Database-Aware Program Optimizations via Static Analysis

Karthik Ramachandra Ravindra Guravannavar
LL.T. Bombay Independent Consultant
karthiksr@cse.iitb.ac.in ravig@acm.org
Abstract

Recent years have seen growing interest in bringing together independently developed techniques in the
areas of optimizing compilers and relational query optimization, to improve performance of database
applications. These approaches cut across the boundaries of general purpose programming languages
and SQL, thereby exploiting many optimization opportunities that lie hidden both from the database
query optimizer and the programming language compiler working in isolation. Such optimizations can
vield significant performance benefits for many applications involving database access. In this article,
we present a set of related optimization techniques that rely on static analysis of programs containing
database calls, and highlight some of the key challenges and opportunities in this area.

1 Introduction

Most database applications are written using a mix of imperative language constructs and SQL. For example,
database applications written in Java can execute SQL queries through interfaces such as JDBC or Hibernate.
Database stored procedures, written using languages such as PL/SQL and T-SQL, contain SQL queries embed-
ded in imperative program code. Such procedures, in addition to SQL, make use of assignment statements,
conditional control transfer (IF-ELSE), looping and calls to subroutines. Further, SQL queries can make calls
to user-defined functions (UDFs). User-defined functions can in turn make use of both imperative language
constructs and SQL.

Typically the imperative program logic is executed outside the database query processor. Queries embedded
in the program are submitted (typically synchronously, and over the network) at runtime, to the query processor.
The query processor explores the space of alternative plans for a given query, chooses the plan with the least
estimated cost and executes it. The query result is then sent back to the application layer for further processing.
A database application would typically have many such interactions with the database while processing a single
user request. Such interactions between the application and the database can lead to many performance issues
that go unnoticed during development time. Traditional optimization techniques are either database centric
(such as query optimization and caching), or application centric (such as optimizations performed by compilers),
and do not optimize the interactions between the application and the database. This is because neither the
programming language compiler nor the database query processor gets a global view of the application. The
language compiler treats calls to the database as black-box function calls. It cannot explore alternative plans for
executing a single query or a set of queries. Similarly, the database system has no knowledge of the context in

Copyright 2014 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

60

Example 1 An opportunity for database aware optimizations

int sum = 0;
stmt = con.prepareStatement(“select count(partkey) from part where p_category="");
while(!categoryList.isEmpty()) {

category = categoryList.removeFirst();

stmt.setInt(1, category);

ResultSet rs = stmt.executeQuery();

int count = rs.getInt(“count”);

sum += count;

which a query is being executed and how the results are processed by the application logic, and has to execute
queries as submitted by the application.

For instance, in database applications, loops with query execution statements such as the Java program
snippet in Example 1 are quite commonly encountered. Such loops result in repeated and synchronous execution
of queries, which is a common cause for performance issues in database applications. This leads to a lot of
latency at the application due to the many network round trips. At the database end, this results in a lot of random
10 and redundant computations. A program compiler or a database query execution engine working independent
of each other cannot reduce the latency or random IO in Example 1. Usually such loops are manually optimized
by rewriting them to use set oriented query execution or asynchronous prefetching of results. Set oriented
execution reduces random disk IO at the database, and also reduces network round trips. The effect of network
and IO latency can be reduced by overlapping requests using asynchronous prefetching.

However, manually performing such transformations is tedious and error prone. It is very difficult to identify
such opportunities in complex programs. These transformations can be automated by performing a combined
analysis of the program along with the queries that it executes. In this paper, we give an overview of the
techniques that we have developed as part of the DBridge project at IIT Bombay. This is joint work with
Mahendra Chavan and S Sudarshan. Our techniques automatically optimize applications by rewriting both the
application code and queries executed by the application together, while preserving equivalence with the original
program. Such transformations can either be implemented as part of a database-aware optimizing compiler or
as a plug-in for any integrated development environment (IDE) providing a visual, source-to-source application
rewrite feature.

The paper is organized as follows. In Sections 2, 3 and 4, we describe various program transformation
techniques, and show how they work together in order to optimize the program in Example 1. In Section 5,
we briefly describe the design of DBridge, a research prototype in which we have implemented the techniques
presented. Related work is briefly discussed in Section 6. In Section 7, we describe challenges and open
problems in this area, and conclude in Section 8.

2 Set-Oriented Query Execution

Loops containing query execution statements, such as the one in Example 1 are often found to be performance
bottlenecks. Such loops suffer poor performance due to the following reasons: (a) they perform multiple round
trips to the database, (b) the database system is required to process one query at a time, as a result of which, it
cannot use efficient set-oriented algorithms (such as hash or merge joins), which would compute answers for all
the queries in one go and (c) per query overheads, such as parameter validation and authorization checks, are
incurred multiple times. Due to these reasons, loops containing query execution statements are often the most
promising targets for program transformations to improve performance.

61

Example 2 Transformed program for Example 1 after loop fission [11]

int sum = 0;
PreparedStatement stmt = con.prepare(‘‘select count(partkey) from part where category=?");
LoopContextTable Ict = new LoopContextTable();
while(!categoryList.isEmpty()) {
LoopContext ctx = Ict.createContext();
category = categoryList.removeFirst();
ctx.setInt(“category”, category);
stmt.setInt(1, category);
stmt.addBatch(ctx);
}
stmt.executeBatch();
for(LoopContext ctx : Ict) {
category = ctx.getInt(“category”);
ResultSet rs = stmt.getResultSet(ctx);
int count = rs.getInt(“count”);
sum += count;

Repeated execution of a query by a loop can often be avoided by rewriting the query into its set-oriented form
and moving it outside the loop. Given a parameterized query g(r), its set-oriented form g, (rs) is a query whose
result contains the result of ¢(r) for every r in the parameter set rs [11]. Using set-oriented forms of queries
avoids loss of performance due to afore-mentioned reasons. However, automating such a loop transformation
requires analyzing the data dependences between statements in the loop body. Query parameters are often
values produced by other statements in the loop, and query results are used by other statements in the loop.
Such statements must be suitably rewritten. Loop transformation for set-oriented query execution is described
in [11, 10], and consists of two key steps: (i) loop distribution (loop fission) to form a canonical query execution
loop, and (ii) replacing the canonical query execution loop with the set-oriented form of the query.

Loop distribution splits a loop into multiple loops, each containing a subset of the statements in the original
loop. It is applied so that query execution statements inside the loop are isolated into separate canonical query
execution loops. A canonical query execution loop is a loop that can be entirely replaced by a single query
execution statement. In [11] a canonical query execution loop is a loop that (a) executes a query ¢(r) for each
record r in set rs, (b) contains no statements other than the query execution statement, and (c) results of the
query ¢(r) are stored along with the record r in rs. A canonical query execution loop containing query ¢(r) is
then replaced with a statement that executes the set-oriented query gp(rs).

The final rewritten program for Example 1 after performing loop fission is shown in Example 2. The first
loop in the transformed program builds a temporary table with all the parameter bindings (using the addBatch
API). Next, a rewritten form of the query is executed (using the executeBatch API) to obtain results for all the
parameter bindings together. Then, the second loop executes statements that depend on the query results. The
scalar aggregate query in Example 1 would be transformed into the following query, where pb is a temporary
table in which the parameter bindings are materialized.

SELECT pb.category, le.cl FROM pbatch pb,
OUTER APPLY (SELECT count(partkey) as cl
FROM part WHERE category=pb.category) le;

The rewritten query uses the OUTER APPLY construct of Microsoft SQL Server but can also be written
using a left outer join combined with the LATERAL construct of SQL:99. Most widely used database systems

62

can decorrelate such a query into a form that uses joins or outer joins [9].

Queries, being side-effect free, can be executed in any order of the parameter bindings. However, the loop
can contain other order-sensitive operations, which must be executed in the same order as in the original program.
The LoopContextTable data structure ensures the following: (i) it preserves the order of execution between the
two loops and (ii) for each iteration of the first loop, it captures the values of all variables updated, and restores
those values in the corresponding iteration of the second loop. The rewritten program not only avoids the
overheads of multiple round-trips, but also enables the database system to employ an efficient algorithm (such
as hash/sort based grouping) to evaluate the result more efficiently. This loop transformation for set-oriented
execution can be applied even when a query is conditionally executed inside an if-then-else statement. Queries
inside multiple levels of nested loops can also be pulled out and replaced with their set-oriented forms. Details
of the transformations can be found in [11, 10].

Statement Reordering: Data dependencies [15] between statements inside the loop play a crucial role in the
loop distribution transformation. Loop distribution cannot be directly applied when there exist loop-carried
flow dependencies (also known as write-read or true dependencies) between statements across the loop split
boundaries. However, in many cases, by introducing additional variables and reordering the statements, it is
possible to eliminate loop-carried dependencies that hinder the transformation. The algorithm for reordering
statements so as to eliminate loop-carried flow dependencies crossing the loop split boundaries can be found
in [10]. The desired reordering is possible if the query execution statement of interest does not belong to a cycle
of true data dependencies. After reordering the statements, the loop fission transformation can be applied.

3 Asynchronous and Batched Asynchronous Query Submission

As described in Section 2, batching can provide significant benefits because it reduces the delay due to multiple
round trips to the database and allows more efficient query processing techniques to be used at the database.
Although batching is very beneficial, it does not overlap client computation with that of the server, as the client
blocks after submitting the batch. Batching also results in a delayed response time, since the initial results from
a loop appear only after the complete execution of the batch. Also, batching may not be applicable altogether
when there is no efficient set-oriented interface for the request invoked, as is the case for many Web services.

As compared to batching, asynchronous prefetching of queries can allow overlap of client computation with
computation at the server; it can also allow initial results to be processed early, instead of waiting for an entire
batch to be processed at the database, which can lead to better response times for initial results. Asynchronous
submission is also applicable if the query executed varies in each iteration of a loop. In this section, we focus on
performing asynchronous prefetching in loops; Section 4 additionally describes a technique to handle procedure
calls and straight line code. Opportunities for asynchronous submission are often not very explicit in code. For
the program given in Example 1, the result of the query, assigned to the variable count, is needed by the statement
that immediately follows the assignment. For the code in its present form there would be no gain in replacing
the blocking query execution call by a non-blocking call, as the execution will have to block immediately after
making a non blocking submission.

However, it is possible to automatically transform the given loop to enable beneficial asynchronous query
submission. The transformations described in the context of batching in Section 2 can be extended to exploit
asynchronous submission, as presented in [S]. As shown in Example 2, the loop in Example 1 is split at the
point of query execution. However, instead of building a parameter batch and executing a set-oriented query, the
program in Example 2 can instead perform asynchronous query submissions as follows.

The first loop of Example 2 invokes the addBatch method in each iteration. In the asynchronous mode,
this addBatch method is modeled as a non blocking function that submits a request onto a queue and returns
immediately (this method could be called submitQuery instead, but we stick to addBatch so that the decision to
perform batching or asynchronous submission can be deferred till runtime). This queue is monitored by a thread

63

pool, and requests are picked up by free threads which execute the query in a synchronous manner. The results
are then placed in a cache keyed by the loop context(ctx). The executeBatch() invocation does nothing in the
case of asynchronous submission and can be omitted. In the second loop of Example 2, the program invokes
getResultSet, which is a blocking function. It first checks the cache if the results are already available, and if
not, blocks till they become available. More details regarding this transformation can be found in [5], and the
design of the asynchronous API is discussed in Section 5. There are further extensions and optimizations to this
technique, and we now discuss one such extension briefly.

Asynchronous Batching: Although asynchronous submission can lead to significant performance gains, it can
result in higher network overheads, and extra cost at the database, as compared to batching. Batching and
Asynchronous submission can be seen as two ends of a spectrum. Batching, at one end, combines all requests in
a loop into one big request with no overlapping execution, where as asynchronous submission retains individual
requests as is, while completely overlapping their execution. There is a range of possibilities between these two,
that can be achieved by asynchronous submission of multiple, smaller batches of queries. This approach, called
asynchronous batching, retains the advantages of batching and asynchronous submission, while avoiding their
drawbacks. This is described in detail in [16], and we summarize the key ideas here.

As done in pure asynchronous submission, the non-blocking addBatch function places requests onto a queue.
In pure asynchronous submission however, each free thread picks up one pending request from the queue. In-
stead, we now allow a free thread to pick up multiple requests, which are then sent as a batch, by rewriting the
queries as done in batching. The size of these batches, and the number of threads to use, are parameters that
can be adaptively tuned at runtime, based on metrics such as the arrival rate of requests onto the queue, and the
request processing rate [16].

Further, observe that in Example 2, the processing of query results (the second loop) starts only after all
asynchronous submissions are completed i.e, after the first loop completes. Although this transformation signif-
icantly reduces the total execution time, it results in a situation where results start appearing much later than in
the original program. In other words, for a loop of n iterations, the time to k-th response (1 < k < n) for small
k is more as compared to the original program, even though the time may be less for larger k. This could be a
limitation for applications that need to show some results early, or that only fetch the first few results and discard
the rest. This limitation can be overcome by overlapping the consumption of query results with the submission
of requests. The transformation can be extended to run the producer loop (the loop that makes asynchronous
submissions) as a separate thread. That is, the main program spawns a thread to execute the producer loop, and
continues onto the second loop immediately. The details of this extension are given in [16].

Asynchronous batching can achieve the best of batching and asynchronous submission, since it has the
following characteristics.

e Like batching, it reduces network round trips, since multiple requests may be batched together.

e Like asynchronous submission, it overlaps client computation with that of the server, since batches are
submitted asynchronously.

e Like batching, it reduces random IO at the database, due to use of set oriented plans.

e Although the total execution time of this approach might be comparable to that of batching, this approach
results in a much better response time comparable to asynchronous submission, since the results of queries
become available much earlier than in batching.

e Memory requirements do not grow as much as with pure batching, since we deal with smaller batches.

4 Prefetching of query results

Consider a loop that invokes a procedure in every iteration, such as the one in Example 3. The loop invokes
the procedure computePartCount, which in turn executes a query. Both asynchronous query submission and

64

Example 3 Opportunity for prefetching across procedure invocations

rs = executeQuery(“select category_id from categories where cat_group=?", group-id);
while(rs.next()) {
int category = rs.getInt(“category_id”);
partCount = computePartCount(category, flag);
sum += partCount;
}
int computePartCount(int category, boolean flag) {
int count = 0;
limit = DEFAULT;
if(flag) limit = DEFAULT * 2;
/I some computations
rs2 = executeQuery(‘“‘select count(partkey) as part_count from part where p_category=?", category);
if (rs2.next() {
count = rs2.getString(“part_count”);
if (count > limit) count = limit;
}

return count;

}

Example 4 The program of Example 3 after inserting a prefetch submission

rs = executeQuery(“‘select category_id from categories where cat_group=?", group_id);
while(rs.next()) {
category = rs.getInt(“category_id”);
submitQuery(“select count(partkey) as part_count from part where p_category=?", category);
partCount = computePartCount(category); // this function remains unchanged as in Example 3 except that
/I the executeQuery() first looks up a cache, and blocks if results are not yet available
sum += partCount;

batching depend on the loop fission transformation which is effective within a procedure, but not effective in
optimizing iterative execution of procedures containing queries. In general, cases where a query execution is
deeply nested within a procedure call chain with a loop in the outermost procedure, are quite common in database
applications, and they restrict the applicability of asynchronous submission and batching. Such cases are found
especially in applications that use object relational mapping tools such as Hibernate.

Consider a query which is executed in procedure M (like the computePartCount procedure in Example 3),
which is invoked from within a loop in procedure N. Performing loop fission to enable batching (or asynchronous
submission) requires one of the following transformations to M: (i) a set-oriented (or asynchronous) version of
M, (ii) fission of procedure M into two at the point of query execution, (iii) inlining of M in N. All these
transformations are very intrusive and complex.

A more elegant solution would be to issue an asynchronous request for the query in advance (in procedure
N). Once a prefetch request for the query is placed directly within the loop, the loop can be transformed to
enable batching or asynchronous submission as described earlier. Manually identifying the best points in the
code to perform prefetching is hard due to the presence of loops and conditional branches; it is even harder in
the presence of nested procedure invocations. Manually inserted prefetching is also hard to maintain as code
changes occur.

A technique to automatically insert prefetch requests for queries at the earliest possible points in a the

65

Example S Chaining and Rewriting prefetch requests for Example 3

submitChain(“select category_id from categories where cat_group=?",
“select count(partkey) as part_count from part where p_category=?", group-id, “ql.category_id”)
/I the program remains unchanged as in Example 3

Example 6 The final program of Example 3 after loop fission

rs = executeQuery(“select category_id from categories where cat_group=?", group_id);
while(rs.next()) {
category = rs.getInt(“category_id”);
bstmt.addBatch(category);
}
bstmt.submitBatch();
for(LoopContext ctx: lct) {
category = ctx.getInt(“category”);
partCount = computePartCount(category); // code for this function remains as in Example 3
sum += partCount;

program across procedure calls is presented in [18]. In general, the goal of prefetching is to insert asynchronous
query requests at the earliest possible points in the program so that the latency of network and query execution
can be maximally overlapped with local computation. Suppose a query g is executed with parameter values v at
point p in the program. The earliest possible points e where query g could be issued are the set of points where
the following conditions hold: (a) all the parameters of ¢ are available, (b) the results of executing g at points
e and p are the same, and (c) conditions (a) and (b) do not hold for predecessors of e. For efficiency reasons,
we impose an additional constraint that no prefetch request should be wasted. In other words, a prefetch request
for query g with parameters v should only be inserted at earliest points where it can be guaranteed that g will be
executed subsequently with parameters v.

Detecting earliest possible points for queries in the presence of multiple query execution statements, while
satisfying the above constraints, requires a detailed analysis of the program. The presence of conditional branch-
ing, loops and procedure invocations lead to complex interstatement data and control dependences which are
often not explicit in the program. We approach this problem using a data flow analysis framework called antici-
pable expressions analysis and extend it to compute query anticipability [18].

The transformed program after inserting the prefetch request in the calling procedure of Example 3 is shown
in Example 4. The prefetch request for query in the procedure computePartCount is placed directly in the loop
just before the procedure invocation. The submitQuery API is a non-blocking call that submits the query to a
queue and returns immediately. The queue is monitored by a thread pool as done for asynchronous submission
(Section 3). Note that the procedure computePartCount remains unchanged. This is because when the prefetch
request initiated by submitQuery completes, the results are placed in a cache. The executeQuery API within the
computePartCount procedure will first look up this cache, and block if the results have not yet arrived.

Chaining and rewriting prefetch requests: A commonly encountered situation in practice is the case where the
output of one query feeds into another, such as the case in Example 4. This is an example of a data dependence
barrier [18], where the dependence arises due to another query. For example say a query g1 forms a barrier for
submission of g2, but g1 itself has been submitted for prefetch as the first statement of the method. As soon as
the results of g1 become available in the cache, the prefetch request for g2 can be issued. This way of connecting
dependent prefetch requests is called chaining. In DBridge, this is implemented using the submitChain API, and
for our example, the submitChain invocation is shown in Example 5.

66

while(category |= null){
LoopContext ctx = ct.createContext();

“\ Submit Q stmt.setInt(1, category); f 47 Query
‘\.% T} ctx.setInt("category”, category); rewrite

category = getParent(category);
O +—{stmt.addBatch(ctx);
} DB

Threads, Parameter Batch
rea O LoopContextTable Ict = new LoopContexiTable(); (temp table)

[stmt.executeBatch();

for (LoopContext ctx : Ict) {

category = ctx.getInt(*category”);
Array of ResultSets ResultSet rs = stmt. getResuItSel(ctx) N
int count = rs.getInt("count”) Set of ResultSets
sum += count;

print(category + ": 7 + count); .
Asynchronous mode] T Batching mode

Figure 1: DBridge Batching and Asynchronous query submission API

Chaining by itself can lead to substantial performance gains, especially in the context of iterative query
execution whose parameters are from a result of a previous query. Chaining collects prefetch requests together,
resulting in a set of queries with correlations between them. Such queries can be combined and rewritten using
known query decorrelation techniques [9]. In order to preserve the structure of the program, the results of the
merged rewritten query are then split into individual result sets and stored in the cache according to the individual
queries. In our implementation, the submitChain API internally performs query rewriting.

Integration with loop fission: Observe that in Example 4, we could alternatively perform batching or asyn-
chronous submission by loop fission, as described in Sections 2 and 3. The rewritten program would then look
as shown in Example 6. If the loop is over the results of a query, and the result attribute(s) of the query feed
into the query within the loop, rewriting using the submitChain API is more beneficial since it achieves set ori-
ented execution while avoiding the construction of a temporary batch table. Also, the submitChain API is less
intrusive to the original program. The loop fission approach is beneficial in cases where the preconditions for
submitChain [18] are not satisfied.

S System Design and Implementation

We have implemented the above techniques and incorporated them into DBridge [4, 17], a tool that optimizes
Java programs that use JDBC. The techniques however, are general, and can be adapted to other languages and
data access APIs. Our system includes two components (i) a source-to-source program transformer, and (ii) a
runtime batching and asynchronous submission framework. We now briefly describe these components.
Program Transformer: The program transformations are identical for both batching and asynchronous query
submission. The analyses and the transformation rules have been built using the SOOT optimization frame-
work [19], with Java as the target language and JDBC as the database access API. SOOT uses an intermediate
code representation called Jimple and provides dependency information on Jimple statements. Our implementa-
tion analyzes and transforms Jimple code and finally, the Jimple code is translated back into a Java program.
Runtime Batching/Asynchronous Submission Framework: The DBridge runtime library works as a layer
between the actual data access API and the application code. In addition to wrapping the underlying API, this
library provides batching and asynchronous submission functions, and manages threads and caches. The library
can be configured to either use batching, asynchronous submission, or asynchronous batching.

Set oriented execution API: The right side of Figure 1 shows the behaviour of the DBridge library in the
batching mode. The first loop in the transformed program generates all the parameter bindings. Next, a rewritten
form of the query is executed to obtain results for all the parameter bindings together. Then, the second loop
executes statements that depend on the query results. Query rewrite is performed at runtime within DBridge’s

67

implementation of the executeBatch method, which internally transforms the query statement into its set oriented
form, as described in Section 2.

Asynchronous Query Submission API: The left side of Figure 1 shows the behaviour of the asynchronous
submission API. The first loop in the transformed program submits the query to a queue in every iteration by in-
voking the stmt.addBatch(ctx) function. The queue is monitored by a thread pool which manages a configurable
number of threads. The requests are picked up either individually or in batches, by free threads which maintain
open connections to the database. The threads execute the query in a synchronous manner i.e., they block till the
query results are returned. The results are then placed in a cache keyed by the loop context(ctx). In the second
loop, the program invokes getResultSet, which is a blocking function. It first checks the cache if the results are
already available, and if not, blocks till they become available.

6 Related Work

In the past, database researchers have explored the use of program analysis to achieve different objectives. Early
approaches presented in [1, 12, 8, 13] combine program analysis and transformations in different ways to im-
prove performance of database applications. Recently Manjhi et al. [14] describe program transformations for
improving application performance by query merging and non-blocking calls. Chaudhuri et al. [2, 3] propose an
architecture and techniques for a static analysis framework to analyze database application binaries that use the
ADO.NET API. There has also been recent work on inferring SQL queries from procedural code using program
synthesis by Cheung et al. [7, 6]. In this article, we present a consolidated summary of our work [11, 5, 18, 16]
on program optimizations enabled by static analysis of the code. The techniques presented are applicable for
general purpose programming languages such as Java, with embedded queries or Web service calls.

7 Open Challenges

Although many approaches and techniques for database aware program optimizations have been proposed, there
are more opportunities that remain to be explored. We now discuss some open challenges and directions for
future work in this area.

The techniques we have described in this paper are purely based on static analysis. There have been other
approaches that use logs, traces and other runtime information for optimization. An interesting area to ex-
plore is a combination of these complementary approaches to achieve more benefits. Also, in this paper we
have described techniques in the context of interactions between an application and a database. However these
techniques are more general and can be extended to optimize interactions in other client server environments.
Consider applications running on mobile devices or Web browsers. They interact with services typically over
HTTP. These interactions are currently manually optimized using techniques similar to prefetching and batching
optimizations. Adapting our techniques to automate these scenarios is an interesting and important area.

8 Conclusions

Taking a global view of database applications, by considering both queries and imperative program logic, opens
up a variety of opportunities to improve performance. To harness such opportunities, program and query trans-
formations must be applied together. Many program analyses and transformations well known in the field of
compilers can profitably be made use of to optimize database access. In this article, we have given an overview
of various techniques to optimize database applications, and also described some directions in which this work
can be extended. We believe that this problem has the potential to attract more interest from both the database
and the compilers community in future.

68

References

[1] W. Abu-Sufah, D. J. Kuck, and D. H. Lawrie. On the performance enhancement of paging systems through
program analysis and transformations. IEEE Trans. Comput., 30(5):341-356, 1981.

[2] S. Chaudhuri, V. Narasayya, and M. Syamala. Bridging the application and DBMS divide using static
analysis and dynamic profiling. In SIGMOD, pages 1039-1042, 2009.

[3] S. Chaudhuri, V. Narasayya, and M. Syamala. Database application developer tools using static analysis
and dynamic profiling. In IEEE Data Engineering Bulletin Vol 37, No 1, March 2014.

[4] M. Chavan, R. Guravannavar, K. Ramachandra, and S. Sudarshan. DBridge: A program rewrite tool for
set-oriented query execution. In /CDE, pages 1284—1287, 2011.

[5] M. Chavan, R. Guravannavar, K. Ramachandra, and S. Sudarshan. Program transformations for asyn-
chronous query submission. In /ICDE, 2011.

[6] A.Cheung, S. Madden, A. Solar-Lezama, O. Arden, and A. C. Myers. Using program analysis to improve
database applications. In IEEE Data Engineering Bulletin Vol 37, No 1, March 2014.

[7] A. Cheung, A. Solar-Lezama, and S. Madden. Optimizing database-backed applications with query syn-
thesis. PLDI *13, pages 3—14, New York, NY, USA, 2013.

[8] G. B. Demo and S. Kundu. Analysis of the Context Dependency of CODASYL FIND-Statements with
Application to a Database Program Conversion. In ACM SIGMOD, pages 354-361, 1985.

[9] C. A. Galindo-Legaria and M. M. Joshi. Orthogonal Optimization of Subqueries and Aggregation. In ACM
SIGMOD, 2001.

[10] R. Guravannavar. Optimization and Evaluation of Nested Queries and Procedures. Ph.D. thesis, Indian
Institute of Technology, Bombay, 2009.

[11] R. Guravannavar and S. Sudarshan. Rewriting Procedures for Batched Bindings. In In#l. Conf. on Very
Large Databases, 2008.

[12] R. H. Katz and E. Wong. Decompiling CODASYL DML into Retional Queries. ACM Trans. on Database
Systems, 7(1):1-23, 1982.

[13] D. E Lieuwen and D. J. DeWitt. A Transformation Based Approach to Optimizing Loops in Database
Programming Languages. In ACM SIGMOD, 1992.

[14] A. Manjhi, C. Garrod, B. M. Maggs, T. C. Mowry, and A. Tomasic. Holistic Query Transformations for
Dynamic Web Applications. In ICDE, 2009.

[15] S.S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.

[16] K. Ramachandra, M. Chavan, R. Guravannavar, and S. Sudarshan. Program transformations for asyn-
chronous and batched query submission. CoRR, abs/1402.5781, January 2014.

[17] K. Ramachandra, R. Guravannavar, and S. Sudarshan. Program analysis and transformation for holistic
optimization of database applications. In Proc. of the ACM SIGPLAN SOAP, pages 39-44, 2012.

[18] K. Ramachandra and S. Sudarshan. Holistic optimization by prefetching query results. In SIGMOD, pages
133-144, 2012.

[19] Soot: A Java Optimization Framework: http://www.sable.mcgill.ca/soot.

69

