requires no inter-operator coordination, avoiding a performance bottleneck for distributed deployments.
When multiple streams converge on a single port, their tuples are interleaved in an unspecified order. When
multiple streams originate from a single port, they all carry the same tuples.

Some streaming languages, such as CQL [5], focus primarily on relational operators. In contrast, SPL has
an extensive operator library of which relational operators make up only a small fraction. This library, and the
support for user-defined operators, provide an ecosystem for SPL applications in diverse domains. Some other
streaming languages, such as StreamIt [12], focus primarily on operators with statically known selectivity. The
selectivity of an operator is the number of tuples consumed and produced in an activation. In SPL, activations of
non-source operators consume exactly one tuple, but the number of tuples produced varies per activation and is
not known statically. Again, this design choice was important for SPL to work in many domains.

Overall, SPL provides the generality needed to address many applications and run on a distributed system,
while retaining enough static information for language-based optimizations as described later in this paper.

3 Requirements

The runtime system for a streaming language has two primary responsibilities: to enforce the semantics of the
programming language and to deliver high performance.

3.1 Enforcing Semantics

The responsibility of enforcing the semantics of the programming model belongs primarily to the compiler. But
it is the language runtime that provides the streaming primitives that the compiler targets. A runtime for SPL
has the following requirements:

• Operator-state protection: Operator state is exclusively local to that operator. The runtime is responsible
for enforcing operator-state protection, even if multiple operators happen to execute in the same address
space.

63

• Asynchronous tuple-at-a-time: Operators must be able to asynchronously yet safely process individual
tuples. The runtime is responsible for delivering tuples to operators while preventing data races and
deadlock.

• Ordered streams: Operators must be able to send tuples over streams to other operators for asynchronous
processing. The runtime must deliver tuples to the operators that consume the stream even if the consum-
ing operators are on a separate machine. The runtime must also maintain tuple order on streams: if an
operator submits tuple a before tuple b, all operators that receive tuples from that stream must receive a
before b.

• Communication across applications: Stream programs must be able to choose to publish or subscribe to
streams from other stream programs. The runtime is responsible for matching publication and subscription
specifications as new applications enter the system, and for delivering the appropriate tuples.

3.2 Delivering High Performance

From an implementation perspective, delivering high performance is at odds with enforcing language seman-
tics: the simplest means to enforce the semantics tend to result in unacceptable performance. The following
requirements are needed for SPL to deliver high performance, and will determine the runtime optimizations:

• High throughput: The primary performance metric for most SPL applications is throughput: tuples pro-
cessed per second.

• Low latency: Tuple processing must not incur undue latency for any individual tuple. This requirement
means that aggressively optimizing for throughput via large batches is not acceptable.

• Continual processing: Applications must be able to execute indefinitely, without the loss of performance.
The runtime must be designed such that a single application can process data continuously for months.

• System independence: The abstractions provided in SPL allow any given application to map to any arbi-
trary distributed system. The SPL runtime must deliver on this promise, in both directions. The runtime
must provide the ability for the same application to execute on many different kinds of distributed sys-
tems, and, given a particular distributed system, the runtime must be able to handle any arbitrary SPL
application.

• Parallel execution: Operators in an application must be able to execute across a distributed cluster, in
parallel. Parallelism is one of the means through which the runtime delivers high throughput, so any
decision that limits parallelism must improve performance in some other way.

• Explicit user control: Experts with a deep understanding of the underlying distributed system—and how
the abstractions in SPL map to that system—need to be able to control how their applications are deployed.
That control is required both for influencing the optimizations in the runtime (such as parallelism or cheap
communication) and for dealing with the constraints of a particular system (such as which machines in a
cluster are allowed to access remote data sources).

4 System Overview

Creating and executing distributed streaming applications is more involved than the typical compile-and-execute
model for general-purpose languages. This section gives a brief overview of the system as a whole, including
the artifacts that are introduced in each stage of the application life cycle.

64

As a platform for distributed and parallel applications, IBM Streams must provide services such as name
resolution, application life-cycle management, and scheduling. However, platform services are outside of the
scope of this paper, which focuses on the SPL runtime.

Compilation. The primary entity in the SPL runtime is the processing element, or PE. Multiple operators can
execute inside a PE, and determining which operators will execute together in the same PE is called fusion.

The compiler is responsible for operator fusion. The two main artifacts produced by compiling an SPL
application are the PEs and the ADL (application description language) file. The optimization aspects of fusion
are covered in Section 6.1. From the system’s perspective, the PEs are dynamic libraries that contain the code for
all of the operators fused into that PE. The ADL contains a meta-description of the entire application, including
all of the PEs and the operators they contain. The connections between all operators within each PE, and between
all PEs, are fully represented in the ADL.

Developers can annotate operator invocations to parallelize arbitrary sub-graphs. The compiler recognizes
these annotations, but it does not perform the parallel expansion. Instead, it records in the ADL which regions
of the stream graph should be parallelized at job submission time.

Job submission. SPL applications start executing when the ADL for the application is submitted to the
Streams platform. Parallel expansion occurs at job submission, using the information from the ADL to indi-
cate which portions of the application should be parallelized. The transformation process produces the PADL
(physical ADL), which is the final representation of the stream graph that will execute.

The transformation process replicates all relevant operators and streams, and is responsible for connecting
the replicated streams back into the unparallelized portions of the application. Because fusion happened at
compile time, the parallel expansion cannot change which operators are in which PEs. There are two means by
which it can achieve parallelism: replicate an entire PE, or replicate operators within a PE and inject threaded
ports to ensure parallelism. In both cases, the PE binaries remain unchanged; the replication happens entirely in
the stream graph representation in the PADL. This late-stage transformation is enabled by the separation between
the high-level description of the application in the ADL and the actual code that executes in the PE binaries.

From the PADL, the Streams platform creates an AADL (augmented ADL) for each PE, which details what
part of the stream graph that PE is responsible for. Finally, the platform is responsible for scheduling the PEs on
the available hosts.

Execution. The Streams platform launches all of the PEs in the SPL application. Upon start-up, the PEs refer
to their AADL to know which operators to start, how those operators are connected to each other, how those
operators are connected to the input and output ports of the PE itself, and which connections to establish with
the other PEs in the application. PEs created through the parallel expansion will execute the same PE binary,
and operators replicated inside of PEs will simply instantiate the same operator multiple times.

Cancellation. Unlike applications in general-purpose languages, streaming applications are designed to exe-
cute indefinitely. For that reason, users must explicitly tell the Streams platform to cancel a particular job. When
a PE receives a cancellation notification from the platform, it informs the operators it is responsible for, so they
can safely clean up their resources.

5 The SPL Runtime

The SPL runtime manages the life-cycle and execution of the operators that are contained within the same PE.
It also interacts with the larger Streams runtime to participate in application life-cycle management, dynamic
connection management, metrics collection, and remote debugging support.

65

A B C

D E

G

F

1 2

3

Figure 2: PE with three threads: a thread in a source operator, a threaded port, and a thread from the PE input
port.

5.1 PE Execution

Operators within the same PE are executed as a single operating system process. The system component re-
sponsible for inter-PE communication is called the transport. The SPL runtime can use multiple threads within
a PE to execute the PE’s operators, as shown in Figure 2. In particular, source operators and input ports that
are fed by the transport (PE input ports) are driven by dedicated threads. These threads execute the operator
graph that is downstream of their associated source operators or PE input ports. The stream connections within
a PE are implemented via function calls, using simple reference passing to avoid costly serialization. Tuples
that go through inter-PE connections are buffered within the transport, whereas those that go through intra-PE
connections implemented by function calls are not buffered. Further parallelism is achieved within a PE via
the use of threaded ports. A threaded port is an input port within a PE that maintains a tuple buffer and uses
a dedicated thread to execute its downstream operator graph. These threaded ports can be inserted manually
by the application developer, as well as automatically by the SPL runtime [23]. In addition to these, individual
operators can also request one or more SPL runtime managed threads for executing asynchronous tasks.

5.2 Operator Execution

The SPL runtime and the user-defined operators interact via an event-driven model. Operators handle tuples
by implementing a tuple-handler function. They can submit tuples to their output ports, either as part of the
tuple-handler function in reaction to a tuple arrival, or as part of the asynchronous tasks they execute. SPL also
supports punctuations, which are out-of-band signals embedded within the tuple flow. Punctuations are handled
via handler functions just like tuples. They can also be submitted to output ports. Two kinds of punctuations are
supported: window punctuations and final punctuations.

Window punctuations are used to mark window boundaries within a stream. They enable custom windowing
semantics, where the boundaries of the windows are not determined by a predefined windowing policy, but
instead they are determined based on the presence of window punctuations in the stream.

Final punctuations are used to handle application termination. Receiving a final punctuation on an input port
indicates that no tuples are to be received from that input port in the future. The SPL runtime manages the
creation and forwarding of final punctuations automatically. Operators can opt to handle final punctuations in
order to perform finalization tasks.

5.3 Window Management

SPL offers windowing syntax for any operator, not limited to relational ones. The SPL runtime facilitates the
implementation of such windowed operators by providing a windowing API. In particular, the SPL runtime
maintains windows in-memory, provides access to window contents, and lets user-defined operators register
callback functions to handle various windowing events. SPL supports tumbling and sliding windows, including

66

partitioned varieties. Tumbling windows are non-overlapping, whereas sliding windows are potentially over-
lapping. Partitioned windows maintain independent windows for different sub-streams based on a partitioning
attribute. Windows are configured via window eviction and window trigger policies. SPL supports time-based,
count-based, and attribute-delta based eviction and trigger policies [10]. For a tumbling window, the eviction
policy specifies when to flush the window, such as after every 10 tuples or after the timestamp attribute increases
by 10 units. For a sliding window, the eviction policy specifies when to evict old tuples from the window, such as
when the window size grows beyond 10 (as a count or based on a timestamp attribute). For a sliding window, the
trigger policy specifies when to process the window contents, such as after every 2 tuples, or after the timestamp
attribute increases by 2 time units. Tumbling windows do not have trigger policies, as they trigger when the
window is flushed.

5.4 Back-Pressure Management

The SPL runtime implements back-pressure to handle potential differences in the processing rates of operators.
When an operator is faster than those downstream of it, submit calls will eventually block, as the downstream
operators’ input port buffers will be full. This will in turn slow down the operator at hand. As time progresses,
the back-pressure will propagate further upstream. It will eventually reach source operators, and through them,
external sources. Via the use of back-pressure, streaming operators naturally throttle themselves to avoid con-
tinuously growing buffers, without the need for shedding any tuples. Since the SPL runtime implements tuple
submissions via function calls within a PE, back-pressure manifests at the boundaries where tuple submissions
go through a buffer. These include tuple submissions to PE output ports (that go into the transport buffers) and
tuple submissions to output ports that are connected to threaded ports (that go into the threaded port buffers).

SPL allows feedback loops in its flow graphs, where a downstream operator can produce an output that is
fed back into the input port of an upstream operator. Such feedback loops create cycles in the flow graph, yet
arbitrary cycles can cause deadlocks in the presence of back-pressure. To avoid deadlocks, SPL only allows
feedback connections into control ports. A control port is a special kind of input port with the restriction that it
cannot trigger the production of output tuples. Typically, control ports consume the incoming tuples to update
the operator’s internal state.

5.5 Consistent Regions

SPL applications can achieve fault tolerance through user-applied consistent regions [8]. Tuples in consistent
regions are guaranteed to be processed at least once, even in the presence of operator and PE failure. The SPL
runtime achieves this guarantee with a combination of operator state checkpointing and tuple replay. Source
operators in consistent regions periodically send out special punctuations that inform operators that it is time
to checkpoint their local state. Because streams are ordered, when an operator checkpoints its local state, it is
guaranteed that the state contains the result of all tuples prior to the punctuation. The accumulated application
state across all operators after they have all finished checkpointing is a consistent view of the application’s state.

In the event of a failure, the platform notifies the source operators in consistent regions. The source operators
then send out another special punctuation that tells all operators in the region to discard their current state, and
reload their state from their last checkpoint. Following that punctuation is a replay of tuples that came after
the last checkpoint. Through failure tracking, checkpointing, and a specialized protocol, the SPL runtime is
able to guarantee at-least-once tuple processing. If the operators in the consistent region do not have externally
visible behavior that cannot be rolled back, then from an operator developers perspective, this guarantee becomes
exactly-once.

67

5.6 Dynamic Connections

A typical stream connection is established between an operator output port and an operator input port, based
on the connection specification defined within an SPL program. Such connections are considered static. A
complementary form of connections are dynamic connections, where the exact endpoints are established at run-
time, subject to constraints specified in an SPL program at compile-time. Dynamic connections enable a few use
cases that cannot be satisfied by static connections. One such use case is incremental deployment of applications,
where an application is deployed in piecemeal fashion, adding new components as the application evolves. An-
other example is dynamic discovery of sources and sinks, where an application is designed to consume/produce
data from/to a variable set of producers and consumers. These producers and consumers can be other applica-
tions sharing the same runtime instance. As a concrete example, in an operational monitoring application, new
log sources (producers) as well as new analytic applications (consumers) could be added/removed at runtime via
the use of dynamic connections.

SPL supports dynamic connections via export properties and import specifications. An output port that
produces a stream can export it by associating a list of export properties with the stream. Dually, an input
port that consumes streams can import them by providing an import specification. Import specifications are
Boolean expressions that make use of export properties and basic arithmetic and logical operations on them.
Both export properties and import specifications can either be defined within SPL programs or dynamically
changed via runtime APIs. Based on export properties and import specifications, the Streams runtime performs
continuous matching to determine changes on the dynamic connections. When such changes are detected, it
coordinates with the SPL runtime to establish new connections and/or tear down existing ones to keep the
dynamic connections up to date. Changes in the dynamic connections can happen due to changes in the list
of SPL applications running within a Streams instance, or due to changes in the export properties or import
specifications of existing SPL applications.

5.7 Dynamic Filters

Dynamic connections enable operators to subscribe to streams on demand. However, once a stream is sub-
scribed via an import specification, its entire contents are received, since the matching is on stream-level export
properties and not on tuple-level attributes. To support subscribing to a selective subset of imported streams,
SPL supports dynamic filters. Dynamic filters, which can be specified together with import specifications, are
Boolean expressions defined on tuple attributes. These filters are shipped by the Streams runtime to the PEs that
are producing the exported streams and are evaluated by the SPL runtime to perform the filtering.

6 Runtime Optimizations

The SPL runtime implements several optimizations, with a particular focus on maximizing the throughput of
applications by taking advantage of parallelization and distribution opportunities.

6.1 Fusion

The fusion optimization aims at grouping operators into PEs, so that the stream-processing application can
be distributed over multiple hosts. Since process migration is costly, SPL performs fusion at compile-time.
However, profiling data is collected during runtime and earlier runs guide the fusion decisions based on this
profiling data. The profile-optimize cycle can be iterated to improve accuracy.

Fusion is a graph-partitioning problem, where the goal is to minimize the volume of data flow between
PEs, while keeping the total cost of operators within a PE under a limit. Minimizing the volume of data flow
between PEs minimizes the costly transmission of tuples across PEs, since stream connections are implemented

68

as function calls within a PE. Limiting the total cost of operators within a PE avoids overloading a single host
and makes it possible to utilize multiple hosts. The partitioning of the application flow graph for fusion can be
implemented bottom-up, starting with one operator per PE and iteratively merging PEs; or top-down, starting
from a single PE and iteratively dividing PEs. SPL’s auto-fuser takes the latter approach, which is shown to
have better performance [17] and can be easily adapted to work in the presence of the fission optimization in
Section 6.3 [20].

SPL also enables application developers to explicitly request fusion via PE-level co-location, ex-location,
and isolation directives. Co-location places a group of operators into the same PE. Ex-location enforces that a
group of operators pair-wise do not share their PEs. Isolation runs an operator inside a PE by itself, with no
other operators present. SPL’s auto-fuser respects these fusion constraints.

6.2 Intra-PE Thread Placement

The intra-PE thread placement optimization aims to take advantage of multiple cores on a single host for exe-
cuting operators within a PE. It can exploit both pipeline and task parallelism inherently present in streaming
applications. In SPL, threaded ports perform thread placement. However, it is difficult to find a close-to-optimal
configuration by hand, because it depends on the per-tuple costs and selectivities of operators. These properties
are difficult to guess at development time. Furthermore, the number of possible placements increases combina-
torially with the number of input ports and hardware threads available in the system. SPL solves this problem
via an auto thread placer1 that can automatically insert threaded ports as the application is executing [23].

The auto thread placer is a runtime component that incorporates a profiler and an optimizer. The profiler
uses an application-level operator stack to track thread execution and periodically samples this stack to measure
operator costs and thread utilizations. The optimizer uses these values to find bottleneck threads and decides
where to insert threaded ports to maximize the application throughput. Additional runtime machinery is used to
put these decisions into effect with minimal disruption to the active data flow. The process is iterative, where at
each iteration additional threaded ports are added until no further improvements are possible.

The key insight used by SPL’s auto thread placer is that, at each step, additional threaded ports decrease
the workload of all of the highly utilized threads, as otherwise the optimization process will get stuck at a
local minimum. This is particularly due to the dependence of the throughput on the slowest component of
a pipeline. Another important consideration is that, sometimes, adding new threaded ports may not improve
performance due to external effects, such as globally shared resources like files, locks, and databases. The auto
thread placer monitors the achieved performance after changes in the threaded port configuration, in order to
rescind ineffective changes. It also uses a blacklist to avoid them in the future.

6.3 Fission

Fission is an optimization that exploits data parallelism. To apply fission, a region of the application graph is
replicated, the data is distributed over these replicas via a split operator, and the results from the replicas are
re-ordered via a merge operator. In Streams, fission can be user-defined or automatic2. In user-defined fission,
the application developer annotates the region that will take advantage of data parallelism, called the parallel
region, and specifies the number of replicas. The runtime system handles the actual instantiation of the replicas,
the distribution of tuples over the replicas, and the re-ordering at the end to maintain the sequential semantics.

Auto-fission both detects parallel regions and determines the number of parallel channels automatically,
without involving the application developer. Auto-fission requires static code analysis to determine when the
optimization is safe and runtime support to maintain that safety. The SPL compiler locates data-parallel regions
by analyzing operator models as well as the configurations of the individual operator instances in the SPL

1Auto thread placer is available in a research version of the system [23].
2Auto-fission is available in a research version of the system [11, 20].

69

program [20]. It uses a left-to-right heuristic to consider operators in the graph and merges as many consecutive
operators as possible into a parallel region to minimize parallelization overhead. The left-to-right heuristic is
motivated by the observation that most streaming applications apply progressive filtering. Operators can be
combined into parallel regions if they are suitable for data parallelism and their partitioning keys are compatible.
Only operators that are either stateless or partitioned stateful can be used for data parallelism.

Auto-fission automatically discovers the degree of parallelism that achieves the best throughput, and adapts
to changes in workload and resource availability. For this purpose a control algorithm is implemented within the
splitters [11]. It uses throughput and congestion metrics to adjust the number of channels for the parallel region.
The basic principle behind the control algorithm is to increase the number of channels until the congestion goes
away. However, if the congestion is due to a downstream bottleneck that cannot be resolved by the parallel
region at hand, then this situation is detected by the lack of improvement in the throughput in response to an
increase made in the number of channels. Various additional mechanisms are employed to satisfy SASO proper-
ties: stability (no oscillations), accuracy (close to optimal throughput), settling time (number of channels is set
quickly), and overshoot (no excessive resource consumption). In the presence of partitioned stateful operators,
auto-fission requires support for state migration. Migration is needed whenever the number of channels changes,
as some partitions are assigned to new operators. SPL addresses this issue by automatically managing operator
state via a key-value store [11], using consistent hashing [16] to minimize the amount of data migrated.

6.4 Transport Optimizations

The Streams runtime provides various transport options, including InfiniBand for high-performance network
hardware, TCP for general-purpose inter-host PE communication, and Unix domain sockets for intra-host PE
communication. Various configuration options are provided related to buffering of tuples by the transport as well
as thread usage for receiving tuples, in order to adjust the trade-off between latency and throughout.

The SPL runtime uses serialization and deserialization to transform between in-memory and on-the-wire
representation of tuples. For highly performance-sensitive applications, this conversion may introduce signifi-
cant overhead. Given SPL’s dynamically-sized types (strings, lists, maps, and sets), these transformations are
necessary in the general case. The SPL runtime implements an optimization called façade tuples to eliminate
this overhead when the tuples involved contain only fixed-size types. The SPL language’s support for fixed-size
types includes bounded strings and bounded versions of lists, maps, and sets, in addition to the regular primitive
types. Fixed-size types always occupy space corresponding to their maximum size, irrespective of their current
effective size. The façade tuple optimization uses the same on-the-wire and in-memory representation for tu-
ples that contain only fixed-size attributes. On the down-side, accessing façade tuple attributes might result in
unaligned memory access, which may be unavailable in some systems and slightly slower in others.

7 Related Work

The first main topic of this paper is the distributed runtime system for SPL. Here, we compare SPL’s runtime to
other streaming runtimes.

Like SPL, TelegraphCQ [7] and CQL [5] enable continuous dataflow processing. Furthermore, like SPL,
CQL has a language-centric design. However, both TelegraphCQ and CQL focus on relational stream queries,
whereas a primary objective of SPL is support for operators beyond the relational domain. Furthermore, un-
like SPL, TelegraphCQ and CQL lack distributed runtimes. Borealis pioneered distributed stream-relational
systems [1]. However, it did not have a language-centric design. Therefore, unlike SPL, Borealis does not of-
fer language-based optimizations. Another streaming platform with a language-centric design is StreamIt [12].
It does not emphasize a relational approach and supports distribution. However, unlike SPL, StreamIt only
allows a restrictive set of topology combinators, ruling out commonly-needed cases such as multiple sources

70

or sinks. Furthermore, unlike SPL, StreamIt focuses on operators with statically known selectivity. Microsoft
StreamInsight is a streaming platform that derives from earlier stream-relational systems [4]. However, by using
LINQ (language-integrated queries), it augments its relational foundation with user-defined code. Unlike SPL,
StreamInsight was not designed with a distributed runtime in mind.

Recently, there has been a flurry of new streaming platforms that primarily focus on distribution: Google
Millwheel [2], Spark Streaming with its micro-batch approach [25], Microsoft Naiad with its timely dataflow
approach [18], and Twitter Storm [24]. Like SPL, they advance the state of the art for scalable and resilient
distribution. However, none of them use a language-centric design, which means that unlike SPL, they do not
offer much in the way of language-based optimization.

The second main topic of this paper is language-based optimizations for SPL. Here, we review streaming
optimizations work that is closely related to SPL. For a comprehensive overview, see our survey paper [14].
Optimization algorithms must tackle two challenges, safety and profitability. Safety ensures that the optimized
application produces the same results as the original code, and profitability ensures that it runs faster or uses less
resources or scales to bigger work-loads.

Fusion combines operators to avoid the overhead of serialization and transport. There are variants of fusion
depending on whether the operators are only combined in a single process or also in a single thread [23]. Fusion
safety tends to be easy to establish. COLA offers a sophisticated solution to fusion profitability in the context
of SPL [17]. Languages that focus on streaming with statically known selectivity solve fusion profitability even
more comprehensively [21]. Fission introduces data parallelism by replicating an operator or even an entire
subgraph of the stream graph. Fission is the killer optimization for StreamIt [12]. In the context of SPL, we have
researched both fission safety [20] and fission profitability [11]. Fission is so important for performance that
recent streaming platforms design partitioning deeply into their semantics to make fission the default [2, 18, 24,
25]. Transport optimizations reduce the overheads for sending tuples between distributed streaming operators
across process or machine boundaries. The SPL runtime includes a highly optimized transport fabric with good
defaults, but can be further tuned for extreme situations [19]. Many other distributed streaming systems start out
with higher transport overheads, which can be optimized by reducing threads, serialization, etc. [3].

8 Conclusion

This paper describes the SPL language runtime and its optimizations. The SPL runtime provides the system
support for hosting a graph of operators on multiple cores and multiple machines while enforcing the semantics
of the programming language. Furthermore, the SPL runtime supports several language-based optimizations:
fusing operators in the same operating-system process to reduce communication cost; placing multiple threads
into such a process to increase intra-machine parallelism; using fission to replicate subgraphs of operators to
increase inter-machine parallelism; and optimizing the transport to eliminate serialization overheads. The SPL
runtime enables both user-directed and fully-automated variants of these optimizations.

References
[1] D. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin,

E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The design of the Borealis stream processing engine. In Innovative
Data Systems Research Conference (CIDR), 2005.

[2] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax, S. McVeety, D. Mills, P. Nordstrom, and
S. Whittle. MillWheel: Fault-tolerant stream processing at internet scale. In Very Large Data Bases (VLDB) Indus-
trial Track, pages 734–746, 2013.

[3] S. Akram, M. Marazakis, and A. Bilas. Understanding and improving the cost of scaling distributed event processing.
In International Conference on Distributed Event-Based Systems (DEBS), pages 290–301, 2012.

71

[4] M. Ali, B. Chandramouli, J. Goldstein, and R. Schindlauer. The extensibility framework in Microsoft StreamInsight.
In International Conference on Data Engineering (ICDE), pages 1242–1253, 2011.

[5] A. Arasu, S. Babu, and J. Widom. The CQL continuous query language: semantic foundations and query execution.
Journal on Very Large Data Bases (VLDB J.), 15(2):121–142, 2006.

[6] E. Bouillet, R. Kothari, V. Kumar, L. Mignet, S. Nathan, A. Ranganathan, D. S. Turaga, O. Udrea, and O. Verscheure.
Experience report: Processing 6 billion CDRs/day: From research to production. In Conference on Distributed
Event-Based Systems (DEBS), pages 264–267, 2012.

[7] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. Mad-
den, V. Raman, F. Reiss, and M. A. Shah. TelegraphCQ: Continuous dataflow processing for an uncertain world. In
Conference on Innovative Data Systems Research (CIDR), 2003.

[8] G. J. da Silva. Guaranteed tuple processing in InfoSphere Streams v4 with consistent regions.
https://developer.ibm.com/streamsdev/2015/02/20/processing-tuples-least-infosphere-

streams-consistent-regions/. Retrieved December, 2015.
[9] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In Operating Systems Design

and Implementation (OSDI), pages 137–150, 2004.
[10] B. Gedik. Generic windowing support for extensible stream processing systems. Software: Practice & Experience

(SP&E), 44(9):1105–1128, 2014.
[11] B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu. Elastic scaling for data stream processing. IEEE Transactions on

Parallel and Distributed Systems (TPDS), 25(6):1447–1463, 2014.
[12] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-grained task, data, and pipeline parallelism in stream

programs. In Architectural Support for Programming Languages and Operating Systems (ASPLOS), pages 151–162,
2006.

[13] M. Hirzel, H. Andrade, B. Gedik, G. Jacques-Silva, R. Khandekar, V. Kumar, M. Mendell, H. Nasgaard, S. Schneider,
R. Soulé, and K.-L. Wu. IBM Streams Processing Language: Analyzing big data in motion. IBM Journal of Research
and Development, 57(3/4):7:1–7:11, 2013.

[14] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm. A catalog of stream processing optimizations. ACM
Computing Surveys (CSUR), 46(4), Apr. 2014.

[15] IBM Streams. http://ibmstreams.github.io/. Retrieved September, 2015.
[16] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin. Consistent hashing and random trees:

Distributed caching protocols for relieving hot spots on the world wide web. In Symposium on the Theory of Com-
puting (STOC), pages 654–663, 1997.

[17] R. Khandekar, K. Hildrum, S. Parekh, D. Rajan, J. Wolf, K.-L. Wu, H. Andrade, and B. Gedik. COLA: Optimizing
stream processing applications via graph partitioning. In International Middleware Conference, pages 308–327,
2009.

[18] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad: A timely dataflow system. In
Symposium on Operating Systems Principles (SOSP), pages 439–455, 2013.

[19] Y. Park, R. King, S. Nathan, W. Most, and H. Andrade. Evaluation of a high-volume, low-latency market data
processing system implemented with IBM middleware. Software: Practice & Experience (SP&E), 42(1):37–56,
2012.

[20] S. Schneider, M. Hirzel, B. Gedik, and K.-L. Wu. Auto-parallelizing stateful distributed streaming applications. In
Parallel Architectures and Compilation Techniques (PACT), pages 53–64, 2012.

[21] J. Sermulins, W. Thies, R. Rabbah, and S. Amarasinghe. Cache aware optimization of stream programs. In Lan-
guages, Compiler, and Tool Support for Embedded Systems (LCTES), pages 115–126, 2005.

[22] R. Soulé, M. Hirzel, R. Grimm, B. Gedik, H. Andrade, V. Kumar, and K.-L. Wu. A universal calculus for stream
processing languages. In European Symposium on Programming (ESOP), pages 507–528, 2010.

[23] Y. Tang and B. Gedik. Autopipelining for data stream processing. Transactions on Parallel and Distributed Systems
(TPDS), 24(12):2344–2354, Dec. 2013.

[24] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Don-
ham, N. Bhagat, S. Mittal, and D. Ryaboy. Storm @twitter. In International Conference on Management of Data
(SIGMOD), pages 147–156, 2014.

[25] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Discretized streams: Fault-tolerant streaming
computation at scale. In Symposium on Operating Systems Principles (SOSP), pages 423–438, 2013.

72

https://developer.ibm.com/streamsdev/2015/02/20/processing-tuples-least-infosphere-streams-consistent-regions/
https://developer.ibm.com/streamsdev/2015/02/20/processing-tuples-least-infosphere-streams-consistent-regions/
http://ibmstreams.github.io/

FUGU: Elastic Data Stream Processing with
Latency Constraints

Thomas Heinze1, Yuanzhen Ji1, Lars Roediger1, Valerio Pappalardo1, Andreas Meister2,
Zbigniew Jerzak1, Christof Fetzer3

1SAP SE 2University of Magdeburg 3TU Dresden
{firstname.lastname}@sap.com andreas.meister@iti.cs.uni-magdeburg.de christof.fetzer@tu-dresden.de

Abstract

Elasticity describes the ability of any distributed system to scale to a varying number of hosts in response
to workload changes. It has become a mandatory architectural property for state of the art cloud-based
data stream processing systems, as it allows treatment of unexpected load peaks and cost-efficient execu-
tion at the same time. Although such systems scale automatically, the user still needs to set configuration
parameters of a scaling policy. This configuration is cumbersome and error-prone.

In this paper we propose an approach that tries to remove this burden from the user. We present our
data stream processing system FUGU, which optimizes the selected scaling policy automatically using
an online parameter optimization approach. In addition, we demonstrate how our system considers
user-defined end to end latency constraints during the scaling process.

1 Introduction

Data stream processing systems [1] continuously produce output for a set of standing queries and potentially
unbounded input streams. Many real-world workloads for data stream processing systems have a high variability,
which means that the data rates of the input streams and the selectivities of query operators are frequently
changing in unpredictable ways. Several authors [5, 7, 8] have proposed data stream processing prototypes that
automatically scale in or out based on workload characteristics to handle such dynamic workloads. Such systems
are called elastic [11] and support increasing system utilization by using only the minimum required number of
hosts. However, in all these prototypes, the user needs to manually specify a scaling strategy, which controls
when and how the system scales.

The challenge of correctly configuring the scaling strategy has been studied for many cloud-based systems [4,
12, 13, 16]. A large number of solutions exist, including auto-scaling techniques [13, 16] and task-classification
approaches [4, 12]. These systems can be classified into three major algorithmic categories: prediction-based,
sampling-based, and adaptive (learning-based) solutions. Both sampling and prediction-based approaches are
hard to apply in a data stream processing system, because its workload is hard to predict or sample due to its
high variability. An adaptive auto-scaling technique is able to improve the utilization of such a system, but
degrades the quality of service [9]. Each reconfiguration decision in a data stream processing system interferes

Copyright 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

73

�
�
�
�
�
�
�

���������	

���� ����

������������

�����������������
�����������

���������	
��

���������	
��

������
����

��
�������

�	�
���

���	�	���

Figure 1: Architecture of FUGU

with the data processing and as a result has a high impact on major quality of service metrics such as end to end
latency [8]. Therefore, this characteristic needs to be reflected in the scaling strategy to achieve a good trade-off
between the spent monetary cost and the achieved quality of service.

In the context of our elastic data stream processing prototype FUGU, we study how we can relieve the user
from configuring these parameters and how to support different quality of service levels. In this paper, we outline
the two major concepts we use to realize this vision in context of FUGU: (1) the latency-aware scaling strategy
and (2) online parameter optimization. The latency-aware scaling strategy introduces a model to estimate the
latency peak created by a scaling decision. This information is used to derive scaling decisions with a minimal
latency peak and avoid scaling decisions with a too high latency peak. Online parameter optimization presents a
white-box model to study the influence of different parameters on scaling behaviour. This white-box model can
be used to search for good parameter settings for the current workload.

In the following, we describe both techniques in the context of an existing data stream processing system. In
addition, we present a real-world evaluation to demonstrate the strength of the presented techniques.

2 Background

The concepts presented here are implemented as an extension of the elastic data stream processing prototype
FUGU [8, 9] (see Figure 1). The existing system consists of a centralized management component, which
dynamically allocates a varying number of hosts. The manager executes on top of a distributed data stream
processing engine, which is based on the Borealis semantic [1].

The data stream processing system processes continuous queries, which can be modeled as directed acyclic
graphs of operators. Our system supports primitive relational algebra operators (selection, projection, join, and
aggregation) as well as additional data stream processing specific operators (sequence, source, and sink). Each
operator can be executed on an arbitrary host and a query can be partitioned over multiple hosts. The number of
hosts is variable and dynamically adapted by the management component to changing resource requirements.

The centralized management component serves two major purposes: (1) it derives scaling decisions, in-
cluding decisions on allocating new hosts or releasing existing hosts, and assigns operators to hosts; and (2) it
coordinates the construction of the operator network in the distributed data stream processing engine.

The management component constantly receives statistics from all running operators in the system. Based
on these measurements and a set of thresholds and parameters, it decides when to scale and where to move
operators. Typically, these thresholds and parameters are manually specified by the user. Our system supports
the movement of both stateful (join and aggregation) and stateless operators (selection, sink, and source). A
state of the art movement protocol [8, 15] ensures an operator moves to the new host without information loss.

74

Scaling
Algorithm

Utilization Scaling
Decision

Operator
Placement

Moved
Operators

Optimization
Objective

Operator
Selection

Selected
Operators

Figure 2: Scaling Strategy of FUGU

3 Threshold-based Elastic Scaling

The scaling approach used by the FUGU server is illustrated in Figure 2. A vector of node utilization measure-
ments (CPU, memory, and network consumption) and a vector of operator utilizations are used as input to the
Scaling Algorithm. The Scaling Algorithm derives decisions that mark a host as overloaded or the system as
underloaded. The Operator Selection algorithm decides which operators to move and the Operator Placement
algorithm determines where to move these operators.

The default scaling strategy of FUGU is threshold-based, namely, a set of threshold rules are used to de-
fine when the system needs to scale. These thresholds mark either the entire system or an individual host as
over/underloaded. A threshold rule describes an exceptional condition for the consumption of one major system
resource (CPU, network, or memory), which triggers a scaling decision in FUGU. Some examples for these
rules include:

1. A host is marked as overloaded if the CPU utilization of the host is above 80% for three seconds.

2. A host is marked as underloaded if the CPU utilization of the host is below 30% for five seconds.

The threshold-based rules need to be used carefully [6]. In particular, the frequent alternating allocation and
deallocation of virtual machines, called thrashing, should be prevented. Several steps are taken in FUGU to avoid
thrashing. First of all, each threshold needs to be exceeded for a certain number of consecutive measurements
before a violation is reported. This number is called the threshold duration. In addition, after a threshold
violation is reported, no additional scaling actions are done for the corresponding host for a certain time interval
called a grace period (or cool-down time). The system checks for overloaded or underloaded host each time a
new batch of utilization measurements for all operators has been received. Our scaling strategy checks all hosts
using the overload criteria first, afterwards it tests if the system is underloaded. This order avoids to first release
a host due to an underload and afterwards allocate a new host to solve an overload.

The load in a data stream processing system is partitioned among all operator instances running in the system.
Therefore, each scaling decision needs to be translated into a set of moved operators. The first problem is to
identify which operators to move. This identification is done by the Operator Selection algorithm. If the system
is marked as underloaded, it selects all operators running on the least loaded hosts. For an overloaded host, the
Operator Selection algorithm chooses a subset of operators to move in a way, that the summed load remaining on
the host is smaller than the given threshold. FUGU models this decision as a subset sum problem [14], where the
operators on the host are the possible items and the threshold represents the maximum sum. We use a heuristic,
which identifies the subset of all operator instances whose accumulated load is smaller than the threshold and
no other subset with a larger accumulated load fulfilling this condition exists. All operators selected by this
algorithm are kept on the host; the remaining operators are selected for movement.

The selected operators are the input of the Operator Placement algorithm, which decides where the operators
should be moved. We solve this problem using different bin packing algorithms [3]. The goal of a bin-packing
algorithm is to assign each item to exactly one bin in a way that (1) the number of bins is minimized and (2)

75

ql(oppred, t)

moveTime(opmoved,t)
latSpike(opmoved, t)

inputRate(oppred, t)

Figure 3: Latency Peak Estimation

the sum of the weights of all assigned items is smaller than the capacity of the bin. In the context of FUGU, an
operator represents an item and its CPU usage is its weight. A host is modeled as a bin with its CPU resource
as the capacity. In addition, we use network and memory consumption as sub-constraints. The bin-packing
problem is known to be NP-complete [14], however, many efficient heuristics have been proposed to solve it.
For FUGU we implemented two well-known bin-packing heuristics, FirstFit and BestFit.

4 Latency-aware Elastic Scaling

As illustrated in the previous section, a set of operators needs to be moved between hosts in the system in re-
sponse to a scaling decision. This movement has to ensure that no information is lost. This condition requires the
usage of an operator movement protocol [15], which guarantees that an operator and its state are moved together.
For each operator to be moved, the protocol used first pauses the processing of the predecessor operators, which
causes all newly arriving events to be enqueued. Then, a new instance of the operator is created and the operator
state is moved. When the state movement is completed, the predecessor operator is restarted. As the processing
of the enqueued events at the predecessor operator is delayed, a latency peak can be observed. Existing scaling
strategies [5, 7] optimize the scaling decision based only on the CPU load moved or the state size moved and
ignore the resulting latency peak.

In FUGU we deal with this problem by introducing a model to estimate the latency peak created by an
operator movement. The model (see Figure 3) estimates the queue length ql(oppred, t) of the predecessor operator
created during the movement, which determines the observed latency peak. As input for this estimation two
major factors are considered: workload characteristics such as the current input rate inputRate of the predecessor
operator oppred and the movement time moveTime of the moved operator opmoved. The major challenge is that
the movement time of an operator depends on multiple factors such as the state size, the operator type, and
the current host load [8]. Therefore, we collect a set of samples of these characteristics together with the
corresponding latency peak online. The samples are clustered based on these factors, and for a new operator
movement, the cluster of samples with the highest similarity is identified. That subset of samples is used to
estimate the movement time for new movements.

This estimation model is used to extend the Operator Selection algorithm presented in Section 3. Our system
allows the user to define a latency threshold, which is considered when the scaling decisions are computed. We
classify scaling decisions into two categories (1) mandatory and (2) optional movements. All scaling decisions
necessary to avoid an overload of the system are mandatory scaling decisions. The release of a host due to
underload is an optional scaling decision. Any optional scaling decision can be postponed or canceled in case
the estimated latency peak would be too high. Thereby, unnecessary violations of the latency constraints can
be avoided. The operator selection for an overloaded host is modified to identify a set of candidate solutions
whose summed operator loads are above a certain CPU threshold. Among all candidates, the solution with the
minimum estimated latency peak is chosen. In addition, the way in which the system handles CPU underload is
changed. Normally, if the system detects a system underload, the host with the minimal CPU load is released
and all operators running on this host are moved to other hosts. In our latency-aware elastic scaling the system
releases the host, that minimizes the estimated latency peak for moving all operators on the host. If no host with

76

Elastic Data Stream Processing Engine

Online Profiler

Parameter
Optimization

Manager

Data Stream
Processing Engine

Threshold-based
Scaling Strategy

Figure 4: Architecture of Online Parameter Optimization

an estimated latency peak below the user-defined threshold exists, only a subset of the operators on the host with
the smallest estimated latency peak is moved.

5 Online Parameter Optimization

The configuration of a threshold-based scaling strategy is very difficult for an inexperienced user, as he typically
has a limited understanding of the system and the influence of the possible parameter settings on system per-
formance. Therefore, we introduce an online parameter optimization approach, which chooses these parameter
settings automatically based on current workload characteristics.

Online parameter optimization adds two new components to the existing elastic scaling data stream process-
ing engine (see Figure 4): a parameter optimization component and an online profiler. We identified a set of six
major parameters for our system, such as utilization thresholds and the bin packing method used, that primarily
influence the scaling behaviour of the system and describe the parameter configuration of the scaling strategy.
For each parameter, we determine a reasonable domain. In total, 720,000 parameter configurations exist [10].

Our optimization component automatically discovers a good parameter configuration based on a short-term
utilization history of the running system. In this approach we use a cost function [10], that models the influ-
ence of these parameters on the scaling behaviour. Threshold-based scaling deterministically derives a scaling
decision for a given operator assignment of operator instances, current utilization values and a setting of the
mentioned parameters. For the cost function, we input a time series of utilization values and assignments and
get as a result a set of scaling decisions for the given parameter settings. From these scaling decisions, we can
determine both the amount of resources used and the latency peaks created by the scaling decisions.

We determine possible parameter configurations using an improved random search algorithm [17] and iden-
tify a configuration with a good trade-off between resources used and latency based on the short term utilization
history. Finally, we compare these results with the results of the current parameter configuration of the system
and adapt the parameters, if a configuration with less host use and a less or equal number of moved operators
was found.

The previously mentioned online profiler determines the frequency of triggering the parameter optimization.
It monitors changes of the workload pattern based on the overall CPU load using an adaptive window [2]. The
system periodically adds a new value to the window. If this new value is similar to the existing values, it is simply
appended at the head of the window. If a significant change is detected, values from the tail are deleted until all
values in the window are similar again. Parameter optimization is triggered each time a change is detected. The

77

Financial Day1 Financial Day2 Financial Day3 Twitter Week1 Twitter Week2

Twitter Week3 Energy Week1 Energy Week2 Energy Week3
0

1000

2000

0

1000

2000

95th 96th 97th 98th 99th

95th 96th 97th 98th 99th 95th 96th 97th 98th 99th 95th 96th 97th 98th 99th 95th 96th 97th 98th 99th
Latency Percentile

M
ea

su
re

d
La

te
nc

y
(m

s)

CpuLoad Latency StateSize

Figure 5: Latency Results for Different Operator Selection Strategies

length of the window also specifies the length of the short-term history of current load characteristics to use for
the online parameter optimization. This approach allows adaptively identifying a good parameter setting for the
system.

6 Evaluation

We implemented both latency-aware elastic scaling and online parameter optimization as extensions of FUGU.
During an evaluation with three real-world scenarios, we tried to answer two major questions:

1. Does latency-aware elastic scaling improve latency compared to other operator selection strategies?

2. Does online parameter optimization provide a good trade-off between system utilization and query pro-
cessing latency, thus relieving the user of the burden of manually configuring the parameters?

In the evaluation we use a private, shared cloud environment with one master node and up to twelve workers.
We run three different real-world scenarios [10]: a scenario with financial data, one with Twitter messages, and
a third with smart meter measurements. For each case we use three different traces, which make up in total nine
workloads. Each experiment lasts for 90 minutes, where end to end latency and host utilization are measured
roughly every five seconds. For a single measurement point, we use the average utilization of all hosts and
average latency of all queries to quantify the utilization of the system and the quality of service, respectively.

6.1 Latency-aware Elastic Scaling

We compare our latency-aware operator selection strategy with two alternative operator selection strategies [8]:
CPULoad and StateSize. The CPULoad strategy selects operators to move in a way that minimize the total CPU
load moved. In contrast, the StateSize strategy minimizes the total state size moved, when moving operators
between hosts. For each strategy we evaluated six different thresholds and average the results to avoid any
influence of the chosen threshold configurations on the results. We present the resulting latency in Figure 5 and
the measured utilization values in Figure 6.

For the latency results we show the 95th, 96th, 97th, 98th, and 99th percentiles of all measurements. The
measured results for the 95th, 96th and 97th percentile for the three strategies differ only very marginally, which

78

Financial Day1 Financial Day2 Financial Day3 Twitter Week1 Twitter Week2

Twitter Week3 Energy Week1 Energy Week2 Energy Week3

0.25

0.50

0.75

0.25

0.50

0.75

Latency State Size CPU Load

Latency State Size CPU Load Latency State Size CPU Load Latency State Size CPU Load Latency State Size CPU Load
Selection Strategy

U
til

iz
at

io
n

CPU Load Latency State Size

Figure 6: Utilization Results for Different Operator Selection Strategies

Financial Day1 Financial Day2 Financial Day3 Twitter Week1 Twitter Week2

Twitter Week3 Energy Week1 Energy Week2 Energy Week3

0

1000

2000

3000

0

1000

2000

3000

0.2 0.3 0.4 0.5 0.6 0.7

0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.3 0.4 0.5 0.6 0.7
Average Utilization(%)

La
te

nc
y(

m
s)

Manual Optimized

Figure 7: Comparison of Online Parameter Optimization and Manually Tuned Thresholds

demonstrates that the operator selection strategy used influences only the measured latency peaks. The latency-
aware operator selection we presented outperforms the two other strategies in seven out of nine scenarios. On
average, over all nine scenarios, the latency-aware selection strategy has a 18% and 19% lower 98th percentile
latency than the CPULoad and StateSize strategies, respectively. For the 99th percentile our strategy’s latency is
16% and 22% lower than for the CPULoad or StateSize strategies.

Figure 6 shows a comparison of the utilization results, where we present a comparison of the average uti-
lization for the three different strategies using a boxplot. The operator selection strategy used has only a small
influence on the utilization achieved. The latency-aware strategy has only a two percent point smaller utilization
than the CPULoad or the StateSize strategy.

6.2 Online Parameter Optimization

As a baseline for online parameter optimization, we manually tuned the thresholds. We evaluated 16 different
threshold configurations and compared the results achieved for our parameter optimization over three different
runs. We show the average node utilization and the 98th percentile of the averaged latency in Figure 7.

The results show a significant variance in both the average utilization and the latency for different config-
urations: the minimal and maximal utilization differ by 20 percentage points. From the 16 measurements, we

79

extract the average to estimate the results that an inexperienced user might achieve. Online parameter optimiza-
tion shows a five percentage point better utilization with only a slight increase of the 98th percentile latency (231
ms) averaged over all scenarios.

Subsequently, we selected the three best configurations per workload and compared them to the configuration
derived by online parameter optimization. Online parameter optimization shows comparable utilization results
(0.02% worse) and again only a small increase of the 98th percentile latency (330 ms).

From these results we conclude that our online parameter optimization provides a good trade-off between
system utilization and query processing latency. It also removes the burden of manually choosing the thresholds
from the user.

7 Summary

Elastic scaling allows a data stream processing system to react to unexpected load spikes and reduce the amount
of idling resources in the system. Although several authors proposed different approaches for elastic scaling
of a data stream processing system, these systems require a manual tuning of the thresholds used, which is an
error-prone task and requires detailed knowledge about the workload.

In this paper we introduce a model to estimate the latency peak created by a scaling decision and present
an approach to minimize that peak accordingly. In addition, we propose an online parameter optimization
approach, which automatically adjusts the scaling strategy of an elastic scaling data stream processing system.
Our system minimizes the number of hosts used and at the same time keeps the number of latency peaks low.
Both approaches have been evaluated in the context of several real-world use cases and have demonstrated their
applicability for such use cases.

References
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin,

E. Ryvkina et al., “The Design of the Borealis Stream Processing Engine,” in CIDR ’05: Proceedings of the Second
Biennial Conference on Innovative Data Systems Research, 2005, pp. 277–289.

[2] A. Bifet and R. Gavaldà, “Learning from Time-Changing Data with Adaptive Windowing,” in SDM 2007: Proceed-
ings of the Seventh SIAM International Conference on Data Mining, 2007, pp. 443–448.

[3] E. G. Coffman Jr, M. R. Garey, and D. S. Johnson, “Approximation Algorithms for Bin Packing: A Survey,” in
Approximation algorithms for NP-hard problems. PWS Publishing Co., 1996, pp. 46–93.

[4] M. Ead, H. Herodotou, A. Aboulnaga, and S. Babu, “PStorM: Profile Storage and Matching for Feedback-Based
Tuning of MapReduce Jobs,” in EDBT ’14: Proceedings of the 17th International Conference on Extending Database
Technology, 2014, pp. 1–12.

[5] R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch, “Integrating Scale Out and Fault Tolerance in
Stream Processing Using Operator State Management,” in SIGMOD ’13: Proceedings of the SIGMOD International
Conference on Management of Data. ACM, 2013, pp. 725–736.

[6] H. Ghanbari, B. Simmons, M. Litoiu, and G. Iszlai, “Exploring Alternative Approaches to Implement an Elasticity
Policy,” in CLOUD ’11: Proceedings of the IEEE International Conference on Cloud Computing. IEEE, 2011, pp.
716–723.

[7] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and P. Valduriez, “StreamCloud: An Elastic and
Scalable Data Streaming System,” IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 23, no. 12,
pp. 2351–2365, 2012.

[8] T. Heinze, Z. Jerzak, G. Hackenbroich, and C. Fetzer, “Latency-aware Elastic Scaling for Distributed Data Stream
Processing Systems,” in DEBS ’14: Proceedings of the 8th ACM International Conference on Distributed Event-Based
Systems. ACM, 2014, pp. 13–22.

[9] T. Heinze, V. Pappalardo, Z. Jerzak, and C. Fetzer, “Auto-scaling Techniques for Elastic Data Stream Processing,” in

80

ICDEW ’14: Workshops Proceedings of the 30th International Conference on Data Engineering Workshops. IEEE,
2014, pp. 296–302.

[10] T. Heinze, L. Roediger, A. Meister, Y. Ji, Z. Jerzak, and C. Fetzer, “Online Parameter Optimization for Elastic Data
Stream Processing,” in SoCC ’15: Proceedings of the ACM Symposium on Cloud Computing 2015. ACM, 2015, pp.
276–287.

[11] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in Cloud Computing: What It Is, and What It Is Not,” in ICAC
’13: Proceedings of the 10th International Conference on Autonomic Computing, 2013, pp. 23–27.

[12] H. Herodotou and S. Babu, “Profiling, What-if Analysis, and Cost-based Optimization of MapReduce Programs,”
Proceedings of the VLDB Endowment, vol. 4, no. 11, pp. 1111–1122, 2011.

[13] T. Lorido-Botrán, J. Miguel-Alonso, and J. A. Lozano, “Auto-scaling Techniques for Elastic Applications in Cloud
Environments,” Department of Computer Architecture and Technology, University of Basque Country, Tech. Rep.
EHU-KAT-IK-09, vol. 12, 2012.

[14] S. Martello and P. Toth, “Algorithms for Knapsack Problems,” Surveys in Combinatorial Optimization, vol. 31, pp.
213–258, 1987.

[15] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J. Franklin, “Flux: An Adaptive Partitioning Operator
for Continuous Query Systems,” in ICDE ’03: Proceedings of the 19th IEEE International Conference on Data
Engineering. IEEE, 2003, pp. 25–36.

[16] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: Elastic Resource Scaling for Multi-tenant Cloud Systems,”
in SoCC ’11: Proceedings of the second ACM Annual Symposium on Cloud Computing. ACM, 2011, pp. 1–14.

[17] T. Ye and S. Kalyanaraman, “A Recursive Random Search Algorithm for Large-scale Network Parameter Configura-
tion,” in SIGMETRICS ’03: Proceedings of the 2003 ACM SIGMETRICS international conference on Measurement
and modeling of computer systems. ACM, 2003, pp. 196–205.

81

Exploiting Sharing Opportunities for
Real-time Complex Event Analytics

Elke A. Rundensteiner1, Olga Poppe1, Chuan Lei2, Medhabi Ray3, Lei Cao4, Yingmei Qi5,
Mo Liu6, and Di Wang7

1Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609
2NEC Labs America, 10080 N Wolfe Rd, Cupertino, CA 95014

3Microsoft Corporation, 205 108th Ave. NE, Bellevue, WA 98004
4IBM T.J.Watson Research Center, 1101 Route 134 Kitchawan Rd, Yorktown Heights, NY 10598

5Google, 601 N 34th St, Seattle, WA 98103
6Sybase Corporation, 1 Sybase Drive Dublin, CA 94568

7Facebook, 1730 Minor Ave, Seattle, WA 98101
{rundenst,opoppe}@cs.wpi.edu, chuan@nec-labs.com, meray@microsoft.com, caolei@us.ibm.com,

ymqi@google.com, mo.liu@sybase.com, wangdi@fb.com

Abstract

Complex event analytics systems continuously evaluate massive workloads of pattern queries on
high volume event streams to detect and extract complex events of interest to the application. Such
time-critical stream-based applications range from real-time fraud detection to personalized health mon-
itoring. Achieving near real-time system responsiveness when processing these workloads composed of
complex event pattern queries is their main challenge. In this article, we first review several unique opti-
mization opportunities that we have identified for complex event analytics. We then introduce a family of
optimization strategies that consider event correlation over time to maximally leverage sharing opportu-
nities in event pattern detection and aggregation. Lastly, we describe the event-stream transaction model
we designed to ensure high performance shared pattern processing on modern multi-core architectures.

1 Introduction

Many streaming systems from sensor networks to financial transaction processing generate high-volume, high-
velocity event streams. These events have many dimensions (such as time, location, dollar amount). Each
dimension may be hierarchical in nature (such as time measured in years, months, days and so on). In many
monitoring applications, it is imperative that a huge workload of expressive event-pattern queries analyze these
event streams to detect complex event patterns, aggregate trends and derive actionable insights in near real time.

Motivating Example. Consider an evacuation system where RFID technology is used to track the mass
movement of people and goods during natural disasters. Terabytes of RFID data could be generated by such a
system. Facing this huge volume of data, an emergency management system must detect and aggregate complex

Copyright 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

82

Figure 1: Event pattern queries supporting emergency management at different levels of abstraction [36]

event patterns across multiple dimensions at different granularities in real time. For example, the emergency
personnel may monitor people movement as well as traffic patterns of needed resources (such as medicine, food,
and blankets) at different levels of abstraction (e.g., bus station, Austin, Texas). Consider Figure 1, where during
a hurricane the federal government may monitor people fleeing from Texas to Oklahoma for global resource
distribution planning (query q1); while the local authorities in Dallas may focus on people movement starting
from the Dallas bus station, traveling through the Tulsa bus station, and ending in the Tulsa hospital, to determine
the need for additional means of transportation (query q5).

These event queries tend to contain similar or sometimes even identical sub-patterns. Hence, techniques
that exploit their similarities for optimization can save computational resources and improve the system respon-
siveness. Many event-stream-based applications from online advertising, click-stream analytics, social network
services to financial fraud detection all feature these huge workloads composed of similar event queries. Thus,
performance gains due to leveraging such customized event-optimization technology for shared computations
among such event queries could have a tremendous benefit across this wide range of applications.

Challenges. To design an effective event-analytics infrastructure, we must tackle the following challenges.
Rich Application Semantics. Streaming applications have rich semantics. This semantics involves event-

sequence construction of arbitrary length; event conjunction, disjunction and negation; expressive predicates;
time-, count- or predicate-based windows; event-pattern grouping and aggregation. Therefore, we must develop
efficient processing techniques for a large workload of such expressive event-pattern queries.

Real-time System Responsiveness. We target time-critical applications in which milliseconds can make a
difference in decision making. Thus, event query computations should be shared or even completely eliminated
if we can do so without compromising result quality. These computational savings speed up the decision-making
process, improve resource allocation, reduce environmental pollution and even save human lives. However,
sharing is not always beneficial. Even if two event queries syntactically share a sub-pattern, the actual sets of
matches of these queries may not overlap at runtime [43]. Sharing computations across such event queries may
result in negligible performance gain at the cost of adding significant synchronization overhead. Fortunately,
while the number of identical sub-patterns in a query workload at times may be limited, other hierarchical
relationships among event queries can be exploited for optimization [36].

Correct Event-Stream Execution. Sharing common or similar sub-patterns between several event queries
makes these queries interdependent. Indeed, the shared sub-pattern must be computed before the queries that
share it. An efficient runtime execution infrastructure should process a workload of such interdependent event
queries while leveraging the concurrent execution capabilities of modern multi-core machines. Thus, a concur-
rency control mechanism is needed that ensures correct concurrent stream processing. Furthermore, if we strive
to delay or even skip event-sequence construction while computing event-sequence aggregations, we must assure
that no potential event sequence matches are missed under the premise that aggregation is computed on-the-fly

83

and events are instantly pruned upon their aggregation.
State of the Art. Multi-query optimization is an established technology in relational databases [8, 11, 21].

Unfortunately, these techniques cannot be applied directly to shared event-query processing because streaming
data is continuously under flux. Thus, the data-driven approach of event processing may trigger the pattern
matching process to be spawned in diverse orders based on the arrival of events. The nature of continuous event-
stream-processing systems stands in contrast to the traditional static processing frameworks where all data is
given a priori and execution can be fully orchestrated.

Many complex-event-processing systems do not exploit sharing opportunities across the event-query work-
load [7, 13, 35, 50]. While XML-filtering approaches leverage some sharing opportunities, such as shared
prefix-matching, they disregard other sharing opportunities [14, 15]. While the approaches proposed in [2, 47]
share sub-patterns in the distributed context, they do not provide any guarantee to produce a globally optimal
plan for multiple event queries. Several approaches [12, 38] are devoted to the optimization of multiple event
queries. However, these approaches neglect inter-query event correlations and thus may miss optimization op-
portunities. Existing solutions to processing multiple concurrent event queries over different abstraction levels,
online event pattern aggregation, and general stream transaction models are either missing or limited by having
assumptions that do not hold in our event context.

Key Innovations. In this article, we present an overview of four orthogonal innovations for the optimization
of complex event analytics developed by members at WPI and collaborators. Each of these innovations leverages
shared processing opportunities unique to event analytics. These innovations include:

1) Event-Sequence Pattern Sharing. We analyze the benefit of sharing event-sequence construction consid-
ering both intra- and inter-event pattern correlations over time [43]. We show that the problem of optimizing a
workload of event-sequence patterns to minimize its CPU processing time is equivalent to the NP-hard Minimum
Substring Cover problem [28]. This result then leads us to apply the polynomial-time approximate Local-Ratio
algorithm to our problem with proven acceptable bounds on optimality [28].

2) Hierarchical-Event Pattern Sharing. Event queries, even if not identical, can still be related to each other
in terms of both concept abstractions and pattern refinements. These relations open up unique opportunities for
shared processing of similar event-sequence patterns. This pattern similarity leads us to establish the E-Cube
hierarchy composed of event queries at different levels of abstraction [36]. Our efficient processing strategies
evaluate all event patterns in the workload in a specific order to reuse their intermediate results.

3) Shared Event-Pattern Aggregation. Since all event sequences are discarded once their aggregation is com-
puted, we aggregate event-sequences without constructing them. We achieve such on-the-fly event-sequence
aggregation by dynamically maintaining a prefix counter and instantly discarding events after their aggrega-
tion. Thus, we reduce the event-sequence aggregation costs from polynomial to linear [42]. This optimization
technique is exploited while sharing the aggregation of common sub-patterns in the query workload.

4) Stream Transaction Model. Given concurrent accesses and updates to shared event pattern matches, we
avoid race conditions by designing an appropriate concurrency-control mechanism. To this end, we introduce
our stream transaction model [49]. Since the classical Strict-Two-Phase-Locking algorithm incurs a large syn-
chronization delay due to its rigorous order preservation, we introduce event-centric scheduling methods for
real-time streaming applications to maximize concurrent execution.

Our thorough experimental studies using both synthetic and real data sets reveal that these optimization
techniques achieve several orders of magnitude performance gain compared to state-of-the-art solutions [36,
42, 43, 49]. Furthermore, our technology was tested out successfully in a real-world setting. In particular, we
installed our complex event analytics software in the intensive care units at UMASS Memorial Hospital under
leadership of Dr. Ellison, head of infection control at UMASS. We analyzed the results of a clinical evaluation
of this technology for improving health-care hygiene [16, 17, 49].

Outline. This article is organized as follows. We start with our event-analytics model in Section 2. After-
wards, we present our sharing techniques for sequence patterns in Section 3 and abstraction patterns in Section 4.
Section 5 is devoted to the shared processing of aggregations over event patterns. We propose our stream trans-

84

action model in Section 6. Related work is discussed in Section 7, while Section 6 concludes this article.

2 Event-Analytics Model

Event Data Model. Time is represented by a linearly ordered set of time points (T,≤), where T ⊆ Q+ the
non-negative rational numbers. An event is a message indicating that something of interest happened in the real
world. An event e has an occurrence time e.time ∈ T assigned by the event source. Each event e belongs to a
particular event type E, denoted e.type = E. An event type E is described by a schema that specifies the set of
event attributes and the domains of their values. Events are sent by event producers (e.g., RFID tag readers) to
event consumers (e.g., an emergency management system) on event streams.

Event Pattern Query. Event queries in our event-analytics model consist of clauses similar to other event
query languages, for example, SASE+ [1, 50]. These clauses are the following:

Window (WITHIN clause) specifies the portion of the potentially unbounded input event stream to be processed
by one event-query invocation. Our language supports both fixed-length time or count-based tumbling or sliding
windows [3, 33] and variable-length predicate-based windows [19].

Pattern (PATTERN clause) defines the structure of event occurrences in the input event stream that must match
in order for a complex event to be detected [36, 50]. Let E be an event type, P and P′ be event patterns. Then,
an event pattern is defined by a composition of operators including event occurrence of type E, event-pattern
non-occurrence !P, event-pattern conjunction AND(P, P′) and disjunction OR(P, P′), event sequence of fixed
length S EQ(P, P′), and event pattern of arbitrary length P+.

Predicates (WHERE clause) impose additional constraints on event-pattern matches. These constraints are
boolean expressions composed of arithmetical and comparison operators on event attribute values and constants.

Grouping and Aggregation (GROUPBY and AGG clauses) can be applied to event pattern matches. Event pattern
matches are grouped, for instance, by the attribute values of matched events. Our language supports common
aggregation functions such as count, sum, avg, min and max.

For example, query q1 in Figure 1 counts the number of people (AGG Count) who fled from Texas to Okla-
homa (PATTERN SEQ(TX, OK) WHERE TX.person id = OK.person id) within 48 hours (WITHIN 48 h) per age
group (GROUPBY age-group). Other event queries in Figure 1 behave similarly.

3 Event-Sequence Pattern Sharing

Event Correlations. We target the efficient detection of event-sequence patterns in data streams via shared
concurrent pattern execution [43]. Our solution takes as input a set of pattern queries. It estimates the benefit
of sharing the computation of sub-patterns based on the time-ordering across events and the inter-query event
correlation hidden in the event streams. Sharing an event sub-pattern between multiple queries is not always
beneficial. It may even cause more harm than good by incurring unnecessary concurrency-control overhead.
Based on this observation, we design a lightweight yet effective method for estimating the time-sensitive co-
occurrence properties of event streams to accurately capture the benefit of sharing event patterns. The proposed
method takes the following two types of event correlations into consideration: (1) Intra-query event correlation
estimates the number of event sub-pattern matches per time interval, e.g., the percentage of events of type A
that follow an event of type B. This ratio estimates the number of matches produced by a single event pattern.
(2) Inter-query event correlation estimates the sharing potential across multiple event patterns as the ratio of the
number of shared sub-pattern matches to the total number of matches.

Benefit of Event Pattern Sharing. We analyze the degree of sharing of sub-pattern matches in a sample
time period by tracking the number of matches for a sub-pattern within this time period. This process is period-
ically repeated to provide the up-to-date statistics. Figure 2 shows that the number of matches of a sub-pattern
S P = S EQ(A, B) produced by the two patterns P1 and P2 may vary over time. Consequently, the number of

85

Figure 2: Distribution of event pattern matches over time [43]

Figure 3: Shared plan of event-sequence patterns [43]

pattern matches for S P that can be shared across P1 and P2 also varies over time. This observation leads us to
two insights essential for the sub-pattern sharing task: (1) The crests and troughs of P1 and P2 never align in
this example, even though their average cardinalities over time happen to be similar. Hence, the inter-query cor-
relation between P1 and P2 is low. Thus, sharing this sub-pattern between P1 and P2 may cause more harm than
good due to concurrency control overhead. (2) Even if the cardinalities of the sub-pattern matches happen to be
the same for two patterns over time, the match re-use is still not guaranteed since the sub-patterns may not be
common for these patterns at the event-instance level. Indeed, the benefit of sub-pattern sharing depends on the
occurrences of the other sub-patterns in these patterns. In short, cardinality alone is no reliable indicator since in-
dividual matches may be non-overlapping. Based on these observations, we design a cost model that accurately
estimates the ratio of the cost to compute matches of a shared sub-pattern S P for all its parent patterns to the
cost of producing all matches of the sub-pattern S P for each parent pattern separately as the redundancy-ratio
score. The lower the score, the higher the benefit of sharing this event sub-pattern.

Shared Event Pattern Plan. Leveraging this redundancy ratio scoring model, we can now tackle the prob-
lem of sub-pattern sharing optimization. Namely, we aim to find a subset of sub-patterns such that all queries
in the given workload share the processing of this subset and the redundancy ratio of this subset is minimal
compared to all other possible subsets. We can show that this problem is equivalent to the Minimum Substring
Cover problem [43]. Thus, our optimizer can leverage the polynomial-time approximate Local-Ratio algorithm
for the Minimum Substring Cover problem to produce the set of sub-patterns to share [28]. Once the set of
event sub-patterns is selected, our optimizer iteratively builds up a shared-pattern plan for the workload in a
bottom-up fashion. This shared-pattern plan is a graph in which each node is a (sub-)pattern. For example,
the original patterns S EQ(A, B,C), S EQ(A, B,C,D), and S EQ(A, B, X) are decomposed into the shared sub-
patterns S EQ(A, B), S EQ(B,C), D and X (Figure 3).

4 Hierarchical Event Pattern Sharing

Event-Sequence-Pattern Abstraction Hierarchy. As motivated in Section 1, the number of event-sequence
patterns that have syntactically identical sub-patterns (as assumed in Section 3) may be limited. Thus, we now
explore effective sharing strategies that also consider hierarchical event queries. This hierarchy is essential for
performance optimization in multi-query evaluation since it provides a blueprint for shared online event-query
matching. We differentiate between the concept and the pattern hierarchy [23, 36].

A concept hierarchy (Figure 4) is used to summarize information at different levels of abstraction. Many
dimensions (e.g., time, location, object type) are hierarchical in nature and thus create a concept hierarchy of

86

Figure 4: Concept hierarchy of primitive event types [36]

the corresponding event types. Event concept hierarchies for primitive event types are predefined by system
administrators based on domain knowledge. An event concept hierarchy is a tree with the most-specific event
types as leafs and more-general event types as inner nodes. An event type Ek that is a descendant of an event type
E j is at a finer level of abstraction than E j, denoted by Ek <c E j. The non-existence (existence) of a negative
(positive) event type at a coarser (finer) concept level enforces more constraints as compared to a negative
(positive) event type at a finer (coarser) concept level. In Figure 1, the query q1 is at a coarser concept level than
the query q2 because TX >c D and OK >c T. The query q4 is at a coarser concept level than the query q7 since
the negative type D in q4 is coarser than DBusStation in q7 (D >c DBusStation).

A pattern hierarchy is defined as follows: A query qk can be drilled-down to a finer-level query q j by
inserting additional event types into the pattern of qk, denoted by qk >p q j. For example, q6 is at a finer level
than q3 because q3 enforces the existence of less event types and sequential event relationships than q6 (Figure 1).

An E-Cube hierarchy is a directed acyclic graph where each node is a query qi and each edge corresponds
to a pairwise refinement relationship between two queries in terms of either concept or pattern refinement. Each
directed edge (qi, q j) is labeled with either the label “concept” if qi <c q j, “pattern” if qi <p q j, or both to indicate
the refinement relationship between the queries [25]. Figure 1 shows an example E-Cube hierarchy.

Advanced Event Analytics via Event Pattern Exploration. We now illustrate that a concept or a pattern
can be drilled-down into or rolled-up such that we can navigate from one node (with its respective matches)
to another node in the E-Cube hierarchy by skipping, adding or replacing sub-patterns. For example in Fig-
ure 1, we apply a pattern-drill-down operation on q3 = S EQ(G, A, T) by adding a !D constraint and get q7 =

S EQ(G, !D, A, T). Similarly, we apply a concept-roll-up operation on q2 = S EQ(D,T) by one level from Dallas
to Texas and from Tulsa to Oklahoma and get q1 = S EQ(T X,OK).

Optimal E-Cube Evaluation. This E-Cube hierarchy represents the sharing plan for all hierarchical event-
pattern queries. For each query q in the E-Cube hierarchy, we have a choice between: (1) Computing q in-
dependently from other queries, (2) Conditionally computing q from one of its ancestors or (3) Conditionally
computing q from one of its descendants. Our cost model [24, 36] estimates the cost of each option and as-
signs this cost as a weight on each corresponding directed edge between a pair of queries. Having this directed
weighted graph, our goal is to determine an optimal query-evaluation plan ordering, i.e., an ordering of sub-
patterns with minimal total execution costs. We show that we can reduce this problem to the Minimal Spanning
Tree problem. This reduction allows us to apply the Gabow algorithm [18] to achieve our goal.

5 Shared Event Pattern Aggregation

Online Event Pattern Aggregation. The computation of aggregation over event sequences such as in Figure 1
in our motivating example opens unique opportunities as we illustrate next. We compute an event sequence
count without ever constructing the actual event sequences. Such online event sequence count can be computed
correctly by continuously updating a prefix counter in constant time upon the arrival of each new event such that
a new event, once processed, can be discarded instantly [42].

For example, event sequences matched by the pattern S EQ(A, B,C) are counted in Figure 5. When the
events shown on top arrive, the prefix counter for the patterns shown on the left are updated as follows. When
the event b2 arrives, 3 new sub-sequences (a1, b2), (a2, b2) and (a3, b2) are formed using previously arrived events

87

Figure 5: Prefix counters

Figure 6: Prefix counters for snapshots [42]

a1, a2 and a3. Thus, the total count of event sequences matched by the pattern S EQ(A, B) is now 4, including
the 3 newly formed sequences and a1, b1 that we had found before. We observe that when b2 arrives, we can
obtain the count of the event sequences by adding two counts: (1) The count of the sub-pattern S EQ(A) where
b2 would be appended to the matches of this sub-pattern, and (2) The count of the sub-pattern S EQ(A, B). We
notice that the actual event sequences do not have to be constructed to update the count. Omitting event sequence
construction reduces the aggregation computation costs from polynomial to linear [42].

Other aggregation functions can be supported analogously. For example for sum, we maintain an extra sum
field in each prefix counter on the event type the attribute value of which is to be summed. When an event arrives
and causes an update of a count, its respective sum field will also be updated.

Negation. Negation requires the non-occurrence of events of the negated event types at certain positions
within the event sequences. The arrival of such events can invalidate potential matches. Therefore, when an
event arrives whose occurrence is negated in the query, we simply reset the corresponding prefix counter.

Predicates. Local predicates impose constraints on the attribute values of events, for example, age>20. Such
predicates can filter events before they are aggregated. Equivalence predicates correlate events in a sequence [50].
For example, to monitor people’s movement during an emergency, we require the same value of the person
identifier attribute in all events contributing to one event sequence matched by the queries in Figure 1. Such
predicates partition the event stream into several sub-streams. This partitioning then allows us to compute
aggregation separately for each partition using the above described principles.

Sliding Window. When the window slides, multiple events expire and multiple new events become relevant.
One expired event might invalidate an arbitrary number of event sequences and thus require an update of the
aggregation results. However, the expiration of most events has no affect on the aggregated value. We determine
the minimum subset of events whose expiration could indeed affect the aggregation result in [42].

Aggregation Sharing. Shared aggregation of single events is well-studied [30, 34, 51]. However, shared
aggregation of event sequences poses new challenges such as pushing the aggregation through the sequence-
construction process to save the resources. We could consider the sharing of common sub-sequences between
multiple similar queries (Section 3). To minimize the CPU costs, event queries that have common sub-patterns
are chopped into sub-patterns to aggregate them separately using the highly scalable techniques introduced
above. We then stitch these partial results together to get the final results for the original pattern requests.

88

Figure 7: Lock incompatibility [49]

However, events expire over time. Let #s1 and #s2 be the counts of the sub-patterns s1 and s2 respectively.
When a triggering event of s2 arrives, #s1 might become invalid due to the expiration of some of the matches
aggregated by s1. This situation risks causing erroneous aggregation results. To support event expiration, we
maintain snapshots for each sub-pattern. The idea is the following: For each first event in a sequence, we store
the expiration time point and the number of sequences that start with this event in the snapshot. When a first
event expires, we ignore its respective count, since all the sequences it participates in expire too. For example,
assume the pattern S EQ(A, B,C,D, E, F,G) is chopped into 3 sub-patterns s1 = S EQ(A, B,C), s2 = S EQ(D, E),
and s3 = S EQ(F,G). When the event f1 arrives at time t = 12s, we consider only non-expired counts (they
are highlighted in Figure 6). First, we multiply the count of each match of the sub-pattern S EQ(D, E) with the
counts in its respective snapshot of the sub-pattern S EQ(A, B,C). Second, we sum up the counts for the same
first event across all matches (a2 in our example). Third, we store the resulting counts in the snapshot of the
sub-pattern S EQ(A, B,C,D, E) for future reference.

6 Facilitating Concurrency for Efficient Complex Event Analytics

Stream Transactions. In prior sections we have illustrated various strategies to detect shared sub-patterns and
then to reuse their partial results. To achieve high system responsiveness, we leverage modern multi-threaded
solutions on multi-core architectures instead of forcing all computation to proceed sequentially. Thus, to avoid
race conditions, read and write operations on shared storage (e.g., results of a shared sub-pattern) must be
synchronized. Traditional transaction models should be reexamined since: (1) Events are not static, rather
they continuously arrive on streams. (2) Event queries are standing, they continuously monitor these event
streams [6]. (3) Neither abort nor restart of a transaction at a later time point (used in MVCC [5]) may be
acceptable for externally visible output or actions typical for real-time streaming applications [45, 49].

Towards Event-Stream Transactions. Here we briefly introduce an appropriate notion of transactions in
the context of event streams, which we henceforth refer to as stream transaction. A stream transaction is a
sequence of all system changes that are triggered by a single input event. Two operations are called conflicting
if they are performed on the same data item and at least one of them is a Write. An algorithm for scheduling
operations on a shared data item performed by event queries is then considered to be correct if every schedule
produced by the algorithm processes conflicting operations in order by their application time stamps.

Let us now examine one simple transaction model in this context. Similarly to the classical MVCC [5], the
historic records of each shared data item could be maintained. We then define the low-water-mark as the oldest
time stamp among all the time stamps of Write locks. A Read lock is granted if all Writes earlier than the Read
have completed. A Write lock is granted if it is the oldest Write lock among all Write locks on this data item.
Given this lock-granting strategy, we can relax the lock incompatibility in two ways (Figure 7): (1) A Read lock
does not block acquiring a Write lock since the previous version is read while a new one is created. (2) A Write
lock does not necessarily block a Read lock if earlier versions can be read. This modification allows for faster
responsiveness compared to the sequential Strickt Two Phase Locking (S2PL) [49].

This stream transaction model is generic since it is applicable to the sharing techniques described above.
However, a customized transaction model that considers the semantics of the view-maintenance operations on a
shared common view might be more efficient. Ray et al. [43] introduce a customized stream transaction model

89

for shared views. This model defines the compatibility of read, append, and purge operations on shared views. It
then uses S2PL to schedule transactions composed of such operations. Future work could focus on developing
concurrent processing models that best support each of the different shared analytics optimization scenarios.

7 Related Work

Complex Event Query Processing. Existing event processing systems focus on the specification and optimiza-
tion of automaton-based [1, 13, 50] and query-plan-based [40] execution paradigms. Liu et al. [35] consider
nested event patterns and introduce a top-down iterative approach for processing such queries. However, these
approaches neither address the issue of supporting queries at different concept and pattern hierarchy levels nor
do they develop efficient computation strategies for the shared execution of multiple event queries.

Sharing Multiple Event Queries. Shared event query processing is part of the native architecture of Tele-
graphCQ [9]. Madden et al. [38] proposed an adaptive tuple-level sharing technique. However, routing individ-
ual tuples among operators introduces considerable overhead. Instead, our approach produces a stable sharing
plan and re-optimizes only if there is significant change in statistics [31].

Hong et al. [29] introduce materialization-based optimization techniques into XML-stream query processing.
This approach does not consider windows, event correlations, view maintenance and concurrent query access to
these views. YFilter [14] is limited to prefix-matching. In contrast, our technique shares sub-patterns at arbitrary
positions. Ray et al. [44] propose continuous sliding-view maintenance over event streams for a single query.
Sharing such views among multiple queries is not considered.

Hierarchical Event-Query Sharing. Traditional OLAP technologies focus on static pre-computed and
indexed data sets. They aim to quickly provide answers to analytical queries that are multi-dimensional in
nature [10, 22, 27]. OLAP techniques allow users to navigate the data at different abstraction levels. However,
these solutions either do not support real-time streams [20, 26, 37], or they are set-based instead of sequence-
based [22]. Furthermore, these approaches do not support concept hierarchies. They provide neither result reuse
strategies nor any cost analysis for patterns expressing event sequence and negation.

Shared Event Query Aggregation. The optimization of CEP aggregation is critical for high performance
pattern matching over event streams [1, 13, 40, 50]. However, no specific technique has been proposed to
date to optimize the on-the-fly computations of event-sequence aggregation. Instead, existing approaches apply
aggregation as a post-processing step that takes place after all event sequences have been constructed. Obviously,
this is an inefficient solution. Incremental techniques [30, 34] have been proposed to avoid re-computations
among overlapping sliding windows. Zhang et al. [51] maintain aggregates using multiple levels of temporal
granularity: older data is aggregated using coarser granularity while more recent data is aggregated with fine
detail. However, these approaches do not address our sequence aggregation problem, that is, they compute
aggregation over individual events rather than over event sequences that are continuously detected in real time.

Aggregation is well-supported in static sequence databases [32, 37]. These approaches assume that the data
is statically stored and indexed prior to processing. In contrast, our approach targets dynamic streaming data
where results are produced continuously upon event arrival and events are discarded once they are aggregated.

Range-based aggregation approaches [32, 48] aggregate independent data records within a certain time range.
Some approaches [41, 46] consider aggregation for patterns with recursion. However, these approaches work
with independent individual data records. In contrast to that, our approach aggregates event sequences matched
by expressive event patterns, i.e., interdependent multi-record matches.

Stream Transaction Models. Botan et al. [6] adapt the traditional database transaction model to event
stream processing. That is, a transaction is a sequence of user-defined operations. Events must be processed in
order by their arrival time stamps. Other stream transaction models [4, 39] define a transaction as a sequence
of operations triggered by one or more input events. Events are usually batched and their processing is ordered
by event time stamps. However, these approaches are too restrictive, since they process events in strict order

90

and disallow concurrent operations on the same data item, unlike our proposed Low-Water-Mark scheduler [49].
This strictly ordered processing strategy slows down execution and results in poorer system responsiveness.

8 Conclusion and Future Work

In this article, we have presented an overview of four innovative techniques for scaling shared event analytics,
namely: (1) To effectively share identical sub-patterns, we consider intra- and inter-query correlation, match
distribution over time and match sharing at the event instance level. (2) Since the number of identical sub-
patterns in an event query workload may be limited, we also share computations among hierarchical event
queries. (3) While computing event sequence aggregation, we do not construct the actual event sequences and
thus reduce the computation costs from polynomial to linear. Multiple aggregation event queries share the
aggregation computation of their common sub-patterns. (4) Our stream transaction model guarantees correct
concurrent execution of multiple inter-dependent event queries sharing their intermediate results.

In the future, we will extend our online shared aggregation approach to a broader class of event queries. For
time-critical decision making applications, certain urgent insights are useful only if derived within a strict time
constraint. Thus, we will define different consistency levels and propose prioritized scheduling algorithms to
ensure prompt responsiveness using limited resources. Furthermore, these techniques have been proposed in the
context of a central albeit possibly multi-threaded architecture. The next logical step would be to explore their
effectiveness in context of deploying complex event analytics on an distributed computing platform.

Acknowledgements

Section 4 is the result of a successful collaboration with the researchers from HP Labs, in particular, Chetan
Gupta, Song Wang and Abhay Mehta. The authors also thank Kara Greenfield and Ismail Ari for productive
collaboration. For Section 6, the authors collaborated with UMass Medical School, in particular, Richard T.
Ellison III. We thank Dr. Ellison for his leadership of installation of our event analytics system in the intensive
care units at UMASS Memorial Hospital. This work was supported by the following grants: NSF IIS-III-
1018443, NSF IIS 0917017, NSF CRI (Equipment Grant), HP Lab Innovation Research Grant, UMMS-WPI
CCTS Collaborative Grant, and Turkish National Science Foundation TUBITAK under career award 109E194.

References
[1] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient pattern matching over event streams. In SIGMOD,

pages 147–160. ACM, 2008.
[2] M. Akdere, U. Çetintemel, and N. Tatbul. Plan-based complex event detection across distributed sources. In VLDB,

1(1):66–77, 2008.
[3] A. Arasu, and J. Widom. Resource sharing in continuous sliding-window aggregates. In VLDB, pages 336–347,

2004.
[4] A. Arasu, S. Babu, and J. Widom. The CQL continuous query language: semantic foundations and query execution.

The VLDB Journal, 15(2):121–142, 2006.
[5] P. Bernstein and E. Newcomer. Principles of Transaction Processing: For the Systems Professional. Morgan Kauf-

mann Publishers Inc., 1997.
[6] I. Botan, P. M. Fischer, D. Kossmann, and N. Tatbul. Transactional stream processing. In EDBT, pages 204–215,

2012.
[7] B. Cadonna, J. Gamper, and M. H. Bohlen. Sequenced event set pattern matching. In EDBT, pages 33–44, 2011.
[8] U. Chakravarthy and J. Minker. Multiple query processing in deductive databases using query graphs. In VLDB,

pages 384–391, 1986.

91

[9] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. R.
Madden, F. Reiss, and M. A. Shah. TelegraphCQ: Continuous dataflow processing for an uncertain world. In CIDR,
pages 668–680, 2003.

[10] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. In SIGMOD, 26(1):65–74,
1997.

[11] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim. Optimizing queries with materialized views. In ICDE,
pages 190 – 200, 6-10 Mar 1995.

[12] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous query system for internet databases.
In SIGMOD, pages 379–390, 2000.

[13] A. J. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, and W. M. White. Cayuga: A general purpose event
monitoring system. In CIDR, pages 412–422, 2007.

[14] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer. Path sharing and predicate evaluation for high-
performance XML filtering. ACM TODS, 28(4):467–516, 2003.

[15] Y. Diao, P. Fischer, M. J. Franklin, and R. To. Yfilter: Efficient and scalable filtering of XML documents. In ICDE,
pages 341–342, 2002.

[16] R. Ellison, D. W. Constance M. Barysauskas, Elke A. Rundensteiner, and B. Barton. A prospective controlled trial
of an electronic hand hygiene reminder system. In IDWeek Conference, Advancing Science Improving Care, 2013.
Abstract 314.

[17] R. Ellison, D. W. Constance M. Barysauskas, Elke A. Rundensteiner, and B. Barton. A prospective controlled trial
of an electronic hand hygiene reminder system. Open Forum Infectious Diseases, 2(4):1–8, Dec. 2015.

[18] H. N. Gabow, Z. Galil, T. H. Spencer, and R. E. Tarjan. Efficient algorithms for finding minimum spanning trees in
undirected and directed graphs. Combinatorica, 6(2):109–122, 1986.

[19] T. M. Ghanem, W. G. Aref, and A. K. Elmagarmid. Exploiting predicate-window semantics over data streams. In
SIGMOD, 35(1):3–8, Mar. 2006.

[20] H. Gonzalez, J. Han, and X. Li. Flowcube: Constructuing RFID FlowCubes for multi-dimensional analysis of
commodity flows. In VLDB, pages 834–845, 2006.

[21] J. Grant and J. Minker. On optimizing the evaluation of a set of expressions. Int. J. of Computer & Information
Sciences, pages 179–191, 1982.

[22] A. Gupta, V. Harinarayan, and D. Quass. Aggregate-query processing in data warehousing environments. In VLDB,
pages 358–369, 1995.

[23] C. Gupta, S. Wang, A. Mehta, M. Liu, and E. Rundensteiner. Computing a hierarchical pattern query from another
hierarchical pattern query, Apr. 25 2013. Patent US20130103638 A1.

[24] C. Gupta, S. Wang, A. Mehta, M. Liu, and E. Rundensteiner. Determining an execution ordering, Apr. 5 2016. Patent
US9305058 B2.

[25] C. Gupta, S. Wang, A. Mehta, M. Liu, E. Rundensteiner, and M. Ray. Nested complex sequence pattern queries over
event streams, Mar. 29 2016. Patent US9298773 B2.

[26] J. Han, Y. Chen, G. Dong, J. Pei, B. W. Wah, J. Wang, and Y. D. Cai. Stream Cube: An architecture for multi-
dimensional analysis of data streams. Distributed and Parallel Databases, 18(2):173–197, 2005.

[27] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes efficiently. In SIGMOD, pages 205–216,
1996.

[28] D. Hermelin, D. Rawitz, R. Rizzi, and S. Vialette. The minimum substring cover problem. In Int. Conf. on Approxi-
mation and Online Algorithms, pages 170–183, 2008.

[29] M. Hong, A. J. Demers, J. E. Gehrke, C. Koch, M. Riedewald, and W. M. White. Massively multi-query join
processing in publish/subscribe systems. In SIGMOD, pages 761–772, 2007.

[30] S. Krishnamurthy, C. Wu, and M. J. Franklin. On-the-fly sharing for streamed aggregation. In SIGMOD, pages
623–634, 2006.

[31] C. Lei and E. A. Rundensteiner. Robust distributed stream processing. In ICDE, pages 817–828, 2013.
[32] A. Lerner and D. Shasha. AQuery: Query language for ordered data, optimization techniques, and experiments. In

VLDB, pages 345–356, 2003.
[33] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. No pane, no gain: Efficient evaluation of sliding-window

aggregates over data streams. SIGMOD Rec., 34(1):39–44, Mar. 2005.
[34] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. Semantics and evaluation techniques for window aggregates

92

in data streams. In SIGMOD, pages 311–322, 2005.
[35] M. Liu, E. A. Rundensteiner, D. J. Dougherty, C. Gupta, S. Wang, I. Ari, and A. Mehta. High-performance nested

CEP query processing over event streams. In ICDE, pages 123 – 134, April, 2011.
[36] M. Liu, E. A. Rundensteiner, K. Greenfield, C. Gupta, S. Wang, I. Ari, and A. Mehta. E-Cube: Multi-dimensional

event sequence analysis using hierarchical pattern query sharing. In SIGMOD, pages 889–900, 2011.
[37] E. Lo, B. Kao, W.-S. Ho, S. D. Lee, C. K. Chui, and D. W. Cheung. OLAP on sequence data. In SIGMOD, pages

649–660, 2008.
[38] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Continuously adaptive continuous queries over streams. In

SIGMOD, pages 49–60, 2002.
[39] J. Meehan, N. Tatbul, S. Zdonik, C. Aslantas, U. Cetintemel, J. Du, T. Kraska, S. Madden, D. Maier, A. Pavlo,

M. Stonebraker, K. Tufte, and H. Wang. S-Store: Streaming meets transaction processing. In VLDB, 8(13):2134–
2145, 2015.

[40] Y. Mei and S. Madden. ZStream: A Cost-based query processor for adaptively detecting composite events. In
SIGMOD, pages 193–206, 2009.

[41] I. Motakis and C. Zaniolo. Temporal aggregation in active database rules. In SIGMOD, pages 440–451, 1997.
[42] Y. Qi, L. Cao, M. Ray, and E. A. Rundensteiner. Complex event analytics: Online aggregation of stream sequence

patterns. In SIGMOD, pages 229–240, 2014.
[43] M. Ray, C. Lei, and E. A. Rundensteiner. Scalable pattern sharing on event streams. In SIGMOD, 2016. (To appear).
[44] M. Ray, E. A. Rundensteiner, M. Liu, C. Gupta, S. Wang, and I. Ari. High-performance complex event processing

using continuous sliding views. In EDBT, pages 525–536, 2013.
[45] E. Rundensteiner, D. Wang, and R. Ellison. Active complex event processing or infection control and hygiene

monitoring, Oct. 6 2011. US Patent App. 13/077,401.
[46] R. Sadri, C. Zaniolo, A. Zarkesh, and J. Adibi. Expressing and optimizing sequence queries in database systems.

ACM Trans. Database Syst., 29(2):282–318, June 2004.
[47] N. P. Schultz-Møller, M. Migliavacca, and P. Pietzuch. Distributed complex event processing with query rewriting.

In DEBS, pages 4:1–4:12, 2009.
[48] P. Seshadri, M. Livny, and R. Ramakrishnan. SEQ: Design and implementation of a sequence database system. In

VLDB, pages 99–110, 1996.
[49] D. Wang, E. A. Rundensteiner, and R. T. Ellison, III. Active complex event processing over event streams. In VLDB,

4(10):634–645, July 2011.
[50] E. Wu, Y. Diao, and S. Rizvi. High-performance complex event processing over streams. In SIGMOD, pages 407–

418, 2006.
[51] D. Zhang, D. Gunopulos, V. J. Tsotras, and B. Seeger. Temporal aggregation over data streams using multiple

granularities. In EDBT, pages 646–663, 2002.

93

Handling Shared, Mutable State in Stream Processing
with Correctness Guarantees

Nesime Tatbul1,2, Stan Zdonik3, John Meehan3, Cansu Aslantas3,
Michael Stonebraker2, Kristin Tufte4, Chris Giossi4, Hong Quach4

1Intel Labs 2MIT 3Brown University 4Portland State University
{tatbul,stonebraker}@csail.mit.edu, {sbz,john,cpa}@cs.brown.edu, {tufte,cgiossi,htquach}@pdx.edu

Abstract

S-Store is a next-generation stream processing system that is being developed at Brown, Intel, MIT,
and Portland State University. It is designed to achieve very high throughput, while maintaining a
number of correctness guarantees required to handle shared, mutable state in streaming applications.
This paper explores these correctness criteria and describes how S-Store achieves them, including a new
model of stream processing that provides support for ACID transactions.

1 Introduction

Stream processing has been around for a long time. Over a decade ago, the database community explored the
topic of near-real-time processing by building a number of prototype systems [6, 9, 15]. These systems were
based on a variant of the standard relational operators that were modified to deal with the unbounded nature of
streams.

Additionally, streaming applications require support for storage and historical queries. In our view, the
early systems did not properly address storage-related issues. In particular, they largely ignored the handling of
shared, mutable state. They were missing the guarantees that one would expect of any serious OLTP DBMS.
These correctness guarantees are needed in addition to those that streaming systems typically provide, such as
exactly-once processing (which requires that, upon recovery, the system will not lose or duplicate data).

We believe that it is time to take a look at streaming through the lens of these processing guarantees. In
this paper, we present S-Store, which is designed to address the correctness aspects of streaming applications.
We show that it is possible to support correctness without serious performance degradation. We also show
that the only way to achieve good performance is by tightly integrating storage management with the streaming
infrastructure. Some modern streaming systems require the use of an external storage manager to provide needed
services [2, 3, 22, 27]. As we will show, using external storage comes at a cost.

We begin with describing a motivating use case, and proceed to discuss S-Store’s correctness guarantees,
computational model and implementation to achieve these guarantees, followed by an experimental comparison
with the state of the art.

Copyright 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

94

Figure 1: Multiple Streaming Dataflows Sharing State: A MIMIC-based Example [16, 26]

2 Example Use Case

In this section, we present a selected use case of S-Store, based on a recent demonstration of the BigDAWG
polystore system [16], in which S-Store was used for real-time alert monitoring over streaming patient wave-
forms from an ICU (intensive care unit). This use case illustrates the need for consistently managing state shared
among multiple streaming dataflows.

In a hospital environment, proper tracking of patient medications is critical to avoid overdoses and bad drug
interactions. Studies have estimated that preventable “adverse drug events” (with patient injury) in hospitals to
be between 380,000 and 450,000 per year [20]. We observe that different types of events may trigger medication
administration: an emergency alert, a periodic doctor visit, or a periodic medication administration schedule.
These events all require reading and updating of the list of medication administrations for a patient. In the
MIMIC ICU data set [26], this data is stored in a medication events (MedEvents) table. Thus, separate dataflow
graphs must update a single shared table, which requires transactional consistency to avoid patient injury.

Figure 1 diagrams potential S-Store dataflow graphs that update the MedEvents table. The upper dataflow
represents an emergency alert notification, while the lower dataflow represents periodic doctor visits and medica-
tion administrations. In the emergency alert dataflow, a stored procedure (SP1) reads incoming patient waveform
data (e.g., Pulmonary Arterial Pressure (PAP)), and calculates a windowed average over it. When this average
is elevated, a doctor must be notified and medication may be recommended; however, medication must not be
recommended if the medication has been recently administered. The doctor then either accepts or declines the
recommendation, and the MedEvents table is updated appropriately. In the periodic-visits dataflow, a doctor or
a schedule decides which medication is advisable. Before administering the medication, the caregiver enters the
medication to be administered. The system then checks for potential drug interactions with recent medication
administrations using the MedEvents table, and then updates MedEvents appropriately. This simpler dataflow is
similar in nature to an OLTP transaction.

For ensuring correct semantics, this example requires ordered execution of its dataflows and transactional
(ACID) access to the MedEvents table. More specifically, SP1 must read the MedEvents table before an alert
is sent to the doctor; the MedEvents table needs to remain locked so that other updates – such as from SP4 –
cannot interfere. Thus, SP1, SP2, and SP3 must be part of an ordered dataflow within a single nested transac-
tion. Furthermore, SP1, SP2, SP3 cannot be a single stored procedure due to the human interaction. Note that
this example could be extended with other similar emergency-alert dataflows, as different types of analysis are
needed on different waveform streams, e.g., cardiac anomalies to be detected from ECG-waveform streams.

A similar workload pattern can be found in other domains such as transportation, wherein one or more
shared tables must be read and updated by multiple dataflows, as might be seen in the display of messages on
Variable Message Signs and Adaptive Signal Control. In this case, transactional processing support would be

95

required to avoid inconsistencies, garbled messages, and incorrect signal timing. We note that in most of these
examples, the dataflows are fully automated (i.e., human-in-the-loop is not necessarily a critical requirement as
in the medical setting).

3 Correctness

Transaction-processing systems normally provide ACID (Atomicity, Consistency, Isolation, and Durability) guar-
antees. These guarantees broadly protect against data corruption of two kinds: (i) interference of concurrent
transactions, and (ii) transaction failures. Consistency and Isolation primarily address interference, while Atom-
icity and Durability address failures. It is widely understood that failures can cause data inconsistencies. Thus,
most stream processing engines also cover this case by incorporating failure-recovery facilities. However, it
is less widely acknowledged that any streaming computation that shares mutable data with other computations
(e.g., a separate streaming dataflow graph) must guard against interference from those computations as in stan-
dard OLTP.

In addition to ACID, there are other correctness requirements from stream processing that must be consid-
ered. First, a transaction execution must conform to some logical order specified by the user. The scheduler
should be free to produce a schedule that interleaves transactions in a variety of ways, but the results must be
equivalent to the specified logical order. Secondly, it has been shown that, in streaming systems, failures may
lead to lost or duplicated tuples. It puts a burden on the application to detect and react to such problems appropri-
ately. Thus, streaming systems typically strive to provide exactly-once semantics as part of their fault-tolerance
mechanisms.

For correctly handling hybrid workloads, S-Store provides efficient scheduling and recovery mechanisms
that maintain three complementary correctness guarantees that are needed by both streaming and transactional
processing. In what follows, we discuss these guarantees.

3.1 ACID Guarantees

We regard a transaction as the basic unit of computation. As in conventional OLTP, a transaction T must take a
database from one consistent state to another. In S-Store, the database state consists of streaming data (streams
and windows) in addition to non-streaming data (tables). Accordingly, we make a distinction between two types
of transactions: (i) OLTP transactions that only access tables, and are activated by explicit transaction requests
from a client, and (ii) streaming transactions that access streams and windows as well as tables, and are activated
by the arrival of new data on their input streams. Both types of transactions are subject to the same interference
and failure issues discussed above. Thus, first and foremost, S-Store strives to provide ACID guarantees for
individual OLTP and streaming transactions in the same way traditional OLTP systems do. Furthermore, access
to streams and windows require additional isolation restrictions, in order to ensure that such streaming state is
not publicly available to arbitrary transactions that might endanger the streaming semantics.

3.2 Ordered Execution Guarantees

Stream-based computation requires ordered execution for two primary reasons: (i) streaming data itself has an
inherent order (e.g., timestamps indicating order of occurrence or arrival), and (ii) processing over streaming data
has to follow a number of consecutive steps (e.g., expressed as directed acyclic dataflow graphs as illustrated
in Figure 1). Respecting (i) is important for achieving correct semantics for order-sensitive operations such as
sliding windows. Likewise, respecting (ii) is important for achieving correctness for complex dataflow graphs
as a whole.

Traditional ACID-based models do not provide any order-related guarantees. In fact, transactions can be
executed in any order as long as the result is equivalent to a serial schedule. Therefore, S-Store provides an ad-

96

ditional correctness guarantee that ensures that every transaction schedule meets the following two constraints:
(i) for a given streaming transaction T , atomic batches of an input stream S must be processed in order (a.k.a.,
stream order constraint), and (ii) for a given atomic batch of stream S that is input to a dataflow graph G, trans-
actions that constitute G must be processed in a valid topological order of G (a.k.a., dataflow order constraint).

For coarser-grained isolation, S-Store also allows the user to define nested transactions as part of a dataflow
graph (e.g., see the Emergency Alert Dataflow in Figure 1), which may introduce additional ordering constraints
[23]. S-Store’s scheduler takes all of these constraints into account in order to create correct execution schedules.

3.3 Exactly-once Processing Guarantees

Failures in streaming applications may lead to lost state. Furthermore, recovering from failures typically involves
replicating and replaying streaming state, which, if not applied with care, may lead to redundant executions and
duplicated state. To avoid these problems, streaming systems strive to provide fault tolerance mechanisms
that will ensure “exactly-once” semantics. Note that exactly-once may refer either (i) to external delivery of
streaming results, or (ii) to processing of streams within the system. The former typically implies the latter,
but the latter not necessarily implies the former. In this work, we have so far mainly focused on the latter (i.e.,
exactly-once processing, not delivery), as that is more directly relevant in terms of database state management.

Exactly-once processing is not a concern in traditional OLTP. Any failed transaction that was partially ex-
ecuted is undone (Atomicity), and it is up to the user to reinvoke such a transaction (i.e., the system is not
responsible for loss due to such transactions). On the other hand, any committed transaction that was not per-
manently recorded must be redone by the system (Durability). State duplication is not an issue, since successful
transactions are made durable effectively only once. This approach alone is not sufficient to ensure exactly-
once processing in case of streaming transactions, mainly because of the order and data dependencies among
transaction executions. First, any failed transaction must be explicitly reinvoked to ensure continuity of the exe-
cution without any data loss. Second, it must be ensured that redoing a committed transaction does not lead to
redundant invocations on others that depend on it.

S-Store provides exactly-once processing guarantees for all streaming state kept in the database. This guar-
antee ensures that each atomic batch on a given stream S that is an input to a streaming transaction T is processed
exactly once by T . Note that such a transaction execution, once it commits, will likely modify the database state
(streams, windows, or tables). Thus, even if a failure happens and some transaction executions are undone or
redone during recovery, the database state must be “equivalent” to one that is as if S were processed exactly
once by T .

Note that executing a streaming transaction may have an external side effect other than modifying the
database state (e.g., delivering an output tuple to a sink that is external to S-Store). It is possible that such
a side effect may get executed multiple times during recovery. Thus, our exactly-once processing guarantee
applies only to state that is internal to S-Store. This is similar to other exactly-once processing systems such
as Spark Streaming [28]. Exactly-once delivery might also be important in some application scenarios (e.g.,
dataflow graphs that involve a human-in-the-loop computation as in the medical use case described in Section
2). We plan to investigate this guarantee in more detail as part of our future work.

4 Model Overview

We now describe our model, which allows us to seamlessly mix OLTP transactions and streaming transactions.
The basic computational unit in S-Store is a transaction, and all transactions are pre-declared as stored proce-
dures. A stored procedure is written in both SQL (to interact with tables that store database state) and in Java (to
allow arbitrary processing logic). Streaming transactions are those that take finite batches of tuples from streams
as input and may produce finite batches of tuples as output. As one would expect, all transactions (streaming or

97

(a) Processing of Atomic Batches (b) Nested Transactions

Figure 2: Example Dataflows

not), preserve the standard ACID properties of OLTP database systems.
As mentioned earlier, S-Store manages three kinds of state: (i) streams, (ii) windows, and (iii) tables. S-

Store models a stream as an unbounded sequence of tuples. These tuples arrive in some order and are processed
in chunks (called atomic batches). An atomic batch is a contiguous, non-overlapping subsequence of a stream
in which all tuples in the batch share a common batch-id. A typical example is to group tuples with a common
application timestamp or time-interval into the same batch [9, 28]. We assume that batches over a stream should
be processed in ascending order of their batch-id’s; however the order of tuples within a single batch does not
matter since each batch is always processed as an indivisible atomic unit.

A window over a stream is also a contiguous subsequence of that stream, but different from atomic batches,
windows come with a set of rules for deriving a new window from an old one. Windows are defined in units
of batches (as opposed to time or tuple count), and can slide and tumble much as in previous generations of
streaming systems [11], so, we will not go into detail here. It is important to note that defining windows in batch
units ensures that windows are processed in a deterministic way, avoiding the “evaporating tuples” problem
discussed in previous work [9, 12].

Streams, windows, and tables differ in terms of which transactions are allowed to access them. Tables can
be publicly read or written by any transaction, while windows are private to the transaction in which they are
defined, and streams are private to their “producer” and “consumer” transactions.

Streaming systems typically push data from input to output. This arrangement reduces latency, since there is
no need to poll the inputs to determine if the next input batch is ready. S-Store, like other systems, captures the
notion of the next action to perform through a dataflow graph. In the case of S-Store, the actions are transactions,
making the dataflow graph a DAG with transaction definitions as nodes, and a directed arc from node Ti to node
T j if T j should follow Ti in the processing order. That is to say, when Ti commits, T j should be triggered next.

Figure 2a shows a two-stored-procedure (i.e., SP1 and SP2) dataflow graph. The batch of tuples labeled A is
the input to SP1, all with the same batch-id b1. SP1 begins execution as a transaction with the 3-tuple batch as
input. Suppose that SP1 commits with the batch labeled B as output. The tuples in batch B would be assigned
the batch-id of the inputs that they were derived from (b1), and the process repeats with batch B as input to SP2
and batch C as the output batch for SP2.

Stored procedures that take multiple streams as input or emit multiple streams as output are processed in a
similar way. In this case, a stored procedure begins execution with atomic batches from all of its input streams
with a common batch-id and the same batch-id carries over to any output batches that result from this execution.

For each transaction definition, there could be many transaction executions (TEs). If stream S is the input
to transaction T, a TE is created every time a new batch of tuples arrives on stream S. Windows are created in
TEs. Since they are the principal data structure that reacts to the unbounded nature of a stream, the ith TE for
a transaction T will inherit any window state that is active in the (i − 1)st TE for T. Aside from this exception,

98

windows are private and cannot be shared with TEs for other transactions, since that would break the isolation
requirement for ACID transactions. Similarly, streams can only be shared by the TE’s of their producer and
consumer transactions in a dataflow (e.g., only TE’s of SP1 and SP2 can share the stream that flows between
them in Figure 2a).

We also provide a nested transaction facility that allows the application programmer to build higher-level
transactions out of smaller ones, giving her the ability to create coarser isolation units among transactions, as
illustrated in Figure 2b. In this example, two streaming transactions, SP1 and SP2, in a dataflow graph access
a shared table P. SP1 writes to the table and SP2 reads from it. If another OLTP transaction also writes to P in
a way to interleave between SP1 and SP2, then SP2 may get unexpected results. Creating a nested transaction
with SP1 and SP2 as its children will isolate the behavior of SP1 and SP2 as a group from other transactions
(i.e., other OLTP or streaming). Note that nested transactions also isolate multiple instances of a given streaming
dataflow graph (or subgraph) from one another.

S-Store transactions can be executed in any order as long as this order obeys the ordering constraints imposed
by: (i) the relative order of atomic batches on each input stream, (ii) the topological ordering of the stored
procedures in the dataflow graph, (iii) any additional constraints due to nested transactions. Assuming that
transaction definitions themselves are deterministic, this is the only source of potential non-determinism in S-
Store transaction schedules. For example, for the simple dataflow in Figure 2a, both of the following would
be valid schedules: [T E1(b1); T E1(b2); T E2(b1); T E2(b2)] or [T E1(b1); T E2(b1); T E1(b2); T E2(b2)]. On the
other hand, for the dataflow in Figure 2b, the former schedule would not be allowed due to the nesting.

A more detailed description of our model can be found in a recent publication [23].

5 Implementation

Our S-Store implementation seeks to prove that we can provide all of the correctness guarantees mentioned
above without major loss of performance. Implementation of the mechanisms to provide these guarantees must
be native to the system to minimize overhead.

S-Store is built on top of H-Store [21], a high-throughput main-memory OLTP system, in order to take
advantage of its extremely light-weight transaction mechanism. Thus, like H-Store, S-Store follows a typical
two-layer distributed DBMS architecture (see Figure 3). Transactions are initiated in the partition engine (PE),
which is responsible for managing transaction distribution, scheduling, coordination, and recovery. The PE
manages the use of another layer called the execution engine (EE), which is responsible for the local execution
of SQL queries. As mentioned earlier, transactions are predefined as stored procedures which are composed of
Java and SQL statements. When a stored procedure is invoked with input parameters, a transaction execution
(TE) is instantiated and runs to completion before committing. A client program connects to the PE via a stored-
procedure execution request. If the stored procedure requires SQL processing, then the EE is invoked with those
sub-requests.

While we chose H-Store to serve as our foundation, our architectural extensions and mechanisms could
be implemented on any main-memory OLTP engine, thereby directly inheriting the required ACID guarantees
discussed in Section 3.1. We are able to achieve our desired correctness guarantees due to the implementation
additions described in the following subsections.

5.1 ACID Implementation

In order to maintain the transactional properties inherited from H-Store, we implement our dataflow graph as
a series of stored procedures connected by streams. All streaming state, including both streams and windows,
are implemented as time-varying tables, which are accessed within stored procedures. Thus, it is impossible to
access streaming state in a non-transactional manner.

99

Figure 3: S-Store Architecture

The stored procedures within the dataflow are connected by streams, and activated via partition engine (PE)
triggers. When a transaction commits and places a new batch of tuples into its output stream, any downstream
transactions in the dataflow are immediately scheduled for execution using that output batch as their input.

In addition to PE triggers, S-Store includes execution engine (EE) triggers. These allow SQL statements
to be invoked upon the availability of a new tuple in a stream or the slide of a window. Unlike PE triggers, EE
triggers execute within the same transaction as the insertion that activated them.

5.2 Ordering Implementation

Because S-Store breaks down a dataflow into multiple discrete stored procedures, multiple simultaneous trans-
action requests must be scheduled in such a way that ordering is maintained between stored procedures within a
dataflow, and between dataflow instantiations. S-Store provides such a streaming scheduler.

In single-node S-Store, transactions are scheduled serially, meaning that a batch will be processed to com-
pletion within a dataflow graph before the next batch is considered. This simple scheduling policy ensures that
both stream and dataflow order constraints will always be satisfied for a given dataflow graph. In our ongoing
work, we are extending the streaming scheduler to operate over multiple nodes.

5.3 Exactly-Once Implementation

Within single-node S-Store, our primary concern regarding exactly-once processing lies within internal message
passing via streams, so we provide the guarantee primarily through fault tolerance. We provide two alternative
fault-tolerance mechanisms, both of which guarantee exactly-once processing semantics.

In strong recovery, each transaction execution is logged using H-Store’s command-logging mechanism.
When recovering in this mode, the original execution order of the transactions will be replayed in exactly the
same way as in the log. To ensure the exactly-once processing guarantee, PE triggers are turned off during
recovery; all transactions are replayed from the log, but no transactions will be repeated.

In weak recovery, only “border” transactions (i.e., transactions that begin a dataflow graph) are command-
logged. Upon recovery, these transactions are re-executed, but with PE triggers kept turned-on. The streaming
scheduler will execute the full dataflow graph in a legal order according to ordering and data isolation rules, but
not necessarily in the exact order that they were originally executed before the failure. This alternative recovery
mode improves both run-time and recovery performance, while still providing the ordered execution (via the

100

(a) Leaderboard Maintenance Dataflow (b) Experiment Result

Figure 4: Performance vs. Correctness Guarantees

scheduler) and exactly-once processing guarantees.
For more information about the implementation of S-Store, please refer to our PVLDB paper [23].

6 State-of-the-Art Comparison

When evaluating S-Store’s performance, it is once again important to consider the three guarantees described in
Section 3. In modern state-of-the-art systems, it is challenging to provide all three processing guarantees. More
specifically, OLTP systems are able to process ACID transactions with high performance, but have no concept
of dataflow graphs, and thus no inherent support for ordering or exactly-once processing. In contrast, stream
processing systems are able to provide dataflow ordering and exactly-once processing, but do not support ACID
transactions. Thus, in both cases, achieving all three guarantees with high performance is a major challenge.

To test S-Store’s performance in comparison to current state of the art, we created a simple leaderboard-
maintenance benchmark. This benchmark mimics a singing competition in which users vote for their favorite
contestants, and periodically, the lowest contestant is removed until a winner is selected. As shown in Figure
4a, the benchmark’s dataflow graph is composed of three stored procedures that each access shared table state,
and thus requires data isolation (i.e., a nested transaction) across all three. For the purposes of simplifying
comparison across systems, we considered a batch to be a single vote, and we record our throughput numbers in
terms of “input batches per second.”

The leaderboard-maintenance benchmark requires all three of S-Store’s processing guarantees to be executed
correctly. We first compared S-Store’s performance to its OLTP predecessor, H-Store. As an OLTP system, by
default H-Store only provides the first guarantee, ACID, and thus maintains an impressive throughput (over 5000
input batches per second, as shown in the first row of Figure 4b). However, the results it provides are incorrect;
a wrong candidate may win the contest since votes may be processed in a different order than the one that is
required by the benchmark. For H-Store to provide correct results, the ordering guarantee must also be provided.

We can force H-Store to provide an ordering guarantee across the dataflow graph by insisting that H-Store
process the whole dataflow graph serially. In this case, the client has to manage the order in which the transac-
tions are executed, by waiting for a response from the engine before it can submit the next transaction request
(i.e., submitting requests in a synchronous manner). As one would expect, performance suffers drastically as a
result. H-Store’s throughput plummets to around 200 input batches per second, when ordering constraints are
enforced via synchronous requests.

Both single-node streaming engines (e.g., Esper [3]) and distributed stream processing engines (e.g., Storm
[27]) also struggle to provide all three processing guarantees. In the case of streaming engines, dataflow graphs

101

are core functionality, and the ordering guarantee is provided. Exactly-once processing can also be added to
many systems possibly with some loss in performance (e.g., Storm with Trident [4]). However, ACID transac-
tions are not integrated into streaming systems. Instead, they must use an additional OLTP database to store
and share the mutable state consistently. For our experiments, we used VoltDB [5] (the commercial version of
H-Store) to provide this functionality to Esper and Storm.

Similarly to H-Store, providing all three processing guarantees degrades throughput. To provide both order-
ing and ACID, the streaming systems must submit requests to the OLTP database and wait for the response to
move on. Even with a main-memory OLTP system such as VoltDB, this additional communication takes time
and prevents the stream system from performing meaningful work in the meantime. As shown in Figure 4b, both
Esper and Storm with Trident were only able to manage about 600 input batches per second, when providing
ACID guarantees through VoltDB.

By contrast, S-Store is able to maintain 2200 input batches per second on the same workload, while natively
providing all three processing guarantees. S-Store manages both dataflow graph ordering and consistent mutable
state in the same engine. This combination allows S-Store to handle multiple asynchronous transaction requests
from the client and still preserve the right processing order within the partition engine. Meanwhile, each opera-
tion performed on any state is transactional, guaranteeing that the data is consistent every time it is accessed –
even in presence of failures.

7 Related Work

First-generation streaming systems provided relational-style query processing models and system architectures
for purely streaming workloads [3, 6, 9, 15]. The primary focus was on low-latency processing over push-based,
unbounded, and ordered data arriving at high or unpredictable rates. State management mostly meant efficiently
supporting joins and aggregates over sliding windows, and correctness was only a concern in failure scenarios
[10, 19].

Botan et al. proposed extensions to the traditional database transaction model to enable support for continu-
ous queries over both streaming and stored data sources [13]. While this work considered ACID-style access to
shared data, its focus was limited to correctly ordering individual read and write operations for a single continu-
ous query rather than transaction-level ordering for complex dataflow graphs as in S-Store.

More recently, a new breed of streaming systems has emerged, which commonly aim at providing a MapRedu-
ce-like distributed and fault-tolerant framework for real-time computations over streaming data. Examples in-
clude S4 [25], Storm [27], Twitter Heron [22], Spark Streaming [28], Samza [2], Naiad [24], Flink [1], and
MillWheel [7]. These systems significantly differ in terms of the way they manage persistent state and the
correctness guarantees that they provide, but none of them is capable of handling streaming applications with
shared mutable state with sufficient consistency guarantees as provided by S-Store.

S4, Storm, and Twitter Heron neither support fault-tolerant persistent state nor can guarantee exactly once
processing. Storm when used with Trident can ensure exactly-once semantics, yet with significant degradation
in performance [4]. Likewise, Google MillWheel can persist state with the help of a backend data store (e.g.,
BigTable or Spanner), and can deal with out-of-order data with exactly once processing guarantees using a
low-watermark mechanism [7].

Several recent systems adopt a stateful dataflow model with support for in-memory state management. SEEP
decouples a streaming operators state from its processing logic, thereby making state directly manageable by
the system via a well-defined set of primitive scale-out and fault-tolerance operations [17, 18]. Naiad extends
the MapReduce model with support for structured cycles and streaming based on a timely dataflow model that
uses logical timestamps for coordination [24]. Samza isolates multiple processors by localizing their state and
disallowing them from sharing data, unless data is explicitly written to external storage [2]. Like S-Store, all of
these systems treat state as mutable and explicitly manageable, but since they all focus on analytical and cyclic

102

dataflow graphs, they do not provide inherent support for transactional access to shared state.
There are a number of systems have explicitly been designed for handling hybrid workloads that include

streaming. Spark Streaming extends the Spark batch processing engine with support for discretized streams
(D-Streams) [28]. All state is stored in partitioned, immutable, in-memory data structures called Resilient Dis-
tributed Datasets (RDDs). Spark Streaming provides exactly-once consistency semantics, but is not a good fit
for transactional workloads that require many fine-grained update operations. Microsoft Trill is another hybrid
engine designed for a diverse spectrum of analytical queries with real-time to offline latency requirements [14].
Trill is based on a tempo-relational query model that incrementally processes events in batches organized as
columns. Like Spark Streaming, its focus lies more on OLAP settings with read-mostly state. Last but not least,
the Google Dataflow Model provides a single unified processing model for batch, micro-batch, and streaming
workloads [8]. It generalizes the windowing, triggering, and ordering models found in MillWheel [7] in a way
to enable programmers to make flexible tradeoffs between correctness and performance.

8 Conclusion

In this paper, we have described an approach to stream processing for applications that have shared, mutable state.
These applications require guarantees for correct execution. We discussed ACID guarantees as in OLTP systems.
We also described the idea of exactly-once processing, exactly-once delivery, and transactional workflows that
obey ordering constrains as expressed in a dataflow graph. The paper also describes how we implement these
guarantees on top of the H-Store OLTP main-memory database system.

In the future, we intend to look at extending our single-node prototype to run in a multi-node environment.
This, of course, will preserve the guarantees mentioned above. We will re-examine recovery for our distributed
extensions.

We are also studying how to adapt S-Store to effectively act as a real-time ETL system. Rather than loading
data from flat files, S-Store will accept batches of tuples and install them transactionally in a persistent data store
(either within S-Store or externally). During this process, its stored procedures can perform data cleaning and
alerting. Each batch, possibly from multiple sources, must be processed to completion or not all. Furthermore,
as tuples are being loaded, other transactions should not be allowed to see a partially loaded state. S-Store’s
ability to manage shared state makes it an ideal candidate for real-time ETL.

Acknowledgments. This research was funded in part by the Intel Science and Technology Center for Big Data,
and by the NSF under grants NSF IIS-1111423 and NSF IIS-1110917.

References
[1] Apache Flink. https://flink.apache.org/.
[2] Apache Samza. http://samza.apache.org/.
[3] Esper. http://www.espertech.com/esper/.
[4] Trident Tutorial. https://storm.apache.org/documentation/Trident-tutorial.html.
[5] VoltDB. http://www.voltdb.com/.
[6] D. Abadi et al. Aurora: A New Model and Architecture for Data Stream Management. VLDB Journal, 12(2), 2003.
[7] T. Akidau et al. MillWheel: Fault-Tolerant Stream Processing at Internet Scale. PVLDB, 6(11), 2013.
[8] T. Akidau et al. The Dataflow Model: A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-

Scale, Unbounded, Out-of-Order Data Processing. PVLDB, 8(12), 2015.
[9] A. Arasu et al. STREAM: The Stanford Data Stream Management System. In Data Stream Management: Processing

High-Speed Data Streams, 2004.
[10] M. Balazinska et al. Fault-tolerance in the Borealis Distributed Stream Processing System. ACM TODS, 33(1), 2008.

103

https://flink.apache.org/
http://samza.apache.org/
http://www.espertech.com/esper/
https://storm.apache.org/documentation/Trident-tutorial.html
http://www.voltdb.com/

[11] I. Botan et al. SECRET: A Model for Analysis of the Execution Semantics of Stream Processing Systems. PVLDB,
3(1), 2010.

[12] N. Jain et al. Towards a Streaming SQL Standard. PVLDB, 1(2), 2008.
[13] I. Botan et al. Transactional Stream Processing. In EDBT, 2012.
[14] B. Chandramouli et al. Trill: A High-Performance Incremental Query Processor for Diverse Analytics. PVLDB, 8(4),

2014.
[15] S. Chandrasekaran et al. TelegraphCQ: Continuous Dataflow Processing for an Uncertain World. In CIDR, 2003.
[16] A. Elmore et al. A Demonstration of the BigDAWG Polystore System. PVLDB, 8(12), 2015.
[17] R. C. Fernandez et al. Integrating Scale-out and Fault-tolerance in Stream Processing using Operator State Manage-

ment. In SIGMOD, 2013.
[18] R. C. Fernandez et al. Making State Explicit for Imperative Big Data Processing. In USENIX ATC, 2014.
[19] J.-H. Hwang et al. High-Availability Algorithms for Distributed Stream Processing. In ICDE, 2005.
[20] Institute of Medicine of the National Academies. Preventing Medication Errors .

https://iom.nationalacademies.org//̃media/Files/Report%20Files/2006/Preventing-Medication-Errors-Quality-
Chasm-Series/medicationerrorsnew.pdf.

[21] R. Kallman et al. H-Store: A High-Performance, Distributed Main Memory Transaction Processing System. PVLDB,
1(2), 2008.

[22] S. Kulkarni et al. Twitter Heron: Stream Processing at Scale. In SIGMOD, 2015.
[23] J. Meehan et al. S-Store: Streaming Meets Transaction Processing. PVLDB, 8(13), 2015.
[24] D. G. Murray et al. Naiad: A Timely Dataflow System. In SOSP, 2013.
[25] L. Neumeyer et al. S4: Distributed Stream Computing Platform. In KDCloud, 2010.
[26] PhysioNet. MIMIC II Data Set. https://physionet.org/mimic2/.
[27] A. Toshniwal et al. Storm @Twitter. In SIGMOD, 2014.
[28] M. Zaharia et al. Discretized Streams: Fault-tolerant Streaming Computation at Scale. In SOSP, 2013.

104

https://physionet.org/mimic2/

“The Event Model” for Situation Awareness

Opher Etzion1, Fabiana Fournier2, and Barbara von Halle3

1Information Systems Department, Yezreel Valley College, Israel, opher.etzion@gmail.com
2 IBM Research – Haifa, Haifa University Campus, Haifa 3498825, Israel, fabiana@il.ibm.com

3 Sapiens International Corporation , Barbara.vonHalle@sapiens.com

Abstract

The Event Model (TEM) is a novel computation-independent model targeted at helping non-programmers
to define and manage the logic of event-driven applications. The model design is based on a collection of
building blocks that comprise a set of diagrams and normalized tables to define the event business logic
of an application, a set of principles that define the set of assertions that a correct model should satisfy,
and a glossary to express all the business concepts. The validity of the TEM model created is checked
and guaranteed through a related set of integrity principles, and automatically translated to execution
by the code generator. In this paper we concentrate on the model itself. The concepts and facilities of the
model are demonstrated through an example taken from the Cold Chain Management (CCM) domain.
Preliminary tests in the scope of transport and logistics indicate that the tables and diagrams in TEM
are well accepted and embraced by non-technical people, who stress the ease and friendly manner of
defining the event logic as the main benefit of TEM.

Keywords: Event-driven applications, model driven engineering, computational independent model,
conceptual modeling, real-time business intelligence.

1 Introduction

In this paper we present The Event Model (TEM), a novel way to model, develop, validate, maintain, and
implement event-driven applications. The Event Model follows the Model Driven Engineering approach [1, 3]
and can be classified as a CIM (Computation-Independent Model), providing independence in the physical data
representation and implementation details, omitting details that are obvious to the designer. This model can
be directly translated to an execution model (PSM-Platform-Specific Model in the Model Driven Architecture
terminology) through an intermediate generic representation (PIM-Platform-Independent Model).

TEM is based on a set of well-defined principles and building blocks, and does not require substantial
programming skills, therefore targets non-technical people. In this paper we bring a high overview of TEM
and focus on the main building blocks that constitute a TEM model, that is TEM diagrams and logic tables.
In TEM, the event derivation logic is expressed through a collection of normalized tables. These tables can be
automatically validated and transformed into code. This idea has already been successfully proven in the domain
of business rules by The Decision Model (TDM) [20]. The Decision Model groups the rules into natural logical
groups to create a structure that makes the model relatively simple to understand, communicate, and manage.

Copyright 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

105

We illustrate the model throughout this paper using a scenario from the Cold Chain Management (CCM)
domain. The example employed is a simplified version, yet representative, of a real-word use case in that
domain. A cold chain is defined as a temperature controlled supply chain. One of the major issues in this field
is the transportation of temperature sensitive products through thermal and refrigerated packaging methods and
the logistical planning to protect the quality of these shipments. Examples of cold chain products are fruits and
vegetables, pharmaceuticals, and technology products. The cold chain serves the function of keeping food fresh
for extended periods and eliminating doubts over the quality of the food products. Unfortunately, about 25%
of all food products transported in the cold chain are wasted each year due to breaches in integrity that cause
fluctuations in temperature and product degradation1. In our scenario, John Cool is the quality control officer
at NeverRotten Ltd. He is in charge of setting control policies for the online monitoring of the company’s cold
chain products. John’s task is to detect a potentially dangerous condition of a container before an actual product
quality disqualification takes place, thus remediation actions can be taken, saving time and money. To this end,
John wants to define two main policy rules:

• Alert me when, inside a container, the temperature is in the permitted range constantly increases for the
last 5 minutes.

• Alert me whenever a delay longer than permitted occurs.

We show how TEM can help John Cool to easily create the logic needed to monitor any delays and temperature
changes in a cold chain container to achieve the goals stated above.

2 TEM in a Nutshell

This section provides a high level view of The Event Model. We discuss its origins, design goals, building
blocks, and basic concepts.

2.1 TEM and Concept Computing

TEM follows the paradigm of concept computing [6], according to which all model artifacts are concepts. A
concept is a meaningful term within the user’s domain of discourse. The model consists of concepts and semantic
relationships among concepts. These concepts are based on the user’s cognitive terms, and are independent of
the IT terms or implementation. The vision is to strive for automatic transformation along with model-driven
engineering; this approach contrasts with the current state of practice in which the transformations between the
three levels of models are mostly done manually. The vision is to have a concept-oriented model and transform
it in a mostly automated fashion to create an execution model. Concept computing belongs to the family of
executable specifications, which has been studied in different domains [1]. While the concept computing vision
aims at simplification, the model still needs to be expressive enough to allow this automatic transformation. The
success of such a model in the event-driven domain depends on the level of simplification relative to existing
event-driven models. In the construction of TEM we employed some simplification goals, as discussed below.

2.2 TEM Simplification Goals

After observing and experiencing the relative complexity of event processing tools, we wanted to define sim-
plification goals for the design of TEM so it can used by non-IT experts. In this section we outline these
simplification goals.

1 http://people.hofstra.edu/geotrans/eng/ch5en/appl5en/ch5a5en. html

106

1. Stick to the basics by eliminating technical details. Looking at designs and implementations of event-
driven applications, we observe two types of logic: the application logic, which directly states how derived
events are generated and how the values of their attributes are assigned, and supporting logic, which
is intended to enrich events or query databases as part of the processing. In our CCM example, the
temperature range can be reported as part of an event and is either produced by the sensor or enriched
later by an external database. Alternatively, it may not be part of an event but rather a result of a query
executed during the evaluation of a pattern from either a database or a global variable store. The first
simplification design goal is to view the concept of “temperature range” as a concept that is obvious in
the designer’s terminology and thus eliminate the supporting logic of where its value resides and how it
should be fetched; we move that aspect “behind the scenes”. These details can be inferred automatically
during the code generation phase.

2. Employ top down, goal-oriented design. Many design tools require logical completeness (such as ref-
erential integrity) at all times. This requires building the model in a bottom-up fashion; namely, all the
meta-data elements must be defined (events, attributes, data elements) before using them in the logic
definition. Our second simplification design goal is to support top down design, and allow temporary
inconsistency. We allow work in the “forgive” mode [9], in which some details may be completed at a
later phase. This design goal complements the “stick to the basics” goal, by concentrating on the business
logic first, and completing the data aspects later.

3. Reduce the number of logical artifacts. In a typical event processing application, there may be multiple
logical artifacts, including event processing agents, queries, or processing elements, depending on the
programming model that specifies the derivation logic of a single derived event. This variety arises when
there are multiple ways to create a single derived event. In our CCM example there might be different
circumstances in which a delay is detected. Our design goal is to have a single logic artifact for every
derived event that accumulates all the ways to derive this event. This goal reduces the number of logical
artifacts and bounds it by the number of derived events. It also eases the verifiability of the system, since
possible logical contradictions are resolved by the semantics of this single logical artifact.

4. Use fact types as first class citizens in the model. In many of the conceptual models that are descendants
of the Entity Relationship model [12], terms are modeled as attributes that are subordinates of entities or
relationships. In some cases, it is more intuitive to view these concepts as “fact types” and make them
first class citizens of the model, so the entity or event they are associated with is secondary (and may be
a matter of implementation decisions). This requirement is again consistent with the “stick to the basics”
goal.

2.3 TEM building blocks

TEM is composed of two main building blocks that relate to the model itself and are the main focus of this paper.
These are the diagrams (Section 3) and the logical concepts (Section 4). Additional building blocks of the model
are:

• TEM Glossary: The concept dictionary used for the interpretation of a specific application.

• Integrity principles: The principles that govern the model integrity.

• Code generator: The automatic translator of a model to executable code. The code generator is able to
infer information that is not explicitly stated in the model, according to the stick to the basics principle.

107

3 TEM Diagrams

One way to simplify the model is to apply a top-down methodology that provides a high level logical view and
understanding of the system at hand.

A TEM diagram illustrates the structure of the logic by showing a situation along with the flow direction of
derivations in a top-down manner. At the top of the diagram there is a goal, which is the situation that is required
to be derived. This goal is connected with the raw and derived events that are identified as participants in the
situation derivation. This representation is done in a recursive way until raw events or facts are encountered , as
depicted in Figure 2 for our CCM example.

A TEM diagram includes nine icons that express all the relevant terms (Figure 1).

Situation

Fact

Consumer

Producer

Partition by

When?

Raw event

Detected derived event

Derived event

Figure 1: Product quality deterioration logic EDT

Each block in the diagram (a set of rectangle shapes, separated by connecting lines) represents a specific
piece of logic with a single corresponding Event Derivation Table as explained in Section 4.1. The red rectangles
in the background of each block represent the context for the block. The contexts can be collapsed or expanded.
Dotted lines specify event flows to and from the event-driven system.

Figure 2 depicts the TEM diagram for the Product quality deterioration situation in our CCM example. The
situation to be derived is a potential risk to the product quality, which requires alert notification and possible
intervention. We have one consumer of the situation (Quality control officer, who gets the system alerts) and
two producers: Sensors that emit the Sensor input; and Shipment operations system, which emits Shipment
starts and Shipment planned raw events. The Context part of the Shipment delay derived event is expanded in
the diagram to show a temporal context that is initiated when a shipment starts and ends at the shipment planned
time, incremented by a delay tolerance. The delay tolerance indicates a grace period that is calibrated according
to the specific situation. Sometimes a delay of a minute can be considered a problem, while in other cases, only
a delay of a few days from the planned time is considered a situation that requires an action. We partition the
events according to the Shipment ID domain fact type since we are looking for delays at the level of the shipment
ID. Domain Fact Types serve as abstract fact types to enable segmentation contexts.

For each situation in TEM, there is a corresponding TEM diagram. The diagrams serve as a major design
tool that provides a top down view. All blocks that describe situations or derived events require the definition of
logical concepts.

108

Shipment starts

planned time

delay tolerance
Shipment ID

Quality control officer

Temperature increase trend

temperature <Sensor input>

Product quality deterioration

Temperature increase trend

Shipment delay

Shipment delay

Shipment actual pickup Is Absent

Sensors

Shipment operations system

Figure 2: Temperature increase trend logic EDT

4 TEM Logical Concepts

Logical concepts are descriptions of concepts that are computed by the described application. The Event Model
Logic consists of two logical concept types which are represented as tables.

Event Derivation: A single logical artifact for each derived event. The derived event mentioned in the name
is associated with the table in the sense that the table specifies the conditions for generation of new instances of
this event type.

Computation logic: A logical artifact that specifies the computation of assignments of the values of fact
types (attributes) associated with a derived event. The derived fact type mentioned in the name is associated
with the table in the sense it describes the value assignment for its fact types. Note that if the value of a derived
fact type can be implicitly inferred, then the computation table for this derived fact type can be omitted.

Although the names of concepts in TEM can be determined freely by the system designer, we use some
naming conventions in the logic tables for the sake of clarity. For example, domain fact types as well as event
types start with a capital letter; fact types start with a lowercase letter. We also underline event types in condition
columns that have an Event Derivation Table of their own (hyperlinks), to stress the fact that these events are
themselves derived from another piece of logic, and enabling users to follow paths of inference by clicking these
links.

We describe TEM logic tables in more detail in the following sections.

4.1 TEM Event Derivation Tables

An Event Derivation Table (EDT) is a two-dimensional representation of logic leading to a derived event, based
on events and facts. Thus, an EDT designates the circumstances under which a derived event of interest is

109

reached. In our CCM scenario there are three EDTs shown in Table 1, Table 2, and Table 3 that correspond to
the same names in the TEM diagram.

4.1.1 Event Derivation Tables Structure

The first row in an EDT indicates its name. The EDT name is the derived event name + “Logic”, for example,
Product quality deterioration Logic in Table 1. The table consists of two parts, context and conditions, separated
by a red line. The context part consists of two logical sections. The temporal context, represented by When
expression, When start, and When end columns; and the segmentation context represented by the Partition by
column. For example, Table 2 describes a non-overlapping sliding fixed interval temporal context [10] of 5
minutes’ length and a segmentation context that partitions the events by Container ID domain.

Table 1: Product quality deterioration logic EDT

Row #
When

Expression

When

Start

When

End

Partition by

Shipment ID

1
always same is Detected

2
always same is Detected

Product quality deterioration Logic

Filter on event Pattern Filter on pattern

Temperature

increase trend

Shipment Delay

Table 2: Temperature increase trend logic EDT

1
for every 5

minutes

is

between

lower bound,

upper bound

is Increasing

Temperature increase trend Logic

Row #
When

Expression

When

Start

When End Partition by Filter on event Pattern Filter on pattern

Container ID temperature temperature

same

Shipment planned time +

Shipment actual

Table 3: Shipment delay logic EDT

1
Shipment

starts

planned time +

delay tolerance

is Absentsame

Pattern Filter on

pattern

Shipment ID Shipment actual

pickup

Filter on event

Shipment delay Logic

Row #
When

Expression

When

Start

When End Partition by

4.1.2 Event Derivation Tables Conditions

The conditions part consists of three types of conditions. The conditions are logically applied in the following
order.

110

Filter conditions are expressions evaluated against the content of a single event instance. The role of filter
conditions is to determine whether an event instance satisfies the filtering condition and should participate in the
derivation. For example, the Filter on event column in

Table 2 describes a condition on a fact type temperature, which belongs to the Sensor input event type. The
temperature value must be between predefined bounds in a certain range.

Pattern conditions are expressions on related event types’ instances such as Detected, Absent, Thresholds
over Aggregations, or Fact Type value changes [10]. The role of pattern conditions is to detect the specified rela-
tionships among event instances. For example, in Table 3, the Pattern condition describes an absence detection
of event type Shipment actual pickup, which means that no event instance of that event type is detected within
the specified context.

Filter on pattern conditions are expressions on multiple event occurrences, including comparisons, mem-
berships, and time relationships. The role of the filter on patterns conditions is to filter the pattern result based
on conditions among the different events that participates in this pattern. Following the CCM example, let us
assume the following scenario: we want to identify whether a shipment was picked up more than two hours after
the planned time. We name this derived event Significant shipment delay. In this case, the pattern is Shipment
actual pickup occurs after Shipment planned pickup. The filter on the pattern condition will be expressed as the
difference between shipment planned pickup time and the shipment actual pickup time is greater than two hours
(see Table 4).

Table 4: Example of a filter on pattern conditions

The three types of conditions are optional, meaning they can either appear or not in an EDT, however a

1
always occurs

after

Shipment

planned pickup

is greater

than

planned

time+2

Significant shipment delay Logic

Row #
When

Expres

sion

When

Start

When

End

same

Partition by Filter on

event

Pattern Filter on pattern

Shipment ID Shipment actual pickup occurrence time of

Shipment actual

pickup

The three types of conditions are optional, meaning they can either appear or not in an EDT, however a TEM
model is valid if it contains at least one condition. We also do not restrict the number of conditions per condition
type. For example in Table 2, we can add a new condition to the Pattern which specifies that in addition to
checking whether the temperature value is increasing, we also check that we have at least three Sensor input
events in the same Context.

The EDTs have disjunctive normal form (DNF) semantics. Each row in the table indicates a different set
of circumstances in which the same event can be derived; therefore, the derived event logic is the union of the
rows (logical OR relationship). On the other hand, in each row all conditions in the columns must be satisfied,
therefore the columns satisfy an AND logical relationships. For example, as described in Table 1, the Product
quality deterioration event can be derived when either a Temperature increase trend event is detected or a
Shipment delay event is detected.

TEM connection is a dependency among EDTs when the conclusion, i.e., derived event, of one EDT is
referenced in another EDT. Connections are shown in the TEM tables as underlines or hyperlinks. For example,
Temperature increase trend and Shipment delay events are underlined in Table 1 since they are conclusions of
Temperature increase trend logic and Shipment delay logic EDTs, respectively.

111

4.2 TEM Computation Tables

A derived event, like any event in TEM, is a container that contains facts (attributes) which are instances of
the fact types contained in the derived event’s event type. Part of the derivation is the assignment of values to
these facts. Some of the computed facts are mere copies of values. Thus, according to the simplification goal
of stick to the basics, their computation details may be omitted and their computation assignment is implicit.
A Computation Table is a two-dimensional representation of logic leading to a computed fact type that needs to
be explicitly specified. Let’s assume that the Shipment delay derived event type has two associated fact types:
Shipment ID and Delay message. The value of Shipment ID is computed in an obvious way, namely, by copying
the value of the specific partition argument. The Delay message has to be explicitly computed, as shown in
Table 5. Likewise, Table 6 shows the computation of the two possible alert messages associated with the Product
quality deterioration situation (see explanation below). Note that the “+” sign denotes string concatenation.

Table 5: Delay message computation table

Row #
Row in Event derivation

Table

1
"Shipment " + Shipment ID+ " pickup time is

delayed in " +delay tolerance+ "minutes " 1

delay message Computation

Table 6: Alert message computation table

Row #
Row in Event derivation

Table

1
"the temperature in container" + Container ID +

"constantly increases within the last 5 minutes"
1

2 delay message 2

alert message Computation

4.2.1 Structure of Computation Tables

The first row in a computation table indicates its name, composed of the fact type name + “Computation”. For
example, Table 6 is a computation table that describes the logic to compute the alert message fact type associated
with the Product quality deterioration event type. The second row is the headings row. The third row and on,
include the row number, the expression value of the computed fact type, and a reference to the row number in
the corresponding EDT.

Looking at Product quality deterioration EDT in Table 1, there are two cases in which the Product quality
deterioration event type can be derived. One is Shipment delay and the other is Temperature trend increase.
Each case dictates a different value to the computed fact type alert message. Table 6 contains the two possible
values that can be assigned. The first row refers to the case in which a Temperature increase trend occurred,
since the ”row in event derivation table” Shipment Delay equals 1.

There is only one case in which the Shipment delay event type can be derived as shown in Table 3. In this
case, the alert includes the delay elapsed time as computed in Table 5.

While the logic artifacts may be defined first, the glossary concepts eventually need to be completed at a
later phase, prior to the model’s validation

112

5 Related Work

In this section we briefly survey work related to TEM in several areas: event processing modeling, semantic
modeling of events, and executable specifications.

In the area of event processing modeling, Cugola and Margara provide [5] a comprehensive survey and com-
parison of models, including aspects of the functional model, processing model, deployment model, interaction
model, data model, time model, and rule model. In general, the event processing models contain “program-
ming in the large” modeling, which is typically an event flow model [10] or stream processing model [8]. The
“programming in the small” model is closely related programming models such as stream modeling [15] and
rule based modeling [2]. Some of the modeling languages employ visualization (i.e. of the event flows) [16].
Another branch of event modeling is based on logic programming. Models in this area follow Kowalski’s event
calculus model [14].

The main novelties of TEM relative to existing event models are mainly two. First, it is targeted to non-
technical people. This is enabled by applying a top-down approach that satisfies the simplification goals and
supporting the creation of a specification without providing technical and “obvious” details, such as location of
data-items. Second, TEM provides direct path to automatic implementation. This is a departure from current
event models that are closely related to the implementation scheme.

The area of semantic data models [17] deals with the semantics of data and relationships among data ele-
ments. Most models follow the entity-relationship approach (ER) and its descendent methods (EER). Fidalgo
et al., present a recent work [12] in which entities and relationships are first class citizens and attributes are sec-
ondary. Fact models [18] take business concepts as first class citizens, and data as containers for these facts. Our
model follows the fact modeling approach, which has not been investigated yet in the area of event modeling.

The idea of executable specification was introduced in the early days of software engineering, for example
by Urban et al. [19]. TEM can be considered an instance of this concept.

The Decision Model (TDM) [20] is an instance of a model that has similar goals in a different domain
(decision management). The main difference between TDM and TEM is that TDM models the inference of
computed values of facts as a function of other facts, while TEM models the logic of derivation of events in an
event-driven context-based fashion.

6 Conclusions and Future Work

This paper presents The Event Model (TEM). TEM is a novel way to develop and implement event-driven
applications. The friendly, yet rigorous, representation of the event logic enables the model to be simpler relative
to existing models and accessible to people lacking IT skills. We illustrated the main logic concepts and artifacts
of TEM using an example from the CCM domain. Experiments conducted in the scope of transport and logistics
indicate that the tables and diagrams in TEM are well accepted and embraced by non-technical people, who
stress the ease and friendly manner of defining the event logic as the main benefit of TEM. We believe that
these preliminary tests are a good indicator of TEM’s potential to open a new era for the consumption and
pervasiveness of event-driven applications. In order to prove this statement, further experimentation is required
including different domain areas and more complex scenarios.

The simplification design goals stated at the beginning of this paper have been realized as summarized in
Table 7.

There are several model extensions, which are either progress or planned:

1. Support for current missing functionality, such as spatial patterns and contexts, pattern policies, and tem-
poral correctness guards.

113

Table 7: Realization of simplification design goals

 Simplification goal Realized by

1 Stick to the basics by

eliminating technical details

The derivation and computation logic does not contain any

logic of data fetching. This is either inferred or completed at a

later phase.

Assignments of values to attributes of derived events, whose

assignment is obvious since they are copied from the context

data, can be inferred by the system and does not have to be

explicitly defined as part of the logic.

2 Employ top down, goal

oriented design

The methodology supports top down, goal-oriented design by

making the goal-oriented diagram a starting point.

The logic tables are built in “forgive” mode, enabling reference

to glossary artifacts prior to their definition.

3 Reduce the quantity of logic

artifacts

The normalization principle, according to which there is a

single EDT for each derived event, bounds the number of logic

artifacts.

4 Use fact types as first class

citizens in the model

Fact type is the fundamental basic unit in the model.

2. Support for non-functional requirements: The idea is to extend TEM to model non-functional require-
ments. Note that there have been some studies of high level modeling of non-functional requirements
[4].

3. Extend the model to tangent activities: modeling the process of instrumentation and modeling goals for
optimization based decisions.

4. Extend the model to support artifact based business state-oriented processing [13].

In addition, we are carrying out more work in model validation using constraint satisfaction techniques [7], and
in code generation for various languages.

7 Acknowledgments

Fabiana Fournier has received funding from the European Union’s Seventh Framework Programme FP7/2007-
2013 under grant agreement 619491 (FERARI).

References
[1] Bodenstein C., Lohse F., and Zimmermann A. 2010. Executable Specifications for Model-Based Development of

Automotive Software. SMC 2010, 727-732.
[2] Bragaglia S., Chesani F., Mello P., and Sottara D. 2012. A Rule-Based Calculus and Processing of Complex Events.

RuleML 2012, 151-166.
[3] Brambilla M., Cabot J., and Wimmer M. 2012. Model Driven Software Engineering in Practice. Morgan & Claypool.
[4] Chung L and Leite C.J.P. 209. On Non-Functional Requirements in Software Engineering. Conceptual Modeling:

Foundations and Applications (2009), 363-379.

114

[5] Cugola G., and Margara A. 2012. Processing flows of information: From data stream to complex event processing.
ACM Comput. Surv. (CSUR) 44(3).

[6] Davis M. 2012. Concept Computing: Bringing Activity-Context Aware Work & Play Spaces into the mainstream.
Keynote presentation from the Association for the Advancement of Arti?cial Intelligence 2012 conference (AAAI
12). URL: http://www.slideshare.net/Mills/understanding-concept-computing

[7] Dechter R. 2003. Constraint Processing. Elsevier.
[8] Dindar N, Tatbul N., Miller R.J., Haas L.M., and Botan I. 2013. Modeling the execution semantics of stream process-

ing engines with SECRET. VLDB J. (VLDB) 22(4), 421-446.
[9] Etzion O. 1993. Flexible consistency modes for active databases applications. Inf. Syst. (IS) 18(6), 391-404.

[10] Etzion O. and Niblet P. 2010. Event processing in action. Manning.
[11] Farahbod R., Gervasi V., and Glässer U. 2014. Executable formal specifications of complex distributed systems with

Core ASM. Sci. Comput. Program. (SCP) 79, 23-38.
[12] Fidalgo R., Alves E., España S., Castro, and Pastor J.O. 2013. Metamodeling the Enhanced Entity-Relationship

Model. JIDM 4(3), 406-420.
[13] Heath F., Boaz D., Gupta M., Vaculı́n R., Sun Y., Limonad L., and Hull R. (2013) Barcelona: A Design and Runtime

Environment for Declarative Artifact-Centric BPM. ICSOC 2103, 705-709.
[14] Kowalski R.A. 1991. Logic Programing in Artificial Intelligence. IJCAI (1991), 596-604.
[15] Jacques-Silva G., Kalbarczyk Z., Gedik B., Andrade H., Wu K-L., and Iyer R.K. 2011. Modeling stream processing

applications for dependability evaluation. DSN 2011, 430-441.
[16] Marquardt N., Gross T., Sheelagh M., Carpendale T., and Greenberg S. 2010. Revealing the invisible: visualizing the

location and event flow of distributed physical devices. Tangible and Embedded Interaction, 41-48.
[17] Peckham J. and Maryanski F.J. 1988. Semantic Data Models. ACM Comput. Surv. (CSUR) 20(3), 153-189.
[18] Ross R.G. 2000. What Are Fact Models and Why Do You Need Them (Part 1). Business Rules Journal, 1(5) URL:

http://www.BRCommunity.com/a2000/b008a.html.
[19] Urban S.D., Urban J.E and Dominick W.D. 1985. Utilizing an Executable Specification Language for an Information

System. IEEE Trans. Software Eng. (TSE) 11(7), 598-605.
[20] Von Halle, B., and Goldberg L. 2010. The Decision Model. CRC Press.

115

Towards Adaptive Event Detection Techniques for the
Twitter Social Media Data Stream

Michael Grossniklaus, Marc H. Scholl, and Andreas Weiler
Department of Computer and Information Science

University of Konstanz, Germany
firstname.lastname@uni-konstanz.de

Abstract

Social media data streams are an invaluable source for timely and up-to-date information about current
events. As a consequence, several event detection techniques have been proposed in the literature in
order to tap this information source. However, most of these proposals focus on the information extrac-
tion aspect of the problem and tend to ignore the streaming nature of the input. The work conducted
in our research group therefore intends to address these stream-related challenges, such as detecting
events incrementally, reporting them in (near) real-time, and coping with fluctuations and spikes in the
social media data stream. In this article, we report on the results that we obtained so far and outline our
research agenda for the remainder of this work.

1 Introduction

Twitter currently has 320 million monthly active users who author over 500 million tweets per day that consist of
up to 140 characters each.1 These impressive usage statistics make Twitter the most popular and fastest-growing
microblogging service on the planet. In the domain of social media, microblogging enables users to send short
messages, links, and audiovisual content to a network of followers, as well as to their own public timeline. Due
to their brevity, tweets are an ideal mobile communication medium, which is evidenced by the fact that 80% of
Twitter’s active users are on mobile devices. As a consequence, several proposals have been made to leverage
social media data streams as “social sensors” [15] in order to obtain information about current events as they
unfold. For example, Twitter data has been used to alert people in case of an outbreak of an infectious disease [9],
to quickly respond to natural disasters [15], and to monitor political elections [21].

The problem of detecting events in text-based corpora is not a novel one and has been addressed by research
from the area of Topic Detection and Tracking (TDT) for traditional media such as newspaper archives and
news websites. In these domains, an event is defined as a real-world occurrence that takes place in a certain
geographical location and over a certain time period [3]. In comparison to these information sources, social me-
dia data streams such as Twitter introduce additional challenges. First, tweets are much shorter than traditional
documents and therefore harder to classify. Second, tweets do not undergo an editorial process and can thus

Copyright 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1https://about.twitter.com/company (November 24, 2015)

116

firstname.lastname@uni-konstanz.de
https://about.twitter.com/company

contain a substantial amount of spam, typos, slang, etc. Finally, the rate at which tweets are produced is very
bursty and continually increases as more people adopt Twitter every day.

The techniques that have been proposed for event detection in social media and, in particular, for Twitter
have more or less focused exclusively on the information extraction aspect of the problem. Because of this
research direction, the challenges that are related to the streaming nature of the input data have so far been
largely ignored by these approaches. For example, many techniques use (large) tumbling windows to process
the stream, rather than online or streaming algorithms, and are therefore often unable to report events in (near)
real-time. Furthermore, event detection often depends on a complex set of parameters, such as thresholds that
control what is considered to be an event. Existing approaches typically assume that these parameters can be
calibrated empirically by running the technique on sample data until it produces the desired result. Since the
data in the stream may change both qualitatively and quantitatively over time, we argue that techniques that are
based on fixed parameters are neither realistic nor feasible.

The work that our research group conducts on this topic intends to address this need for streaming and
adaptive event detection techniques for Twitter. Due to this focus, our work is situated in the area of Data
Stream Management Systems (DSMS) research. Since event detection and tracking is a vast field of research
in itself, we concentrate on the specific task of first story detection, i.e., the detection of general (unknown)
events, which has been defined as a subtask of TDT [3]. In this article, we report results that we obtained so
far and outline future research directions. We begin in Section 2 by giving a brief overview over the state of the
art in event detection techniques for Twitter, including our own. Section 3 presents an evaluation platform that
supports the systematic study and comparison of such techniques. In our work, we use this platform in order
to gain a better understanding of how different parameter settings affect the trade-off between processing time
and result quality in existing event detection techniques. In Section 4, we outline how this empirical research
will contribute to building event detection techniques that can adapt to content and volume changes in the social
media data stream. Finally, we give concluding remarks in Section 5.

2 Event Detection Techniques

In recent years, numerous techniques to detect events in social media data streams and, in particular, Twitter have
been proposed. Rather than presenting a comprehensive survey of event detection techniques, we introduce five
examples in this section. The first three examples are existing approaches that we studied in detail in previous
work [18, 19]. The remaining two examples are approaches that we proposed ourselves in an effort to develop
techniques that process their input in a fully streaming and incremental manner. For a more detailed discussion
of the state of the art, we refer the interested reader to one of the existing surveys on this subject. For example,
the survey of Nurwidyantoro and Winarko [14] summarizes 11 techniques to detect disaster, traffic, outbreak,
and news events. The survey of Madani et al. [12] presents 13 techniques that each address one of the four
challenges of health epidemics identification, natural events detection, trending topics detection, and sentiment
analysis. A more general survey with a wide variety of research topics related to sense making in social media
data is presented by Bontcheva and Rout [7]. Finally, Farzindar and Khreich [10] conducted an extensive survey
of techniques that are specifically intended to detect events in the Twitter social media data stream.

EDCoW (Event Detection with Clustering of Wavelet-based Signals) [21] is one of the most-cited event
detection techniques. In the first step, this algorithm applies a time-based tumbling window of size s to the
stream to partition it into non-overlapping segments. For each window instance, it then builds the DF-IDF
signals for each distinct term in the segment. The DF-IDF is similar to the TF-IDF that is commonly used in
information retrieval to measure the importance of a word (term). Since multiple occurrences of the same term
in one document (tweet) are typically associated with the same event, the DF-IDF only counts the number of
documents that contain the term. On each of these signals, a discrete wavelet analysis is performed in order
to build a second signal in which each data point summarizes a sequence of values of length ∆ from the first

117

signal. Trivial terms are filtered out in the next step by checking the corresponding signal auto-correlations
against a threshold γ. A modularity-based graph partitioning technique is then applied to the remaining terms
in order to form events by clustering them. Finally, another threshold ϵ is used to filter out insignificant events.
In the original paper, EDCoW is evaluated on a month’s worth of Twitter data that was gathered in June 2010
by collecting the tweets from the top 1000 Singapore-based users and their friends within two hops. The initial
window size s was set to a whole day.

The WATIS (Wavelet Analysis Topic Inference Summarization) [8] event detection technique is similar to
EDCoW in that it first segments the stream into time-based windows of size s and then builds the DF-IDF signals
for each distinct term. However, before these signals are further analyzed, they are smoothed using an Adaptive
Kolmogorov-Zurbenko (KZA) [22] low-pass filter that calculates a moving average with ikz iterations over n
intervals. Based on these smoothed signals a time-frequency representation is constructed using continuous
wavelet transformation. On this representation two wavelet analyses are performed in order to detect unexpected
shifts in the frequency of a term: the tree map of the continuous wavelet extrema and the local maxima detection.
Finally, Latent Dirichlet Allocation (LDA) [6] with ilda iterations is used to enrich event terms with co-occurring
terms. The technique is evaluated by applying it to a dataset consisting of 13.6 million tweets, which were
gathered over a period of eight days. In this evaluation, the technique was used to process the entire dataset at
once, i.e., the initial window has a size s of 192 hours.

As the previous approaches, enBlogue [4] uses a time-based tumbling window of size s to segment the stream
before processing it.2 For each window, so-called “seed tags” are identified based on their popularity, which is
computed as the relative frequency of a term in a window. Topics are modeled as pairs of tags, which are formed
by measuring the correlation between two documents that contain the tags using the Jaccard coefficient. A topic
is considered to be an emergent event if its current behavior is different from its previous behavior, i.e., if there
is an unexpected shift in its popularity. All topics are then ranked according to their degree of emergence and
the top k topics are reported as events. In the original evaluation, the size s of the initial window is set to one
hour and the result quality of the detected events is assessed based on a user study.

To conclude this section, we present two simple event detection techniques that we developed in previous
work. The goal of both techniques is to reduce the latency with which events can be reported, but each technique
follows a different approach to do so. In contrast to the techniques described above, LLH [20] reduces the
processing required to detect events. It simply calculates a log-likelihood measure for the frequency of all
distinct terms in the current time-based tumbling window (s = 1 hour) against their frequency in the previous
window. For the top N terms ranked according to this ratio, the corresponding top four most co-occurring terms
are computed and the resulting term set is reported as an event. Our second technique, Shifty [17], aims to reduce
latency by using both shorter and sliding windows to segment the stream. It detects events by monitoring the
IDF values of distinct terms in successive sliding windows. For each term in a (tumbling) window of size s = 1
minute, Shifty computes the IDF value and filters out terms with an IDF value above the window average. In
order to calculate the IDF shift for each remaining term from one window to the next, a window with size s1 that
slides with range r1 is built in the next step. Only terms with a shift above the average shift are retained. In the
last step, another sliding window with size s2 that slides with range r2 is built. This window is used to calculate
the total shift value as the sum of all shift values of the sub-windows. Terms with a total shift value greater than
Ω are detected as events and reported together with their top four co-occurring terms.

2In their original paper, Alvanaki et al. [4] state that enBlogue uses sliding windows. However, only the value for the size of the
window is given, while the value for the slide range is never mentioned. Personal communication with one of the authors confirmed that
indeed a tumbling window is used.

118

Niagarino DSMS
Tw

itt
er

R

ep
os

ito
ry

Tweets

E
ve

nt
 D

et
ec

tio
n

To
ol

ki
t

E
va

lu
at

io
n

To
ol

ki
t

Operators
σ μ ƒ ∑ω

SchedulerStream Manager

Event Detection Techniques Performance Measures

Quality Measures

Common Building Blocks

Specific Techniques • Execution Time
• Throughput
• Latency
• Memory Usage

• Precision
• Recall
• F1 Score
• DEDR/CEDR

Figure 1: Overview of the evaluation platform for Twitter event detection techniques.

3 Evaluation Platform

In order to understand how our own approaches compete with the current state of the art, we designed and devel-
oped an evaluation platform for event detection techniques. Figure 1 gives a schematic overview of this platform
and its components. The first component is a tweet repository that we host on our servers, which contains a
randomly sampled 10% sub-stream of the public live stream of Twitter. The repository is continuously updated
with new tweets that we have been gathering since 2012 using the Twitter Streaming API3 with the so-called
“Gardenhose” access level. At the moment, the repository contains about 10 TB of data, which corresponds to
over 50 billion tweets at an average rate of 2.5 million tweets/hour.

The next component of our evaluation platform is a toolkit that can be used to experiment with existing
and new event detection techniques in a controlled environment. In order to obtain reliable performance mea-
surements that can be compared fairly, we propose to realize all studied event detection techniques in a DSMS.
For this purpose, we currently use Niagarino4, a lightweight and extensible DSMS that we develop and main-
tain in our research group. The main purpose of Niagarino is to serve as an easy-to-use research platform for
streaming applications such as the ones presented in this article. Many of its concepts can be traced back to a
series of pioneering data stream management systems, such as Aurora [2], Borealis [1], and STREAM/CQL [5].
In particular, Niagarino is an offshoot of NiagaraST [11], with which it shares the most common ground. The
representation of event detection techniques as query plans is one of the key benefits of our approach. Using
Niagarino’s textual plan description format or the graphical plan builder that we are currently developing, new
techniques can be easily developed by modifying existing plans or by creating new ones. In order to further
simplify this task, our toolkit already provides a number of building blocks that are common to many event
detection techniques, such as operators to tag tweets with their languages, to filter tweets that contain spam, and
to remove terms that are considered noise or stop-words. Finally, additional operators that cannot be assembled
from already existing ones can be added to our toolkit with limited programming overhead due to Niagarino’s
modular architecture.

The last component of our platform is a toolkit to evaluate event detection techniques. By providing this
toolkit, we address two shortcomings of the current state of the art. First, very few authors of existing event
detection techniques have evaluated the performance of their approach in comparison to other techniques. Nev-
ertheless, factors such as throughput, latency, and memory usage are particularly crucial to the feasibility of
an approach in a highly volatile streaming setting such as Twitter. Our toolkit therefore provides a number of
measures that can be used to study and compare these performance characteristics of event detection techniques.
Second, the quality of the results, i.e., the validity of the detected events, is another factor that is paramount to
the usefulness of an approach. While some authors of previous approaches have evaluated the results of their
technique using a manually crafted ground truth or based on a user study, very few have compared their results

3https://dev.twitter.com (November 24, 2015)
4http://www.informatik.uni-konstanz.de/grossniklaus/software/niagarino/ (November 24, 2015)

119

https://dev.twitter.com
http://www.informatik.uni-konstanz.de/grossniklaus/software/niagarino/

ED
C

oW time-based tumbling
window (s)

ω

GROUP BY (aterm),
DF-IDF(TID)

∑

time-based tumbling
window (s)

ω

GROUP BY (aterm),
DF-IDF(TID)

∑

KZ/KZA smoothing
ƒ

continuous wavelet
transformation

ƒ

peak detection
ƒ

fast wavelet
transformation

ƒ

auto/cross
correlation of signals

ƒ

clustering of
correlations with
graph partitioning

ƒ

T(a1, a2,..., aevent)
σ T(a1, a2,..., aevent)

σ

LDA(i, n, m)
ƒ

W
A

TI
S

Sh
ift

y

GROUP BY (aterm),
IDF(TID),

LIMIT ≤ AVG(idf)

∑

time-based sliding
window (s1, r1)

ω

GROUP BY (aterm),
SHIFT(TIDF),

LIMIT ≥ AVG(shift)

∑

time-based sliding
window (s2, r2)

ω

GROUP BY (aterm),
SUM(ashift),
LIMIT ≥ Ω

∑

T(a1, a2,.., SUM(ashift)
σ

GROUP BY (aterm),
DF-IDF(TID)

∑

log-likelihood ratio
(windown-1, windown)

ƒ

TopN(allhratio)
σ

Lo
g-

lik
el

ih
oo

d
R

at
io

Ev
en

t
D

et
ec

tio
n

Te
ch

ni
qu

es

Pr
e-

pr
oc

es
si

ng scan tuples
T1(a1, a2,...), T2,...

lang derivation
Tn(a1, a2,..., alng)

ƒ

Tn(alng) = ‘eng’
σ

terms derivation
Tn(a1, a2,..., aterms)

ƒ

unnest terms
Tn(..., aterm[0]),
Tn+1(..., aterm[1])

μ

Tn(aterm) is
(!stopword &&
!noiseword)

σ

Tn(aRT) = ‘false’
σ En

B
lo

gu
e

seed tags
detection

ƒ

correlation of tags
ƒ

shift detection
ƒ

T(a1, a2,..., aevent)
σ

merging related
tags

ƒ

time-based tumbling
window (s)

ω
time-based tumbling

window (s)

ω
time-based tumbling

window (s)

ω

Figure 2: Niagarino query plans for the preprocessing and the five example event detection techniques.

to competing approaches. One reason for this lack of comparative and systematic evaluation is that crafting a
ground truth manually does not scale to the volume of the Twitter data stream and conducting user studies is
time-consuming and expensive. In our work [18, 19], we have therefore focused on quality measures that can
be applied automatically. For example, we propose to measure precision by matching detected events to a com-
bination of Web search-engine results and knowledge bases such as DBpedia5. We follow a similar approach
to measure recall by crawling the daily headlines of new archives such as Bloomberg and the New York Times.
Based on precision and recall, we are able to calculate the F1 score for a studied technique. It is important to
note that values computed by these measures cannot be used to support any absolute conclusions about a single
technique. However, they can be used to draw relative conclusions by comparing different techniques or multiple
configurations of the same technique.

We have used this platform to conduct an extensive study of the event detection techniques introduced in the
previous section. Figure 2 shows the corresponding Niagarino query plans as well as the preprocessing subplan
that is common to all approaches. As a complete discussion of the results is out of the scope of this article,
we refer the interested reader to our previous work. Weiler et al. [18] presents the evaluation measures that
we defined. In order to demonstrate that these measure are useful, we apply them to both well-known event
detection techniques and baseline approaches. The comparison of the results clearly show that our measures
can discriminate between actual event detection techniques and approaches that, for example, simply select
random or most frequently occurring terms. In Weiler et al. [19], we use these measures to study a number of
event detection techniques in terms of performance and result quality. With respect to result quality (F1 score)
our study confirms that the status of both EDCoW and WATIS as frequently cited event detection techniques
is well-deserved as they detect events more reliably than other techniques. However, this result quality comes
at the price of lower throughput (tweets/second). In particular, WATIS would not be capable of handling the
full 100% stream of Twitter on current server hardware, owing to the expensive LDA operator towards the
end of the query network. In contrast, our own techniques, LLH and Shifty, score very well with respect to
this performance measure. While LLH scores quite low in terms of result quality, Shifty is a close runner-up
behind the more complex event detection techniques. We therefore conclude that Shifty represents an interesting
trade-off between performance and result quality that we will investigate further in the future.

5http://dbpedia.org (November 24, 2015)

120

http://dbpedia.org

4 Future Work

Building on the work presented in this article, we are currently conducting research to address the need for
adaptive event detection techniques for the Twitter social media data stream. In order to do so, we follow two
lines of work.

First, we are studying methods to automatically determine the parameter settings of event detection tech-
niques. As outlined in Section 2, current techniques depend on a number of parameters that directly affect
performance and result quality of an approach. The ability to determine and adjust these parameters automati-
cally is important for several reasons. On the one hand, it is unrealistic to assume that such parameter values can
be determined based on a small sample of the stream during the design of the technique. This assumption has
often been criticized before, for instance by Farzindar and Khreich [10]. On the other hand, the social media data
stream may undergo qualitative and quantitative changes, which require parameter adjustments. Using our im-
plementations of existing techniques that we described in this article, we study the effects of different parameter
settings for each technique on a number of segments of the real-life Twitter data stream. The goal of this initial
empirical study is to develop quality-of-service models for selected techniques that describe the relationship
between performance and result quality. Based on these quality-of-service models, we envision that adaptive
techniques can trade-off result quality for performance in case of changes in the volume of tweets that need to
be processed. In the past, quality-of-service models have been used successfully to control load shedding [16].
Rather than shedding load, we are interested in using such models to shed processing time, i.e., to dynamically
reconfigure techniques to perform, for example, fewer LDA iterations or low-pass filter steps.

Our second line of work researches new forms of content-based stream segmentation for event detection
techniques. All existing techniques use (large) time-based windows to process the unbounded stream of tweets.
In previous and ongoing work [13], we criticized the use of simple time and tuple-based windows in today’s
complex data-stream applications and instead proposed data-driven windows, so-called frames. We are inter-
ested in studying whether frames as a method to segment streams can contribute to better result quality of event
detection techniques. The quality improvements that can be obtained with frames stem from the fact that frames
adapt the segmentation of the stream to the observed data rather than segmenting it into predefined intervals as
windows do. Therefore, in order to use frames in the setting of streaming social media data analysis, the data
that can drive the framing of the stream need to be identified. Since a portion of the Twitter stream contains
GPS coordinates, it could, for example, make sense to use a position grid to segment the stream to track how
(information about) an event spreads geographically.

5 Summary and Conclusion

Since their inception, DSMSs have been used to realize ever more complex stream processing applications,
which often demanded new or extended functionality at the system level. In this article, we focussed on event
detection in social media data streams, a relatively new application domain for DSMSs. Unfortunately, most ex-
isting event detection techniques have been developed without the support of a DSMS, which makes it difficult to
reason about their practical feasibility, in particular with respect to their performance. Therefore, we introduced
some well-known event detection techniques in this article and showed how they can be realized as query plans
in a DSMS. This representation is one of the key benefits of our approach as it greatly simplifies the creation and
modification of event detection techniques. In order to further promote the use of DSMSs in researching such
techniques, we have designed and developed a platform that provides toolkits for both the implementation and
evaluation of existing and novel approaches. Finally, we outlined open research challenges in this area, such as
the need for fully streaming and adaptive event detection techniques. We believe that tackling these challenges
will again require new DSMS concepts as, for example, new methods to deal with changes in data volume or to
segment the stream in a more flexible manner.

121

Acknowledgments

The research presented in this article is funded in part by the Deutsche Forschungsgemeinschaft (DFG), Grant
No. GR 4497/4: “Adaptive and Scalable Event Detection Techniques for Twitter Data Streams”. We would also
like to thank our students Christina Papavasileiou, Harry Schilling, and Wai-Lok Cheung for their contributions
to the implementations of the WATIS, EDCoW, and enBlogue event detection techniques in Niagarino.

References
[1] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Çetintemel, Mitch Cherniack, Jeong-Hyon Hwang,

Wolfgang Lindner, Anurag Maskey, Alex Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stanley B. Zdonik.
The Design of the Borealis Stream Processing Engine. In Proc. Intl. Conf. on Innovative Data Systems Research
(CIDR), pages 277–289, 2005.

[2] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee, Michael Stone-
braker, Nesime Tatbul, and Stand Zdonik. Aurora: A New Model and Architecture for Data Stream Management.
The VLDB Journal, 12(2):120–139, 2003.

[3] James Allan. Topic Detection and Tracking: Event-based Information Organization. Kluwer Academic Publishers,
2002.

[4] Foteini Alvanaki, Sebastian Michel, Krithi Ramamritham, and Gerhard Weikum. See What’s enBlogue: Real-time
Emergent Topic Identification in Social Media. In Proc. Intl. Conf. on Extending Database Technology (EDBT),
pages 336–347, 2012.

[5] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL Continuous Query Language: Semantic Foundations
and Query Execution. The VLDB Journal, 15(2):121–142, 2006.

[6] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet Allocation. J. Mach. Learn. Res., 3:993–1022,
2003.

[7] Kalina Bontcheva and Dominic Rout. Making Sense of Social Media Streams through Semantics: A Survey. Seman-
tic Web, 5(5):373–403, 2014.

[8] Mário Cordeiro. Twitter Event Detection: Combining Wavelet Analysis and Topic Inference Summarization. In
Proc. Doctoral Symposium on Informatics Engineering (DSIE), 2012.

[9] Aron Culotta. Towards Detecting Influenza Epidemics by Analyzing Twitter Messages. In Proc. Workshop on Social
Media Analytics (SOMA), pages 115–122, 2010.

[10] Atefeh Farzindar and Wael Khreich. A Survey of Techniques for Event Detection in Twitter. Computational Intelli-
gence, 31(1):132–164, 2015.

[11] Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadimos, Theodore Johnson, and David Maier. Out-of-Order
Processing: A New Architecture for High-Performance Stream Systems. PVLDB, 1(1):274–288, 2008.

[12] Amina Madani, Omar Boussaid, and Djamel Eddine Zegour. What’s Happening: A Survey of Tweets Event De-
tection. In Proc. Intl. Conf. on Communications, Computation, Networks and Technologies (INNOV), pages 16–22,
2014.

[13] David Maier, Michael Grossniklaus, Sharmadha Moorthy, and Kristin Tufte. Capturing Episodes: May the Frame
Be with You (Invited Paper). In Proc. Intl. Conf. on Distributed Event-Based Systems (DEBS), pages 1–11, 2012.

[14] Arif Nurwidyantoro and Edi Winarko. Event Detection in Social Media: A Survey. In Proc. Intl. Conf. on ICT for
Smart Society (ICISS), pages 1–5, 2013.

[15] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. Earthquake Shakes Twitter Users: Real-time Event Detection
by Social Sensors. In Proc. Intl. Conf. on World Wide Web (WWW), pages 851–860, 2010.

[16] Nesime Tatbul, Ugur Çetintemel, Stanley B. Zdonik, Mitch Cherniack, and Michael Stonebraker. Load Shedding in
a Data Stream Manager. In Proc. Intl. Conf. on Very Large Data Bases (VLDB), pages 309–320, 2003.

[17] Andreas Weiler, Michael Grossniklaus, and Marc H. Scholl. Event Identification and Tracking in Social Media
Streaming Data. In Proc. EDBT Workshop on Multimodal Social Data Management (MSDM), pages 282–287, 2014.

[18] Andreas Weiler, Michael Grossniklaus, and Marc H. Scholl. Evaluation Measures for Event Detection Techniques
on Twitter Data Streams. In Proc. British Intl. Conf. on Databases (BICOD), pages 108–119, 2015.

[19] Andreas Weiler, Michael Grossniklaus, and Marc H. Scholl. Run-time and Task-based Performance of Event De-

122

tection Techniques for Twitter. In Proc. Intl. Conf. on Advanced Information Systems Engineering (CAiSE), pages
35–49, 2015.

[20] Andreas Weiler, Marc H. Scholl, Franz Wanner, and Christian Rohrdantz. Event Identification for Local Areas Using
Social Media Streaming Data. In Proc. Workshop on Databases and Social Networks (DBSocial), pages 1–6, 2013.

[21] Jianshu Weng and Bu-Sung Lee. Event Detection in Twitter. In Proc. Intl. Conf on Weblogs and Social Media
(ICWSM), pages 401–408, 2011.

[22] Wei Yang and Igor G. Zurbenko. Kolmogorov-Zurbenko Filters. Wiley Interdisciplinary Reviews: Computational
Statistics, 2(3):340–351, 2010.

123

124

TCDE
tab.computer.org/tcde/

Join TCDE via Online or Fax

TCDE Mailing List
TCDE will occasionally email

announcements, and other

opportunities available for

members. This mailing list will

be used only for this purpose.

Membership Questions?
Xiaofang Zhou
School of Information Technology and

Electrical Engineering

The University of Queensland

Brisbane, QLD 4072, Australia

zxf@uq.edu.au

The Technical Committee on Data Engineering (TCDE) of the IEEE Computer Society is concerned with the role of
data in the design, development, management and utilization of information systems.

· Data Management Systems and Modern Hardware/Software Platforms

· Data Models, Data Integration, Semantics and Data Quality

· Spatial, Temporal, Graph, Scientific, Statistical and Multimedia Databases

· Data Mining, Data Warehousing, and OLAP

· Big Data, Streams and Clouds

· Information Management, Distribution, Mobility, and the WWW

· Data Security, Privacy and Trust

· Performance, Experiments, and Analysis of Data Systems

The TCDE sponsors the International Conference on Data Engineering (ICDE). It publishes a quarterly newsletter, the

Data Engineering Bulletin. If you are a member of the IEEE Computer Society, you may join the TCDE and receive
copies of the Data Engineering Bulletin without cost. There are approximately 1000 members of the TCDE.

It’s FREE to join!

ONLINE: Follow the instructions

on this page:
www.computer.org/portal/web/tandc/joinatc

TCDE Chair
Kyu-Young Whang
KAIST

371-1 Koo-Sung Dong, Yoo-Sung Ku

Daejeon 305-701, Korea

kywhang@cs.kaist.ac.kr

FAX: Complete your details and

fax this form to +61-7-3365 3248

Name

IEEE Member #

Mailing Address

Country

Email

Phone

Member #

Country

IEEE Computer Society
1730 Massachusetts Ave, NW
Washington, D.C. 20036-1903

Non-profit Org.
U.S. Postage

PAID
Silver Spring, MD

Permit 1398

