
Compiling Database Queries into Machine Code

Thomas Neumann, Viktor Leis
Technische Universität München

{neumann,leis}@in.tum.de

Abstract

On modern servers the working set of database management systems becomes more and more main
memory resident. Slow disk accesses are largely avoided, and thus the in-memory processing speed of
databases becomes an important factor. One very attractive approach for fast query processing is just-
in-time compilation of incoming queries. By producing machine code at runtime we avoid the overhead
of traditional interpretation systems, and by carefully organizing the code around register usage we
minimize memory traffic and get excellent performance.

In this paper we show how queries can be brought into a form suitable for efficient translation, and
how the underlying code generation can be orchestrated. By carefully abstracting away the necessary
plumbing infrastructure we can build a query compiler that is both maintainable and efficient. The
effectiveness of the approach is demonstrated by the HyPer system, that uses query compilation as its
execution strategy, and that achieves excellent performance.

1 Introduction

Traditionally, database systems process queries by evaluating algebraic expressions. This is typically done using
the iterator model [3], in which each operator produces a stream of tuples on demand. To iterate over this tuple
stream the next function of the operator is called repeatedly. This interface is simple, flexible, easy to implement,
and allows to combine arbitrary operators.

The iterator model worked well in the past, as query processing was dominated by I/O, so the overhead
of the huge number of next calls was negligible. However, with increasing main memory sizes, this situation
has changed. CPU and cache efficiency has become very important for good performance. This development
has lead to changes in the iterator model in some modern systems. One approach is to produce multiple tuples
with each next call instead of just one. While such block-wise processing reduces the interpretation overhead, it
inhibits pipelining as blocks of tuples are always materialized in order to pass them between operators.

A radically different approach is to avoid the iterator model altogether, and to directly compile queries into
machine code. This approach can largely avoid function calls, and can often keep tuples inside CPU registers,
which is very beneficial for performance. However, machine code generation is non-trivial, as the algebraic
query tree of a query can be arbitrarily complex and it is not obvious how to generate efficient code for it. In
this paper we present the compilation strategy of our main-memory database system HyPer [4]. HyPer uses
data-centric compilation to compile relational algebra trees to highly efficient machine code using the LLVM

Copyright 2014 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

3

select *
from R1,R3,

(select R2.z,
count(*)

from R2
where R2.y=3
group by R2.z) R2

where R1.x=7
and R1.a=R3.b
and R2.z=R3.c

(a) Example SQL Query

R1

R2 R3

x=7

y=3

z;count(*)

a=b

z=c

(b) Execution Plan

initialize memory of ona=b, onc=z, and Γz

for each tuple t in R1
if t.x = 7

materialize t in hash table of ona=b
for each tuple t in R2

if t.y = 3
aggregate t in hash table of Γz

for each tuple t in Γz

materialize t in hash table of onz=c

for each tuple t3 in R3
for each match t2 in onz=c [t3.c]

for each match t1 in ona=b [t3.b]
output t1 ◦ t2 ◦ t3

(c) Compiled query (pseudo-code)

Figure 1: From SQL to executable code

compiler backend. Section 2 introduces the idea of compiling for data-centric query execution. A more detailed
description of this approach can be found in [10]. Section 3 introduces a number of building blocks that are used
in the query compiler. We evaluate our approach in Section 4. Finally, after discussing related work in Section 5,
we conclude in Section 6.

2 Compiling for Data-Centric Query Execution

In most database systems query execution is driven by the algebraic operators that represent the query: The
code is organized per-operator, and for each tuple the control flow passes from one operator to the other. The
HyPer query engine takes a data-centric point of view: Instead of passing data between operators, the goal is to
maximize data locality by keeping attributes in CPU registers as long as possible. To achieve this, we break a
query into pipeline fragments, as shown in the execution plan in Figure 1b for the SQL query in Figure 1a. Within
each pipeline, a tuple is first loaded from materialized state into the CPU, then passed through all operators that
can work on it directly, and finally materialized into the next pipeline breaker. The source operator could be,
for example, a table scan that loads the tuples from persistent storage or main memory. Typical intermediate
operators that do not materialize are selections or the probe side of an in-memory hash join. These operators
perform their work, and potentially filter out tuples, but they do not write to memory. At the end of each pipeline
is a pipeline breaker, for example the build side of a hash side that materializes the tuple. The goal of this
approach is to access memory as rarely as possible, because memory accesses are expensive. In fact, in a main-
memory database system that nearly never accesses disk, we can consider memory as “the new disk”, and want
to avoid accessing it as much as possible.

Before execution queries are first processed as usual. After being parsed, the query is translated into an
algebra expression, which is then optimized. Since HyPer uses a traditional cost-based query optimizer, our
execution strategy does not require fundamental changes to query optimization. Only the cost model needs
to be adjusted, mainly by tweaking the appropriate constants. However, instead of translating this expression
into physical algebra that is executed (or interpreted), HyPer compiles the algebra expression into an imperative
program.

4

scan.produce():
print “for each tuple in relation”
scan.parent.consume(attributes,scan)

σ .produce:
σ .input.produce()

σ .consume(a,s):
print “if ”+σ .condition
σ .parent.consume(attr,σ)

on.produce():
on.left.produce()
on.right.produce()

on.consume(a,s):
if (s==on.left)

print “materialize tuple in hash table”
else

print “for each match in hashtable[” +a.joinattr+“]”
on.parent.consume(a+new attributes)

Figure 2: A simple translation scheme to illustrate the produce/consume interaction

For the actual execution, we compile each pipeline fragment into one code fragment, as indicated by the
matching colors in the execution plan and the pseudo code in Figure 1c. Within each fragment the attributes
of the current tuple can be kept in registers, and therefore do not need to be materialized or passed explicitly
between the operators. The code for each pipeline stage generally consists of one outer loop that iterates over
the input data, before the tuples are further processed within the loop body. To generate such code we must
reverse the data flow: Instead of pulling tuples from the input operators as in the iterator model, we push tuples
towards consuming operators. This process starts by the source operator (e.g., table scan) pushing tuples towards
their consuming operator, which continues pushing until the next pipeline breaker is reached. This means that
data is always pushed from one pipeline breaker into another. As a result, unnecessary tuple materialization and
memory traffic is avoided.

The algebraic operator model is very useful for reasoning about queries during query optimization, but does
not mirror how queries are executed at runtime in our model. For example, the three lines in the first (red) code
fragment of Figure 1c belong to the table scan R1, the selection t.x = 7, and the hash join ona=b respectively.
Nevertheless, our query compiler operates on an operator tree, which was produced by the query optimizer, and
transforms the operator tree into executable code. Conceptually, each operator offers a unified interface that
is quite different from the iterator model but almost as simple: It can produce tuples on demand, and it can
consume incoming tuples from a child operator. This conceptual interface allows to generate data-centric code,
while keeping the composability of the algebraic operator model. Note, however, that this interface is only a
concept used during code generation – it does not exist at runtime. That is, these functions are used to generate
the appropriate code for producing and consuming tuples, but they are not called at runtime.

The interface consists of two functions, which are implemented by each operator:

• produce()

• consume(attributes,source)

Logically, the produce function asks the operator to produce its result tuples, and to push them towards
the consuming operator by calling its consume function. Another way to look at this interface is in terms of
query compilation: produce can be interpreted as generating code that computes the result tuples of an operator,
and consume generates code for processing one tuple. The code generation model is illustrated in Figure 2,
which shows a simplified implementation of the table scan, selection, and hash join operators. One can convince
oneself that calling the produce function on the root of the operator tree shown in Figure 1b will produce exactly
the pseudo-code shown in Figure 1c. It is a bit unusual to have code (here: produce/consume) that generates
other code (here: the pseudo-code of the operators). But this is always the case when compiling queries into
machine code. The challenge is to make this code generation as painless as possible, without sacrificing the
performance of the generated code.

5

SQL data type LLVM data types
integer value: int32, null: int1
decimal(18,2) not null value: int64
real value: float64, null: int1
varchar(60) value: int8*, length: int32, null: int1

(a) Mapping of SQL data types to low-level data types

class Value {
// SQL type
Type* type;
// value
llvm::Value* value;
// length (optional)
llvm::Value* length;
// NULL indicator (if any)
llvm::Value* null;

}

(b) Typed value class

Figure 3: Data type representation

3 Building Blocks

Generating machine code is a very complex task. Fortunately it can be made tractable by using abstraction layers
and modularization. A great strength of a compilation-based approach is that with some care these abstraction
layers cause nearly no overhead, as they are compile-time abstractions and not runtime abstractions.

On the lowest layer the database needs a mechanism to generate machine code for the target machine. Writ-
ing machine code generators by hand is tedious, error prone, and not portable. Therefore, it is highly beneficial
to use a compiler backend like LLVM [7] or C-- [11]. In principle even a regular programming language like C
can be used as intermediate step for generating code, but such an approach often comes with high compilation
times. The HyPer system uses LLVM as backend, which is widely used (e.g., by the Clang C/C++ compiler), and
supports most popular hardware platforms (e.g., x86, ARM, PowerPC). We found it to be mature and efficient.

But while a compiler backend allows for generating “raw” machine code, additional abstraction layers are
very helpful to simplify mapping SQL queries into machine code. The most important ones are a typed value
system, high-level control flow logic, and tuple storage. In the following, we will look at these layers individu-
ally.

3.1 LLVM API

The LLVM assembly language can be considered a machine language for an abstract machine – similar to the
Java bytecode being the language of the Java Virtual Machine (JVM). However, it is more low-level than the Java
bytecode as it closely matches commonly used CPUs. Nevertheless, it abstracts away many of the idiosyncratic
features of real CPUs, and offers a clean and well-defined interface.

To generate instructions, LLVM offers a convenient C++ API. HyPer is written in C++ and can therefore
directly use this API. The code to generate an integer addition, for example, is as follows:

llvm::Value* result=codegen->CreateAdd(a,b);

The variables a, b, and result, which have type llvm::Value*, are compile-time handles to registers. In
contrast to registers in real machines, the LLVM abstract machine has an unbounded number of registers with
symbolic names; these are mapped to real CPU registers by the platform-specific LLVM backends. This low-
level interface is close to the hardware, but for most steps of the query compilation process we prefer a richer
interface that exposes high-level functionality.

3.2 Typed Values

SQL defines a number of data types, which must be mapped to the low-level LLVM data types. Figure 3a shows
this mapping for some common data types. A null-able integer value, for example, is represented using two

6

types, a 1-bit integer (int1), which indicates if the value is null, and a 32-bit integer (int32), which stores the
actual value. Of course, data types that are declared as not null do not require the additional null indicator,
but only store the value, as shown in the decimal(18,2) not null example. This is possible because
null checks are “compiled away” when the schema allows this.

Since SQL data types are generally represented using multiple LLVM values, it may seem natural to combine
them in a single structure (record) in the generated code. However, this would lead to lower performance,
because of additional pointer traversals to access the values in the structure. To keep as many values as possible
in registers, we therefore combine the values only at compile time in the Value class. The class is shown in
Figure 3b and represents a typed SQL value, which consists of its SQL type (type field) and one or more
LLVM registers (of type llvm::Value*). The null field is not used if the data type is not null, and the
length field is only used for variable length data like strings. Using this compile-time abstraction, an SQL
value can be treated as an entity in the compiler, while still allowing to generate code that is as fast as possible.

SQL operators and functions are member functions of the Value class. For operators like + or * different
code must be generated depending on the SQL type (e.g., different instructions are used for integer and
real). The Value class also handles SQL’s null semantics, type coercion (e.g., multiplication of integer
and real), and provides additional functionality like hashing which is used internally. As a consequence, the
implementation of relational operators can use this high-level interface to transparently operate on values with
SQL data types instead of generating data type specific code.

Users of database systems rightly expect the result of queries to be mathematically correct. It is therefore not
sufficient to simply map integer addition to the underlying machine instruction. It is also necessary to check for
overflow, which is usually provided by the CPU as a side effect of the operation (e.g., carry flag). LLVM offers
access to these flags, which we check after each operation that can fail. Note that in pure C there is no way to
access these flags, so checking for overflows would have been more expensive if we had used C as a backend.

3.3 Control Flow

For control flow, the LLVM assembly language only provides conditional and unconditional branches. Further-
more, LLVM requires that the code has Static Single Assignment (SSA) form, i.e., each register can only be
assigned once. SSA is a common program representation of optimizing compilers. While SSA form simplifies
the implementation of LLVM, it can make the query compiler code quite intricate. We therefore introduce a
number of easy-to-use high-level control flow constructs.

Figure 4a shows an example C program that contains two if statements and a do-while loop over the index
variable. The LLVM representation of this program is shown in Figure 4b and consists of conditional branches
between labeled code blocks, which are called basic blocks. As mentioned before, LLVM does not allow to
change a register after it has been initialized, therefore it is not possible to simply assign a new value to the
index register at each iteration step. Instead, a phi construct is used in the first line after the loop label.
Using phi, a register can take different values depending on the preceding basic block. In our example, the
index register gets the value 0 if the previous basic block was body, or the value nextIndex if the previous
basic block was cont. It should be obvious that creating all these building blocks, branches, and phi nodes
is quite tedious and requires a significant amount of code if done manually (for the example about 20 lines are
needed).

The high-level If and FastLoop constructs allow to generate the control flow graph in Figure 4b much
more easily:

1 llvm::Value* initialCond=codegen->CreateICmpNE(codegen.const64(0),limit);
2 FastLoop loopIndex(codegen,"",initialCond,{{codegen.const64(0),"index"}});
3 {
4 llvm::Value* index=loopIndex.getLoopVar(0);
5 {
6 If checkSeven(codegen,codegen->CreateICmpEQ(index,codegen.const64(7)));

7

uint64_t index=0;
if (index!=limit) do {

if (index==7) {
// do this ...

} else {
// do that ...

}
index++;

} while (index!=limit);

(a) Example C code

body:

%0 = icmp ne i64 0, %limit

br i1 %0, label %loop, label %loopDone

T F

loop:

%index = phi i64 [0, %body], [%nextIndex, %cont]

%1 = icmp eq i64 %index, 7

br i1 %1, label %then, label %else

T F

loopDone:

...

then:

...

br label %cont

else:

...

br label %cont

cont:

%nextIndex = add i64 %index, 1

%2 = icmp ne i64 %nextIndex, %limit

br i1 %2, label %loop, label %loopDone

T F

(b) LLVM control flow graph for (a)

Figure 4: Control flow example

7 // do this ...
8 checkSeven.elseBlock();
9 // do that ...

10 }
11 llvm::Value* nextIndex=codegen->CreateAdd(index,codegen.const64(1));
12 loopIndex.loopDone(codegen->CreateICmpNE(nextIndex,limit),{nextIndex});
13 }

The If class generates control flow code for an if-then-else construct. The code after the constructor (line 6)
is only executed if the condition is true. The (optional) else block starts after elseBlock has been called.
The construct is terminated automatically in the destructor, which is called automatically if checkSeven goes
out of scope (line 10). The FastLoop class generates an if-do-while style control flow and supports multiple
iteration variables, which can be accessed using getLoopVar. FastLoop is very flexible and can be used for
many loop patterns – without the need to create basic blocks, branches, and phi nodes manually.

It is important to note that this example code looks similar to the C code in Figure 4a. This simplifies
the implementation considerably, as it allows to directly think in terms of the code one wants to generates, as
opposed to low-level constructs like basic blocks and phi nodes. Of course, FastLoop and If are compose-
able and can be nested arbitrarily. In our experience, programmers new to the HyPer code base can easily pick
up these constructs by example, without necessarily understanding LLVM in detail.

3.4 Tuple Abstraction

As mentioned in the introduction, we strive to keep attributes in registers if possible. Therefore, in our generated
runtime code there are no tuples; we directly operate on registers storing attributes. However, since relational
operators often operate tuple-at-a time, it is often convenient to materialize and dematerialize a set of attributes
– in effect treating them as a tuple.

Depending on the use case we offer two storage formats for materialization. The CompactStorage
format saves space by storing data compactly, e.g., if an integer is equal to null (at runtime) only a single bit

8

is used. As a consequence, tuples with the same type may have different sizes depending on their runtime
values. This can be undesirable when an attribute is updated. Therefore, we provide another storage format,
UpdateableStorage, which always reserves the maximum amount of space for each attribute. E.g., for a
null-able integer, both the 1-bit null indicator and the 32-bit value are always stored. Both formats automatically
compute the correct layout for alignment purposes and fast access.

Having such an abstraction greatly simplifies the implementation of higher-level operators like hash-joins,
as these can now read and store complex tuples using one line of code. Internally the tuple materialization code
is surprisingly complex due to the one-to-many mapping of SQL data types to LLVM values, and the different
sizes and alignment restrictions of different data types. Writing this every time for every materializing operator
is therefore not an option. In general it is highly advisable to use as many abstractions as possible, as these, by
being only compile time abstractions, cause no runtime costs.

3.5 Operators

With the help of these building blocks, HyPer implements all operators required by SQL-92 including the join,
aggregation, sort, and the set operators. For pragmatic reasons and to reduce compilation times, some operators
are partially implemented in C++. We take care to generate query specific code, however, if the following two
conditions hold: The code is (1) performance critical and (2) query specific. For example, the hash join code is
mostly generated as it fulfills both criteria. However, spilling to disk during a join is so slow that this code can
be implemented in C++. But even some performance critical algorithms like sorting are implemented in C++, as
they are not really query specific. For sorting we only generate the comparison function that is used within the
C++ sorting algorithm. Such an interaction between LLVM and C++ code is very easy, because both operate on
the same data structures (in the same process) and can call each other without performance penalty.

4 Evaluation

To compare our data-centric compilation scheme with other approaches, we additionally implemented block-
wise processing, and the iterator model (both compiled and interpreted). All models operated on exactly the
same data structures and storage layout (column-wise storage). We used the following simple query as a mi-
crobenchmark:

select count(*) from R where a>0 and b>0 and c>0

By varying the number of filter conditions, which always evaluate to true, we obtain the following execution
times (in ms):

0 1 2 3
data-centric compilation 0.001 5.199 7.037 18.753
iterator model - compiled 3.283 16.009 28.185 40.475
iterator model - interpreted 3.279 30.317 58.701 90.299
block processing - compiled 10.97 13.129 20.001 26.292

Clearly, the interpreted iterator model is not competitive with compilation due to a huge number of function
calls and bad locality. The compiled iterator model and block-wise processing have much better performance,
but are still slower than the data-centric code. In these numbers we also see that the LLVM backend itself is an
optimizing compiler: If the query has no predicate at all, the LLVM compiler transforms the “scan and add 1 for
each tuple” code into “add up data chunk sizes”, which is much faster, of course.

Figure 5 shows the results of another experiment where we executed the first 7 TPC-H queries on scale factor
100 (the results for the remaining 15 queries are qualitatively similar). Since this paper is about compilation,

9

HyPer Vectorwise
TPC-H # compile executed code generated time in generated runtime runtime

1 13ms 5.6KB 42% 98% 9.0s 33.4s
2 37ms 10.9KB 58% 86% 2.4s 2.7s
3 15ms 6.6KB 36% 89% 27.5s 25.6s
4 12ms 6.2KB 33% 93% 21.6s 22.4s
5 23ms 8.1KB 42% 86% 31.4s 29.7s
6 5ms 1.1KB 82% 96% 5.5s 7.1s
7 31ms 9.4KB 51% 88% 23.8s 28.2s

geo. mean (all 22) 19ms 6.8KB 47% 81% 16.2s 21.5s

Figure 5: TPC-H results

we used single-threaded execution to measure code quality instead of scalability. As far as code generation is
concerned, intra-query parallelism is largely orthogonal, because all threads execute the same, synchronized
code. For HyPer, we show the execution and compilation times, the size of the machine code, the fraction of
the machine code that was generated at runtime using LLVM, and the fraction of time spent in the generated
code. For comparison, we also measured the execution times of the official TPC-H leader Vectorwise, which
uses block-wise processing. The execution time of HyPer for query 1, which consists of a fast aggregation of a
single table, is 3.7x faster than Vectorwise. The majority of the queries spent most time processing joins, so the
performance of both systems is similar, though HyPer is usually faster.

Although some of the TPC-H queries are quite complex, the compilation times remain quite low (cf. column
“compile”). In fact they are below the human perception threshold, so that users do not perceive any delay for
ad hoc queries. Compiling C code, in contrast, takes seconds [10] and would cause an unnecessary perceptible
delay. Note that we generate very compact code; the total size of all code executed by each query (cf. column
“executed code”) is significantly smaller than the instruction cache of modern CPUs (e.g., 32KB for Intel) – in
contrast to traditional systems, where instruction cache misses can be a problem [14]. On average about half
of the executed code is generated using LLVM (cf. column “generated”), the rest is pre-compiled C++ code
fragments, which are being called from the generated code. However, most of the performance critical code
paths are generated. In particular, this includes all data type specific code. Therefore, on average more than 80%
of the executed CPU cycles are in the generated code (cf. column “time in generated”).

5 Related Work

For query evaluation, most traditional disk-based database systems use the iterator model, which was proposed
by Lorie [8] and popularized by Graefe [3]. However, if most or all of the data is in main memory, the inter-
pretation overhead of the iterator model often becomes significant. Therefore, a number of approaches have
been proposed to improve performance. The MonetDB system [9] materializes all intermediate results, which
eliminates interpretation overhead at the cost of loosing pipelining completely. MonetDB/X100 [1], which was
commercialized as Vectorwise, passes chunks of data (vectors) between operators, which amortizes the operator
switching overhead. A detailed study that compares vectorized execution with compilation can be found in [13].

Another approach is to compile queries before execution. One early approach compiled queries to Java
bytecode [12], which can be executed using the Java virtual machine. The HIQUE system compiles queries
to C using code templates [6]. In this approach the operator boundaries are clearly visible in the resulting
code. Hekaton [2], Microsoft SQL Servers’s main-memory OLTP engine, compiles stored procedure into native
machine code using C as an intermediate language. The compiler interface mimics the iterator model and

10

collapses a query plan into a single function that consists of labels and branches between them. In our HyPer
system we generate data-centric LLVM code using the produce/consume model [10]. In this paper we show that
in a compilation-based system abstraction does not need to incur a performance penalty, as these abstractions
can be compiled away; this has also been observed by Koch [5].

6 Conclusions

We have presented how to compile code for data-centric query execution. Using the produce/consume model
and the LLVM compiler backend, our HyPer systems compiles SQL queries to very efficient machine code. Ad-
ditionally, we introduced a number of compile-time abstractions that simplify our query compiler by abstracting
away many of the low-level details involved in code generation. As a result, our query compiler is maintainable
and generates very efficient code.

References

[1] P. A. Boncz, S. Manegold, and M. L. Kersten. Database architecture evolution: Mammals flourished long
before dinosaurs became extinct. PVLDB, 2(2):1648–1653, 2009.

[2] C. Diaconu, C. Freedman, E. Ismert, P.-Å. Larson, P. Mittal, R. Stonecipher, N. Verma, and M. Zwilling.
Hekaton: Sql server’s memory-optimized oltp engine. In SIGMOD Conference, pages 1243–1254, 2013.

[3] G. Graefe. Query evaluation techniques for large databases. ACM Comput. Surv., 25(2):73–170, 1993.

[4] A. Kemper and T. Neumann. HyPer: A hybrid OLTP&OLAP main memory database system based on
virtual memory snapshots. In ICDE, pages 195–206, 2011.

[5] C. Koch. Abstraction without regret in data management systems. In CIDR, 2013.

[6] K. Krikellas, S. Viglas, and M. Cintra. Generating code for holistic query evaluation. In ICDE, pages
613–624, 2010.

[7] C. Lattner and V. S. Adve. LLVM: A compilation framework for lifelong program analysis & transfor-
mation. In ACM International Symposium on Code Generation and Optimization (CGO), pages 75–88,
2004.

[8] R. A. Lorie. XRM - an extended (n-ary) relational memory. IBM Research Report, G320-2096, 1974.

[9] S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing database architecture for the new bottleneck:
memory access. VLDB J., 9(3):231–246, 2000.

[10] T. Neumann. Efficiently compiling efficient query plans for modern hardware. PVLDB, 4:539–550, 2011.

[11] N. Ramsey and S. L. P. Jones. A single intermediate language that supports multiple implementations of
exceptions. In PLDI, pages 285–298, 2000.

[12] J. Rao, H. Pirahesh, C. Mohan, and G. M. Lohman. Compiled query execution engine using JVM. In
ICDE, page 23, 2006.

[13] J. Sompolski, M. Zukowski, and P. A. Boncz. Vectorization vs. compilation in query execution. In DaMoN,
pages 33–40, 2011.

[14] P. Tözün, B. Gold, and A. Ailamaki. OLTP in wonderland: where do cache misses come from in major
OLTP components? In DaMoN, 2013.

11

