
Database Application Developer Tools Using Static Analysis and
Dynamic Profiling

Surajit Chaudhuri, Vivek Narasayya, Manoj Syamala

Microsoft Research
{surajitc,viveknar,manojsy}@microsoft.com

Abstract

Database application developers use data access APIs such as ODBC, JDBC and ADO.NET to execute
SQL queries. Although modern program analysis and code profilers are extensively used during appli-
cation development, there is a significant gap in these technologies for database applications because
these tools have little or no understanding of data access APIs or the database system. In our project
at Microsoft Research, we have developed tools that: (a) Enhance traditional static analysis of pro-
grams by leveraging understanding of database APIs to help developers identify security, correctness
and performance problems early in the application development lifecycle. (b) Extend the existing DBMS
and application profiling infrastructure to enable correlation of application events with DBMS events.
This allows profiling across application, data access and DBMS layers thereby enabling a rich class of
analysis, tuning and profiling tasks that are otherwise not easily possible.

1 Introduction

Relational database management systems (DBMSs) serve as the backend for many of today’s applications. Such
database applications are often written in popular programming languages such as C++, C# and Java. When
the application needs to access data residing in a relational database server, developers typically use data access
APIs such as ODBC, JDBC and ADO.NET for executing SQL statements and consuming the results. Applica-
tion developers often rely on integrated development environments such as Microsoft Visual Studio or Eclipse
which provide a variety of powerful tools to help develop, analyze and profile their applications. However, these
development environments have historically had limited understanding of the interactions between the applica-
tion and the DBMS. Thus a large number of security, correctness and performance issues can go undetected
during the development phase of the application, potentially leading to high cost once the application goes into
production.

In this paper, we summarize the key ideas, techniques and results of our project at Microsoft Research to
develop tools for database application developers that leverage static program analysis [3] as well as dynamic
profiling [2] of the application at runtime. We first discuss the framework for statically analyzing database
application binaries to automatically identify security, correctness and performance problems in the database
application. Our idea is to adapt data and control flow analysis techniques of traditional optimizing compilers

Copyright 2014 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

38



by exploiting semantics of data access APIs and the database domain to provide a set of analysis services on
top of the existing compiler. These services include: (a) Extracting the set of SQL statements that can execute
in the application. (b) Identifying properties of the SQL statements such as tables and columns referenced. (c)
Extracting parameters used in the queries and their binding to program variables. (d) Extracting properties of
how the SQL statement results are used in the application. (e) Analyzing user input and their propagation to
SQL statements. Using the above services, we have built vertical tools for: detecting SQL injection vulnerability,
extracting the SQL workload from application binary, identifying opportunities for SQL query performance
optimizations, and identifying potential data integrity violations.

While such static analysis can greatly aid database application developers, many issues in the application
can only be detected at runtime. For example, if there is a deadlock in the DBMS, detecting which tasks in
the application are responsible for causing that deadlock today can be non-trivial despite the availablity of both
application and database profiling tools. The key reason why such tasks are challenging is that the context of an
application (threads, functions, loops, number of rows from a SQL query actually consumed by the application,
etc.) and the context of the database server when executing a statement (duration of execution, deadlocks,
duration for which the statement was blocked, number of rows returned etc.) cannot be easily correlated with
each other. We discuss an infrastructure that can obtain and correlate the appropriate application context with the
database context, thereby enabling a class of development, debugging and tuning tasks that are today difficult to
achieve for application developers. We conclude with a discussion of some open issues and future work.

2 Motivating Scenarios

We discuss a set of motivating scenarios around security, correctness and performance of database applications
that can potentially be detected via static analysis and/or dynamic profiling.

SQL injection vulnerability: A well known example of such a security problem is SQL injection vulnera-
bility. Applications that execute SQL queries based on user input are at risk of being compromised by malicious
users who can inject SQL code as part of the user input to gain access to information that they should not. De-
tecting SQL injection vulnerability at application development time can help developers correct the problem
even before the application is deployed into production, thereby avoiding expensive or high profile attacks in
production (e.g. [4]).

Database integrity constraint violations: In many real-world applications, certain database integrity con-
straints are enforced in the application layer and not the database layer. This is done for performance reasons or
to avoid operational disruption to an application that has already been deployed. For example, in a hosted web
service scenario the DBA might be reluctant to pay the cost of altering an existing table of a deployed applica-
tion. In such scenarios, given a database constraint such as [Products].[Price] > 0 as input, it would be useful
if we could automatically identify all places in the application code where the Price column can potentially be
updated, and add an assertion in the application code to verify whether the constraint is honored.

Enforcing best practices: There can be correctness or performance problems due to the way the queries
are constructed or used in the application. For example, there can be mismatch between the data type used in
the application (e.g. int) and the data type of the column in the database (smallint). Such a mismatch is not
detected by todays application development tools, which can lead to unexpected application behavior at runtime.
Development teams need automatic support for enforcing a set of best practices in coding (e.g. - no SELECT
* queries or always use the ExecuteScalar() ADO.NET API for queries that return scalar values). While code
analysis tools like FxCop [5] aid to an extent for best practices, these tools have no database and data access
specific domain knowledge to support the above kind of analysis.

Root-causing deadlocks in the DBMS: Certain database application issues can only be detected at runtime.
Consider an application that executes two concurrent tasks each on behalf of a different user. Each task invokes
certain functions that in turn issue SQL statements that read from and write to a particular table in the database.

39



Suppose a bug causes SQL statements issued by the application to deadlock with one another on the server. The
database server will detect the deadlock and terminate one of the statements and unblock the other. This is man-
ifested in the application as one task receiving an error from the server and the other task running to completion
normally. Thus, while it is possible for the developer to know that there was a deadlock (by examining the
DBMS profiler output or the server error message of the first task) it is difficult for the developer to know which
function from the other task issued the corresponding statement that caused the server deadlock. In general,
having the ability to identify the application code that is responsible for the problem in the database server can
save considerable debugging effort for the developer.

Suggesting query hints: By observing usage of data access APIs of the application, it may be possible
to improve performance via use of query hints. For example, it is common for applications to execute a query
that returns many result rows but not actually consume all the results, e.g. because user actions drive how many
results are viewed. In most database systems, by default the query optimizer generates a plan that is optimized
for the case when all N rows in the result set are needed. If only the top k rows are required instead (k < N), the
optimizer can often generate a much more efficient plan. Such a plan can be generated by providing a ”FAST k”
query hint. The important point to note is that the information about what value of k (number of rows consumed
by the application) is appropriate is available only by profiling the application context.

3 Solution Overview

The tool can operate in two modes. In the static analysis mode (see Figure 1) the tool performs custom static
analysis on the input binary as explained in [3]. The output is a set of potential security, performance and
correctness problems in the application pertaining to use of the database. In the dynamic analysis mode (see
Figure 2) the tool instruments the application binary and converts it into an event provider. Once instrumented,
the developer launches the application after turning on tracing for all the three event providers: (1) Microsoft
SQL Server tracing (2) ADO.NET tracing and (3) Instrumented events from the application. This allows events
containing both application context and database context to be logged into the ETW [6] event log. The key
post-processing step is done by our Log Analyzer that correlates application and server events using a set of
matching techniques as explained in paper [2].

Figure 1: Overview of architecture of static analysis tool.

40



Figure 2: Overview of architecture of dynamic profiling tool.

Static Analysis: Our implementation of the static analysis tool relies on the Phoenix compiler framework
[1]. We rely upon Phoenix to: (1) Convert the application binary in Microsoft Intermediate Language (MSIL)
into an intermediate representation (IR) that our analysis operates upon. (2) Iterate over function unit(s) within
the binary. (3) Provide the flow graph in order to iterate over basic blocks within a function unit. (4) Iterate
over individual instructions in the IR within a basic block. (5) Provide extensions to dynamically extend the
framework types like function units and basic blocks. (6) Provide a call graph that represents the control flow
across function units and in case of dynamic analysis. (7) Instrument the binary so that it turns into a provider
of ETW events. We extend this framework to develop the following primitives.

• Extract SQL: Given a function in the program binary, this primitive returns a set of SQL statement handles.
A handle is a unique identifier that is a (line number, ordinal) pair in that function. It represents a SQL
statement that can execute at that line number.

• Identify SQL properties: Given a handle to a SQL statement, this primitive returns properties of the SQL
statement such as the SQL string, number and database types of columns in the result of the SQL statement,
tables and columns referenced in the statement, and optimizer estimated cost.

• Extract Parameters:. Given a handle to a SQL statement this primitive returns the parameters of the
statement along with the program variable/expression that is bound to that parameter, and its data type in
the application.

• Extract Result Usage: Given a handle to a SQL statement, this primitive returns properties of how the
result set is consumed in the application. In particular, it returns each column in the result set that is
bound to a variable in the program, along with the type of the bound program variable.

• Analyze User Input: Given a handle to a SQL statement this primitive identifies all user inputs in the
program such that the user input value v satisfies a contributes to relationship to the SQL string of the
statement. A contributes to relationship is defined as either: (a) v is concatenated into the SQL string. (b)
v is passed into a function whose results are concatenated into the SQL string.

The ”vertical” functionality such as identifying SQL injection vulnerabilities, workload extraction and detecting
potential data integrity violations are built using the above primitives. For additional technical details we refer
the reader to [3].

Dynamic Profiling: Once the binary has been instrumented, the developer can click through a wizard
(exposed as an Add-In to Microsoft Visual Studio), which launches the application after turning on tracing

41



for all the three event providers: (1) Microsoft SQL Server tracing (2) ADO.net tracing and (3) Instrumented
events from the application. This allows events containing both application context and database context to
be logged into the ETW event log. The key post-processing step is done by our Log Analyzer module that
correlates application and server events using a set of matching techniques [2]. This matching is non-trivial
since today there is no unique mechanism understood both by ADO.Net and Microsoft SQL Server to correlate
an application event with a server event. The above collection and matching enables us to bridge the two
contexts and provide significant added value to database application developers via ”verticals” such as root
causing deadlocks and fast k query hints.

4 Evaluation

We first provide a few examples using screenshots showing the functionality of the tools, and then summarize
the results of applying the static analysis tool on a couple of real-world applications. A screenshot of the output
of static analysis by the tool is shown in Figure 3. The left hand pane shows the functions in the binary. The
SQL Information grid shows the SQL string, the SQL injection status (UNSAFE in this example). It also shows
the actual line number in the code where the user input (leading to this vulnerability) originated, and the line
number where the SQL statement is executed.

Figure 4 shows another screenshot of the static analysis tool. In this scenario, the user specifies via input
that they expect the database constraint [Products].[Price] > 0 to hold, where Products is a table and Price is
a column in that table. The right pane displays: (1) The fully formed SQL statement and the line number in
the application where the SQL can execute when the application is run (in this case an INSERT statement).
(2) Information about the parameters that are bound to the SQL statement. These include the parameter name,
the data type and the application variable that is bound to the SQL parameter. (3) The application constraint
corresponding to the input data integrity constraint specified by the user and the line number where it should
be added. In this example the constraints analysis pane shows that expression (price1 > 0), where price1 is an
application variable, will enforce the database constraint [Products].[Price]> 0 if it is placed at line number 279
in the application code.

In Figure 5 we see a screenshot showing the result of the dynamic profiling. The output of the tool is the
summary/detail view as shown in the figure. Developers can get a summary and detail view involving various
counters from the application, ADO.NET and Microsoft SQL Server, navigate the call graph hierarchy and
invoke specific verticals. The Summary view gives the function name, aggregate time spend in a function, how
many times the function was invoked and aggregate time spend executing the SQL statement (issued by the
particular function ) in the database server. Today the Function, Exclusive Time and Number of Invocations
counters can be obtained from profiling the application using application side profiling tools such as Visual
Studio Profiler; however the SQL Duration is an example of our value-add since it merges in database context
into the application context. Consider the function ReadStuff which issues a SQL call. From the Summary
view the developer can determine that the function was called twice and the aggregate time it spend inside this
function (across all instances) was 5019 msec. Out of the total time spend in the function, most of the time was
spend executing SQL (5006 msec). The Detail view gives more information at a function instance level. The
tool allows drill down to display attributes of all the statements that were issued under the particular instance
of the function or statements that were issued under the call tree of the particular instance of the function. The
attributes of the SQL statement that are displayed include counters like duration, reads, writes, and also data
access counters like reads issued by the application, and the data access API type, corresponding to the SQL that
was issued.

A sample output from the deadlock analysis vertical is shown in Figure 6. The Microsoft SQL Server
Profiler trace produces a Deadlock Event which contains the wait-for graph that describes a deadlock. The
graph contains the statements being executed that resulted in the deadlock as well as timestamp, and client

42



Figure 3: Output of the tool for SQL injection detection.

process id(s) information. The log analyzer extracts this information and stores it in the schematized application
trace under the root node of the tree (as an event of type deadlock). For each such deadlock event, the deadlock
analysis vertical finds the statements issued by the application that correspond to the statements in the deadlock
event. Note that once we find the statement, we get all its associated application context such as function and
thread. This can then be highlighted to the developer so they can see exactly which functions in their application
issues the statements that lead to the deadlock.

We report briefly our experiences of running our static analysis tools on a few real world database appli-
cations: Microsofts Conference Management Toolkit (CMT): CMT [10] is a web application sponsored by
Microsoft Research that handles workflow for an academic conference. SearchTogether [11]: An application
that allow multiple users to collaborate on web search. For each application we report our evaluation of the
Workload Extraction vertical. Our methodology is to compare the workload extracted by our tool with the work-
load obtained by manual inspection of the application code. The summary of results is shown in Table 5. The
column Total Num. of SQL statements reports the number of that SQL statements that we were able to manually
identify by examining the source code of the application. The column Num. of SQL statements extracted refers
to the number of statements that were extracted by our static analysis tool. Along with the SQL statements we
were able to extract parameter information as well. Thus, even though the actual parameter values are not known
at compile time, we are able to extract syntactically valid queries. Thus it is possible, for example, to obtain a
query execution plan for such queries. CMT and SearchTogether applications both mostly use parameterized
stored procedures.

43



Figure 4: Detection of potential data integrity violation.

Application Lines of code Total Num. of SQL statements Num. of SQL statements extracted
CMT 36,000+ 621 350
SearchTogether 1,700 40 35

Table 5: Summary of results for workload extraction.

The cases where we were not able to extract SQL strings were due to the following reasons. First, there many
ADO.NET APIs exposed by the providers that are used in these applications. Our current implementation does
not cover the entire surface area of all the ADO.NET APIs. In some cases in SearchTogether, the SQLCommand
object is a member variable of a class. The object is constructed in one method and referenced in another method.
In this case, the global data flow analysis of our current implementation is not sufficient since the variable (the
SQLCommand object in this case) is not passed across the two methods. Capturing this case requires tracking
additional state of the SQLCommand object, which our current implementation does not. We also ran our SQL
injection detection tool on all the three applications. We detected no SQL injection vulnerabilities in CMT and
SearchTogether. In these applications user input is bound to parameters and executed as parameterized SQL.

5 Conclusion

In this paper we discussed how by exploiting our understanding of the semantics of data access APIs it is possible
to detect a class of problems in the application through static program analysis. We also showed that the ability to

44



Figure 5: Summary and Detail views of Dynamic Profiling.

automatically profile and correlate application context and database context at runtime further enables expanding
the class of issues that can be detected. We conclude with a discussion of a few open issues that are potential
areas for future work.

• Extending to applications in the cloud. Applications running on cloud infrastructure often reference mul-
tiple services in addition to databases such as caching, queueing and storage. The applications use well
defined APIs to interact with these services, similar to data access APIs for databases. Extending the
techniques described here for such multi-tier applications by exploiting the semantics of these APIs could
be valuable to application developers.

• Analyzing SQL code. Many database applications use stored procedures. Analyzing the SQL statements
within these stored procedures using static analysis can help identify performance and security issues
similar to those described here.

• Profiling overhead. Dynamic profilng can impose non-trivial overheads on performance both within the
application and in the DBMS. While this may be acceptable during the application development phase,
such overheads are unacceptable in a production setting. Thus optimizations that could limit the overheads
of dynamic profiling could greatly broaden the scope of applicability of such tools to production use.

• Correlating events in multi-tier applications. Many database engines do not natively support propagation
of a unique identifier that tracks a particular ”activity” (say for example a new order transaction in the
application code) between the application and the database engine. Native support for such propagation

45



Figure 6: Output of deadlock analysis vertical.

of such an identifer would greatly ease the problem of correlating events logged at the application layer
and events logged by the database server and eliminate the need to resort to approximate correlations such
as time and textual similarity.

• Automated performance optimizations. Our focus has primarily been on detecting a range of security,
performance and correctness problems in database applications so that developers can take appropriate
actions to address the issues. An interesting related area that has received some attention more recently
is automatically modifying application and/or database (SQL) code to improve program performance.
Examples include automatically replacing imperative application code with equivalent declarative SQL
code to improve efficiency [8] and automatically prefetching query results from the database based on
understanding control flow in the application code [9].

References

[1] Phoenix compiler framework, http://en.wikipedia.org/wiki/Phoenix compiler framework

[2] Surajit Chaudhuri, Vivek R. Narasayya, Manoj Syamala: Bridging the Application and DBMS Profiling
Divide for Database Application Developers. VLDB 2007: 1252-1262

46



[3] Arjun Dasgupta, Vivek R. Narasayya, Manoj Syamala: A Static Analysis Framework for Database Appli-
cations. ICDE 2009: 1403-1414

[4] United Nations vs. SQL Injections. http://hackademix.net/2007/08/12/united-nations-vs-sql-injections.

[5] FxCop: Application for analyzing managed code assemblies. http://msdn.microsoft.com.

[6] Event Tracing for Windows (ETW). http://msdn.microsoft.com.

[7] A. Aho, R. Sethi, and J. Ullman. Compilers. Principles, Techniques and Tools. Addison Wesley.

[8] Alvin Cheung, Owen Arden, Samuel Madden, Andrew C. Myers: Automatic Partitioning of Database
Applications. PVLDB 5(11): 1471-1482 (2012).

[9] Karthik Ramachandra, S. Sudarshan: Holistic optimization by prefetching query results. SIGMOD Confer-
ence 2012: 133-144

[10] Microsoft Conference Management Service (CMT). http://msrcmt.research.microsoft.com/cmt/

[11] Microsoft SearchTogether application. http://research.microsoft.com/searchtogether/

47


