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Abstract

Applications that interact with database management systems (DBMSs) are ubiquitous. Such database
applications are usually hosted on an application server and perform many small accesses over the
network to a DBMS hosted on the database server to retrieve data for processing. For decades, the
database and programming systems research communities have worked on optimizing such applications
from different perspectives: database researchers have built highly efficient DBMSs, and programming
systems researchers have developed specialized compilers and runtime systems for hosting applications.
However, there has been relatively little work that optimizes database applications by considering these
specialized systems in combination and looking for optimization opportunities that span across them.

In this article, we highlight three projects that optimize database applications by looking at both the
programming system and the DBMS in a holistic manner. By carefully revisiting the interface between
the DBMS and the application, and by applying a mix of declarative database optimization and modern
program analysis techniques, we show that a speedup of multiple orders of magnitude is possible in
real-world applications.

1 Introduction

From online shopping websites to banking applications, we interact with applications that store persistent data
in DBMSs every day. Typically, such applications are written using a general-purpose, imperative language
such as Java or Python, with embedded data access logic expressed declaratively in SQL. The application is
usually hosted on an application server that is physically separated from (although in close proximity to) the
server running the DBMS (we refer to the latter as the database server). During execution, the application issues
queries to the DBMS to retrieve or manipulate persistent data.

While this separation between the application and the database helps application development, it often results
in applications that lack the desired performance. For example, to achieve good performance, both the compiler
and query optimizer optimize parts of the program, but they do not share information, so programmers must
manually determine 1) whether a piece of computation should be executed as a query by the DBMS or as general-
purpose code in the application server; 2) where computation should take place, as DBMSs are capable of
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List<User> getRoleUser () {

List<User> listUsers = new ArrayList<User>();
List<User> users = ... /* Database query */

List<Role> roles = ... /* Database query */

for (int i = 0; i < users.size(); i++) {
for (int j = 0; j < roles.size(); j++) {
if (users.get(i).roleId ==
roles.get(j).roleId) {

User userok = users.get(i);

listUsers.add(userok);

}}}

return listUsers;
}

List<User> getRoleUser () {

List<User> listUsers =

db.executeQuery(

"SELECT u
FROM users u, roles r
WHERE u.roleId == r.roleId
ORDER BY u.roleId, r.roleId");

return listUsers; }

Figure 1: (a) Real-world code example that implements join in Java (left); (b) QBS converted version of code
example (middle); (c) QBS architecture (right)

executing general-purpose code using stored procedures, and application servers can similarly execute relational
operations on persistent data after fetching them from the DBMS; and 3) how to restructure their code to reduce
the number of interactions with the DBMS, as each interaction introduces a network round trip and hence
increases application latency.

While handcrafting such optimizations can yield order-of-magnitude performance improvements, these man-
ual optimizations are done at the cost of code complexity and readability. Worse, these optimizations can be
brittle. Relatively small changes in control flow or workload pattern can have drastic consequences and cause
the optimizations to hurt performance, and slight changes to the data table schema can break manually op-
timized code. As a result, such optimizations are effectively a black art, as they require a developer to reason
about the behavior of the distributed implementation of the program across different platforms and programming
paradigms.

Applying recent advances in program analysis and synthesis, we have shown in prior work [10] that we can
achieve such optimizations automatically without incurring substantial burden on the developers. In particular,
by analyzing the application program, the runtime system, and the DBMS as a whole, along with applying
various program analysis and database optimization to drive program optimizations, we have demonstrated
order-of-magnitude speedups in real-world database applications. Not only that, we are able to achieve such
application improvement while allowing developers to use the same high-level programming model to develop
such applications. In this article, we describe three recent projects, in which each project holistically optimizes
both the runtime system and the DBMS: QBS, a tool that transforms imperative code fragments into declara-
tive queries to be executed by the DBMS; PYXIS, a system that automatically partitions program logic across
multiple servers for optimal performance, and SLOTH, a tool that reduces application latency by eliminating
unnecessary network round trips between the application and DBMS servers. In the following we describe each
of the projects and highlight representative experimental results.

2 Determining How to Execute

As an example of how database application performance can be substantially improved by analyzing the runtime
system and the DBMS together as a whole, consider the code fragment shown in Fig. 1(a). The fragment
is adopted from a real-world Java web application that uses the Hibernate Object-Relational Mapping (ORM)
library to access persistent data.

As written, the application first issues two queries using Hibernate to fetch a list of user and role objects
from the DBMS. The code then iterates the lists in a nested-loop fashion to select the users of interest and
returns the list at the end. Note that the code fragment essentially performs a join between two lists. Had
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the programming logic been represented as a SQL query, the DBMS query optimizer would be able to take
advantage of the indices and join optimizations in choosing the most efficient way to perform the operation.
Unfortunately, executing relational operations in the application forgoes all the optimization machinery that
DBMSs provide. Programmers frequently write code like this, perhaps because they lack understanding of
DBMS functionality, but more often because DBMS operations are abstracted into libraries, such as ORM
libraries. While such libraries greatly ease application development, it is difficult for library developers to
anticipate how their libraries are used, and application developers to understand the performance implications
of their code. As a result, application performance often suffers.

To improve application performance, we would like application frameworks to automatically convert code
from one representation to another (e.g., converting from Java to SQL) while presenting the same high-level
programming model to the developer as before. Unfortunately, doing so requires a detailed understanding of the
database internals. In addition, converting code representations also requires bridging between the application
code that is often written in an imperative language such as Java, and database queries that tend to be expressed
using a declarative language such as SQL. We are not aware of any application frameworks that perform such
cross-system optimizations.

In this section, we describe QBS (Query By Synthesis) [11], a tool that performs such optimization auto-
matically without any user intervention. Given application source code and database configuration, QBS auto-
matically scans the source code to find code fragments that can potentially be converted into SQL to improve
performance. For each code fragment, such as the one shown in Fig. 1(a), QBS transforms it into the code shown
in Fig. 1(b), where the nested loop is converted into a SQL join query. QBS improves upon prior work on query
extraction [29] by recognizing a wide variety of queries in addition to simple selections. In the following, we
describe how QBS works and present representative experiment results.

2.1 Converting Program Representations Automatically

QBS uses program synthesis to bridge the gap between imperative and declarative programming paradigms.
Fig. 1(c) shows the overall architecture of QBS. Given the source code of the application and database con-
figuration files (the latter is used to determine the classes of objects that are persistently stored and how such
objects are mapped to persistent tables), QBS first performs a pre-processing pass to isolate the code fragments
that operate on persistent data and contain no other side-effects, such as the one shown in Fig. 1(a). After that,
QBS converts each of the identified code fragments into an intermediate code representation called QIL (QBS

Intermediate Language). QIL is similar to relational algebra, but is expressive enough to describe operations on
ordered lists (which is the data structure that many ORM libraries and JDBC expose for persistent data manip-
ulation). QIL includes operations such as selecting list elements, concatenating two lists, and joining two lists
just like in relational algebra, except that the join operates on ordered lists rather than relations.

The resemblance of QIL to relational algebra allows us to easily convert such QIL expressions to SQL
queries. However, we still need to reason about the contents of the variables in the code fragment before
converting the fragment into SQL. For instance, in the example shown in Fig. 1(a), we need to formally prove
that when the nested loop exits, the contents of ”listUsers” is equivalent to that as a result of joining the ”users”
and ”roles” lists. QBS uses Hoare-style program reasoning [17] to come up with such proofs. The idea behind
coming up with proofs is that if the developer has labeled the contents of each variable in the code fragment
(such as ”listUsers”) in terms of other variables, Hoare-style reasoning provides us a way to formally prove that
the annotations are indeed correct, and that the expression in Fig. 2(a) indeed represents the value of ”listUsers”
at the end of the execution. The problem, of course, is that no such annotations are present in the code. By
making use of this observation, however, we can now frame the problem as a search for annotations that can be
proven correct using Hoare-style reasoning. Once the annotations are found, translating an expression like the
one in Fig. 2(a) into SQL is a purely syntactic process.

A naive strategy for finding the annotations is to search over all possible QIL expressions and check them
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listUsers= π(sort(σ(◃▹ (users, roles,True), fσ ), l), fπ)

where:
fσ := get(users, i).roleId= get(roles, j).roleId
fπ := projects all the fields from the User class
l := [users, roles]

listUsers=

{
expressions involving operators: σ ,π,◃▹,sort
and operands: users, roles

}
Figure 2: (a) Specification found by QBS (top); (b) potential QIL expressions for listUsers from Fig. 1(a)
(bottom).

for validity using Hoare-style reasoning. QBS improves upon this strategy using a two-step process. First,
QBS analyzes the structure of the input code fragment to come up with a template for the annotations; for
example, if the code involves a nested loop, then the annotations are likely to involve a join operator, so this
operator is added to the template. By deriving this template from the structure of the code, QBS significantly
reduces the space of candidate expressions that needs to be analyzed. In our example, since objects are inserted
into ”listUsers” inside a nested loop involving ”users” and ”roles”, the analysis determines that potential QIL

expressions for ”listUsers” would involve those two lists as opposed to others. Furthermore, the ”if” statement
inside the loop leads the analysis to add selection (but not projection, for instance) as a possible operator involved
in the expression, as shown in Fig. 2(b).

After that, QBS performs the search symbolically; instead of trying different expressions one by one, QBS

defines a set of equations whose solution will lead to the correct expression. The technology for taking a
template and performing a symbolic search over all possible ways to complete the template is the basis for a
great deal of recent research in software synthesis. QBS uses this technology through an off-the-shelf system
called Sketch [28], which automatically performs the symbolic search and produces the desired annotations.
After producing the annotations, QBS uses them to translate part of the code fragment into SQL queries.

2.2 Experimental Results

We implemented a prototype of QBS using the Polyglot compiler framework [21]. Our prototype takes in Java
source code that uses the Hibernate ORM library to interact with DBMSs, identifies code fragments that can be
converted into SQL expressions, and attempts to convert them into SQL using the algorithm described above.

We tested the ability of QBS to transform real-world code fragments. We used QBS to compile 120k lines of
open-source code written in two applications: a project management application Wilos [4] with 62k LOC, and
a bug tracking system itracker [1] with 61k LOC. Both applications are written in Java using Hibernate. QBS

first identified the classes that are persistently stored, and scanned through the application for code fragments
that use such classes, such as that in Fig. 1(a). This resulted in 49 benchmark code fragments in total. QBS then
attempted to rewrite parts of each benchmark into SQL. Fig. 3 shows the number of fragments that QBS was
able to convert into relational equivalents. We broadly categorize the code fragments according to the type of
relational operation that is performed. While many fragments involve multiple relational operations (such as a
join followed by a projection), we only give one label to each fragment in order not to double count.

The result shows that QBS is able to recognize and transform a variety of relational operations, including
selections, joins, and aggregations such as finding max and min values, sorting, and counting. The slowest
transformation of any individual benchmark took 5 minutes to complete, such as the one shown in Fig. 1(a) as
it involves join operations, and the average was around 3 minutes. The largest benchmarks involve around 200
lines of source code, and the majority of the time was spent in the annotation search process.

Our QBS prototype currently only handles read-only persistent operations, and as a result cannot handle code
that updates to inserts persistent data. In addition, there were a few benchmarks involving read-only operations
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Wilos (project management application – 62k LOC)
operation type # benchmarks # translated by QBS

projection 2 2
selection 13 10
join 7 7
aggregation 11 10
total 33 29

itracker (bug tracking system – 61k LOC)
operation type # benchmarks # translated by QBS

projection 3 2
selection 3 2
join 1 1
aggregation 9 7
total 16 12

Figure 3: QBS experiment results from real-world benchmarks conversions

(a) Selection with 50% selectivity (b) Join code fragment from Fig. 1(a) (c) Aggregation code fragment

Figure 4: Webpage load times comparison of representative code fragments

that QBS were not able to transform. Some of these benchmarks use type information in program logic, such
as storing polymorphic records in the database and performing different operations based on the type of records
retrieved. Including type information in ordered lists should allow QBS to process most of the benchmarks.
Meanwhile, some benchmarks re-implement list operations that are provided by the JDK (such as sorting or
computing the max value) in a custom manner. Extending QIL expressions to include such operations will allow
QBS to convert such benchmarks.

We also compared the load times for web pages containing the benchmarks before and after QBS conversion.
The results from representative code fragments are shown in Fig. 4, with Fig. 4(b) showing the results from the
code example from Fig. 1(a). In all cases, performance improved in part because the application only needs to
fetch the query results from the DBMS. Moreover, as in the case of the code example in Fig. 1(a), expressing the
program logic as a SQL query allows the DBMS to execute the join using efficient join algorithms, as opposed to
executing the join in a nested loop fashion as in the original code, which leads to further speedup. The aggregate
code fragments illustrate similar behavior.

3 Improving Locality With Program Partitioning

In addition to deciding how application logic should be expressed, determining where it should be executed
is another important factor that affects application performance. Automatic program partitioning is a tech-
nique for splitting a program into communicating processes that implement the original program in a semantics-
preserving way. While prior applications of automatic program partitioning include optimizing distributed appli-
cations [18, 20, 31, 13, 14, 5], parallelizing sequential programs [25, 19], and implementing security policies and
principles [32, 12, 6, 30], we are not aware of prior work that applies program partitioning to improve database
application performance. Partitioning database applications is challenging as the optimal solution often depends
on the current server workload. To that end, we developed PYXIS [8], a tool that automatically partitions a
database application between the application and database servers, and adaptively changes how the application
is split based on the amount of resources available on the database server.

PYXIS consists of two components: a compiler and a runtime Java library. The PYXIS compiler assigns
the statements and fields in Java classes to either an application server or a database server. We call the code
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realCost = itemCost;

if (discount < 1.0)
realCost = itemCost * discount;

insertNewLineItem(realCost);

(a) An example code fragment (b) Dependency graph

Figure 5: Illustration of the data structures used in program partitioning

and data assigned to a particular host a partition and the set of partitions a partitioning. Placing code that
accesses the DBMS on the database server results in lower latency since it requires fewer network round trips.
However, running more code on the database server places additional computational load on the server, which
could negatively impact latency and reduce throughput. PYXIS manages this tradeoff by finding partitionings
that minimize overall workload latency within a specified budget. This budget limits the impact on server load.

Since the optimal partitioning depends on the current workload, the PYXIS runtime adapts to changing
workload characteristics by switching between partitionings dynamically. Given a set of partitionings with
varying budgets, PYXIS alleviates load on the database server by switching to a partitioning with a lower budget
that places more code at the application server.

3.1 Analyzing Dependencies in Database Applications

At the core of the PYXIS compiler is a program partitioner. Program partitioning is done using a static interpro-
cedural dependency analysis based on an object-sensitive pointer analysis [27]. The analysis constructs a depen-
dency graph in which each statement of the program is a node and each edge represents a possible dependency
between statements. PYXIS distinguishes two kinds of dependencies: control and data. Control dependency
edges connect statements to branch points in control flow such as ”if” statements, method calls, or exception
sites. Data dependencies connect uses of heap data with their possible definitions. Fig. 5a shows some example
code and Fig. 5b its corresponding dependency graph. The statement at line 3 is control dependent on the ”if”
condition at line 2. The statement at line 4 is data-dependent on the two statements that make assignments to
”realCost” at line 1 and 3.

The PYXIS compiler transforms the input program into two separate programs that share a distributed heap.
A novel aspect of PYXIS is that the runtime is designed to allow the partitioner to take advantage of the static
analysis results to generate optimized code. To this end, all synchronization of the distributed heap is performed
explicitly by custom code generated for each application. When executing a block of instructions, all updates to
the distributed heap are batched until control is transferred to the remote node. At this point, updates that may be
observed by the remote runtime are transferred and execution continues at the remote node. By only transferring
the observed updates, PYXIS significantly reduces communication overhead for heap synchronization. The static
analysis conducted by the partitioner is conservative, ensuring that all heap locations accessed are guaranteed to
be up to date, even though other parts of the heap may contain stale data.

3.2 Partitioning the input program

We now discuss the mechanics involved in partitioning the input program. First, PYXIS gathers profile data such
as code coverage and data sizes from an instrumented version of the application under a representative workload.
This data is used to weight the dependency graph. We call this weighted dependency graph a partition graph.
Each statement node in the graph is annotated with how many times it was executed in the workload. Each
edge in the graph is annotated with an estimated cost for transferring control or data between the application and
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Figure 6: TPC-C experiment results on a 16-core database server

database server should the two associated statements be placed separately.
The weights in the partition graph encode the cost model of the PYXIS runtime. Since updates are batched,

the weights of data dependencies are relatively cheap compared to control dependencies. Node weights capture
the relative load incurred server for different statements—more frequently executed statements typically result
in higher associated load.

Next, we determine how to optimally cut the partition graph. A cut in the partition graph is an assignment
of statements to either the database or the application server. The best cut should minimize the weights of the
cut edges while obeying certain constraints. Among these constraints are the budget constraint: the sum of node
weights assigned to the database server cannot exceed the amount of resources available on the server. The
problem of finding the best cut is translated to a binary integer programming problem and sent to a solver. Once
the solver finds a solution, the partitioner outputs the two components that make up the partitioned program.
One component runs at the application server and one at the database. Note that all partitionings are generated
offline by setting different values for the resource available on the database server.

The partitioned graph is then compiled to code. Statements are grouped into execution blocks that share the
same placement and control dependencies. The exit points in each execution block specify a local or remote
block where the computation proceeds. For instance, say the call to ”insertNewLineItem” in Fig. 5a is placed on
the database server while the other statements remain at the application server. Then, when control is transferred
from the application server to the database, the current value of ”realCost” will be transferred as well, ensuring
that the call’s parameter is up to date.

3.3 Experimental Results

We built a prototype of PYXIS using Polyglot [21] and the Accrue analysis framework [3]. We have evaluated
our implementation on TPC-C and TPC-W. We used PYXIS to create two partitionings—one using a low CPU
budget and one using a high CPU budget. We compared the PYXIS generated programs to a traditional client-
side implementation that executes all application logic on the application server and uses JDBC to execute
queries (referred to as JDBC), as well as a version that encodes most application logic in stored procedures that
are executed on the database server (referred to as Manual).

Our experiments show that PYXIS automatically generated partitionings that were competitive with Manual
in performance. In Fig. 6a, a high-budget partition was evaluated in which the database server has extra CPU
resources. In this case, the PYXIS-generated program performed similarly to Manual. This is because much
of the program code—especially methods with multiple SQL queries—could be placed on the database server,
and latency was low. In Fig. 6b, a low-budget partition was evaluated in a context where the database server
has limited CPU resources. Here, the PYXIS-generated program performed like JDBC, where all application
statements other than database queries are placed at the application server. Latency was higher than Manual at
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low throughput, but because less computational load was placed on the database, the PYXIS-generated program
was able to achieve a higher throughput.

In general, the availability of CPU resources may change as the workload evolves. Consequently, a partic-
ular partitioning may not perform adequately across all workload profiles. Figure 6c shows the results of an
experiment that evaluates the ability of PYXIS to adapt to changing resource availability. In this experiment, the
load on the database server started out small, but was artificially increased after three minutes. The Manual im-
plementation performed well initially, but its latency exceeded that of the JDBC implementation as the amount
of CPU resources on the database server decreased. PYXIS, on the other hand, first chose to serve the incoming
requests using a partitioning similar to Manual. But as CPU resources decrease, the PYXIS runtime monitors
the load at the server and switches to a partitioning similar to JDBC instead when the load exceeds a threshold.
Thus, PYXIS obtains the minimal latencies of both implementations at all times.

A single application may be subjected to several different performance profiles. By examining the DBMS
and application server together, we are able to generate program partitionings specialized for each profile us-
ing PYXIS. In sum, PYXIS enhances the performance and scalability of database applications without forcing
developers to make workload-specific decisions about where code should be executed or data should be stored.
It would be interesting to use PYXIS to partition larger programs, and the same technique to other application
domains beyond database applications.

4 Batching DBMS Interactions

PYXIS shows that reducing round trips between the application and database servers can improve application
performance significantly. Query batching is another common technique to reduce such round trips. For instance,
many ORM libraries allow developers annotate their code to prefetch extra persistent objects before such objects
are needed by the program. Unfortunately, deciding when and what objects to prefetch is difficult, especially
when developers do not know how the results that are returned by their methods will be used.

There is prior research that uses static program analysis to extract queries that will be executed uncondi-
tionally by a single client in the application [16, 23, 22]. The extracted queries are executed asynchronously
in a single round trip when all query parameters are computed [7]. There has also been work on multi-query
optimization [15, 26, 24] that focuses on sharing query plans or reordering transactions among multiple queries.
However, such approaches aim to combine queries issued by multiple concurrent clients at the database rather
than in the application.

Rather than prefetching of query results, where its effect is often limited by the imprecision in static analysis,
instead we aim to delay queries as long as possible, with the goal to batch the delayed queries so that they can
be issued in a single round trip to the DBMS. In this section we describe SLOTH [9], a new system we built
to achieve this goal. Instead of using static analysis, SLOTH creates query batches by using extended lazy
evaluation. As the application executes, queries are batched into a query store instead of being executed right
away. In addition, non-database related computation is delayed until it is absolutely necessary. As the application
continues to execute, multiple queries are accumulated with the query store. When a value that is derived from
query results is finally needed (say, when it is printed on the console), then all the queries that are registered
with the query store are executed by the database in a single batch, and the results are then used to evaluate
the outcome of the computation. In the following we describe SLOTH in detail and highlight some experiment
results using real-world database applications.

4.1 Extending Lazy Evaluation for Query Batching

SLOTH builds upon traditional lazy evaluation for query batching. Lazy evaluation, as pioneered by functional
languages, aims to delay computation until its results are needed. As mentioned, in SLOTH we extend lazy
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1 ModelAndView handleRequest(...) {

2 Map model = new HashMap<String, Object>();
3 Object o = request.getAttribute("patientId");

4 if (o != null) {
5 Integer patientId = (Integer) o;

6 if (!model.containsKey("patient")) {
7 if (hasPrivilege(VIEW_PATIENTS)) {
8 Patient p = getPatientService().getPatient(patientId);

9 model.put("patient", p);

10 ...

11 model.put("patientEncounters",

12 getEncounterService().getEncountersByPatient(p));

13 ...

14 List visits = getVisitService().getVisitsByPatient(p);

15 CollectionUtils.filter(visits, ...);

16 model.put("patientVisits", visits);

17 model.put("activeVisits", getVisitService().

18 getActiveVisitsByPatient(p));

19 ...

20 return new ModelAndView(portletPath, "model", model);
21 }

Figure 7: (a) Code fragment abridged from OpenMRS (left); (b) How SLOTH executes the code fragment (right)

evaluation where computation is deferred, except that when queries are encountered they are batched in a query
store. When any of the query results are needed, all batched queries are executed in a single interaction with
the DBMS. Using extended lazy evaluation allows us to batch queries across conditional statements and even
method boundaries without any extra work for the developer, as queries that are accumulated in the query store
are guaranteed to be executed by the application. Moreover, the batched queries are precise in that they are those
that were issued by the application.

To understand extended lazy evaluation in action, consider the code fragment in Fig. 7(a), which is abridged
from a real-world Java web application [2] that uses Spring as the web framework and the Hibernate ORM
library to manage persistent data.

The application is structured using the Model-View-Control design pattern, and the code fragment is part
of a controller that builds a model to be displayed by the view after construction. The controller is invoked by
the web framework when a user logs-in to the application to view the dashboard for a particular patient. The
controller first creates a model (a ”HashMap” object), populates it with appropriate patient data based on the
logged-in user’s privileges, and returns the populated model to the web framework. The web framework then
passes the partially constructed model to other controllers which may add additional data, and finally to the view
creator to generate HTML output (code not shown).

As written, the code fragment can issue up to four queries; the queries are issued by calls of the form
”getXXX” following the web framework’s convention. The first query in Line 8 fetches the ”Patient” object that
the user is interested in displaying and adds it to the model. The code then issues queries on Lines 12 and 14, and
Line 18 to fetch various data associated with the patient, and adds the data to the model as well. It is important
to observe that of the four round trips that this code can incur, only the first one is essential—without the result
of that first query, the other queries cannot be constructed. In fact, the results from the other queries are only
stored in the model and not used until the view is actually rendered. Thus, the developer could have collected in
a single batch all the queries involved in building the model until the data from any of the queries in the batch
is really needed—either because the model needs to be displayed, or because the data is needed to construct a
new query. Manually transforming the code in this way would have a big impact in the number of round trips
incurred by the application, but unfortunately would also impose an unacceptable burden on the developer.

Using SLOTH, the code fragment is compiled to execute lazily, where the evaluation of a statement does
not cause it to execute; instead, the evaluation produces a Thunk: a place-holder that stands for the result of
that computation, and it also remembers what the computation was. As mentioned, when executing statements
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that issue queries, the queries themselves are batched in the query store in addition to a thunk being returned.
Meanwhile, the only statements that are executed immediately upon evaluation are those that produce output
(e.g., printing on the console), or cause an externally visible side effect (e.g., reading from files or committing a
DBMS transaction). When such a statement executes, the thunks corresponding to all the values that flow into
that statement will be forced, meaning that the delayed computation they represented will finally be executed.

This is illustrated in Fig. 7(b). Line 8 issues a call to fetch the ”Patient” object that corresponds to ”patientId”
(Q1). Rather than executing the query, SLOTH compiles the call to register the query with the query store instead.
The query is recorded in the current batch within the store (Batch 1), and a thunk is returned to the program
(represented by the gray box in the figure). Then, in Line 12, the program needs to access the patient object ”p”
to generate the queries to fetch the patient’s encounters (Q2) followed by visits in Line 14 (Q3). At this point
the thunk ”p” is forced, Batch 1 is executed, and its results (”rs1”) are recorded in the query cache in the store.
A new non-thunk object ”p’” is returned to the program upon deserialization from ”rs1”, and ”p’” is memoized
in order to avoid redundant deserializations. After this query is executed, Q2 and Q3 can be generated using
”p’” and are registered with the query store in a new batch (Batch 2). Unlike the patient query, however, Q2 and
Q3 are not executed within the code fragment since their results are not used (thunks are stored in the model
map in Lines 12 and 16). Note that even though Line 15 uses the results of Q3 by filtering it, SLOTH determines
that the operation does not have externally visible side effects and is thus delayed, allowing Batch 2 to remain
unexecuted. This leads to batching another query in Line 18 that fetches the patient’s active visits (Q4), and the
method returns.

Depending on subsequent program path, Batch 2 might be appended with further queries. Q2, Q3, and Q4
may be executed later when the application needs to access the database to get the value from a registered query,
or they might not be executed at all if the application has no further need to access the database. Using SLOTH,
the number of DBMS round trips is reduced from four to one during execution of the code fragment.

4.2 Evaluating SLOTH

We have built a prototype of SLOTH. The protoype takes in Java source code and compiles it to be executed
using extended lazy evaluation. SLOTH also comes with a runtime library that includes the implementation of
the query store, along with a custom JDBC driver that allows multiple queries to be issued to the database in a
single round trip, and extended versions of the web application framework, ORM library, and application server
to process thunks (we currently provided extensions to the Spring application framework, the Hibernate ORM
library, and the Tomcat application server.) Note that among the changes to existing infrastructure, only the
custom JDBC driver and extended ORM library are essential. The other extensions are included in order to
increase batching opportunities.

We evaluated our prototype using two real-world applications: itracker (the same as used in evaluating
QBS), and OpenMRS, with a total of 226k lines of Java code. Both applications already make extensive use of
prefetching annotations provided by Hibernate. We created benchmarks from the two applications by manually
examining the source code to locate all web page files (html and jsp files). Next, we analyzed the application to
find the URLs that load each of the web pages. This resulted in 38 benchmarks for itracker, and 112 benchmarks
for OpenMRS. Each benchmark was run by loading the extracted URL from the application server via a client
that resides on the same machine as the server. There is a 0.5ms round trip delay between the two machines.

For the experiments, we compiled the two applications using SLOTH, and measured the end-to-end page
load times for the original and the SLOTH-compiled benchmarks. Fig. 8(a) and (b) show the load time ratios
between the SLOTH-compiled and original benchmarks.

The results show that the SLOTH-compiled applications loaded the benchmarks faster compared to the origi-
nal applications, achieving up to 2.08× (median 1.27×) faster load times for itracker and 2.1× (median 1.15×)
faster load times for OpenMRS. There were cases where the total number of queries decreased in the SLOTH-
compiled version as they were issued during model creation but were not needed by the view. Most of the
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Figure 8: SLOTH experiment results

speedups, however, resulted from batching multiple queries and reducing round trips to the DBMS (up to 68
queries were batched in one of the benchmarks). To quantify the latter, we tabulated the aggregate amount of
time spent in each processing step across all the benchmarks. The results are shown in Fig. 8(c) and (d), which
show that the time spent in network traffic was significantly decreased in the SLOTH-compiled benchmarks.

Overall, the experiments show SLOTH improves application performance significantly despite considerable
developer efforts spent in annotating objects for prefetching. It would be interesting to combine SLOTH with
other prefetching techniques. For instance, SLOTH currently pauses the application in order to execute the
batched queries. Alternatively, such batched queries can be executed asynchronously [7] once they are identified
in order to avoid pausing the application. It would also be interesting to investigate query rewrite techniques
(such as query chaining [23]) for the batched queries rather than issuing them in parallel at the database as in the
current SLOTH prototype.

5 Conclusion

In this article, we described three projects that improve the performance of database applications. We showed
that by co-optimizing the runtime system and the DBMS, we can achieve a speedup of multiple orders of
magnitude in application performance. We believe that the techniques presented are complementary to each
other. In future work, we plan to investigate combining these techniques and measuring the overall performance
improvement using real-world applications.

The idea of co-optimization across different software systems opens up new opportunities in both program-
ming systems and database research. For instance, it would be interesting to apply program partitioning to other
application domains that involve multiple systems, such as partitioning code and data among web clients, appli-
cation servers, and the DBMS. In addition, techniques used in QBS can also be used to build new optimizing
compilers: for instance, converting code to make use of specialized routines such as MapReduce or machine
learning libraries.
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