
Processing Declarative Queries Through
Generating Imperative Code in Managed Runtimes

Stratis D. Viglas
School of Informatics

University of Edinburgh, UK
sviglas@inf.ed.ac.uk

Gavin Bierman
Microsoft Research

Cambridge, UK
gmb@microsoft.com

Fabian Nagel
School of Informatics

University of Edinburgh, UK
F.O.Nagel@sms.ed.ac.uk

Abstract

The falling price of main memory has led to the development and growth of in-memory databases. At the
same time, language-integrated query has picked up significant traction and has emerged as a generic,
safe method of combining programming languages with databases with considerable software engineer-
ing benefits. Our perspective on language-integrated query is that it combines the runtime of a program-
ming language with that of a database system. This leads to the question of how to tightly integrate these
two runtimes into one single framework. Our proposal is to apply code generation techniques that have
recently been developed for general query processing. The idea is that instead of compiling quereies
to query plans, which are then interpreted, the system generates customized native code that is then
compiled and executed by the query engine. This is a form of just-in-time compilation. We argue in this
paper that these techniques are well-suited to integrating the runtime of a programming language with
that of a database system. We present the results of early work in this fresh research area. We showcase
the opportunities of this approach and highlight interesting research problems that arise.

1 Introduction

Consider the architecture of a typical multi-tier application. The developer primarily decides on application
logic: the data structures and algorithms to implement the core functionality. The data persistence layers of
the application typically utilize a relational database system that has been optimized for secondary storage. It
is accessed through its own query language (likely some variant of SQL) through bindings from the host pro-
gramming language. The developer therefore has to deal with two different data models: (a) the application
data model, which captures the data structures, algorithms, use-cases, and semantics of the application; and
(b) the persistent data model, which captures the representation of data on secondary storage. An intermediate
layer bridges the two data models and undertakes the cumbersome task of automating as much as possible of
the translation between the two. The intermediate layer usually manifests as an API between the application
programming language that accepts SQL strings as input; propagates them to the relational database for process-
ing; retrieves the results; and pushes them back to the application for local processing. This clear separation of
responsibility, functional as it may be, is potentially suboptimal in the context of the contemporary computing

Copyright 2014 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

12



environment. Just-in-time query compilation into native code aims to resolve this suboptimality. In this paper
we examine the premises of this approach, showcase current work, and present opportunities for further work.

Our motivation stems from the observation that over the last few years we have been experiencing a slow
but steady paradigm shift in the data management environment. The first factor contributing to this shift has
been the continued reduction in price of main memory. This led to the working set of many data management
applications fitting entirely into memory, and, hence, the development of in-memory databases (IMDBs). The
development of IMDBs has addressed the efficiency problems of query processing over memory-resident data, as
opposed to their on-disk counterparts. Work in this area has involved the development of new storage schemes
(e.g., column stores); new algorithms; and new database kernels that are optimized for main-memory I/O (e.g.,
MonetDB). All these state-of-the-art solutions still make a key assumption: SQL is the entry point to the system.

The second factor contributing to the paradigm shift is the ever-tighter integration between SQL and the query
specification mechanisms of host programming languages. As mentioned earlier, the mismatch between applica-
tion data models and the relational model makes the mapping between the two cumbersome. The preprocessor-
based approaches, e.g., embedded SQL, substitute preprocessor macros with library calls and perform data type
marshalling between the two runtimes; whereas library-based approaches are only slightly less intrusive by es-
chewing the preproccesor burden and having a tighter interface between SQL and platform types. But queries
are still expressed in SQL and the library only undertakes type translation. Language-integrated query [10] is a
relatively new class of techniques that rectifies this situation by enabling queries to be expressed using constructs
of the host programming language. Developers have a uniform mechanism to pose queries over a disparate array
of sources like web services, spreadsheets, and, of course, relational databases. The language-integrated query
mechanism translates the query expressed in the host programming language to a format the source provider
can process (e.g., SQL if the provider is a relational database), transmits the query to the provider, retrieves the
results, and converts them to host programming language types. This method feels more natural to the devel-
oper and is less error-prone. It does not solve, however, the fundamental problem of data being represented and
potentially stored in two different runtimes: the host programming language and a remote source—a relational
database in the majority of cases and the ones we focus on in this work.

We argue that in integrating querying between managed runtimes and in-memory database systems the best
option is to blur the line between programming language and database system implementations, while, at the
same time, borrowing ideas from compiler technology. Our stance is to internally fuse the two runtimes as much
as possible so host-language information is propagated to the query engine; and database-friendly memory
layouts and algorithms are used to implement the querying functionality. In what follows we will present the
background for this line of research more extensively, including a brief overview of the current state-of-the-art
(Section 2). We will then move on to exposing the synergy between the two runtimes (Section 3). We will
present how the runtimes can be better integrated and showcase the open research directions in the area with an
eye towards technologies to come (Section 4) before finally concluding our discussion (Section 5).

2 Background

Query processing has always involved striking a fine balance between the declarative and the procedural: man-
aging the expressive power of a declarative language like SQL and mapping it to efficient and composable
procedural abstractions to evaluate queries. Historically, relational database systems have compiled SQL into an
intermediate representation: the query (or execution) plan. The query plan is composed of physical algebraic
operators all communicating through a common interface: the iterator interface [13]. The query plan is then
interpreted through continuous iterator calls to evaluate the query. This organization has many advantages for
the database system: (a) it provides a high-level way to optimize queries through cost-based modeling; (b) it is
extensible, as new operators can seamlessly be integrated so long as they implement the iterator interface; and
(c) it is generic in its implementation of algorithms, which can be schema- and type-agnostic. This technique

13



has made SQL a well-optimized, but interpreted, domain-specific language for relational data management, and
has formed the core of query engine design for more than thirty years.
Interpretation and macro-optimization. By catering for generality SQL interpretation primarily enables the
use of macro-optimizations. That is, optimizations that can be performed at the query plan and operator levels,
e.g., plan enumeration strategies; cost modeling; algorithmic improvements; to name but a few of the better-
known macro-optimizations. This view makes sense as SQL has been traditionally optimized for the boundary
between on-disk and in-memory data, in other words I/O over secondary storage: choices at the macro level
dramatically affect the performance of a query as they drastically change its performance profile.
The move to in-memory databases. In contemporary servers with large amounts of memory, it is conceivable
for a large portion of the on-disk data—or even the entire database—to fit in main memory. In such cases,
the difference in access latency between the processor’s registers and main memory becomes the performance
bottleneck [3]. To optimize execution one needs to carefully craft the code to minimize the processor stalls
during query processing. Previous work [2, 28] has argued that this should be done from the ground up: changing
the data layout to achieve enhanced cache locality, and then implementing query evaluation algorithms in terms
of the new layout. The initial step in that direction was the further exploration of vertical decomposition [11] and
the subsequent work on column stores [5] and query processing kernels optimized for main memory that have
been built around them [28]. A stream of work in the area has introduced hybrid storage layouts [2]; vectorized
execution for greater locality [6, 33]; and prefetching [7, 8, 9] to improve performance.

host OS

hardware

native compiler

native code

host OS

hardware

virtual machine 
managed runtime

managed heap

host OS

hardware

bytecode 
compiler

source code

bytecode

just-in-time 
compiler

frontend compiler

bytecode

backend compiler

native code

host OS

hardware

native code

Figure 1: The options when compiling and executing source code:
from source code to native code; from source code to bytecode to be
executed in a managed runtime, either in an interpreted or in a just-
in-time compiled way; from source code to bytecode for a virtual
machine to be recompiled by a retargetable backend compiler.

Code generation and execution. The
advances in programming language design
and implementation have been progressing
independently of the work on relational
database query processing. Some of the
options in compiling source code in gen-
eral and natively executing it are shown in
Figure 1. Moving from left to right, the tra-
ditional option is to compile source code
directly into native code to be executed by
a host operating system (OS) on specific
hardware; moving to different OS and hard-
ware requires a version of the compiler for
the target environment. Alternatively, the
source code can be compiled into an in-
termediate representation termed bytecode
that targets a virtual machine, as opposed
to a physical one. Then an OS-specific im-
plementation of the virtual machine, some-
times also referred to as a managed run-
time, interprets the bytecode on the target OS and hardware. Part of the virtual machine is a managed heap: the
space inside the virtual machine that is used for allocation of language-specific data structures. It is therefore the
case that the virtual machine makes memory allocation calls to the OS, but then manages the language-specific
data structures itself. This gives way to more advanced memory management techniques like garbage collection:
the programmer need not explicitly account for memory allocation and deallocation as the virtual machine can
track references to memory blocks internally and deallocate memory when it is no longer referenced. Moving
to different OS and hardware now requires a different version of the virtual machine for the target environment,
rather than a version of the compiler, as bytecode is OS- and hardware-independent. In a managed runtime,
bytecode is interpreted as opposed to being natively executed. Just-in-time (JIT) compilation allows managed
runtimes to convert blocks of bytecode to native code through a native compiler for the platform. JIT compilation

14



is a powerful set of technologies that can lead to managed runtime performance that is comparable to a native
implementation. There is a cost associated with JIT compilation as calling the compiler itself and dynamically
binding the compiled code to the interpreted bytecode can be a more time-consuming operation than simply
interpreting the bytecode. It is, however, a one-off cost and, for frequently executed blocks of code, that cost is
amortized. Another option is to split compilation into two steps: a frontend compiler that translates source code
into an intermediate bytecode representation; and a backend compiler that translates the intermediate representa-
tion into native code on demand and for each target OS and hardware. This means that the code can be executed
on any environment for which a backend compiler exists, in contrast to relying on a virtual machine as was
the case before. The first compilation step generates code for a register-based virtual machine that closely re-
sembles contemporary processors and applies all code-specific and platform-independent optimizations possible
(e.g., register allocation and reuse). Whereas the backend compiler applies platform-specific optimizations that
target the underlying OS and hardware. Effectively, such a stack turns JIT compilation in the principal way of
code execution. The low-level virtual machine (LLVM) [27] is a typical example of such multi-stage compilation
and optimization.
Relational databases as a managed runtime. There is an analogy to be drawn with query processing: SQL is
effectively an interpreted language. The differences to standard programming language terminology is that we
no longer interpret user programs but user queries. Additionally, the unit of translation is not a single statement
or a code block, but potentially an entire query or an operator in a query tree. It is therefore no surprise that
the revival of native code generation for SQL has started from applying these techniques in managed runtimes.
Efforts in the area include the Daytona fourth generation language [14] that used on-the-fly code generation
for high-level queries. This system, however, relied heavily on functionality that is traditionally handled by the
database (e.g., memory management, transaction management, I/O) to be provided by the underlying operating
system. Similarly, the popular SQLite embedded database system, used an internal virtual machine as the execu-
tion mechanism for all database functionality and all operations are translated into virtual machine code to be
executed [19]. Rao et al. [37] used the reflection API of Java to implement a native query processor targeting the
Java virtual machine. Though again limited in its applicability, as it relied on Java support and was not an SQL

processor but rather a Java-based query substrate for main memory.

3 Just-in-time compilation for SQL processing

An alternate route that has only recently begun to be explored is the application of micro-optimizations stemming
from the use of standard compiler technology. That is, viewing SQL as a programming language and compiling
it either into an intermediate representation to be optimized through standard compiler technology, or directly
into native code. Such an approach does away with interpreting the query plan, blurs the boundaries between
the operators of the iterator-centric solution, and collapses query optimization, compilation, and execution into
a single unit. The result is a query engine that is free of any database-specific bloat that frequently accompanies
generic solutions and, in a host of recent work, has exhibited exceptional performance.

In a strictly database context, past work has identified the generality of the common operator interface em-
ployed by the query engine, namely the iterator model, as the biggest problem with the dataflow of a database
system [25]. The iterator model results in a poor utilization of the processor’s resources. Its abstract implemen-
tation and its use of function calls inflates the total number of instructions and memory accesses required during
query evaluation. One would prefer to make optimal use of the cache hierarchy and to reduce the load to the CPU

and to the main memory. At the same time, one would not want to sacrifice the compositionality of the iterator
model. To that end, Krikellas et al. [25] proposed holistic query evaluation. The idea is to inject a source code
generation step in the traditional query evaluation process. The system looks at the entire query and optimises
it holistically, by generating query-specific source code, compiling it for the host hardware, and then executing
it. Using this framework, it is possible to develop a query engine that supports a substantial subset of SQL and is

15



highly efficient for main-memory query evaluation. The architecture of a holistic query engine is shown in Fig-
ure 2. The processing pipeline is altered through the injection of a code generation step after the query has been
optimized. The output of the optimizer is a topologically sorted list O of operator descriptors oi. Each oi has as
input either primary table(s), or the output of o j, j < i. The descriptor contains the algorithm to be used in the
implementation of each operator and additional information for initializing the code template of that algorithm.
The entire list effectively describes a scheduled tree of physical operators since there is only one root operator.
The optimized query plan is traversed and converted into C code in two steps per operator: (a) data staging,
where the system performs all filtering operations and necessary preprocessing (e.g., sorting or partitioning);
and (b) holistic algorithm instantiation: the source code that implements the semantics of each operator. The
holistic model includes algorithms for all major query operations like join processing, aggregation, and sorting.
The code generator collapses operations where possible. For instance, in the presence of a group of operators
that can be pipelined (e.g., multiple pipelined joins, or aggregations over join outputs) the code generator nests
them in a single code construct. The code is generated so there are no function calls to traverse the input; rather,
traversal is through array access and pointer arithmetic. Once the code is generated, it is compiled by the C com-
piler, and the resulting binary is dynamically linked to the database engine. The latter loads the binary and calls
a designated function to produce the query result. The nested, array-based access patterns that the generated
code exhibits further aid both the compiler to generate efficient code at compile-time, and the hardware to lock
on to the access pattern and issue the relevant prefetching instructions at run-time. The resulting code incurs a
minimal number of function calls: all iterator calls are replaced with array traversals. Additionally, the cache
miss profile of the generated code is close to that of query-specific hand-written code. These factors render
holistic query processing as a high-performance, minimal-overhead solution for query processing. For example,
in a prototype implementation, TPC-H Query 1 is reported to be over 150 times faster than established database
technology.

backend

executorpreparator

frontend

parser

optimizer

generator

evaluator

linker

compiler

query results

storage manager

catalog tables bufferpool

schemas

statistics

types

pages

syntax tree

query plan

code

binary

library

Figure 2: The architecture of HIQUE, the
Holistic Integrated QUery Engine [25]

The next fundamental piece of work on just-in-time compi-
lation for SQL was by Neumann [31] and forms the basis of the
query engine of the HyPer system [21], a hybrid main memory
system targeting both OLTP and OLAP workloads. The proposal
was to use compiler infrastructure for code generation; the result-
ing techniques were built on the LLVM framework. The main
insight was that one should follow a data-centric as opposed to
an operator-centric approach to query processing and thus depart
from the traditional approach, which is based on evaluation plans
with clear boundaries between operators. The high performance
of these techniques further corroborates the wide applicability of
code generation and just-in-time compilation of SQL queries [32].
These two systems prompted a number of further works. A com-
parison of just-in-time compilation to vectorized query process-
ing based on vertical partitioning was undertaken by Sompolski
et al. [40]. Their conclusion was that a hybrid solution can of-
fer better performance. Zhang and Yang [42] applied polyhedral
compilation primitives to optimize the I/O primitives in array an-
alytics; while the techniques were different in terms of the compilation primitives, the results were similarly
conducive to code generation as a viable query processing alternative. Kissinger et al. [22] applied the tech-
niques for specialized processing on prefix trees, where the domain was much more controlled than full SQL

evaluation. At a higher-level, Pirk et al. [35] ported the idea to general purpose GPUs. Part of a relational com-
putation was specialized for and offloaded to the GPU in order to take advantage of the asymmetric memory
channels between the two processors and improve memory I/O; the results were encouraging and showed per-
formance improvements for key-foreign key joins. Murray et al. [29] applied a similar approach for LINQ [4]

16



in the context of declarative processing, where the objective was to eliminate some of the bloat of a high-level
runtime. As is true for all approaches based on code-generation the result was streamlined execution and a dra-
matic reduction in function invocations. Finally, the DBToaster project [1, 23] uses materialized views to store
data and expresses SQL queries in an internal representation to incrementally evaluate the queries over the deltas
of the updated primary data. The view maintenance mechanisms are converted to C++ or Scala code so they can
be integrated into applications written in these languages.

4 The runtime is the database

Given the convergence of the two areas and the emergence of language-integrated query, it is reasonable to
integrate the programming language and the database runtimes more tightly. The foremost reason is so data
is not replicated in different data models across the two runtimes—especially in the context of IMDBs. More-
over, a tighter integration allows for improved type safety and less error-prone translations between data models.
Likewise, an integrated runtime is more natural to the developer as it does not require them to think for two
different runtime and data representations. Finally, it enables both language- and database-specific optimiza-
tions, resulting in a high-performance solution that is greater than the sum of its parts. Code generation and
just-in-time compilation are the key technologies that can facilitate the transition to turn the managed runtime
into a full-blown database solution. We will now present a list of research opportunities that arise from this
tighter integration between programming language and database runtimes, all stemming from the introduction
of (potentially just-in-time) code generation for the data management and query processing substrates.
Memory allocation and management. We first deal with the mismatch between the memory model of a
programming language in a managed runtime and that of an IMDB. Memory allocation and deallocation in
a managed runtime is triggered by application code, but is solely handled by the runtime itself through the
managed heap (see also Figure 1). The developer declares types and requests instances of those types for the
application. The runtime allocates memory and keeps track of references to that memory. Once instances are
no longer referenced they can be deallocated from the managed heap and their memory reclaimed. On the other
hand, database data is organized in records that reside in tables. This requires special treatment as the storage
requirements and access patterns are not the ones typically found in general data structures. One approach is to
extend the collection framework1 found in most managed runtimes with table-specific types that will be managed
in a more database-friendly way. This can be achieved by either creating table-aware collections (e.g., a Table

collection type) or table-aware element types (we call these tabular types), or both. This would allow the runtime
to be aware of such types and treat them with database query processing in mind; at the same time, it would allow
their seamless use in the rest of the managed runtime using the semantics of the host programming language.
Code generation can automate the process either at compile-time by generating different representations for
database collections, or at run-time by interjecting and customizing the representation to make it database-like.
Memory layout. Following on from the tabular type declaration, the next step is to represent such types in main
memory. A table is effectively a collection of records. A typical way to represent such collections in managed
runtimes would be through a collection type like an ArrayList. The in-memory representation of an ArrayList

in a managed runtime, however, implies that, for any non-primitive types such as records, the array elements are
references to objects allocated on the managed heap. This contrasts with the more familiar array representation
in languages like C/C++ where data is laid out continuously in memory. The difference is shown in Figure 3.
Doing away with references and data fragmentation reduces the number of cache misses, e.g., in the case of an
array traversal. At the same time, it allows the hardware to detect the access pattern and aggressively prefetch
data. Note that some runtimes have support for more complicated value-types (e.g., the struct type in C♯) which
can then be grouped into arrays. However, there are restrictions on how they are processed by the runtime. When
implementing dynamic arrays, the method of progressively doubling the array on expansion which is commonly

1These are libraries of abstract data types like linked-lists, arrays, and search trees used to store homogeneous collections of objects.

17



found in programming languages (e.g., Java and C♯ ArrayLists, or even C++ vectors) is not the best option as it
results in a high data copying overhead. Instead, a blocked memory layout is more beneficial and such techniques
can be incorporated when integrating the programming language and database runtimes [5, 28, 41]. Inlining
techniques are not only relevant to arrays as a principal data organization. They are useful in other auxiliary data
structures like indexes where saving multiple pointer/reference traversals through careful inlining will result in
substantial accumulated savings. Either the compiler can statically determine optimization opportunities, or the
runtime can dynamically customize the layout through just-in-time compilation.

r
1

r
2

r
3

r
4

r
5

r
6

d
1

d
2

d
3

d
4

d
5

d
6

d
1

d
2

d
3

d
4

d
5

d
6

array of references to records

array of inlined records

Figure 3: Standard vs. inlined representation
of tabular data; the second option is closer to
an IMDB memory layout.

Data access semantics and decomposition model. Managed
runtimes can further benefit from a workload-driven representa-
tion of data in memory. For instance, one might consider hints
by the developer to designate key constraints over a tabular col-
lection. Alternatively, either through developer hints or through
statically analyzing the code, the compiler can detect cases where
vertical decomposition or a different grouping of fields in a tab-
ular collection is more beneficial and generate the appropriate
code. Consider the following suggestive code fragment:

public tabular order {

public key int number;

public access date orderdate;

group { public int quantity; public string item; }}

where, in defining the new tabular type (marked with a keyword
tabular), we also specify a key constraint on the number field;
give an access method hint on the date field and exclude these
two fields from the main group to indicate to the runtime that they are frequently accessed individually (e.g., in
selections). The compiler and the runtime can use this information to build auxiliary structures and/or alter the
main memory layout for the elements of this collection. For instance, indexes may be automatically built on the
number and date attributes: the first one to enforce the key constraint, the second one to improve performance.
Likewise, it may well be the case that the system chooses to employ a partially decomposed storage model à
la Hyrise [15] which mixes row- and column-based storage to maximize performance (e.g., storing number and
date in a columnar fashion). Note that work in coupling JIT compilation with partial decomposition has been
undertaken in the context of database query processing and has produced encouraging results [34].
Code caching. One underlying assumption is that the compilation cost can be amortized, as, for short-running
queries, compilation time may be in the same order as query processing time [25, 31]. If the workload is
static this is not a problem as compilation is a one-off cost. But if the workload is dynamic, then compilation
becomes a bottleneck. One future work direction is to provide adaptive solutions to automatically identify the
queries that are good candidates for compilation, in truly JIT-like form. Additionally, in a dynamic system,
compiled queries take up space in the memory. It is then conceivable to couple the JIT compilation decisions
with admission control policies where the system manages a fixed memory budget for compiled queries and
decides when queries are admitted and evicted from the compiled query pool. Work on intermediate and final
result caching [12, 20, 24, 30, 39] and batch-based multi-query optimization [38] may be of benefit here.
Manycore processing. Code generation for query processing in managed runtimes may be of benefit in, po-
tentially heterogeneous, manycore systems. Krikellas et al. [26] took a first step towards this with multithreaded
processing on multicore CPUs, though the JIT compiler was mainly a tool and not the primary object of study.
Code generation can be helpful for parallel processing as it allows fine parallelization orchestration without re-
lying on generic parallelization solutions through coarse-grained techniques. At the same time, it fits well with
work on JIT-compiled approaches to heterogeneous manycore runtimes like OpenCL [17]. It seems natural to
explore the potential for synergy between these approaches for SQL query processing.

18



Non-volatile memory. Non-volatile, or persistent, memory enables the persistence of data stored in the man-
aged heap. Non-volatile memory (NVM) is a new class of memory technology with the potential to deliver on
the promise of a universal storage device. That is, a storage device with capacity comparable to that of hard disk
drives; and access latency comparable to that of random access memory (DRAM). Such a medium blurs even fur-
ther the line between application programming and data management and will most likely solidify the need for
extending managed runtimes with data management and query processing capabilities without any need for of-
floading processing to a relational database. Performance-wise, non-volatile memory sits between flash memory
and DRAM: its read latency is only 2-4 times slower than DRAM compared to the 32 times slower-than-DRAM

latency of flash [36]. However, NVM is byte-addressable, which is in stark contrast to block-addressable flash
memory. At the same time, NVM exhibits the write performance problems of flash memory: writes are more
than one order of magnitude slower than DRAM, and thus more expensive than reads. Persistent memory cells
also have limited endurance, which dictates wear-leveling data moves across the device to increase its lifetime,
thereby further amplifying write degradation. Recent work has argued that in the presence of persistent memory
one should cater for the read/write asymmetry by specifying and dynamically altering the write-intensity of the
processing algorithms depending on the workload [41]. It is therefore sensible to inject these dynamic decisions
to the runtime through appropriate JIT compilation techniques.
Transactional processing. Another potential direction is transaction processing and concurrency control. That
is not to say that radically different concurrency control mechanisms are needed for JIT-compiled queries; quite
the contrary, one of the reasons that the approach works so well is that it does not affect orthogonal system
aspects. One can, however, compile the concurrency control primitives themselves to a lower-level for more effi-
cient code without compromising integrity. One possibility is to create workload-specific locking protocols and
then automatically generate code for them. An alternative is to compile concurrency into hardware transactional
memory primitives [16, 18] and thus further customize the code for the host hardware.

5 Conclusions and outlook

Code generation for query processing is a new and potentially game-changing approach to a core database use-
case: integrating database systems with programming languages. Prior work in the context of code generation
for SQL processing has exhibited significant performance improvements over traditional techniques and, as such,
the approach is very promising. It is therefore sensible to aim for a tighter integration between the runtime of a
programming language and that of an in-memory database system. We have argued that the more natural way
to achieve this is through code generation and native support for the forms of just-in-time compilation found in
most contemporary managed runtimes. We have showcased the state-of-the-art work in this area and showed
how it enables highly efficient query processing. As is the case with any new research area, especially one that
drops fundamental assumptions, there are quite a few open research questions. We have provided a list of such
open questions with an eye towards improving the support for processing of a declarative query language like
SQL in the context of a general purpose programming language with language-integrated query functionality.

Acknowledgments. This work was supported by a Microsoft Research PhD Scholarship and the Intel Univer-
sity Research Office through the Software for Persistent Memories program.

References

[1] Y. Ahmad, O. Kennedy, C. Koch, and M. Nikolic. DBToaster: Higher-order delta processing for dynamic,
frequently fresh views. Proc. VLDB Endow., 5(10), 2012.

[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis. Weaving relations for cache performance. In
VLDB, 2001.

19



[3] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. DBMSs on a modern processor: Where does time
go? In VLDB, 1999.

[4] G. M. Bierman, E. Meijer, and M. Torgersen. Lost In Translation: Formalizing Proposed Extensions to C#.
In OOPSLA, 2007.

[5] P. Boncz. Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications. PhD thesis, Univer-
siteit van Amsterdam, 2002.

[6] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-Pipelining Query Execution. In CIDR,
2005.

[7] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry. Inspector joins. In VLDB, 2005.

[8] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry. Improving hash join performance through prefetch-
ing. ACM Trans. Database Syst., 32(3), 2007.

[9] S. Chen, P. B. Gibbons, and T. C. Mowry. Improving index performance through prefetching. In SIGMOD,
2001.

[10] J. Cheney, S. Lindley, and P. Wadler. A practical theory of language-integrated query. In ICFP, 2013.

[11] G. P. Copeland and S. Khoshafian. A Decomposition Storage Model. In SIGMOD, 1985.

[12] S. Finkelstein. Common expression analysis in database applications. In SIGMOD, 1982.

[13] G. Graefe. Query Evaluation Techniques for Large Databases. ACM Comput. Surv., 25(2), 1993.

[14] R. Greer. Daytona And The Fourth-Generation Language Cymbal. In SIGMOD, 1999.

[15] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-Mauroux, and S. Madden. HYRISE: A main memory
hybrid storage engine. PVLDB, 4(2), 2010.

[16] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya,
C. Kozyrakis, and K. Olukotun. Transactional memory coherence and consistency. In ISCA, 2004.

[17] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and V. Markl. Hardware-oblivious parallelism for in-
memory column-stores. PVLDB, 6(9), 2013.

[18] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for lock-free data structures.
In ISCA, 1993.

[19] D. R. Hipp, D. Kennedy, and J. Mistachkin. SQLite database. http://www.sqlite.org. Online; ac-
cessed February 2014.

[20] M. G. Ivanova, M. L. Kersten, N. J. Nes, and R. A. Gonçalves. An architecture for recycling intermediates
in a column-store. In SIGMOD, 2009.

[21] A. Kemper and T. Neumann. HyPer: A hybrid OLTP & OLAP main memory database system based on
virtual memory snapshots. In ICDE, 2011.

[22] T. Kissinger, B. Schlegel, D. Habich, and W. Lehner. QPPT: Query processing on prefix trees. In CIDR,
2013.

[23] C. Koch. Incremental query evaluation in a ring of databases. In PODS, 2010.

20



[24] Y. Kotidis and N. Roussopoulos. Dynamat: a dynamic view management system for data warehouses. In
SIGMOD, 1999.

[25] K. Krikellas, S. D. Viglas, and M. Cintra. Generating code for holistic query evaluation. In ICDE, 2010.

[26] K. Krikellas, S. D. Viglas, and M. Cintra. Modeling multithreaded query execution on chip multiprocessors.
In ADMS, 2010.

[27] C. Lattner. LLVM: An Infrastructure for Multi-Stage Optimization. Master’s thesis, Computer Science
Dept., University of Illinois at Urbana-Champaign, 2002.

[28] S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing database architecture for the new bottleneck:
memory access. The VLDB Journal, 9, 2000.

[29] D. G. Murray, M. Isard, and Y. Yu. Steno: Automatic Optimization of Declarative Queries. In PLDI, 2011.

[30] F. Nagel, P. Boncz, and S. D. Viglas. Recycling in pipelined query evaluation. In ICDE, 2013.

[31] T. Neumann. Efficiently compiling efficient query plans for modern hardware. Proc. VLDB Endow., 4(9),
2011.

[32] T. Neumann and V. Leis. Compiling database queries into machine code. IEEE Data Engineering Bulletin,
37(1), 2014.

[33] S. Padmanabhan, T. Malkemus, and R. Agarwal. Block oriented processing of relational database opera-
tions in modern computer architectures. In ICDE, 2001.

[34] H. Pirk, F. Funke, M. Grund, T. Neumann, U. Leser, S. Manegold, A. Kemper, and M. L. Kersten. CPU
and cache efficient management of memory-resident databases. In ICDE, 2013.

[35] H. Pirk, S. Manegold, and M. Kersten. Accelerating Foreign-Key Joins using Asymmetric Memory Chan-
nels. In ADMS, 2011.

[36] M. K. Qureshi, S. Gurumurthi, and B. Rajendran. Phase Change Memory: from devices to systems. Morgan
& Claypool Publiishers, 2012.

[37] J. Rao, H. Pirahesh, C. Mohan, and G. Lohman. Compiled query execution engine using JVM. In ICDE,
2006.

[38] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible algorithms for multi query
optimization. In SIGMOD, 2000.

[39] T. K. Sellis. Intelligent caching and indexing techniques for relational database systems. Inf. Syst., 13,
1988.

[40] J. Sompolski, M. Zukowski, and P. Boncz. Vectorization vs. compilation in query execution. In DaMoN,
2011.

[41] S. D. Viglas. Write-limited sorts and joins for persistent memory. PVLDB, 7(5), 2014.

[42] Y. Zhang and J. Yang. Optimizing I/O for Big Array Analytics. PVLDB, 5(8), 2012.

21


