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Juliana Freire1,2 Cláudio Silva1,2 Huy Vo1,2

Harish Doraiswamy1 Nivan Ferreira1 Jorge Poco1

{juliana.freire,csilva,hvo,harishd,nivan.ferreira,jpocom}@nyu.edu
1Department of Computer Science and Engineering

2 Center for Urban Science and Progress
New York University

Abstract

About half of humanity lives in urban environments today and that number will grow to 80% by the
middle of this century. Cities are thus the loci of resource consumption, of economic activity, and of
innovation. Given our increasing ability to collect, transmit, store, and analyze data, there is a great
opportunity to better understand cities, and enable them to deliver services efficiently and sustainably
while keeping their citizens safe, healthy, prosperous, and well-informed. But making sense of all the
data available is hard. Currently, urban data exploration is often limited to confirmatory analyses con-
sisting of batch-oriented queries and the exploration of well-defined questions over specific regions.
The lack of interactivity makes this process both time-consuming and cumbersome. This problem is
compounded in the presence of big, multivariate spatio-temporal data, which is ubiquitous in urban
environments. Another challenge comes from the need to empower social scientists, policy makes and
urban residents who lack computer science expertise to leverage these data. In this paper, we give an
overview of our recent work on techniques that combine data management and visualization to enable a
broad set of users to interactively explore large, spatio-temporal data. We describe a visual query inter-
face that simplifies the process of specifying spatio-temporal queries as well as new indexing technique
that enables these queries to be evaluated at interactive rates. We also present a scalable framework that
applies computational topology to automatically find interesting data slices so as to help guide users in
the exploratory process.

1 Introduction
Today, 50% of the world’s population lives in cities and the number will be 70% by 2050; North America is
already 80% in cities, rising to 90% by 2050 [46]. Cities are thus the loci of economic activity and innovation.
At the same time, most cities face huge challenges around transportation, resource consumption, housing af-
fordability, and inadequate or aging infrastructure. Data, along with visualization and analytics capabilities, can
help significantly with these challenges.

Our increasing ability to collect, transmit, and store data, coupled with the growing trend towards open-
ness [4, 18, 20, 23, 36, 37, 43], creates a unique opportunity that can benefit government, science, citizens and
industry. By integrating and analyzing multiple data sets, city governments can go beyond today’s imperfect and
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often anecdotal understanding of cities to enable better operations and informed planning [16, 20]. Scientists can
engage in data-driven science and explore longitudinal processes to understand people’s behavior [21]; identify
causal relationships across data sets, which can in turn, influence policy decisions [11, 42]; or create models
and derive predictions that benefit citizens [15]. Putting urban data in the hands of citizens has the potential to
improve governance and participation, and in the hands of entrepreneurs and corporations it will lead to new
products and services for governments, firms, and consumers. The challenge now lies in making sense of all the
data so that they can be used effectively to answer the right questions.

Urban data is unique in that it captures the behavior of the different components of a city, namely its citi-
zens, existing infrastructure (physical and policies), the environment (e.g., weather), and interactions between
these elements [28]. To understand a city and how its components interact, intricate analyses are necessary.
These include flexible exploration and visualizations that span different geographical regions and multiple time
slices. However, urban data analysis has often been limited to well-defined questions, or confirmatory data
analysis [45]. The common practice is for domain experts to formulate hypotheses on the basis of theory and
anecdotal experience, then for data scientists with expertise in geographical information systems (GIS) and sta-
tistical analysis tools to select relevant data, carry out analyses, and finally, the domain experts can inspect the
results to verify whether they disprove or support the hypotheses. In order to answer even simple questions,
a large number of plots and tables may have to be generated, each of which is individually programmed and
manually composed for analysis. Because data selection is often decoupled from the analysis and visualization,
the context switch between the different software components used for these tasks makes it hard to keep spatio-
temporal context. Together with the glut of plots derived, this creates a heavy cognitive load for the users, while
the batch-oriented analysis pipeline hampers exploration across data sets, which is essential for understanding
trends and potential causal mechanisms. Furthermore, the dependency on data specialists distances the domain
experts from the data, limiting their opportunity to explore new directions. The trend towards broad-scale data
collection, rather than limited collection targeted at specific questions, makes it clear that this process cannot
scale, and that tools are needed that foster hypothesis-generating analyses.

One of the shifts we’re seeing with observational data is broad-scale collection, rather than limited collection
targeted at one hypothesis. So the thought is that the kind of tools that worked for analyzing a ”single hypothesis”
dataset might not be a good match for the kind of exploratory,

The lack of interactivity, along with the recent explosion in data volume and complexity, make it clear that
this process cannot scale.

An important goal of our research is to enable domain experts to freely explore a large number of urban
data sets and interactively analyze the many different facets of these data. This involves fundamental challenges.
First and foremost, we need usable tools, designed for users who do not have computer science training. Second,
not only can urban data be large, but often they contain both temporal and spatial components, in addition to
multiple variables. In a recent study of open data published by cities in North America, we found that over
50% of the tabular data contained spatial attributes and roughly 48% included time information [4]. Attaining
interactivity while exploring spatio-temporal data is difficult. Even though there has been substantial work on
spatio-temporal indexing, most techniques aim to speed up batch queries, and are not able to support the query
rates that interactive visual analytics applications demand. Another challenge comes from the fact that there
are too many data slices to explore, that cover different regions and time ranges, making it hard to identify
interesting patterns or events.

In this paper, we give an overview of recent work that combines data management and visualization to
support the interactive exploration of large urban data [9, 14]. We use New York City taxi data as a case study
to both illustrate general challenges that arise in urban data exploration, and to demonstrate the effectiveness
and usefulness of the techniques we have developed. We describe the taxi data in Section 2. In Section 3, we
present TaxiVis, a visual analytics tool that allows users to specify complex spatio-temporal queries through a
visual interface. We describe the visual language as well as a new indexing strategy that allows queries to be
evaluated at interactive rates. TaxiVis also implements a number of visualization and interaction techniques to
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Figure 1: Taxis as sensors of city life. The plot on the top shows how the number of trips varies over 2011 and 2012.
While some patterns are regular and appear on both years, some anomalies are clear, e.g., the drops in August 2011
(Hurricane Irene) and in October 2012 (Hurricane Sandy). Another large discrepancy happened in April 2011, when gas
prices increased. In the bottom, we show pickups (blue) and dropoffs (orange) in Manhattan on May 1st from 7am to
11am. Notice that from 8-10am, there are virtually no trips along 6th Avenue, indicating the traffic was blocked.

streamline exploration, including, coordinated views and parameter sweeps. The system has been successfully
deployed at two New York City agencies: the Taxi & Limousine Commission (TLC) and at the Department of
Transportation (DoT), where users have lauded its usability and speed. But even with such a system, looking
for interesting patterns across a very large number of spatio-temporal slices can be like looking for a needle
in a haystack. To help guide users towards interesting times slices, we designed a new topology-based event
detection technique that is both scalable and, unlike existing approaches, can detect events with arbitrary spatial
geometry. We describe the technique in Section 4 and show how it can support event queries. We conclude in
Section 5, where we discuss open problems and directions for future work.

2 Exploring New York City Taxi Data: Opportunities and Challenges

Taxis are central component of the New York City transportation system. Every day, there are over 500,000
taxi trips transporting about 600,000 people [44]. Through the meters installed in each vehicle, the Taxi &
Limousine Commission (TLC) captures detailed information about these trips, which consists of two spatial
attributes (pickup and dropoff locations), two temporal attributes (pickup and dropoff times), and additional
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attributes including taxi id, distance traveled, fare and tip amount. The large number of vehicles, trips they
make, and people they carry, make taxis valuable sensors that can provide unprecedented insight into many
different aspects of city life, from economic activity and human behavior to mobility patterns. For example, the
transactional attributes present in the taxi data enables the study of the economics of fare structure and optimal
fleet size [40, 41].

Consider the plot in Figure 1 (top), which shows how the number of trips per day varies over 2011 and 2012.
Note the regularity in the trip distribution over the two years. For example, on Thanksgiving, Christmas and New
Year’s eve, there is a substantial drop in the number of trips. But the plot also shows some anomalies. There
are big drops in August 2011 and October 2012, which correspond to hurricanes Irene and Sandy, respectively.
Looking at the data at a finer scale, other interesting patterns emerge. The maps in Figure 1 (bottom) show the
density of taxis across Manhattan from 7am to 11am, on May 1st, 2011. From 8am to 10am, taxis disappear
along 6th avenue, from Midtown to Downtown; and then, at 10am they reappear. As it turns out, during this
period, the streets were closed to traffic for the NYC Five Boro Bike Tour.1 Other useful information can
also be discovered by analyzing the taxi data set, from popular night spots and economically disadvantaged
neighborhoods that are underserved by taxis, to mobility patterns across regions at different times and days.

Not surprisingly, exploring these data is challenging due to its size and complexity. There are over 170
million taxi trips in NYC every year. The current approach used by domain experts is to store the data in
a general-purpose relational DMBS and perform queries to answer questions posed out of intuition or field
observation. The results of these queries are then fed into different software tools such as R, Excel and ArcGIS
for further analysis and visualization. This workflow makes the analysis process inefficient. The disconnect
between the data selection process and visualization hampers exploration. The context switch between the
different software components creates a heavy cognitive load for the users and makes it hard to keep spatio-
temporal context. There is also a steep learning curve for users to master these tools. Furthermore, off-the-shelf
DMBS are not built for interactivity. For example, common queries over on the taxi data (even in the presence of
spatial indexes) range from tens of seconds to minutes (see Section 3). These response times are not acceptable
for interactive visual analytics, since users perceive questioning and answering as separate tasks [17].

3 Visually Exploring Spatio-Temporal Data

Visualization and visual analytics systems help people explore and explain data by allowing the creation of both
static and interactive visual representations [24, 25, 29, 31, 30, 47]. A basic premise of visualization is that
visual information can be processed at a much higher rate than raw numbers and text: as the cliché goes, “A
picture is worth a thousand words.” Well-designed visualizations substitute perception for cognition, freeing up
limited cognitive and memory resources for higher-level problems [35]. There are several visualization tools
that give users access to advanced visualization techniques. But the application of visualization technology to
large data is non-trivial.

A widely-used method to analyze large data is to take a small subset of the data (often by sub-sampling) and
study it with existing (non-scalable) tools. Hypotheses are generated from this sample, which are then tested on
the complete data set through confirmatory analysis [17]. This approach has many shortcomings, one of them
is the potential bias introduced by the use of small samples. This is further exacerbated by high-dimensional
data that comes from multiple sources. Patterns that might be easy to find on the complete data sets might be
obscured in small samples.

Working on the whole data set has many advantages but comes at a high computational cost. This creates new
challenges for data management systems, since to be effective, visualization tools must be interactive, requiring
sub-second response times. In a recent study, Liu and Heer [33] concluded that even relatively short delays
in visualization systems can harm user activity, data set coverage, and how many observations and hypotheses

1http://www.nycbikemaps.com/spokes/five-boro-bike-tour-sunday-may-1st-2011
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are generated. Fekete and Silva [13] argued that although there has been much work on scaling databases
for big data, existing technologies do not meet the requirements needed to interactively explore massive or even
reasonably sized data sets. Recognizing this limitation, several recent works have started to address the problems
of providing efficient support for visualization [49] and interactive queries over large tabular data [2, 5, 26, 27,
32, 34, 48].

In what follows, we present our approach to support interactive exploration of spatio-temporal data, which
was implemented in the TaxiVis system.

3.1 The TaxiVis System

TaxiVis was designed to support interactive analysis of NYC taxi data. It implements a visual model that is able
to express complex queries and an index structure that enables interactive response times for spatio-temporal
queries. We describe these two components below, and discuss how they were combined in the TaxiVis system.

The query model enable users to pose queries over all the dimen-

Figure 2: TaxiVis user interface com-
ponents. (A) Time selection widget,
(B) Map, (C) Tool bar, and (D) Data
summary.

sions of the data and flexibly explore the attributes associated with the
taxi trips. The components of the user interface are shown in Fig-
ure 2. Queries can be interactively composed and refined in the Map
view (B), as well as generalized by performing parameter sweeps.
Query results can be visualized in the data summary view (D) in a
variety of ways including time-series plots, histograms, scatterplots
and heatmaps. By combining data selection and result visualization
in the same environment, TaxiVis allows users to explore multiple
data slices while maintaining the spatio-temporal context. The sys-
tem also implements a number of strategies to render a large number
of graphical primitives on a map, as well as the use of adaptive level-
of-detail rendering to provide clutter-free visualization of the results
(see Figure 3). TaxiVis also implements a number of visualization and
interaction techniques to streamline exploration, including, multiple
coordinated views and parameter sweeps. The former is illustrated
in Figure 3, which shows a comparison of the number of pickups in
different neighborhoods on Mondays and Sundays.

TaxiVis is currently being used at the NYC Department of Trans-
portation (DoT) and the TLC. The feedback we have received from
them was very positive. The analysts stated that “The speed at which
the tool permits us to work has saved multiple hours of staff time and has dramatically improved the unit’s
output and capabilities”. We should note that while the original motivation to build TaxiVis was to analyze taxi
data, we have used the system to explore other spatio-temporal data sets, including: NYC CitiBike, property
ownership [22], 311 complaints [1], geo-tagged tweets, and energy consumption.

3.2 Visual Query Model

To address the usability limitations of existing tools, we designed a new visual query model that supports com-
plex spatio-temporal queries over origin-destination data [14]. Users need not be experts in any textual query
language: users specify queries visually and they can iteratively refine their queries through direct manipulation
of the results. The model is expressive and supports a wide class of queries, including the query classes for
spatio-temporal data defined in Peuquet’s triad framework [39].

In our model, queries are of the following form: SELECT * FROM trips WHERE <constraints>. The
general idea is to have users specify the constraints for this query template through visual operations. There
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Sundays Mondays

Figure 3: Using multiple views to explore how the number of pickups varies on Sundays and Mondays (in May
2011) for different neighborhoods. While there are many more pickups Midtown (green) throughout the day
on Mondays, on Sundays, West, East and Greenwich Village (blue) get busier. This analysis also shows that
Harlem (orange) is underserved by taxis. Because queries can return a large number of results, TaxiVis uses
adaptive level-of-detail (LOD) rendering to display the results on the map. As shown on the right, without LOD,
the map gets cluttered.

are three types of constraints that correspond to the components of the data: spatial, temporal, and attributes.
Each query is associated with the set of trips contained in its results. Since each trip is uniquely identified by
the trip id, queries can be composed: users can iteratively refine queries and further explore the results. This has
two important implications: it allows the creation of summaries and visualizations while maintaining the spatial
and temporal contexts, and enables queries to be applied directly to the derived visualizations. To formalize the
process of query composition and properly define query semantics, we use two types of queries: atomic queries
and complex queries, where the latter uses atomic queries as building blocks.
Atomic Queries. An atomic query consists of a set of temporal, attribute and spatial constraints. Temporal con-
straints define intervals that bound the values of the time range of the query. A temporal constraint is specified
by an interval [tMin, tMax]. A trip satisfies the constraint if trip.pickup time, trip.dropoff time ∈ [tMin, tMax]. It is
also possible to have constraints that bound just the pickup or the dropoff time.

An attribute constraint can be expressed using equality conditions (for categorical attributes) or interval
conditions (for numerical attributes). A trip satisfies an attribute equality constraint associated with a categorical
attribute A if for the given value a, trip.A = a. If the constraint is associated with a numerical attribute, the trip
satisfies the constraint for the interval [lA,rA] if trip.A ∈ [lA,rA].

Spatial constraints come in two flavors: single-region and directional constraints. A single-region constraint
is defined by a connected spatial region and is associated either with the pickup location (start constraint) or
the dropoff location (destination constraint). A trip satisfies the constraint for region r if trip.pickup region ∈ r
(for start constraints) or trip.dropoff region ∈ r (for destination constraints). Directional constraints are used to
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construct queries about origins and destinations. A directional constraint bounds the regions associated with
both pickup and dropoff locations. Given source and destination regions, rsource and rdest , respectively, a trip
satisfies the constraint if trip.pickup location ∈ rsource and trip.dropoff location ∈ rdest .

We define a function called result which takes as input an atomic query and returns the set of all trip records
that satisfy the query constraints. The result function determines how queries are evaluated. Atomic queries are
closed under intersection, i.e., since the query constraints are closed under intersection we can combine atomic
queries to construct new ones. We do so by taking two atomic queries Q1,Q2, and constructing a third query,
Q3, which is given by the intersection of the corresponding constraints. By definition, we have result(Q3) =
result(Q1)∩ result(Q2).
Complex Queries. A complex query is constructed by combining a set of atomic queries through disjunction.
We evaluate those queries by extending the result function inductively. Note that an atomic query is a special
case of a complex query, where the query set has a single element. Given two complex queries, Q1 and Q2,
result(Q1 ∪Q2) = result(Q1)∪ result(Q2). In general, given an atomic query Q it is not possible to find an
atomic query Q′ such that result(Q′)= result(Q)C (the complement of result(Q)). However, it is always possible
to define a complex query Q′ that satisfies this condition. Thus, set theoretic operations can be performed on the
result of complex queries to build new complex queries.
Visual Representation. Figure 2 illustrates how atomic and complex queries are represented visually in our sys-
tem. Temporal constraints are specified using time-selection widgets (A), and attribute constraints are defined
in a separate view (see [14] for details). Here, to illustrate the semantics of the query model, we focus on spatial
views that are defined on the map view (B). Single-region constraints are defined by polygons and directional
constraints are defined by arrows. The transparent color in the interior of the polygons define the type of the
constraint: blue means start constraint, red means destination constraint (see Figure 2). The colors on polygon
borders and arrows identify distinct queries (there are 3 queries – orange, red, and blue). The orange and red
queries are atomic queries, consisting of only atomic temporal and spatial constraints. The blue query Q is a
complex query, composed by the union of two atomic queries: a single-region start query Q1 and a directional
query Q2. In an SQL-like textual notation, Q1 can be represented as:

SELECT ∗ FROM trips
WHERE trip.pickup time ∈ [05/01/2011,05/07/2011] AND trip.pickup location ∈ R1

where R1 denotes the blue region selected in the map. And Q2:

SELECT ∗ FROM trips
WHERE trip.pickup time, trip.dropoff time ∈ [05/01/2011,05/07/2011] AND trip.pickup location ∈
NYCNeighborhood(’Gramercy’) AND trip.dropoff location ∈ NYCRegion(’Times Square’)

where NYCNeighborhood and NYCRegion are functions that given a neighborhood name or region name, re-
spectively, returns the corresponding spatial region.

3.3 Query Evaluation

While easy-to-use, the visual interface leads to an important challenge: a user can issue several large queries
and visualizations need to be created for their results at interactive speeds. These queries can be complex. For
example, in Figure 3, two queries are represented: the query on the left asks for all pickups in three different
neighborhoods on all Sundays in May 2011, and the one on the right explores a different time pattern—all
Mondays in May 2011. Users can not only select arbitrary regions, but they can also interactively move polygons
around the map, thus generating a series of queries.

To support these queries, we first experimented with traditional database systems, both open source and
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Table 1: Summary of experiments with data storage strategies.

SQLite PostgreSQL TaxiVis Storage
Storage space 100GB 200GB 30GB

Index construction time 52h 13h 28m
1k-query 8s 3s 0.2s

100k-query 85s 24s 2s

commercial. In spite of extensions for spatial queries, their query performance is not suitable for interactivity,
not to mention the fact that they take a considerable length of time to build the spatial indices. Table 1 shows
the performance for SQLite and PostgreSQL with PostGIS, with the former being used for in-memory storage.
SQLite took 52 hours just to build the indices for data corresponding to a single year of taxi trips, which as
mentioned earlier consists of approximately 170 million trips. Moreover, a single atomic spatio-temporal query
could take from seconds to tens of seconds to complete, while complex ones such as those specified by the
recurrent time selection widget, can take minutes. Finally, another shortcoming of these database systems is
their large memory footprint. In our experiments, SQLite and PostgreSQL used more than 100GB of RAM (in
memory setup for SQLite) and 200GB, respectively.

In order to address these issues, we have built a light-weight database variant that allows fast queries on
all attributes including spatio-temporal constraints. Our implementation is based on a space-partitioning data
structure, the k-d tree [8], that treats each taxi trip as a point in a k-dimensional space. In our implementation,
points are only stored in leaves. Our code takes only 30 minutes to build the indices for the full three years of
data and uses only 30GB of disk space. At run-time, the whole data structure, including the data points, are
mapped to the system virtual memory, therefore, it may operate in-core or out-of-core adaptively, depending on
the available resources. In our tests, compared to the database systems mentioned above, the memory usage is
considerably smaller, and queries are significantly faster – they can be evaluated within the bounds required by
our interactive system. In Table 1, we summarize the results obtained by our our experiments where 1k-query
and 100k-query refer to queries returning approximately 1000 and 100,000 trips, respectively.

4 Automatically Finding Interesting Spatio-Temporal Slices

An important challenge in the exploration of large spatio-temporal data is how to identify interesting data slices.
While TaxiVis simplifies the exploration of the taxi data, it is not practical to exhaustively examine each data
slice. Aggregation can help overcome this problem, but it does so at the cost of occluding small or local patterns
in the data [3]. For example, events such as the NYC Five Boro Bike tour shown in the maps of Figure 1, affect
a relatively small region in the city over a short period of time, and thus may not be visible when the data is
aggregated over time or space.

In more recent work, we designed an automated event-detection algorithm based on techniques from com-
putational topology to help guide users towards interesting patterns and data slices [9]. The topological rep-
resentation of large data sets provides an abstract and compact global view that captures different features and
leads to enhanced and easier analysis across applications [19, 38]. The advantages of using topology-based tech-
niques are twofold: topological data structures such as contour trees [7] and Reeb graphs [10], which are used
to to identify topological features, can be efficiently computed; and unlike existing approaches, topology-based
techniques allow for detection of events that can have arbitrary spatial geometry.

Detecting events in the taxi data. Event detection is accomplished in two steps. First, a time-varying scalar
function is derived from the input data. Here, we assume that the temporal dimension is represented as a set of
discrete time steps. If we consider the taxi data, we can define the time-varying scalar function as the density of
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(a) (b)

Figure 4: (a) Scalar function for a time step corresponding to 9-10am on May 1, 2011. (b) Two of the minima
of this function correspond to the the path taken by the NYC Five Boro Bike tour in Lower and Midtown
Manhattan.

taxis at each point in NYC over hourly intervals. The domain of this function is represented as a graph. Next,
the set of events is computed as topological features. In particular, we consider two types of features: minimum
and maximum. Given a single time step in the taxi density function, a minimum of this function represents a
region where the density of taxis is lower than its local neighborhood, implying a relative scarcity of taxis in
that region. Such events, when in a busy region, could be due to road blocks. For example, Figure 4(a) shows
the scalar function corresponding to a time step when the NYC Five Borough Bike tour from Figure 1 occurred.
Two of the minima events are shown in Figure 4(b), which correspond to the path taken by the bike tour in
Manhattan. Similarly, a maximum represents a region where the density of taxis is higher than that of its local
neighborhood.

Event Index. We implemented a visual interface on top of the TaxiVis infrastructure that allows users to
explore events at different time steps. In order to guide users towards potentially interesting events from a
possibly large number of events, we designed a rudimentary hash-like indexing scheme that groups similar
events across time slices. Let an event E be represented as a pair (R,τ), where R denotes the region associated
with an event (a subgraph of the domain graph), and τ is a real number that represents the topological significance
of E. The pair above, together with the time of event, is used to identify the appropriate bin, called the event
group, for E as follows. Given two events E1(R1,τ1) and E2(R2,τ2), the graph distance metric [6], δ , measures
the geometric similarity between R1 and R2:

δ (E1,E2) = 1− |R1
∩

R2|
max(|R1|, |R2|)

,

where R1
∩

R2 denotes the maximum common subgraph between R1 and R2, and |R| denotes the number of
nodes in R. The topological similarity between two events is defined as:

T (E1,E2) = |τ1 − τ2|

Two events E1 and E2 are in the same event group of the index if

1. δ (E1,E2)≤ εδ and T (E1,E2)≤ ετ , where, εδ and ετ are user-defined thresholds.
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Figure 5: Event-guided exploration of taxi data corresponding to years 2011 and 2012. The user is able to find
an event corresponding to the the NYC Five Borough Bike tour that occurred on 1 May 2011 between 8 am
and 10 am. Searching for similar events yields the same bike tour that happened in 2012, together with the
Dominican day parades for both years. Additionally, we found the Gaza solidarity protest, which was held at
the same location.

2. E1 and E2 occur within the same time period. We used a time period equal to a month in our implementa-
tion.

We define two attributes for each event group – range and density. The range of an event group is defined
as the amount of time between the first and the last event in that group based on their time steps. Its density is
defined as the number of events of that group that happen per time unit. It measures the time frequency of the
events within the group. These two attributes can be used to identify not only periodic events (hourly, daily, and
weekly events), but also events with varying frequency (rare events and trends). Thus by exploring properties
of event groups through the visual interface, users can effectively identify events of interest. Each event group
Σ = {E1,E2, . . . ,Ek}, is also associated with a key (RΣ,τΣ), where

RΣ =
∩

i∈[1,k]
Ri and τΣ =

k

∑
i=1

τi/k

This allows users to search the data for occurrences of a given pattern. This is accomplished by comparing the
similarity between the given pattern and the keys associated with the different event groups. Figure 5 illustrates
the result of querying the taxi data for events similar to the NYC Five Boro Bike tour.

5 Conclusions

In this paper, we presented an overview of our recent work on techniques to support exploratory analysis and
visualization of spatio-temporal urban data. We described TaxiVis, a visual analytics tool and its two main
components: a visual query interface that simplifies the process of specifying spatio-temporal queries, and a
indexing technique that enables these queries to be evaluated at interactive rates. We also described a topology-
based approach to automatic event detection, and how it can help guide users towards interesting time slices.
While this work is a step towards scalable and usable visual analytics for spatio-temporal data, there are many
open problems we intend to pursue in future work.

Given the growing trend towards transparency, and the large number of open data sets, there is a great oppor-
tunity to leverage these data to better understand cities. But this also creates many challenges. Visualization and
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visual analytics systems have been successfully used to aid users obtain insight from data. But to be effective, vi-
sualization systems have to be interactive, requiring sub-second response times [33, 13]. Having been designed
for batch queries issued through a text-based or terminal interfaces, existing relational database technologies and
business intelligence systems used for OLAP analyses are not suitable backends for these tools [50]. New data
management techniques are needed to support interactive visualization [13, 12, 49] Another important challenge
comes from the sheer number of data sets available: it is impossible to apply conventional database integration
and warehousing techniques where the goal is to establish a single mediated schema. Therefore, we need new
methods and tools that help users integrate data on the fly, in a task-oriented manner: as users make discoveries
and formulate hypothesis, they should be able to bring in new data that allows them to test these hypotheses. As
multiple data sets are integrated, we face additional problems, including the need to support interactive queries
that span these data sets, and to visually fuse data sets as different components of a visualization.
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