
Bulletin of the Technical Committee on

Data
Engineering
June 2014 Vol. 37 No. 2 IEEE Computer Society

Letters
Letter from the Editor-in-Chief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . David Lomet 1
Letter from the Special Issue Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Per-Ake Larson 2

Special Issue on Adapting Database Systems to Flash Storage
Search: Multi-Path Search for Tree-based Indexes to Exploit Internal Parallelism of Flash SSDs . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hongchan Roh, Sanghyun Park, Mincheol Shin, and Sang-Won Lee 3
Optimizing Database Operators by Exploiting Internal Parallelism of Solid State Drives . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Yulei Fan, Wenyu Lai, and Xiaofeng Meng 12
Query Processing on Smart SSDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . Kwanghyun Park, Yang-Suk Kee, Jignesh M. Patel, Jaeyoung Do, Chanik Park, and David J. DeWitt 19
Supporting Transactional Atomicity in Flash Storage Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Gi-Hwan Oh, and Changwoo Min 27
Integrating SSD Caching into Database Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Xin Liu and Kenneth Salem 35

Conference and Journal Notices
TCDE Membership Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .back cover



Editorial Board

Editor-in-Chief

David B. Lomet

Microsoft Research

One Microsoft Way

Redmond, WA 98052, USA

lomet@microsoft.com

Associate Editors

Juliana Freire

Polytechnic Institute of New York University

2 MetroTech Center, 10th floor

Brooklyn NY 11201-3840

Paul Larson

Microsoft Research

One Microsoft Way

Redmond, WA 98052

Sharad Mehrotra

Department of Computer Science

University of California, Irvine

Irvine, CA 92697

S. Sudarshan

Computer Science and Engineering Department

IIT Bombay

Powai, Mumbai 400076, India

Distribution

Brookes Little

IEEE Computer Society

10662 Los Vaqueros Circle

Los Alamitos, CA 90720

eblittle@computer.org

The TC on Data Engineering
Membership in the TC on Data Engineering is open to

all current members of the IEEE Computer Society who

are interested in database systems. The TCDE web page is

http://tab.computer.org/tcde/index.html.

The Data Engineering Bulletin
The Bulletin of the Technical Committee on Data Engi-

neering is published quarterly and is distributed to all TC

members. Its scope includes the design, implementation,

modelling, theory and application of database systems and

their technology.

Letters, conference information, and news should be sent

to the Editor-in-Chief. Papers for each issue are solicited

by and should be sent to the Associate Editor responsible

for the issue.

Opinions expressed in contributions are those of the au-

thors and do not necessarily reflect the positions of the TC

on Data Engineering, the IEEE Computer Society, or the

authors’ organizations.

The Data Engineering Bulletin web site is at

http://tab.computer.org/tcde/bull_about.html.

TCDE Executive Committee

Chair
Kyu-Young Whang

Computer Science Dept., KAIST

Daejeon 305-701, Korea

kywhang@mozart.kaist.ac.kr

Executive Vice-Chair
Masaru Kitsuregawa

The University of Tokyo

Tokyo, Japan

Advisor
Paul Larson

Microsoft Research

Redmond, WA 98052

Vice Chair for Conferences
Malu Castellanos

HP Labs

Palo Alto, CA 94304

Secretary/Treasurer
Thomas Risse

L3S Research Center

Hanover, Germany

Awards Program
Amr El Abbadi

University of California

Santa Barbara, California

Membership
Xiaofang Zhou

University of Queensland

Brisbane, Australia

Committee Members
Alan Fekete

University of Sydney

NSW 2006, Australia

Wookey Lee

Inha University

Inchon, Korea

Erich Neuhold

University of Vienna

A 1080 Vienna, Austria

Chair, DEW: Self-Managing Database Sys.
Shivnath Babu

Duke University

Durham, NC 27708

Co-Chair, DEW: Cloud Data Management
Hakan Hacigumus

NEC Laboratories America

Cupertino, CA 95014

SIGMOD Liason
Anastasia Ailamaki
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Letter from the Editor-in-Chief

Changing Editors

One of the practices I inherited from Won Kim, when I became Bulletin Editor-in-Chief, was the practice of
appointing four associate editors for two year terms. This provides a continuing string of issues with fresh
content and enthusiastic editors. This means that every two years, I bid farewell to current editors and introduce
new editors. Selecting editors is the most important part of what I do. And I am proud of my success in being
able to enlist distinguished members of the database community as editors.

This issue marks the end of the terms of current editors, as each has now contributed two issues. I want to
thank all of them for continuing the Bulletin’s success in producing high quality, insightful, and timely issues
on a compelling set of diverse topics. So thank you Juliana Freir, Paul Larson, Sharad Mehrotra, and Sudarshan
for your very successful issues.

Let me now introduce the new associate editors who will be carrying the ”Bulletin torch” for the next two
years. They are Chris Jermaine of Rice University, Betina Kemma of McGill University, David Maier of Portland
State University, and Xiaofang Zhou of the University of Queensland. I am delighted to be working with this
new set of great editors- who I am confident will ensure that the Bulletin, and its readers, continue to prosper.

The Current Issue

It is now widely recognized that the underlying hardware upon which database systems are built has changed
radically over the past few years. Modern processors are very different from earlier generations. And, the subject
of the current issue, modern secondary storage devices are increasingly based on flash storage.

Flash is, in some respects, very different from hard disks, but in some respects it returns us to an earlier
architectural age. Access latency and access rates are very substantially better than provided by hard disks. In-
terestingly, when juxtaposed with processor speed, flash’s enhanced performance brings us back to the “relative”
performance of hard disks vs older processors.

Because flash has different characteristics than hard disks, however, dropping flash into a current database
system is very wide of the mark in using flash in a most effective manner. Flash writes are expensive compared
to reads, and particularly random writes are very expensive. Flash also wears out, and requires strategies to
extend its effective lifetime. Further, there is performance to be gained if the internal characteristics of flash
solid state disks (SSDs) can be exploited.

The current issue provides a cross section of techniques being explored within the data management research
community to exploit the unique properties of flash storage. It provides a very nice introduction to this increas-
ingly important area. I want to thank Paul Larson for assembling this very timely issue, timely because flash
storage will only get more important and pervasive as time goes on, whether deployed on user premises or in the
cloud.

David Lomet
Microsoft Corporation
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Letter from the Special Issue Editor

Relational database systems were designed assuming data would be stored on hard disks (HDD) which, at the
time, was the only realistic choice. Over the years database systems have been optimized for HDD storage.
Solid state disks (SSD) based on flash storage have now become an attractive alternative, offering much higher
performance albeit at higher prise per GB. Simply replacing HDDs by faster SSDs can produce impressive
performance improvements but a database system optimized for HDDs may not fully exploit the capabilities of
SSDs. SSDs have different characteristics and capabilities than HDDs. For example, on SSDs writes are much
more expensive than reads. So how should database systems adapt to fully exploit the capabilities of flash SSDs
while also avoiding some of their limitations? The papers in this special issue explore different aspects of this
challenge.

The first three papers explore ways to exploit the substantial internal parallelism of a flash SSD. The paper
by Roh et al on MPSearch proposes a way to speed up individual B-tree operations by exploiting the fact that a
single device can process multiple I/O request concurrently. The key idea is to submit a batch of read or write
requests at once instead of one at a time. Their experimental results show significant speed-up on range searches
and inserts.

In the second paper, Fan et al propose a striped layout of pages such that pages from different stripes are
accessed through different internal channels of the SSD. This layout makes it possible to scan different stripes
in parallel. They then show how this can be exploited to speed up scans, aggregation, joins, and sorts.

Smart SSDs with a programmable processor inside the device are on the horizon. This makes it possible
to push some processing down into the device, leverage its internal parallelism, and reduce the amount of
data returned to the host. The paper by Park et al explores the opportunities and challenges arising from this
functionality. Their results show significant speedups for highly selective queries.

Flash SSDs do not perform updates in place; a modified page is always written to a new physical page.
This property has primarily been seen as a challenge to overcome but this too provides opportunities for im-
provement. A flash device essentially implements shadow paging - after a write, the old copy of the page still
remains. The paper by Kang et al proposes to take advantage of this property by delegating the responsibility
for ensuring transactional atomicity to the device. Their experimental results show greatly reduced transaction
latency compared with the traditional approaches currently used by SQLite.

SSDs are increasingly being used as a persistent second-tier cache, that is, as an extension of the buffer pool.
This raises the question of how to most efficiently manage such a two-level cache, which is the issue explored
in the paper by Liu and Salem. An easy solution is to manage the two caches completely independently of
each other but, as shown in the paper, this is not best strategy. They introduce an integrated strategy and
experimentally show that this improves the overall cache performance.

I would like to extend a heartfelt thanks to the authors for their contributions to this issue.
Happy reading! I trust that you will find the papers as interesting as I did.

Per-Ake Larson
Microsoft Corporation

2



MPSearch: Multi-Path Search for Tree-based Indexes to Exploit
Internal Parallelism of Flash SSDs

Hongchan Roh, Sanghyun Park, Mincheol Shin, and Sang-Won Lee

{fallsmal, sanghyun, smanioso}@cs.yonsei.ac.kr, swlee@skku.in

Abstract

Big data real-time processing aims for faster retrieval of data and analysis. Lately, in order to accel-
erate real-time processing, big data platforms are trying to exploit NAND flash based storage devices,
especially SSDs. NoSQL DBMSs have been used for real-time management of big data which signif-
icantly depends on index structures to efficiently manage data. Previous research about flash-aware
index structures addressed the potential problems of hard-disk oriented designs. In this paper, we focus
on exploiting potential benefits of flash SSDs. First, we examine the internal parallelism of flash SSDs by
benchmarking several flash SSDs. Then we present a new I/O request concept, called psync I/O, that can
exploit the internal parallelism of flash SSDs in a single process, and we propose a new search method
(MPSearch) that enables tree based indexs to exploit the internal parallelism of flash SSDs. Based on
MPSearch, we present a B+-tree variant, PIO B-tree (Parallel I/O B-tree). PIO B-tree enhanced B+-
trees insert performance by a factor of up to 16.3, while improving point-search performance by a factor
of 1.2. The range search of PIO B-tree was up to 5 times faster than that of the B+-tree. Moreover,
PIO B-tree outperformed other flash-aware indexes in various synthetic workloads. In order to enhance
NoSQL DBMS performance on flash SSDs, PIO B-tree can be adopted or MPSearch can be applied to
other tree-based index structures adopted in NoSQL DBMSs.

1 Introduction

Big data real-time processing aims for faster retrieval of data and analysis than previous MapReduce based
batch processing. Lately, in order to accelerate real-time processing, big data platforms are trying to exploit
flash SSDs. NoSQL DBMSs such as HBase [1], Cassandra [2], MongoDB [3], CouchDB [4] have been used
for real-time data management of big-data which significantly depends on index structures to efficiently manage
data. The NoSQL DBMSs rely on efficient index structures such as B+-tree and LSM tree [5] (LSM tree for
HBase and Cassandra, B+-tree for CouchDB and MongoDB).

The excellent IOPS performance of flash SSDs is due to their internal parallel architecture. Since flash SSDs
embed multiple flash memory packages, it is possible for a flash SSD to achieve much higher IOPS (Input/Output
Operations Per Second) than a flash memory package. However, the outstanding random I/O performance of
flash SSDs will remain only a potential performance specification unless DBMSs take advantage of the internal
parallelism and fully utilize the high IOPS.

Copyright 2014 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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Several flash-aware (flash-memory aware) B+-tree variants have been proposed. The B+-tree index is a
good example of how to resolve DBMS issues with regard to flash-based storage devices. Flash-aware B+-tree
variants and flash-aware indexes mostly focused on reducing write operations caused by index-insert operations
[6][7] or utilizing sequential pattern benefits [8].

The purpose of this paper is to examine principles of taking advantage of the internal parallelism of flash
SSDs and to optimize the B+-tree index by applying these principles. In this paper, we first present benchmark
results on various flash SSDs and known characteristics of the flashSSD parallel architecture. Then we propose a
new search method (MPSearch) that enables tree-based indexes to exploit the internal parallelism of flash SSDs.
Based on MPSearch we introduce new algorithms and present a B+-tree variant, PIO B-tree (Parallel I/O B-tree),
that integrates the new algorithms into the B+-tree (This paper is an extended version of [9]. In this paper we
more focus on MPSearch algorithm and discuss its potential usage in other indexes).

This paper is organized as follows. Section 2 describes the internal parallelism and principles to utilize it
together with the benchmark results on various flash SSDs. We present the MPSearch algorithm and introduce
PIO B-tree in Section 3. Section 4 describes experimental results and we conclude this paper in Section 5.

2 Internal Parallelism of SSD

2.1 Understandings of Internal Parallelism

Figure 1 shows the internal architecture of a flash SSD. Flash SSDs are configured with multiple flash memory
packages. Flash SSDs implement the internal parallelism by adopting multiple channels each of which is con-
nected to a group of flash memory packages. There exist two types of internal parallelism such as channel-level
parallelism between multiple channels and package-level parallelism between ganged flash memory packages in
a group [10]. The performance enhancement can be estimated by the factors of channel-level and package-level
parallelism. If there are m channels each connected to a gang of n flash memory packages, the performance
gain can be up to mn times compared to the performance of a flash memory package.

If the host I/F (host interface) requests I/Os targeting different flash memory packages spanning several
channels, channel-level parallelism is achieved by transferring the associated data through multiple channels at
the same time. In this process, command queuing mechanisms (NCQ, TCQ) of the host I/F involve in producing
favorable I/O patterns to the channel-level parallelism. The host I/F swaps the queued I/O operations and adjusts
the orders of the I/Os in order to make the I/O requests target flash memory pages spanning multi channels. Based
on the understandings of channel-level parallelism, it is a reasonable inference that the flash SSD performance
can be enhanced by requesting multiple I/Os simultaneously.

We examined the performance effects of the internal parallelism through benchmark tests on six different
flash SSDs. All the benchmarks were conducted in direct I/O mode. We carefully chose these flash SSDs to
examine parallelism issues with as many SSD internal architectures as possible. For the tests we used micro-
benchmarks with varying number of random I/Os requested at once (outstanding I/O level) created by using
Linux-native asynchronous I/O API (libaio). Figure 2 (a) and (b) present the benchmark results when read
and write operations are separately requested with I/O size fixed at 4KB. The read and write bandwidth was
gradually enhanced with increasing outstanding I/O level (in short, OutStd level). We confirmed more than ten-
fold bandwidth enhancement by increasing OutStd level in both read and write operations compared to the read
and write bandwidth with the OutStd level of 1.

2.2 How to Utilize Internal Parallelism

In order to utilize channel-level parallelism, multiple I/O requests should be submitted to flash SSDs at once.
Parallel processing is a traditional method to separate a large job into sub-jobs and distribute them into multiple
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Figure 1: Internal architecture of flash SSDs

CPUs. Since I/Os of each process can be independently requested to OS at the same time, outstanding I/Os
(multiple parallel I/Os) can be delivered to a flash SSD at the same moment.

Due to the high performance gain from channel-level parallelism on a single flash SSD, we need to treat I/O
parallelism as a top priority for optimizing I/O performance. In order to achieve it, a more lightweight method is
needed since parallel processing (or mutlithreading) cannot be applied in every application programs involving
I/Os. In order to best utilize channel-level parallelism, it is also required to deliver the outstanding I/Os to the
flash SSDs minimizing the interval of consecutive I/O requests since inside flash SSDs they can batch-process
only the I/O requests gathered in its own request queue (a part of NCQ technology) within a very narrow time
span. Therefore, we suggest a new I/O request method, psync I/O, that creates outstanding I/Os and minimize
the interval between consecutive I/O requests within a single process.

2.3 Psync I/O: Parallel Synchronous I/O

Two different types of I/O request methods exist in current operating systems. One is synchronous I/O (sync
I/O) which waits until the I/O request is completely processed. The other is asynchronous I/O (async I/O) which
immediately returns even if the I/O processing is still in progress, thus making it possible for the process to
execute next command. Async I/O requires a special routine for handling later notification of I/O completion.

We hope that future OS kernel versions will include system calls for the still conceptual psync I/O. Psync
I/O synchronously operates in the same way as traditional sync I/O except that the unit of operation is an array
of I/O requests. We define the three requirements of psync I/O as follows. 1) It delivers the set of I/Os to the
flash SSDs and retrieves request results at once. Another set of I/O requests can be submitted in sequence only
after the results of the previous set are retrieved. 2) The I/Os are requested as a group in the OS user space
and the group needs to be sustained until they are delivered to I/O schedulers in the OS kernel space, thereby
minimizing the request interval between consecutive I/Os upon I/O schedulers 3) No special routine is required
to handle I/O completion events since the process is blocked until the set of I/Os are completely handled.

Since no I/O requesting method that satisfies the psync I/O requirements exists in current OSs, we designed
a wrapper function that emulates psync I/O by using Linux-native asynchronous I/O API. The wrapper function
delivers a group of I/O requests to the ’io submit’ system call by containing them in Linux async I/O data
structures (struct iocb), and it waits until all the results are returned, executing ’io getevents’ system call.
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Figure 2: Bandwidths with increasing OutStd I/O level

3 MPSearch

In this section, we introduce MPSearch that enables for tree-based indexes to exploit the channel-level paral-
lelism of flash SSDs via Psync I/O. PIO B-tree is the integrated result of the optimized B+-tree index operations
based on MPSearch.

Searches to next-level nodes cannot be performed without obtaining the search results of current-level nodes
since index records of the current-level nodes contain the locations of next level nodes. The only way to exploit
the channel level parallelism is to search multiple nodes at the same level. However, this is possible only if a set
of search requests are provided at once. Under the assumption that the set of search requests is given, we design
a Multi Path Search (MPSearch) algorithm that processes a set of requests at once while searching multiple
nodes level by level. The method to acquire the set of requests is explained later with specific index operations.

We represent an internal node of a B+-tree index as a set of key values (Ki) and pointer values (Pi) each
pointing to the location of a child node as depicted in Figure 3, where F represents the fanout (the maximum
number of pointers).

Let S denotes the set of search requests.

S = {s | s is the key value for each search request}

S includes all the key values of search requests, and |S| represents the number of given search requests. The
basic concept of MPSearch is described as follows.

First, the root node of the B+-tree index is retrieved. The key values of the root node are inspected, and the
pointers to the next-level nodes designated by any of the search requests are extracted as (1), where P denotes
the set of the extracted pointers.

P = {Pi | i ∈ I}
I = {1 ≤ i ≤ F | Ki−1 ≤ s < Ki, s ∈ S,K0 = −∞,KF = ∞}

(1)

Second, the next-level nodes designated by the pointer set (P) are read at once through psync I/O. The entries
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of the read internal nodes are examined node by node, and the pointer set for each node corresponding to S is
extracted using (1). The extracted pointer sets create an array of the pointer sets as follows.

Third, all the child nodes designated by the pointers in the pointer sets of are read at once through psync I/O.

P
2

K
1P

1
K
2

… K
F-1P

3
P
F-1

P
F

Figure 3: Internal node structure

key pointer 

65 91Level 0

S = {1, 2, 42, 65, 67}

12 42 98 71 89 Level 1

11 22 5 42 42 45 47 5012 23 65 65 67 67 68

Figure 4: MPSearch with two psync I/Os

 

Figure 5: MPSearch with PioMax of 2

The entries of the read internal nodes are examined for every node, and for each node the pointer set to the
next-level nodes is extracted, creating an array of the pointer sets, again. This process is repeated, until it reaches
leaf nodes and retrieves all the leaf nodes corresponding to the search requests S. Figure 4 presents an example
of MPSearch when the number of search requests is 5. With 2 psync I/O calls, the leaf nodes having the search
keys are retrieved by MPSearch.

During this procedure, psync I/O is executed (treeHeight − 1) times, at maximum processing |S| read
requests each time since psync I/O is executed once for every level except the root level. This indicates that
MPSearch can achieve |S| OutStd level at maximum. It also implies that |S| in-memory buffer pages are
required for every psync I/O call since one buffer page is needed for every node to be loaded into main memory.
This might consume a significant amount of main memory space if |S| is considerably large.

Therefore, we adopt a parameter called PioMax that indicates the maximum number of I/Os submitted to a
psync I/O call. By doing so, the maximum main memory space is limited to (treeHeight− 1)PioMax pages.
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MPSearch reads PioMax nodes at a time analogously to DFS (Depth First Search) as depicted in Figure 3. In
other words, MPSearch is a variant of DFS algorithm, differentiated by the number of nodes explored at a time
from DFS (1 for DFS, PioMax for MPSearch). In terms of exploiting the internal parallelism of flash SSDs,
PioMax is not necessary to be considerably large as demonstrated in the results of Figure 2. A moderate value
(around 32) can utilize the saturated high bandwidth.

Not limited to B+-tree, MPSearch can be easily adopted in other tree-based index structures such as Fractal
Tree [11], R-tree [12], LSM tree [5], and FD-tree [8], since MPSearch is basically a tree exploration method
(a variant of DFS) associated with how the nodes are read from storage devices. This implies that MPSearch
algorithm can be universally utilized for numerous data management methods to exploit the internal parallelism
of storage devices. It is straightforward to apply MPSearch into the range search of B+-tree. This is simply

index record operation flag
O�������� �	�	� (O��


9 i31 i 25 u 49 d2 i 5 i 10 i 15 d 21 i 45 i 74 i 86 i 94 i 59 i

sortedOffset

Figure 6: MPSearch with two psync I/Os

achieved by requesting the search request set S defined as (2) via MPSearch.

S = {s | range.start ≤ s < range.end} (2)

The MPSearch retrieves the leaf nodes including the entries with key values in the range. The traditional
method to conduct a range search is reading the leaf nodes that are linked together one by one in sequence, after
searching for the first leaf node containing an entry with the least key value of the range. The new range search,
called parallel range (prange) search reads relevant internal nodes level by level via psync I/O until it reaches
the leaf level.

Likewise, multiple point-search operations can be queued in the expense of delaying response and simulta-
neously processed based on MPSearch algorithm.

For index update operations, PIO B-tree adopts in-memory structure called OPQ (OPeration Queue) to
accumulate a group of update operations for later batch-updates based on MPSearch.

Figure 6 shows an example of OPQ. Each update operation is completed immediately after its index-record
is inserted into the Operation Queue (OPQ) as an OPQ entry. OPQ entries are not written to the flash SSDs
until the OPQ entries are batch processed. Since update operations are not immediately reflected to flash SSDs
and reside on the in-memory structure for a while, this method requires additional features to the traditional
DBMS recovery scheme for avoiding data-loss during system crashes. For detailed description of index update
operation and crash recovery of PIO B-tree, please refer to Section 3.1.3 of [9].

4 Experimental Results

In this section, we present the experimental results of PIO B-tree. First, we evaluate the effectiveness of the
proposed index operations by comparing the performance of PIO B-tree with B+-tree. Then, we compare PIO
B-tree with other flash-aware indexes such as BFTL [7], and FD-tree [8] in synthetic workloads. The synthetic
workloads were used for a better control of the workload configuration. We conducted the experiments on a
Linux machine with 8-core CPU (2.0 GHZ), and 16GB main memory. We used two flash SSDs: Iodrive, a
high-priced enterprise-class SSD, and P300, an enterprise-class SSD.
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Figure 7: Range search time with different ranges in log scale

B+-tree, BFTL, and PIO B-tree were implemented based on the description in their original papers. The
indexes were initially built with 1 billion entries by using a bulk loader, thus occupying more than 8GB of
storage space. The LRU buffer manager was employed for the indexes. The maximum available main memory
space was fixed at 16MB.

4.1 Parallel Range Search

We evaluated the range search performance by requesting queries having various key ranges. The buffer pool
size was fixed at 16MB. The gap between the start key and end key in the range was increased from 1024 (1K)
to 33554432 (32M) by a factor of 8 at a time.

One hundred range searches were performed. Figure 7 represents the average elapsed time of a range search
in log-scale with respect to the key ranges. PIO B-tree outperformed B+-tree with any given range on every flash
SSD. The prange search of PIO B-tree was 5 times faster than the range search of B+-tree when the key range
was greater than or equal to 64K on Iodrive. With the range greater than or equal to 512K, PIO B-tree was 3.5
times faster than B+-tree on P300.

4.2 Update Operations

We evaluated the performance of update operations by using update-only workloads. Since index-insert, index-
delete, index-update operations demonstrated almost the same performance, we only report the insert workload
result. After allocating the main memory to OPQ, the rest of main memory space was allocated to the buffer
pool. We measured the elapsed time of five million insert operations, increasing the OPQ size on a 4KB page
basis. In order to assess the point-search performance degradation by the reduced buffer pool, we measured the
elapsed time of five million point-search requests. Figure 8 presents this result.

Compared to the B+-tree performance, only with the OPQ size of one (4KB), PIO B-tree has demonstrated
remarkable insert performance. The PIO B-tree was 7.2, and 8.2 times faster than B+-tree on Iodrive, and p300,
respectively. With a large OPQ size, it was up to 28 times faster than B+-tree (on P300 with OPQ size 4041).
Note that PIO B-tree was 16.3 times faster than B+-tree in insert operations and at the same time 1.2 times faster
than B+-tree in search operation, with the OPQ size of 1024 on P300.
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Figure 9: Overall elapsed time in mixed workloads

4.3 Comparison with Flash-aware Indexes

We compared four indexes such as BFTL, B+-tree, FD-tree, and PIO B-tree in five workloads. The workloads
were differentiated by the insert ratio and search ratio. We configured the workloads to have randomly chosen
10 million operations with the specified insert and search ratio. Since the flash-aware indexes take advantage of
trade-offs between insert and search performance based on parameters, to be fair, we chose the best parameter
according to the workload feature for each index.

As shown in Figure 9, the PIO B-tree was 2.5 to 13.7, 2 to 13 faster than the BFTL on Iodrive, and P300,
respectively. The PIO B-tree was 1.6 to 11, and 1.4 to 10.9 times faster than the B+-tree on Iodrive, and P300,
while the PIO B-tree was 1.23 to 1.47, and 1.24 to 1.45 times faster than the FD-tree on Iodrive, and P300,
respectively. In the graphs we differentiated insert and point-search time. The FD-trees insert time was similar
to that of PIO B-tree. The performance gap between PIO B-tree and FD-tree was mainly due to the PIO B-trees
faster search performance.
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5 Conclusions

Due to the embedded flash memory packages, internal parallelism is an inherent feature of flash SSDs. In this
paper, we found an efficient way (psync I/O) to generate parallel I/Os for exploiting the internal parallelism. We
presented MPSearch algorithm and PIO B-tree that exploit the internal parallelism of flash SSDs. PIO B-tree
outperformed B+-tree in search and update pe operations.

We expect that exploiting the internal parallelism of flash SSDs will be more important since NAND flash
based storage technologies are evolving toward providing extremely high IOPS. Beyond hundreds of thousands
of IOPS supported by PCI-e based SSDs, enterprise storage vendors such as Nimbus Data, PureStorage, and
EMC has recently released flash-array products providing more than millions of IOPS. It is evident that data
management systems should request multiple I/Os in a single thread to exploit the extremely high IOPS of
current flash array products unless they afford to manage millions of threads to handle the I/Os.

As future work, we plan to apply PIO B-tree in CouchDB and apply MPSearch algorithm in the LSM-tree
of HBase in order for the NoSQL DBMSs to process multiple search requests faster in a single thread on flash
SSDs.
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Abstract

With the development of flash memory technology, flash-based solid state drives (SSDs) are gradually
used in more and more devices and applications. In addition to characteristics of flash memory itself,
a unique characteristic of SSDs, namely internal parallelism, should also be considered to improve
performance of SSDs-based DBMSs, especially query processing. In this paper, we first describe the
internal architecture of SSDs and the resulting internal parallelism of SSDs. In the second part, we
present a parallel table scan operator, ParaScan, that exploits the internal parallelism of SSDs. Based
on ParaScan, we then propose a parallel hash join operator, ParaHashJoin, and a parallel aggregation
model, ParaAggr. Experimental results show that ParaScan, ParaHashJoin and ParaAggr on SSDs
significantly outperform traditional table scan, hash join and aggregation. Furthermore, sort, as an
important basic operator for other complex operators, can also be redesigned based on ParaScan. We
design a parallel sort algorithm, ParaSort and then present a parallel ParaSort operator in the third
part. Looking forward, database query processing by exploiting internal parallelism of SSDs, can be
generalized to other kinds of SSDs with similar internal parallel characteristics.

1 Introduction

As flash memory-based solid state drives (SSDs) improve in price, capacity, reliability and performance, more
and more devices and applications gradually adopt SSDs as secondary storage media. Not only do SSDs pro-
vide faster access speed, lower power consumption, lighter weight, smaller size and better shock resistance than
HDDs, they also have rich internal parallelism that can be used to improve I/O bandwidth[1, 2]. Query pro-
cessing of HDDs-based DBMSs are mainly designed according to HDDs’ mechanical limitations, so they may
benefit less or even nothing when SSDs simply replace HDDs for OLAP and OLTP[3]. Beside the characteris-
tics of flash memory, the internal parallelism of SSDs need to be considered when designing query processing
algorithms for SSDs-based DBMSs including scan, join, aggregation, sort, etc[4].

This paper explores how to optimize scan, join, aggregation and sort operators by exploiting the internal
parallelism of SSDs. We review related work in section 2. In section 3, we outline how to detect the internal
parallel architecture of SSDs. And then in section 4, we present parallel table scan ParaScan, parallel hash join
ParaHashJoin and parallel aggregation ParaAgg and verify their efficiency by running them on HDD and SSDs.
And then we propose a parallel sort ParaSort in section 5. Finally, we offer conclusions in section 6.

Copyright 2014 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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2 Related Work

To achieve higher capacity and better I/O performance, most SSDs adopt a multi-channel and multi-way archi-
tecture for connecting flash chips with a flash memory controller. The flash memory controller can access flash
chips in parallel[5]. Therefore, it is necessary to understand the impact of this parallelism inside SSDs on the
performance of SSDs-based DBMSs. Chen[2] studied how to uncover internal parallelism features of SSDs by
detailing an abstract parallel model of SSDs and methods of detecting SSDs. Roh[6] created a new I/O request
method in the OS that can be used to generate parallel I/Os to access SSDs by applications. Based on this, the
authors designed a new B+-tree variant called PIO B-tree. Hu[7] analyzed the performance impact and interplay
of advanced commands, physical-page allocation and data granularity for internal parallelism of SSDs. Accord-
ing to internal parallelism architecture of SSDs, Park[8] designed parallel-aware request processing including
request rescheduling and dynamic write request mapping.

Myers[9] and Lee[10] measured the performance of various traditional database algorithms on SSDs. For
flash-based DBMSs, a number of query processing algorithms have been designed for flash characteristics, es-
pecially excellent random read algorithms[11, 12, 13, 14, 15, 16, 17]. Myers[9] improved the sort-merge join al-
gorithm by optimizing the storage of intermediate results. Graefe[12, 13] focused on speeding up select, project
and join operators based on a new page layout, PAX, for SSDs-based DBMSs. Simultaneously, they proposed
FlashScan, FlashJoin and RARE-join algorithms and implemented them in PostgreSQL. Liang[14] optimized a
join algorithm for column-based DBMSs by reading only needed columns. Li[15, 16, 17] improved no-index
join algorithms by reducing intermediate results and optimizing the fetching strategy. Different from previous
studies, we try to optimize scan, aggregation, join and sort operators by exploiting the internal parallelism of
SSDs.

3 Internal Parallelism of SSD

3.1 Internal Parallel Architecture
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Figure 1: Inside SSD

The internal architecture of SSDs includes the host interface,
SSD controller, RAM buffer and flash memory packages[8]. SSDs
connect to the host by a host interface that can be SATA, SAS or
PCIe. The SSD controller executes I/O requests and issues com-
mands to flash memory packages via a flash controller. The SSD
controller is also in charge of managing the RAM buffer which
holds the address mapping table of the flash translation layer
(FTL) and other metadata such as ECC etc. SSDs implement
internal parallelism by adopting multiple channels that can op-
erate independently and simultaneously. Each channel is shared
by a set of flash memory packages, on which operations can also
be interleaved, so the bus utilization can be optimized[5, 18]. As shown in[8], channel-level parallelism and
package-level parallelism are two typical levels of parallelism. Such rich internal parallelism provides us an
opportunity to improve the performance of applications on SSDs.

3.2 Detecting SSD Internals

Before detecting and utilizing the internal parallelism, we must ensure that SSDs have native command queuing
(NCQ) mechanisms and AHCI (Advanced Host Controller Interface) mode must be enabled for the host[19].
Multi-threaded processing can be used to produce multiple parallel I/Os. Furthermore, it is necessary to know
some key architectural features of SSDs such as the number of channels for setting a proper concurrency level
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and avoiding over-parallelization. However, it is hard to obtain such information because these details are often
regarded as critical intellectual property of SSD manufacturers. Therefore, we try to detect two representative
SSDs as shown in Table 1. Base on publicly available documents, Chen[2] characterized internal organization
of SSD as an abstract model including chunk size and the number of domains. A chunk is a unit of data that
is continuously allocated within one domain. A domain is a set of flash memories that share a specific set of
resources. Guided by the model and the detecting method[2], we obtain chunk size and the number of domains
of SSD-S and SSD-M as shown in Table 1 (detailed detecting results are in [21]).

Table 1: Detecting Results

Manufacturer Flash Capacity Page Size Interface NCQ Chunk Size Domains No.

SSD-S Intel SLC 32 GB 4 KB SATA 32 4 KB 20

SSD-M Intel MLC 160 GB 4 KB SATA 32 16 KB 20

4 ParaScan, ParaHashJoin and ParaAggr

4.1 ParaScan: Parallel Table Scan
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Buffer
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Figure 2: ParaScan

Most SSDs adopt RAID-0 data storage as shown in Fig. 2. In
SSDs-based database systems, records within a chunk are organized
according to traditional row-based page layout. One chunk is one
logical data page with an unique logical address. According to log-
ical addresses, all chunks of a relational table are uniformly placed
in all domains. All striped chunks of a relational table are mostly
placed in logical consecutive regions in a file. On the assumption of
20 domains, the chunk whose logical address is 20*n (n=0,1,2...),
will be in 1st domain, the chunk whose logical address is 20*n+1
(n=0,1,2...), will be in 2nd domain, and so on. Striped domains
provide interleaved accesses to reduce sharing of data-bus channels.
For example, chunk 0 and chunk 20 in domain 0 cannot be accessed
simultaneously, but chunk 0 in domain 0 and chunk 1 in domain 1
can be read in parallel. This provides an opportunity to distribute
different data accesses to different domains.

Based on this, we propose a parallel table scan called ParaScan to improve the efficiency of table scan. As
shown in Fig. 2, every domain scan reads data chunks one by one from corresponding domain and then puts them
into its own ScanBuffer. Multiple domain scan operations can be executed independently and simultaneously.
All domain scan and all ScanBuffers compose multi-domain parallel scan named ParaScan. Because chunks
are mostly placed in logical consecutive regions, we suggest that all data pages of a relational table should be
uniformly distributed into different domains as much as possible to make full use of the internal parallelism of
SSDs. Data size in one domain usually exceed ScanBuffer size, so it is necessary to replace processed data
pages in ScanBuffer with unprocessed data pages when executing domain scan.

We implement ParaScan by a multi-thread processing technique. Each domain scan corresponds to one
thread. The performance of ParaScan depends not only on the number of domains but also on the number of
physical threads supported by CPU and NCQ supported by SSDs. We ran ParaScan on an HP PC with Ubuntu
12.10, 8G DDR3 memory, a 500G 7400rpm SATA3 Seagate HDD, Intel Core i5-2400 @ 3.10GHz processor
with four cores supporting four physical threads and two SSDs as shown in Table 1. The data set was the
ORDERS table(150 million rows, 2G) taken from TPC-H benchmark. Fig. 3 compares the performance of
scans while varying the number of threads. Traditional table scan is ParaScan implemented by a single thread.
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Figure 5: ParaAggr

Experimental results show that ParaScan isn’t well suited for HDD but can exploit the internal parallelism of
SSDs (detailed experimental results are in [20, 21]).

4.2 ParaHashJoin: Parallel Hash Join

ParaScan ParaHash

ParaScan ParaHash

MiniJoin Fetch

ParaHashJoin

Table R

Table S

Figure 6: ParaHashJoin

Based on ParaScan, we present a parallel hash join oper-
ator called ParaHashJoin. It consists of three phases, Para-
Hash, MiniJoin and Fetch, as shown in Fig. 6. ParaHash
hashes records of different domains in parallel to exploit
the internal parallelism of SSDs. The output of ParaHash
only contains the row-id (RID) and the join attribute of ev-
ery record to reduce the amount of data processed in Mini-
Join. A RID consists of page id and in-page offset of a
record. Finally, Fetch retrieves the needed attributes by RIDs. Because the output of ParaHash and MiniJoin
are incomplete results, ParaHashJoin uses less non-volatile storage to materialize intermediate results. However,
multi-threaded processing and random reads in ParaHashJoin will cost more CPU. But experimental results
show that this tradeoff is worthwhile.

...

Hash Bucket ParaScan

Buffer

Table

B-2...210 B-1

Figure 7: ParaHash

As shown in Fig. 7, each ParaHash instance calculates hash val-
ues of records in its ScanBuffer and then adds their join attribute
values and RIDs into specific hash buckets. Each hash bucket must
maintain a lightweight lock to solve conflicts between hash threads.
Hash function is hash value = join attr&(B − 1). If the re-
sults of ParaHash on table R can be maintained in memory, we only
need to do ParaScan on table S after ParaScan and ParaHash on ta-
ble R. And then according to join attribute value of each record of
table S in ScanBuffers, MiniJoin directly probe hash buckets of table R and produce join results in the form
{join attr,RIDR, RIDS}. Otherwise, MiniJoin gets one hash buckets of table R and corresponding hash
bucket of table S into memory to generate join results, and processes other hash buckets in this way.

Because results of MiniJoin are incomplete join results, according to RID in join results, Fetch randomly
reads necessary attribute values to generate final join results. Designing efficient fetching strategy is very im-
portant for minimizing I/Os of reading data pages, but we adopt a sort-based fetching strategy inspired by
DigestJoin[15, 16, 17] to avoid reloading pages as much as possible as shown in [20]. Before fetching data
pages, we sort results of MiniJoin, so needed data pages can be loaded in order. The sort will cost more CPU
but we show that this tradeoff is worthwhile in experimental results.

Implementation technique and running platform of ParaHashJoin are the same as ParaScan. In addition to
the ORDERS table, the input data set includes the CUSTOMER table(1.5 million rows, 256M) obtained from
TPC-H benchmark. In Fig. 4, TradHashJoin adopts traditional hash join and table scan. NewHashJoin adopts
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traditional hash join and ParaScan. We mainly consider equi-join of CUSTOMER and ORDERS on a single
attribute. Join selectivity is 1%. The number of threads in ParaScan and ParaHash is fixed at 20. In this paper, we
only present experimental results on SSD-S. Fig. 4 evaluate the impact of memory size on three join algorithms
as memory size varied from 2MB to 256MB. Both TradHashJoin and NewHashJoin require 256M to execute in
one pass while ParaHashJoin only need 16M. Fig. 4 shows that, in the best case, ParaHashJoin is 1-1.5 x faster
than NewHashJoin and TradHashJoin (detailed experimental results are in [20]). Our experimental results show
that it is worthwhile to pay the extra CPU cost for multi-threaded processing and random reads.

4.3 ParaAggr: Parallel Aggregation
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Figure 8: ParaAggr

Based on ParaScan, we propose a parallel aggregation algorithm
called ParaAggr for implementing some simple aggregation such as
sum, max, min, count, average etc. ParaAggr consists of two phase,
SubAggr and TolAggr, as shown in Fig. 8. Each SubAggr instance
only processes records in its ScanBuffer and all SubAggr run in par-
allel. Either every computing result can be forwardly put to To-
lAggr, or TolAggr forwardly get all computing reseults produced in
SubAggr. And then TolAggr calculates all results of SubAggr. The
calculations in SubAggr phase and TolAggr phase may be same or different. For example, count operator can
be divided into count in SubAggr and summation in TolAggr(others are shown in [21]).

By exploiting multi-threaded processing we implemented ParaAggr including sum, max, min, count, aver-
age. We ran ParaAggr on a Lenovo K46A with Fedora 14, 2G DDR3 memory, a 500G 5400rpm SATA3 Seagate
HDD, Intel Core i5 @450MHZ processor with double cores supporting four physical threads, two SSDs as
shown in Table 1 and another SSD as shown in [21]. The data set is the CUSTOMER table(870 thousand rows,
1GB) taken from the TPC-C benchmark. Fig. 5 compares the performance of aggregations while varying the
number of SubAggr threads. Traditional aggregation is ParaAggr with 1 SubAggr thread. As shown in Fig. 5,
in the best case, ParaAggr is 3-4 x faster than traditional aggregation. Other experimental results are detailed in
[21].

5 ParaSort: Parallel Sort for Up-level Operators

Sort is an important operator for up-level operators such as join, group by, having, limit, sub-query etc. In this
section, we proposed Parallel Sort Model called ParaSort and present Parallel ParaSort.

5.1 Parallel Sort Model

ParaScan

ParaScan

ParaSort

Domain 
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…………

Domain 

#19

Fetch

SubSort

Figure 9: ParaSort

We now sketch a parallel sort algorithm called ParaSort based on
ParaScan. As show in Fig. 9, ParaSort consists of two phases, Sub-
Sort and Fetch. SubSort is in charge of getting sorted attribute values
and RIDs of all records and then sorting them according to the sort
key. SubSort outputs ordered results the sort key and RID and then
Fetch randomly reads required attribute values required by up-level
operators. The fetching strategy can utilize the strategy mentioned
in 4.2. As the critical component of ParaSort, SubSort can be imple-
mented according to traditional sort method to sort any size data, but
SubSort can’t run until the end of ParaScan if ScanBuffers can store all records; otherwise, SubSort will carry
out as long as ScanBuffers is full. What’s more, SubSort can be implemented in parallel when sorted attribute
values and RIDs of all records fit in memory.
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5.2 Parallel ParaSort
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Figure 10: Parallel ParaSort

When memory is enough, we discuss a parallel Para-
Sort by implementing SubSort in parallel. As shown in Fig.
10. Every SubSort gets sorted keys and RIDs of data records
from corresponding ScanBuffer and then sorts them accord-
ing to sort key. All SubSorts run in parallel. Results of
one SubSort is ordered but results of all SubSorts is semi-
ordered. TolSort merges semi-ordered results of all Sub-
Sorts to obtain ordered results. Fetch retrieves the necessary
attribute values for up-level operators by ordered results of
TolSort. The fetching strategy can also use the strategy mentioned in 4.2.

6 Conclusions

In addition to excellent performance characteristics of flash memory, there is rich parallelism inside SSDs.
Previous researchers mainly focus on optimizing algorithms by exploiting properties of flash memory, but the
internal parallelism of SSDs also needs to be considered when optimizing SSDs-based DBMSs, especially query
processing.

By exploiting the rich internal parallelism of SSDs, we presented ParaScan and then proposed ParaHashJoin
and ParaAggr based on ParaScan. Experimental results showed that we were able to speed up performance of
ParaScan, ParaHashJoin and ParaAggr by > 1x. And for complex operators, we designed ParaSort. In other
words, many database operators can be sped up by exploiting the internal parallelism of SSD. Future research
will show whether this is feasible, effective and efficient and how it affect industrial OLAP and OLTP systems.
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Abstract

Data storage devices are getting smarter. Smart flash storage devices (a.k.a. Smart SSDs) are on the
horizon and package a small programmable computer inside the device. Thus, users can run code
closer to the data right inside the SSD, on the “other” side of the I/O bus. The focus of this paper
is on exploring the opportunities and challenges associated with exploiting this functionality of Smart
SSDs for relational analytic query processing. We have implemented an initial prototype of Microsoft
SQL Server running on a Samsung Smart SSDs. Our results demonstrate that significant performance
and energy gains can be achieved by pushing selected query processing components inside the Smart
SSD. We also identify various changes that SSD manufacturers can make to increase the benefits of
using Smart SSDs for data processing applications, and suggest possible research opportunities for the
database community.

1 Introduction

Modern SSDs pack CPU processing and DRAM storage components inside the SSD to carry out the routine
functions (such as managing the FTL logic) for the SSD. Thus, there is a small programmable computer inside
a SSD device, presenting an interesting opportunity to move computation closer to the storage.

The key reason for moving computation closer to the data is shown in Figure 1. This figure shows the current
and projected internal I/O bandwidth that is inside a Samsung Smart SSD, and the I/O bandwidth of the host
interfaces (e.g. SAS and SATA standards). The numbers shown in this figure are relative to the I/O interface
speed in 2007 (375 MB/s). Data beyond 2012 are internal projections by Samsung. The key trend highlighted
in Figure 1 is that the I/O bus standards (such as SATA and PCIe) evolve slower than the speed of the internal
network that is used inside the SSD. Without mechanisms to push computation inside the Smart SSD, we are
essentially doomed to be “drinking from a narrow straw” when using SSDs for data intensive workloads.

In this paper, we build on our recent work [7] in this area. The focus of this paper is on exploring how
analytical database workloads can exploit Smart SSDs. We have built a prototype version of SQL Server that
selectively pushes computation to the Smart SSD, and in this paper we describe the details of our implementa-
tion. We also present results that show how using the Smart SSD in this way improves not just the performance
of some queries, but also reduces the energy that is required to execute the queries. As energy consumption
is a critical factor for database appliance and cloud services, using Smart SSDs also provides an interesting
opportunity to design energy-efficient data processing systems.

Copyright 2014 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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Figure 1: Bandwidth trends for the host I/O interface. Figure 2: Internal architecture of a modern SSD

On a more subdued note, Smart SSDs are fairly hard to program and use today. In this paper, we also
describe the challenges that we had in using the Smart SSDs, and point to potential opportunities to improve the
Smart SSDs so that they are easier to use and deploy in the future.

2 Background: SSD Architecture

The SSD controller has four key subcomponents: a host interface controller, an embedded processor(s), a DRAM
controller, and flash memory controllers. The host interface controller implements a bus interface protocol such
as SATA, SAS, or PCI Express (PCIe). The embedded processors are used to execute the SSD firmware code
that runs the host interface protocol, and also runs the Flash Translation Layer (FTL), which maps Logical
Block Address (LBA) in the host OS to the Physical Block Address (PBA) in the flash memory. Time-critical
data and program code are stored in the SRAM. Today, the processor of choice is typically a low-powered 32-
bit RISC processor, like an ARM series processor, which typically has multiple cores. The controller also has
on-board DRAM memory that has higher capacity (but also higher access latency) than the SRAM. The flash
memory controller is in charge of data transfer between the flash memory and DRAM. Its key functions include
running the Error Correction Code (ECC) logic, and the Direct Memory Access (DMA). To obtain higher I/O
performance from the flash memory array, the flash controller uses chip-level and channel-level interleaving
techniques. All the flash channels share access to the DRAM. Hence, data transfers from the flash channels to
the DRAM (via DMA) are serialized. The NAND flash memory array is the persistent storage medium. Each
flash chip has multiple blocks, each of which holds multiple pages. The unit of erasure is a block while the read
and write operations in the firmware are done at the granularity of pages.

3 API for Query Processing

We have implemented a Smart SSD runtime framework that implements the common functionality that is needed
to run user-defined programs in the Smart SSDs. We have developed a simple session-based protocol that is
compatible with the standard SATA/SAS interfaces (but could be extended for PCIe). The protocol consists of
three commands: OPEN, GET, and CLOSE.

• OPEN, CLOSE: A session starts with an OPEN command and terminates with a CLOSE command. Once
the session starts, runtime resources including threads and memory that are required to run a user-defined
program are granted, and a unique session id is then returned to the host.

• GET: The host can monitor the status of the program and retrieve results that the program generates via a
GET command. This command is mainly designed for the traditional block devices (based on SATA/SAS
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interfaces), in which case the storage device is a passive entity and responds only when the host initiates
a request.

Using these extensions, we can now invoke specific database operator code that runs inside the Smart SSD.
Essentially, the query operation to be performed is passed as parameters to the OPEN call, and corresponding
result tuples are fetched into SQL Server using the GET call. Finally, the state information inside the Smart SSD
is cleared using the CLOSE call.

4 Evaluation

In this section, we present selected results from an empirical evaluation of Smart SSD with Microsoft SQL
Server. For our experiments, we push down scan, simple hash join, and aggregation operations into the Smart
SSD. Note that in this paper we largely focus on presenting results that go beyond the initial results, which we
presented in [7]. In other words, we refer the interested reader to [7] for additional results.

4.1 Experimental Setup

4.1.1 Workloads

For our experiments, we use the LINEITEM and the PART tables defined in the TPC-H benchmark [3]. Our
modifications to the original LINEITEM and PART table specifications are as follows:

1. We use a fixed-length char string for the variable-length column,

2. All decimal numbers are multiplied by 100 and stored as integers,

3. All date values are converted to the number of days since the last epoch.

The LINEITEM and the PART tables are populated at a scale factor of 100. Thus, the LINEITEM table has
600M tuples (∼90GB), and the PART table has 20M tuples (∼3GB).

For our experiments, we also use two synthetic tables called Synthetic64 R and Synthetic64 S. Both these
tables have 64 integer columns. The Synthetic64 R table has 1M tuples (∼300MB) and the Synthetic64 S table
has 400M tuples (∼120GB). The first column of the Synthetic64 R (R.Col 1) is the primary key, and the second
column of the Synthetic64 S (S.Col 2) is the foreign key pointing to R.Col 1.

To insert data into the table, we created a SQL Server heap table (without a clustered index). By default,
tuples in these tables are stored in slotted pages using the traditional N-ary Storage Model (NSM). For the Smart
SSDs, we also implemented the PAX layout [5] in which all the values of a column are grouped together within
a page.

4.1.2 Hardware/Software Setup

All experiments were performed on a system running 64bit Windows 7 with 32GB of DRAM (24 GB of memory
is dedicated to the DBMS). The system has two Intel Xeon E5430 2.66GHz quad core processors, each of which
has a 32KB L1 cache, and two 6MB L2 caches shared by two cores. For the OS and the transactional log, we
used two 7.5K RPM SATA HDDs, respectively. In addition, we used a LSI four-port SATA/SAS 6Gbps HBA
(host bus adapter) [1] for the three storage devices that we used in our experiments. These three devices are:
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1. A 146GB 10K RPM SAS HDD,

2. A 400GB SAS SSD, and

3. A Smart SSD prototyped on the same SSD as above.

We implemented code for simple selection, aggregation, and selection with join queries, and uploaded that
code into the Smart SSD. We also modified some components in SQL Server 2012 [2] to recognize and com-
municate with the Smart SSD. For each query that is used in this empirical evaluation, we have a special path in
SQL Server that we created to communicate with the SSD using the API described in Section 3. Note that the
results presented here are from a prototype version of SQL Server that only works on a selected class of queries.

All the results presented here are for cold experiments; i.e., there is no data cached in the buffer pool prior
to running each query.

4.2 Experimental Results

To aid the analysis of the results that are presented below, the I/O characteristics of the (regular) SAS SSD and
the Smart SSD are shown in Table 2.

SAS SSD (internal) Smart SSD
Seq.Read (MB/sec) 550 1,560

Table 2: Maximum sequential read bandwidth with 32-page (256KB) I/Os.

As can be seen in Table 2, the internal sequential read bandwidth of the Smart SSD is 2.8X faster than that
of the SSD. This value can be used as the upper bound of the performance gains that this Smart SSD could
potentially deliver. As described in Figure 1, over time it is likely that the gap between the SSD and the Smart
SSD will grow to a much larger number than 2.8X. We also note that the improvement here (of 2.8X) is far
smaller than the gap shown in Figure 1 (about 10X). The reason for this gap is that the access to the DRAM
is shared by all the flash channels, and currently in this SSD device, only one channel can be active at a time,
which then becomes the bottleneck. One could potentially address this bottleneck by increasing the bandwidth
to the DRAM or adding more DRAM buses. As we discuss below, this and other issues must be addressed to
realize the full potential of the Smart SSD vision.

Figure 3: Elapsed time for the TPC-H query 6 on the LINEITEM table (100SF).

4.2.1 Single Table Scan Query: TPC-H Query 6

In this section, we present results for a single table scan query using TPC-H Query 6. (Additional results for
single table scan queries for varying tuple sizes, scan selectivities, with and without aggregation can be found
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Figure 4: Query plan for the selection with join query
in the Smart SSD.

Figure 5: Elapsed time for the join query on the Syn-
thetic64 R and the Synthetic64 S tables at various se-
lectivity factors.

in [7].) This query is [3]:

SELECT SUM(l extendedprice * l discount)
FROM LINEITEM
WHERE l shipdate >= 1994-01-01 AND l shipdate <1995-01-01

AND l discount >0.05 AND l discount <0.07 AND l quantity <24

Figure 3 shows the results with the (regular) SSD and the Smart SSD (with the NSM and the PAX layouts). As
can be seen in this figure, the Smart SSD with the PAX layout improves overall the query response time by 1.7X
over the SSD case. As explained in [7], the number of tuples in a data page, and the selectivity factor have a big
impact on the performance improvement that is achieved using the Smart SSD. The selectivity factor (0.6%) of
this query is small enough to enjoy the benefits of the Smart SSD. However, its high computation complexity
(five predicates, 51 tuples per data page) saturates the CPU and the memory resources in the Smart SSD. As a
result, we only achieved 1.7X speedup for this query instead of 2.8X.

4.2.2 Two-way Join Queries

In this section, we evaluate the impact of using the Smart SSD to run simple join queries.

4.2.2.1 Selection with Join Query For this experiment, we use the Synthetic64 R, the Synthetic64 S tables,
and the following SQL query:

SELECT S.Col 1, R.Col 2
FROM Synthetic64 R R, Synthetic64 S S
WHERE R.Col 1 = S.Col 2 AND S.Col 3 <[VALUE]

Figure 4 shows the query plan for this query. Since the size of the Synthetic64 R table is far smaller than the
Synthetic64 S table, (i.e., |S| = 400|R|), and the hash table for the Synthetic64 R table fits in memory, we used
a simple hash join algorithm that builds a hash table on the Synthetic64 R table. As shown in Figure 4, the core
computation of this query is carried out inside the Smart SSD and the host only collects the output from the
Smart SSD. In the case of the regular SSD, we used the same query plan as the Smart SSD, but the plan was run
entirely in the host.
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Figure 6: Query Plan for the TPC-H query 14 in the
Smart SSD.

Figure 7: Elapsed time for the TPC-H query 14 on
the LINEITEM and the PART table (100SF).

Similar to the previous result, the Smart SSD shows significant performance over the regular SSD case. As
seen in Figure 5, the Smart SSD (with the PAX layout) improves performance for the highly selective queries
by up to 2.2X over the (regular) SSD case when 1% of the tuples in the Synthetic64 S table satisfy the selection
predicate. Similar to the case of single table scan queries, when the selectivity of the query is low (i.e., 100%),
the performance of the Smart SSD is saturated because the query cost is dominated by the cost of the high
volume of data that has to be transferred between the host and the Smart SSD.

4.2.2.2 TPC-H Query 14 For this experiment, we used the LINEITEM, the PART table, and Query 14 from
the TPC-H benchmark [3]. This query is:

SELECT 100 * SUM(case when p type LIKE ’PROMO%’ then l extendedprice *
(1 - l discount) else 0 end) / SUM(l extendedprice * (1 - l discount)) AS promo revenue

FROM LINEITEM, PART
WHERE l partkey = p partkey AND l shipdate >= date ’1995-09-01’

AND l shipdate <date ’1995-09-01’ + interval ’1’ month

Figure 6 shows the query plan for this query when run in the Smart SSD. Overall, this query plan is the same
as the plan that was used in Section 4.2.2.1 (except that the selection was replaced by an aggregation), since the
size of the PART table is also much smaller than the LINEITEM table, (i.e., |LINEITEM| ≃ 30|PART|), and the
hash table for the PART table fits in memory.

Figure 7 shows the results with the (regular) SSD, and the Smart SSD (with the NSM and the PAX layouts).
The Smart SSD with the PAX layout improves the overall query response time by 1.3X over the (regular) SSD
case. As discussed in [7], the Smart SSD achieves greater benefits when the query requires fewer computations
(number of CPU cycles) per data page. However, this query requires a large number of CPU cycles to be
executed per page compared to the query used in Section 4.2.2.1, which saturates the performance of the Smart
SSD. That is why the performance improvement of this query is lower than the selection with join query in
Section 4.2.2.1 (1.3X vs. 2.2X).

4.2.3 Energy Savings

In this section, we show the energy consumption profile with the TPC-H Query 6 [3]. Table 3 shows the
results with the HDD, the (regular) SSD, and the Smart SSD (with the NSM and the PAX layouts). We note
that compared to the Smart SSD case with PAX, the HDD case consumes 11.6X more energy at the whole
server/system level, and about 14.3X more energy in just the I/O subsystem. In addition, using the Smart SSD
(with PAX) is 1.9X and 1.4X more energy efficient than the regular SSD in the entire system and I/O subsystem
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SAS HDD SAS SSD Smart SSD (NSM) Smart SSD (PAX)
Elapsed time (seconds) 1,186 175 134 103

Entire System Energy (kJ) 430 69 48 37
I/O Subsystem Energy (kJ) 200 19 18 14

Table 3: Energy Consumptions for the TPC-H Query 6

perspectives. The energy gains are likely to be much bigger with more balanced host machines than our test-bed
machine. As explained, we observed 11.6X and 1.9X energy gains for the entire system, over the HDD and the
SSD, respectively. However, if we only consider the energy consumption over the base idle energy (235W), then
these gains become 12.4X and 2.3X over the HDD and the SSD, respectively.

4.3 Discussion

On the DBMS side, the implication of using a Smart SSD for query processing has other ripple effects. One key
area is around caching in the buffer pool. If there is a copy of the data in the buffer pool that is more current than
the data in the SSD, pushing the query processing to the SDD may not be feasible. Similarly, queries with any
updates cannot be processed in the SSD without appropriate coordination with the DBMS transaction manager.
If the database is immutable then some of these problems become easier to handle.

In addition, there are other implications for the internals of existing DBMSs, including query optimization.
If all or part of the data is already cached in the buffer pool, then pushing the processing to the Smart SSD may
not be beneficial (from both the performance and the energy consumption perspectives). In addition, even when
processing the query the usual way is less efficient than processing all or part of the query inside the Smart SSD,
we may still want to process the query in the host machine as that brings data into the buffer pool that can be
used for subsequent queries.

Finally, using a Smart SSD can change the way in which we build database servers/appliances. For example,
if the issues outlined above are fixed, and Smart SSDs in the near future have both significantly more processing
power and are easier to program, then one could build appliances that have far fewer compute and memory
resources in the host server than what typical servers/appliances have today. Thus, pushing the bulk of the
processing to Smart SSDs could produce a data processing system that has higher performance and potential a
lower energy consumption profile than traditional servers/appliances.

At the extreme end of this spectrum, the host machine could simply be the coordinator that stages computa-
tion across an array of Smart SSDs, making the system look like a parallel DBMS with the master node being the
host server, and the worker nodes in the parallel system being the Smart SSDs. The Smart SSDs could basically
run lightweight isolated SQL engines internally that are globally coordinated by the host node. Of course, the
challenges associated with using the Smart SSDs (e.g. buffer pool caching and transactions as outlined above)
must be addressed before we can approach this end of the design spectrum.

5 Conclusion

The results in this paper show that Smart SSDs have the potential to play an important role when building high-
performance database systems/appliances. Our end-to-end results using SQL Server and a Samsung Smart SSD
demonstrated significant performance benefits and a significant reduction in energy consumption for the entire
server over a regular SSD. While we acknowledge that these results are preliminary (we only tested a limited
class of queries and on only one server configuration), we also feel that there are potential new opportunities for
crossing across the traditional hardware and software boundaries with Smart SSDs.
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A significant amount of work remains. On the SSD vendor side, the existing tools for development and
debugging must be improved if Smart SSDs are to have a bigger impact. We also found that the hardware inside
our Smart SSD device is limited, and that the CPU quickly became a bottleneck as the Smart SSD that we
used was not designed to run general purpose programs. The next step must be to add in more hardware (CPU,
SRAM and DRAM) so that the DBMS code can run more effectively inside the SSD. These enhancements are
absolutely crucial to achieve the 10X or more benefit that Smart SSDs have the potential of providing (see Figure
1). The hardware vendors must, however, figure out how much hardware they can add to fit both within their
manufacturing budget (Smart SSDs still need to ride the commodity wave) and the associated power budget for
each device. On the software side, the DBMS vendors need to carefully weigh the pros-and-cons associated
with using smart SSDs. Significant software development and testing time will be needed to fully exploit the
functionality offered by Smart SSDs. There are many interesting research and development issues that need to
be further explored, including extending the query optimizer to push operations to the Smart SSD, designing
algorithms for various operators that work inside the Smart SSD, considering the impact of concurrent queries,
examining the impact of running operations inside the Smart SSD on buffer pool management, considering the
impact of various storage layout, etc. To make these longer-term investments, DBMS vendors will likely need
the hardware vendors to remove the existing roadblocks.

Overall, the computing hardware landscape is changing rapidly and Smart SSDs present an interesting addi-
tional new axis for thinking about how to build future high-performance database servers/appliances. Our results
indicate that there is a significant potential benefit for database hardware and software vendors to come together
to explore this opportunity.
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Abstract

Flash memory does not allow data to be updated in place, and the copy-on-write strategy is adopted
by most flash storage devices. The copy-on-write strategy in modern FTLs provides an excellent oppor-
tunity for offloading the burden of guaranteeing the transactional atomicity from a host system to flash
storage and for supporting atomic update propagation. This paper presents X-FTL as a model case of
exploiting the opportunity in flash storage to achieve the transactional atomicity in a simple and efficient
way. X-FTL drastically improves the transactional throughput almost for free without resorting to costly
journaling schemes. We have implemented X-FTL on an SSD development board called OpenSSD, and
modified SQLite and ext4 file system minimally to make them compatible with the extended abstrac-
tions provided by X-FTL. We demonstrate the effectiveness of X-FTL using real and synthetic SQLite
workloads for smartphone applications.

1 Introduction

An update action in a database system may involve multiple pages, and each of the pages in turn usually involves
multiple disk sectors. A sector write is done by a slow mechanical process and can be interrupted by a power
failure. If a failure occurs in the middle of a sector write, the sector might be only partially updated. A sector
write is thus considered non-atomic by most contemporary database systems [3, 11].

Atomic propagation of one or more pages updated by a transaction can be implemented by shadow paging or
physical logging. However, the cost will be considerable during normal processing. Although some commercial
database systems adopt a solution based on physiological logging for I/O efficiency and and flexible locking
granularity, others still rely on costlier but less sophisticated mechanisms based on redundant writing to limit the
scale of its code base. For example, InnoDB uses a double-write-buffer strategy, and SQLite runs with rollback
or write-ahead journaling for transactional atomic updates.

Most contemporary mobile devices, if not all, use flash memory as storage media to store data persistently.
Since flash memory does not allow any page to be overwritten in place, a page update is commonly carried out
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by leaving the existing page intact and writing the new content into a clean page at another location [5, 9]. This
strategy is called copy-on-write (CoW). Whether it is intended or not, the net effect of copy-on-write operations
by a flash memory drive remarkably resembles what the shadow paging mechanism achieves [10]. This provides
an excellent opportunity for supporting atomic update propagation almost for free.

This paper presents X-FTL [6] as a model case of exploiting the opportunity in flash storage to achieve
the transactional atomicity in a simple and efficient way. We describe the X-FTL approach and its extended
abstractions, and sketch how X-FTL can be implemented in an SSD using a development board called OpenSSD.
As use cases of X-FTL, we explain how SQLite and ext4 file system can be minimally modified so as to make
them compatible with X-FTL, and demonstrate the effectiveness of X-FTL using real and synthetic SQLite
workloads for smartphone applications.

2 Transactional Support in SQLite

In the era of smartphones and mobile computing, many popular applications such as Facebook, twitter, Gmail,
and even Angry birds game manage their data using SQLite. This is mainly due to the development productivity
and solid transactional support provided by the SQL interface.

In order to support transactional atomicity, SQLite processes a page update by copying the original content
to a separate rollback file or appending the new content to a separate write-ahead log. This is often cited as the
main cause of tardy responses in smartphone applications [7, 8]. According to a recent survey [8], approximately
70% of all write requests are for SQLite databases and related files. Considering the increasing popularity of
smart mobile platforms, improving the I/O efficiency of SQLite is a practical and critical problem that should be
addressed immediately.
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Figure 1: SQLite Journal Modes

SQLite adopts force and steal policies for buffer
management. When a transaction commits, all the
pages updated by the transaction are force-written to
a stable storage using the fsync command. When
the buffer runs out of free pages, even uncommitted
updates can be written to a stable storage.

In order to support the atomicity of transaction
execution without the atomicity of a sector write,
SQLite operates usually in either rollback mode [3]
or write-ahead log mode [4]. If a transaction updates
a page in rollback mode, the original content of the
page is copied to the rollback journal before updat-
ing it in the database, so that the change can always
be undone if the transaction aborts. The opposite is
done in write-ahead log mode. If a transaction up-
dates a page in write-ahead log mode, the original
content is preserved in the database and the modi-
fied page is appended to a separate log, so that any
committed change can always be redone by copying
it from the log. The change is then later propagated
to the database by periodical checkpointing. The de-
layed propagation in write-ahead log mode allows a
transaction to maintain its own snapshot of the database and enable readers to run fast without being blocked by
a writer.

The I/O behaviors of SQLite, as depicted in Figure 1, depend on which mode it runs in. If SQLite runs in
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rollback mode, a journal file is created and deleted whenever a new transaction begins and ends. This increases
I/O activities significantly for updating metadata. If SQLite runs in write-ahead log mode, a log file is reused
and shared by many transactions until the log file is cleared by a checkpointing operation. Thus, the overhead of
updating metadata is much lower when SQLite run in write-ahead log mode. Another aspect of I/O behaviors is
how frequently files are synced. SQLite invokes fsync system calls more often when it runs in rollback mode
than in write-ahead log mode. Since the header page of a journal file requires being synced separately from data
pages, SQLite needs to invoke at least one more fsync call for each committing transaction.

SQLite relies heavily on the use of rollback journal files and write-ahead log as well as frequent file sync
operations for transactional atomicity and durability. The I/O inefficiency of this strategy is the main cause
of tardy responses of applications running on SQLite. Our goal is to achieve I/O efficient, database-aware
transactional support at the flash based storage level so that SQLite and similar applications can simplify their
logics for transaction support and hence run faster. We have developed a new flash translation layer (FTL) called
X-FTL. With X-FTL, SQLite and other upper layer applications such as a file system can achieve transactional
atomicity and durability as well as metadata journaling with minimum overhead and redundancy.

3 X-FTL for Transactional Atomicity

This section provides a brief overview of the design principles and the abstractions of X-FTL. X-FTL supports
atomic page updates at the flash based storage level, so that upper layers such as SQLite and a file system can
be freed from the burden of heavy redundancy of duplicate page writes. Also, we present the performance
evaluation carried out to analyze the impact of X-FTL on SQLite.

3.1 Design Principles

The design objectives of X-FTL are threefold. First, X-FTL takes advantage of the copy-on-write mechanism
adopted by most flash-based storage devices [5], so that it can achieve transactional atomicity and durability
at low cost with no more redundant writes than required by the copy-on-write operations themselves. This
is especially important for SQLite that adopts the force policy for buffer management at commit time of a
transaction.

Second, X-FTL aims at providing atomic propagation of page updates for individual pages separately or
as a group without being limited to SQLite or any specific domain of applications. So the abstractions of X-
FTL must introduce minimal changes to the standards such as SATA, and the changes must not disrupt existing
applications.

Third, SQLite and other upper layer applications should be able to use X-FTL services without considerable
changes in their code. In particular, required changes, if any, must be limited to the use of extended abstractions
provided by X-FTL.

This approach is novel in that it attempts to turn the weakness of flash memory (i.e., being unable to update
in place) into a strong point (i.e., inherently atomic propagation of changes). Unlike the existing FTLs with
support for atomic write [12, 13, 14], X-FTL supports atomicity of transactions without contradicting the steal
policy of database buffer management at no redundant writes. This enables low-cost transactional support as
well as minimal write amplification, which extends the life span of a flash storage device.

3.2 X-FTL Architecture and Abstractions

In the core of X-FTL is the transactional logical-to-physical page mapping table (or X-L2P in short) as shown
in Figure 2. The X-L2P table is used in combination with a traditional page mapping table (or L2P in short)
maintained by most FTLs. The L2P and X-L2P tables appear in the left and right sides of Figure 2, respectively.
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Figure 2: X-FTL Architecture: an FTL for Transactional Atomicity

In order to provide transactional support at the storage level, we add to it more information such as the trans-
action id of an updater, the physical address of a page copied into a new location, and the status of the updater
transaction. This will allow us to have full control over which pages can be reclaimed for garbage collection.
Specifically, an old page invalidated by a transaction will not be garbage-collected as long as the updater trans-
action remain active, because the old page may have to be used to rollback the changes in case the transaction
gets aborted. If the updater transaction commits successfully, the information on the old page can be released
from the X-L2P table so that it can be reclaimed for garbage collection.

Obviously the additional information on transactions must be passed from transactions themselves to the
flash-based storage, but it cannot be done through the standard storage interface such as SATA. We have extended
the SATA interface so that the transaction id can be passed to the storage device by read and write commands.
Besides, two new commands, commit and abort, have been added to the SATA interface so that the change
in the status of a transaction can also be passed. The extensions we have made to the SATA interface are
summarized below.

write(tid t, page p) The write command of SATA is augmented with an id of a transaction t that writes a logical
page p. This command writes the content of p into a clean page in flash memory and add a new entry
(t, p, paddr, active) into the X-L2P table, where paddr is the physical address of the page the content of
p is written into.

read(tid t, page p) The read command of SATA is also augmented with an id of a transaction t that reads a
logical page p. This command reads the copy of p from the database snapshot of transaction t. Depending
on whether t is the transaction that updated p most recently or not, a different version of p may be returned.

commit(tid t) This is a new command added to the SATA interface. When a commit command is given by a
transaction t, the physical addresses of new content written by t become permanent and the old addresses
are released so that the old page can be reclaimed for garbage collection.

abort(tid t) This is a new command added to the SATA interface. When an abort command is given by a
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transaction t, the physical addresses of new content written by t are abandoned and those pages can be
reclaimed for garbage collection.

Note that the SATA command set is not always available for SQLite and other applications that access
files through a file system. Instead of invoking the SATA commands directly from SQLite, we have extended
the ioctl and fsync system calls so that the additional information about transactions can be passed to the
storage device through the file system.

3.3 X-FTL Advantages for SQLite

With X-FTL that supports atomic page updates at the storage device level, the runtime overhead of SQLite can
be reduced dramatically. First, SQLite does not have to write a page (physically) more than once for each
logical page write. Second, a single invocation of fsync call will be enough for each committing transaction
because all the updates are made directly to the database file. Consequently, the I/O efficiency and the transaction
throughput of SQLite can improve significantly for any workload with non-trivial update activities.

The current version (3.7.10) of SQLite supports the atomicity of a transaction that updates multiple database
files but it is awkward or incomplete [3, 4]. When a transaction updates two or more database files in rollback
mode, a master journal file, in addition to regular journal files, should be created to guarantee the atomic prop-
agation of the entire set of updates made against the database files [3]. With X-FTL, in contrast, SQLite keeps
trace of the multi-file updates in the X-L2P table under the same transaction id and supports the atomicity of the
transaction without additional effort.

3.4 Performance Evaluation

In order to understand the impact of X-FTL on SQLite, we have implemented X-FTL on an SSD development
board called OpenSSD, and modified SQLite and ext4 file system minimally to make them compatible with
the extended abstractions provided by X-FTL.

Using two different database workloads, we ran SQLite in rollback and write-ahead log modes on top of
the (unchanged) ext4 file system with the OpenSSD board running the original FTL. We also ran the modified
SQLite on top of the ext4 file system with the changed system calls with the OpenSSD board running X-FTL.
The workloads are a synthetic workload, a set of traces from four popular Android benchmarks.

3.4.1 Experimental Setup

The OpenSSD development platform [2] is equipped with Samsung K9LCG08U1M flash memory chips. These
flash memory chips are of MLC NAND type with 8KB pages and 128 pages per block. The host machine is
a Linux system with 3.5.2 kernel running on Intel core i7-860 2.8GHz processor and 2GB DRAM. We used
the ext4 file system in ordered mode for metadata journaling when SQLite ran in rollback or write-ahead log
mode. When SQLite ran on X-FTL, the file system journaling was turned off but the changes we added to the
file system were enabled. The version of SQLite used in this paper was 3.7.10, which supports both rollback and
write-ahead log modes. The page size was set to 8KB to match the page size of the flash memory chips installed
on the OpenSSD board.

3.4.2 Run-Time Performance

This section demonstrates the effectiveness of X-FTL by comparing the performance of SQLite with and without
X-FTL. We use the RBJ, WAL and X-FTL symbols to denote the execution of SQLite in rollback mode, write-
ahead log mode and with X-FTL enabled, respectively. Each performance measurement presented in this section
was an average of five runs or more.
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Figure 3: SQLite Performance (x1,000 Synthetic Transactions)

Mode
Host-side FTL-side

SQLite File System Total Counts fsync calls Write Read GC EraseDB Journal
RBJ 6,230 7,222 15,987 29,439 2,999 243,639 9,792 756 2,044
WAL 3,523 5,754 3,646 12,923 1,013 92,979 3,472 409 897

X-FTL 5,211 0 994 6,205 994 33,239 2,011 115 243

Table 4: I/O Count (# of updated pages per transaction = 5, GC validity = 50%)

3.4.2.1 Synthetic workload The synthetic workload consists of a partsupply table created by the dbgen
tool of the TPC-H benchmark. This table contains 60,000 tuples of 220 bytes each. Each transaction reads a
fixed number of tuples using random partkey values, updates the supplycost field of each tuple, and
commits. In the synthetic workload, we varied the number of updates requested by a transaction from one to 20,
and 1,000 transactions were executed for each fixed number of updates.

To evaluate the effect of garbage collections by FTL, we controlled aging of the OpenSSD flash memory
chips such that the ratio of valid pages carried over by garbage collection was approximately 30% or 50%.
Garbage collection is always done for an individual flash memory block. When a flash memory block is picked
up for garbage collection, the pages marked as valid in the block are copied into a new block, while invalid ones
are simply discarded. For instance, if the ratio of valid pages is 50%, 64 out of 128 pages will be copied from
the victim block to a new block, and the new block will contain just 64 free pages. This implies the garbage
collection will leave just half of the block available for use after all the cost of erasing a block and copying 64
pages.

Figure 3 shows the elapsed times of SQLite when it ran in rollback or write-ahead log mode and when it
ran in off mode with X-FTL. In Figure 3(a), under GC validity 30%, X-FTL helped SQLite process transactions
much faster than write-ahead log and rollback modes by 2.7 and 9.7 times, respectively. In Figure 3(b), under
GC validity 50%, the improvement ratios were even higher, 3.2 and 11.7 times, respectively. The considerable
gain in performance was direct reflection of reductions in the number of write operations and fsync system
calls. Recall that, with the force policy, SQLite force-writes all the updated pages when a transaction commits.

Table 4 compares rollback and write-ahead log modes with X-FTL with respect to the number of writes and
fsync calls. In the case of rollback, in particular, both numbers were very high. This is because SQLite had
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to create and delete a journal file for each transaction and consequently had to use fsync call very frequently.
In write-ahead log mode, SQLite wrote twice as many pages as running it with X-FTL, because it had to write
pages to both log and database files. Table 4 drills down the I/O activities further for the case when the number
of pages updated per transaction was five. In the ‘Host-side’ columns, we counted the number of page writes
requested by SQLite and the number of metadata page writes requested by the file system separately as well as
the total number of fsync calls.

In the ‘FTL-side’ columns, we counted the number of pages written and read (including those copied-back
internally in the flash memory chips) as well as the frequencies of garbage collection (GC) and block erase
operations. The write and block erase counts in Table 4 include the data pages and blocks garbage collected and
the metadata blocks erased by FTL.
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Figure 4: Smartphone Workload Performance

3.4.2.2 Android Smartphone Workload An-
droid Smartphone workload consists of traces
obtained by running four popular applications on an
Android 4.1.2 Jelly Bean SDK, namely, RL Bench-
mark [1], Gmail, Facebook, and a web browser. RL
Benchmark is a popular benchmark used for perfor-
mance evaluation of SQLite on Android platforms.
We modified the source code of SQLite to capture all
the transactions and their SQL statements.

In Figure 4, we measured the elapsed time taken
by SQLite to process each workload completely.
Since the performance gap between the rollback and
write-ahead log modes was similar to that observed in
the synthetic workload, we did not include the elapsed
time of rollback mode for the clarity of presentation.
Across all the four traces, SQLite performed 2.4 to
3.0 times faster when it ran with X-FTL than when it ran in write-ahead log mode. These results match the
elapsed times and the trend of I/O activities observed in the synthetic workloads (shown in Figure 3(b)).

4 Concluding Remarks

X-FTL is a novel transactional FTL which can efficiently support atomic propagation of one or more pages
updated by transactional applications (e.g., SQLite databases and NoSQL key-value stores) to a flash memory
storage device. The main contributions of the X-FTL scheme are: (1) it realizes low-cost atomic update for
individual pages, (2) it provides the awareness of database semantics in page updates to support the atomicity of
transactions, and (3) it exposes an extended abstraction (and APIs) to upper layer applications such as SQLite.

There are many non-database applications that require the semantics of transactional atomicity semantics
(i.e., the atomic propagation of a group of data pages) without a sophisticated recovery mechanism. X-FTL
provides an effective means for transactional support as well as a simple storage abstraction with extended
functionality. X-FTL also demonstrates that advanced storage devices could offload essential functions from the
host system to the devices and help simplify the software stack of the host system.
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Abstract

Flash-based solid state storage devices (SSDs) are now becoming commonplace in server environments.
In this paper, we consider the use of SSDs as a persistent second-tier cache for database systems. We
argue that it is desirable to change the behavior of the database system’s buffer cache when a second-tier
SSD cache is used, so that the buffer cache is aware of which pages are in the SSD cache. We propose
such an SSD-aware buffer cache manager, called GD2L. An interesting side effect of SSD-aware buffer
cache management is that the rate with which a page will be evicted or written from the buffer cache will
change when that page is moved into or out of the second-tier SSD cache. We also propose a technique,
called CAC, for managing the contents of the second-tier cache. CAC is aware that moving pages into
or out of the SSD cache will change their physical read and write rates. It anticipates these changes
when making decisions about which pages to cache at the second tier.

1 Introduction

Flash-based solid state storage devices (SSDs) are now becoming commonplace in server environments. When
SSDs are present, there are several ways in which they could be exploited by database management systems
(DBMS). On servers that have hybrid storage systems, consisting of both SSDs and disk drives (HDDs), one
option for the DBMS is to partition the database between the SSDs and the HDDs, so that each chunk of data is
stored persistently either on the SSD or on the HDD, but not both [1, 9, 13]. Alternatively, SSDs can be used as
an intermediate cache between the DBMS buffer cache and the HDDs [2, 4, 5, 8, 10, 12]. In this case, the entire
database resides on the HDDs, and portion of the database is also cached on the SSDs.

In this paper, we consider the latter scenario, in which the SSD is used as a persistent, intermediate cache.
We also assume that both the SSD cache and the HDDs are visible to the database management system, so that
it can take responsibility for managing the contents of the SSD cache. This is illustrated in Figure 1. When
writing data to storage, the DBMS chooses which type of device to write it to.

The primary focus of previous work has been on how a DBMS should decide which data to cache in the
SSD to maximize the system’s overall I/O performance [1, 2, 5, 12, 13]. Because SSDs provide much better I/O
performance than HDDs, this question is clearly important. However, if the goal is to maximize I/O performance
then this work considers only part of the problem, since the DBMS manages two tiers of caching, not one. Most
previous work assumes that the policies used to manage the database system’s in-memory buffer cache are given
and fixed. The goal is to design a caching strategy for the SSD without changing the way the DBMS buffer
cache is managed.

Copyright 2014 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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In this paper, we take the broader view, which brings both the database system’s in-memory buffer cache
and the SSD within scope. We consider two related problems. The first is determining which data should be
retained in the DBMS buffer cache. The answer to this question is affected by the presence of an intermediate
SSD cache because a database page that is evicted from the in-memory buffer cache can be brought back into
the cache much more quickly if it is present in the SSD cache than if it is not. Thus, we propose a cost-aware
DBMS buffer management technique, called GD2L, which takes this distinction into account.

The second problem is deciding which database pages should be retained in the SSD cache. Like some
previous work, our approach bases these decisions on page read and write frequencies, attempting to fill the
SSD with pages that will provide the greatest boost to I/O performance. However, the key observation is that, if
the DBMS buffer cache is cost-aware, then those page read and write frequencies depend on whether or not the
page is present in the SSD. Specifically, if a page is placed in the SSD cache, its read and write frequencies are
likely to increase, since the buffer cache will view the page as a good eviction candidate. Conversely, moving
a page out of the SSD cache will probably cause its read and write frequencies to drop. Thus, we propose an
anticipatory technique, called CAC, for managing the contents of the SSDs. When deciding whether to place
a page in the SSD cache, CAC predicts how such a move will affect the page’s I/O frequencies and places the
page into the SSD cache only if it is determined to be a good candidate under this predicted workload.

In this paper, we try to provide some intuition as to why it is important to consider both cache tiers in order
to maximize I/O performance, and we present an overview of GD2L and CAC. More information, including a
more detailed performance evaluation, can be found in a longer paper that appeared at VLDB’13 [11].

2 System Overview

As illustrated in Figure 1, we assume that the DBMS sees two types of storage devices, SSDs and HDDs. All
database pages are stored on the HDD, where they are laid out according to the DBMS’s secondary storage
layout policies. In addition, copies of some pages are located in the SSD and copies of some pages are located
in the DBMS buffer cache. Any given page may have a copy in the SSD, in the buffer cache, or both.

When the DBMS needs to read a page, the buffer cache is consulted first. If the page is cached in the buffer
cache, the DBMS reads the cached copy. If the page is not in the buffer cache but it is in the SSD, it is read into
the buffer cache from the SSD. If the page is in neither the buffer cache nor the SSD, it is read from the HDD.

If the buffer cache is full when a new page is read in, the buffer manager must evict a page according to its
page replacement policy, which we present in Section 4. When the buffer manager evicts a page, the evicted
page is considered for admission to the SSD if it is not already located there. SSD admission decisions are made
by the SSD manager according to its SSD admission policy. If admitted, the evicted page is written to the SSD.
If the SSD is full, the SSD manager must also choose a page to be evicted from the SSD to make room for
the newly admitted page. SSD eviction decisions are made according to an SSD replacement policy. (The SSD
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Figure 2: Total I/O Cost for the ith Page, Depending on Cache Placement

admission and replacement policies are presented in Section 5.) If a page evicted from the SSD is more recent
than the version of that page on the HDD, then the SSD manager must copy the page from the SSD to the HDD
before evicting it, otherwise the most recent persistent version of the page will be lost. The SSD manager does
this by reading the evicted page from the SSD into a staging buffer in memory, and then writing it to the HDD.

We assume that the DBMS buffer manager implements asynchronous page cleaning, which is widely used
to hide write latencies from DBMS applications. When the buffer manager elects to clean a dirty page, that page
is written to the SSD if the page is already located there. If the dirty page is not already located on the SSD, it
is considered for admission to the SSD according to the SSD admission policy, in exactly the same way that a
buffer cache eviction is considered. The dirty page will be flushed to the SSD if it is admitted there, otherwise it
will be flushed to the HDD.

3 Page Placement Example

Before presenting the GD2L and CAC algorithms, we first try to develop some intuition for our two-tiered
cache problem. To do this, we consider a simple static placement problem in a two-tier cache setting. Clearly,
placement decisions will not be static in practice, in either cache. However, by first considering a simple static
example, we hope to get some understanding of which pages belong in each cache.

Suppose we have a database consisting of N pages of data, of which at most CM can fit in the DBMS in-
memory buffer cache and CS can fit in the SSD cache (N > CS > CM ). We assume that a sequence of page
read and write requests arrives from the DBMS, and that the ith page is read ri times and written wi times in the
sequence.

Our goal is to determine which pages to place in each cache so that the total I/O cost of the request sequence
is minimized. Placement is static. We’ll assume RD and WD represent the costs of reading and writing a single
page to the HDD, and RS and WS are the costs of reading and writing a page to the SSD. With these parameters,
we can determine the total cost of the requests for each page, depending on its placement, as shown in Figure 2.
The total I/O cost for the entire request sequence is simply the sum of the costs of the pages. Note that if a page
is in the SSD, page writes are directed only to the SSD, not to the HDD, since the SSD cache is persistent. In
this way, the SSD cache can improve the performance of writes as well as reads.

To illustrate the tradeoffs that arise in solving the two-tiered static placement problem, we consider a single
problem instance in which the request sequence is chosen so that a 2D scatter plot of the pages according to their
read and write counts will fill the space, as illustrated in Figure 3. This is not intended to be a realistic request
sequence. Rather, it is merely intended to illustrate the read/write characteristics of the pages that get placed
into each cache. We also choose N = 900, CS = 200, and CM = 150, and for I/O costs we choose RD = 12,
RS = 0.16, WD = 12.5 and WS = 0.4. (These particular costs were adopted from Graefe [6].)

Figure 3(a) shows a non-optimal solution to this problem instance that was produced by a simple two-step
process. In the figure, each point represents a page, and the points are coded to indicate where that page was
placed in the solution, giving a visual overview of page placement. The first step in the two-step solution process
was to determine an optimal placement of pages into memory, under the assumption that no pages are in the SSD,
i.e., all pages are stored persistently on the HDD only. The second step in the process is to determine an optimal
placement of pages into the SSD, given the memory placement chosen in the first step. This two-step approach is
analogous to existing approaches to SSD cache management in which the management of the in-memory cache
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Figure 3: Two Solutions to an Instance of the Two-Tier Static Placement Problem

is taken as fixed and unchangeable.
Figure 3(b) shows an optimal solution to the same problem instance. The key differences between this

solution and the two-step solution occur in the top right of the figures. In the optimal solution, pages with high
read and write counts are placed in the SSD and not in the in-memory buffer cache. Instead, the buffer cache
is used for pages with high read counts and lower write counts. In contrast, the two-step solution places pages
with high read and write counts in the buffer cache. Most are not in the SSD, but the most frequently written
pages are in both the buffer cache and the SSD.

Of course, this is only a single problem instance, and the placement boundaries will shift as the parameters
change. However, this does provide some intuition about how to place pages in the two caches to minimize I/O
costs. The optimal solution ensures that frequently written pages are in the SSD, to keep write costs low. It also
avoids cache inclusion [15], i.e., it avoids keeping the same page in both the buffer cache and the SSD.

4 Buffer Cache Management

Most replacement policies for DBMS buffer caches, such as 2Q [7] or variants of LRU, are cost-oblivious, i.e.,
they do not consider the cost of reloading a page when making eviction decisions. In this section, we describe
our proposed cost-aware buffer cache management technique, which we refer to as GD2L. GD2L is based on
the GreedyDual algorithm [16], a cost-aware technique that was originally proposed for file caching.

The original GreedyDual algorithm takes into account the access costs of cached objects when making
replacement decisions. It associates a non-negative cost H(p) with each cached object p. When p is brought
into the cache or referenced in the cache, H(p) is set to the cost of retrieving p. To make room for a new
object, the object with the lowest H in the cache, Hmin, is evicted and the H values of all remaining objects are
reduced by Hmin. By reducing the objects’ H values and resetting them upon access, GreedyDual ages objects
that have not been accessed for a long time. The algorithm thus integrates temporal locality and cost concerns
in a seamless fashion. GreedyDual is usually implemented using a priority queue of cached objects, prioritized
based on their H value. With a priority queue, handling a hit and an eviction each require O(log k) time. Cao et
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al. [3] have proposed a technique to avoid the cost of subtracting Hmin from the H values of all cached objects
when a page is evicted. That technique involves maintaining a global inflation value L that increases on each
eviction, and increasing the initial H value of each newly-cached page by L.

In our setting, the cached objects are database pages, and there are only two possible initial values for H(p):
one corresponding to the cost of retrieving p from the SSD (RS) and the other to the cost of retrieving p from
the HDD (RD). The GD2L algorithm is designed for this special case.

We implemented GD2L in MySQL’s InnoDB storage engine. GD2L uses two queues to manage pages in
the buffer cache: one queue (QS) is for pages that are located on the SSD, the other (QD) is for pages that are
not on the SSD. Each queue is managed using the scan-resistant variant of LRU that is used by InnoDB. When
eviction is necessary, GD2L evicts the page with the lowest H value, which will be located either at the LRU
end of QS or at the LRU end of QD. In part by leveraging the technique proposed by Cao et al, GD2L achieves
O(1) time for handling both hits and evictions.

In a DBMS, when pages are modified in the buffer cache (dirty pages), they need to be copied back to the
underlying storage device. InnoDB, like many other database systems, uses dedicated by page cleaner threads
to clean dirty pages asynchronously. Since the page cleaners attempt to clean pages that are likely eviction
candidates, we changed the page cleaners to reflect the eviction policies of the new cost-aware replacement
policy. Our modified page cleaners check pages from the tails of both QS and QD. If there are dirty pages in
both lists, the page cleaners compare their H values and choose dirty pages with lower H values to write back
to the storage devices.

The original GreedyDual algorithm also assumed that a page’s retrieval cost does not change while it is
cached, but this is not true in our setting. A page’s retrieval cost changes when it is moved into or out of the
SSD. If a buffered page is moved into the SSD (e.g, when it is cleaned), then GD2L takes that page out of QD

and places it into QS . It is also possible that a buffered page that is in the SSD will be evicted from the SSD
(while remaining in the buffer cache). This may occur to make room in the SSD for some other page. In this
case, GD2L removes the page from QS and inserts it to QD.

5 SSD Management

Pages are considered for SSD admission when they are cleaned or evicted from the DBMS buffer cache. Pages
are always admitted to the SSD if there is free space available on the device. If there is no free space on the SSD
when a page is cleaned or evicted from the DBMS buffer cache, the SSD manager must decide whether to place
the page on the SSD and which SSD page to evict to make room for the newcomer. The SSD manager makes
these decisions by estimating the benefit, in terms of reduction in overall read and write cost, of placing a page
on the SSD. It attempts to keep the SSD filled with the pages that it estimates will provide the highest benefit.
Our specific approach is called Cost-Adjusted Caching (CAC). CAC is specifically designed to work together
with a cost-aware DBMS buffer cache manager, like the GD2L algorithm presented in Section 4.

To decide whether to admit a page p to the SSD, CAC estimates the benefit B, in terms of reduced access
cost, that will be obtained if p is placed on the SSD. The essential idea is that CAC admits p to the SSD if there
is some page p′ already on the SSD cache for which B(p′) < B(p). To make room for p, it evicts the SSD page
with the lowest estimated benefit.

We refer to a read and write requests issued to the SSD or the HDD as physical read and write requests.
Suppose that a page p is not currently in the SSD, and has experienced r(p) physical read requests and w(p)
physical write requests over some measurement interval prior to the admission decision. If this physical I/O
load on p in the past were a good predictor of the I/O load p would experience in the future, a reasonable way to
estimate the benefit of admitting p to the SSD would be

B(p) = r(p)(RD −RS) + w(p)(WD −WS) (3)
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Symbol Description
rD, wD Measured physical read/write count while not on the SSD
rS , wS Measured physical read/write count while on the SSD
r̂D, ŵD Estimated physical read/write count if never on the SSD
r̂S , ŵS Estimated physical read/write count if always on the SSD

α Miss rate expansion factor

Figure 4: Summary of Notation

where RD, RS , WD, and WS represent the costs of read and write operations on the HDD and the SSD.
Unfortunately, when the DBMS buffer manager is cost-aware, like GD2L, the physical read and write counts

experienced by p in the past may be particularly poor predictors of its future physical I/O workload. In particular,
if p is admitted to the SSD then we expect that its post-admission physical read and write rates will be much
higher than its pre-admission rates. This is because GD2L will be more likely to evict p from the database
buffer cache once p has been moved into the SSD. Since p will spend less time in the buffer cache, attempts
by the database system to read p will be more likely to result in physical reads, causing p’s physical read rate
to increase. Since the DBMS page cleaners try to keep likely eviction candidates clean, p’s physical write rate
will increase as well. Put another way, the buffer pool miss rate of p will increase if p is moved into the SSD.
Conversely, if a page p that is located on the SSD is evicted from the SSD, then we expect its buffer pool miss
rate, and hence its physical I/O rates, to drop. Thus, we do not expect Equation 3 to provide a good benefit
estimate when the DBMS uses cost-aware buffer management.

To estimate the benefit of placing page p on the SSD, we would like to know what its physical read and
write workload would be if it were on the SSD. Suppose that r̂S(p) and ŵS(p) are the physical read and write
counts that p would experience if it were placed on the SSD, and r̂D(p) and ŵD(p) are the physical read and
write counts p would experience if it were not. Using these hypothetical physical read and write counts, we can
write our desired estimate of the benefit of placing p on the SSD as follows

B(p) = (r̂D(p)RD − r̂S(p)RS) + (ŵD(p)WD − ŵS(p)WS) (4)

Thus, the problem of estimating benefit reduces to the problem of estimating values for r̂D(p), r̂S(p), ŵD(p),
and ŵS(p). The notation used in these formulas is summarized in Table 4.

To estimate r̂S(p), CAC uses two measured read counts: rS(p) and rD(p). In general, p may spend some
time on the SSD and some time not on the SSD. rS(p) is the count of the number of physical reads experienced
by p while p is on the SSD. rD(p) is the number of physical reads experienced by p while it is not on the SSD.
The total number of physical reads experienced by p during the measurement interval is rS(p) + rD(p). To
estimate what p’s total physical read count would be if it had been on the SSD full time during the measurement
interval (r̂S), CAC uses

r̂S(p) = rS(p) + αrD(p) (5)

In this expression, the number of physical reads experienced by p while it was not on the SSD (rD(p)) is
multiplied by a scaling factor α to account for the fact that it would have experienced more physical reads
during that period if it had been on the SSD. We refer to the scaling factor α as the miss rate expansion factor.
A simple way to estimate α is to compare the overall miss rates of pages on the SSD to that of pages that are not
on the SSD, although our implementation of CAC uses a more fine-gained estimate. CAC estimates the values
of r̂D(p), ŵD(p), and ŵS(p) in a similar fashion:

r̂D(p) = rD(p) +
rS(p)

α
(6) ŵS(p) = wS(p) + αwD(p) (7) ŵD(p) = wD(p) +

wS(p)

α
(8)
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6 Performance Evaluation

We performed a variety of experiments to evaluate the performance of CAC and GD2L. All of our experiments
were performed using TPC-C workloads [14]. The longer paper [11] includes a more thorough performance
evaluation, including tests with different systems configurations and comparisons of GD2L and CAC to other
proposed techniques for managing SSDs in database systems. Here, we present two of the experiments from
that evaluation.

Our first experiment compares the TPC-C performance obtained by our MySQL test system when it uses
different combinations of algorithms for managing its buffer cache and the SSD. Here, we consider three alter-
natives:

LRU+CC: This uses InnoDB’s original, unmodified cost-oblivious algorithm (a scan-resistant variant of LRU)
to manage the database buffer cache, and uses CC to manage the SSD. CC is identical to our proposed
CAC technique, except that it is non-anticipatory, i.e., it does not attempt to predict the changes in page
read and write rates that will occur as the page is moved into and out of the SSD. Specifically, CC uses
Equation 3, rather than Equation 4, to estimate the benefit of each page.

GD2L+CC: This uses GD2L to manage the InnoDB buffer cache, and CC to manage the SSD.

GD2L+CAC: This uses GD2L to manage the buffer cache and CAC to manage the SSD.

We used a TPC-C scale factor of 300 warehouses, corresponding to an initial database sizes of approximately
30GB, fixed the SSD size at 10GB, and tested database buffer cache sizes of of 10%, 20%, and 40% of the SSD
size (1GB, 2GB, and 4GB, respectively). Thus, in this setting, the database is substantially larger than the SSD.
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Figure 5: TPC-C Throughput Under Different Algorithm Combinations for Various DBMS Buffer Cache Sizes.

Figure 5 shows the TPC-C throughput of each of these algorithm combinations for each InnoDB buffer
cache size. By comparing LRU+CC with GD2L+CC, we can see the benefit that is obtained by switching
from InnoDB’s original cost-oblivious buffer manager to GD2L. In our setting, this resulted in TPC-C through-
put increases of about 40%-75%, depending on the size of the buffer cache. By comparing GD2L+CC with
GD2L+CAC, we see the additional benefit that is obtained by switching from a non-anticipatory cost-based
SSD manager (CC) to an anticipatory one (CAC). Figure 5 shows that GD2L+CAC provides additional perfor-
mance gains above and beyond those achieved by GD2L+CC. Thus, it is important to use both cost-aware buffer
management and compatible SSD manager, like CAC, to obtain the full benefit of the SSD cache. Together,
GD2L and CAC provide a TPC-C performance improvement of about a factor of two relative to the LRU+CC
baseline in these tests.
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Figure 6: Miss rate/write rate while on the HDD (only) vs. miss rate/write rate while on the SSD. Each point
represents one page

Our second experiment is intended to show how cost-aware buffer managers, like GD2L, cause the read and
write rates of database pages to change as those pages are moved into or out of the SSD. For this experiment,
we drove our MySQL test system, with GD2L used for buffer management, using a TPC-C workload, and
generated a log of all page I/O as well as movements of pages into and out of the SSD. By analyzing this log,
we can calculate read and write rates for individual pages. We identified approximately 2000 pages in this trace
that spent significant amounts of time both in the SSD cache and not in the SSD cache. For each such page, we
calculated the read miss rate (in the DBMS buffer cache) of the page while it was in the SSD cache, and the read
miss rate while it was not in the SSD cache. In addition, we calculated the pages physical write rate while in the
SSD cache, and its physical write rate while not in the SSD cache.

Figure 6(a) shows scatter plots of the read miss rates of pages while in the SSD cache and while not in the
SSD cache. Each point represents a single page. From these graphs, we can see that most pages have higher read
miss rates when they are located in the SSD. This is the effect of making the DBMS buffer manager cost-aware:
it is more likely to evict pages that are located in the SSD. Figure 6(b) is similar to Figure 6(a), but it shows page
write rates rather than miss rates. Again, most pages have higher write rates while in the SSD cache, because
GD2L’s page cleaners try to clean pages that are likely to be evicted.

7 Conclusion

In this paper we present two new algorithms, GD2L and CAC, for managing the buffer cache and the SSD in
a database management system. Both algorithms are cost-based and the goal is to minimize the overall I/O
cost of the workload. We implemented the two algorithms in the InnoDB storage engine and evaluated them
using a TPC-C workload. Our results show that we can achieve the best I/O performance using both cost-aware
management of the DBMS buffer cache (GD2L) and a compatible SSD manager, like CAC. The SSD manager
needs to anticipate I/O workload changes that will result from its SSD placement decisions.
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