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Abstract

In this paper, we overview the current status of research in the field of collaborative sensing for
urban transportation. We first classify the different types of sensors that can be relevant in collaborative
urban sensing and then we analyze three different topics: parking spaces, traffic, and trajectories. We
discuss issues regarding the sensing and data sharing approaches as well as relevant use cases. Finally,
we identify some research challenges and trends.

1 Introduction

A key element for urban informatics [1] is the widespread availability of sensors of different types, which can
capture a wide range of environmental conditions and information of the surroundings of the user. Besides
traditional wireless sensor networks, where sensors are statically deployed over a fixed area to measure certain
values, mobile and urban computing scenarios open up new opportunities for more flexible and dynamic ap-
proaches. Collaborative sensing (also called mobile crowdsensing or participatory sensing) [2, 3] implies using
sensors in a cooperative way in order to obtain an overall and more complete perspective of the environment.
Specifically, the new scenarios support the use of mobile sensors. On the one hand, users with their mobile
devices have become an important source of sensor data [4]. On the other hand, vehicles can also carry a variety
of sensors (“Today’s luxury cars have more than 100 sensors per vehicle” [5]).

Collaborative sensing can provide key benefits in urban transportation, contributing to higher travel effi-
ciency, safety, and reduced pollution, through innovative applications that benefit from the data sensed collabo-
ratively. These benefits apply to private transportation as well as public transportation. The collaborative aspect
remarks the idea that the role of people is particularly important. For example, the work presented by Campbell
et al. adopts a human-centric (or people-centric) view of urban sensing [6] , which emphasizes the significance
of the attributes of people, their surroundings, and their interactions with the environment.

In this paper, we survey the state of the art in collaborative sensing for urban transportation. In Section 2
we overview the different types of sensors that could be of relevance. In Section 3 we focus on the problem
of sensing and sharing information about parking spaces, as a prime example of a scarce resource in urban
transportation (bike stations could be another example). In Section 4 we analyze the problem of traffic estimation
from a cooperative sensing perspective. In Section 5 we tackle the management of trajectories. Finally, in
Section 6 we summarize some existing challenges. Figure 1 shows an overview of the main topics covered.
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Figure 1: Main topics in collaborative sensing for transportation

2 Types of Sensors

According to the abstraction level of the information they manage, several types of sensors can be distinguished:

• Physical sensors. These are traditional hardware sensors, which are able to directly capture raw data from
the environment. Sensing capabilities can be embedded in existing mobile devices (e.g., smartphones)
or as stand-alone measuring devices that communicate their data to other devices or computers. As an
example, mobile devices are being equipped with an increasing number of built-in sensors: GPS, micro-
phone, camera, ambient light sensor, accelerometer, gyroscope, compass, proximity sensor, temperature,
etc. These mobile devices can be carried by people or be integrated in vehicles (cars, taxis, buses, etc.).

• Virtual sensors. These are software sensors, which do not directly correspond to physical sensors. Instead,
they usually provide higher-level data that are obtained by combining the output of several sensors. A
virtual sensor [7] is an abstraction that aggregates data provided by different (and possibly heterogeneous)
sensors to compute a virtual measurement (e.g., a virtual position sensor that transparently uses different
positioning mechanisms, as needed, to locate the user).

• Social sensors. These are sensors that provide data based on information extracted from the social media:
social networks (e.g., Facebook, Foursquare, Flickr), blogs, microblogs (e.g., Twitter), etc. For example,
Albakour et al. [8] exploit microblogs to detect events in the vicinity, and Sakaki et al. [9] extract data
from tweets to infer heavy traffic conditions for drivers. Another prominent effort is the EU FP7 project
SocialSensor [10].

• Human sensors. In the extreme, we can consider humans as sensors, as they themselves can provide inter-
esting measures through explicit cooperation. Humans can use their own senses and provide information
explicitly, or manage the sensors that they have available in specific ways to collaborate in the measuring
task. As an example, humans can provide volunteered geographic information (VGI) [11]. As another
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example, the idea of spatial crowdsourcing [12, 13, 14] is a hot topic. Drivers can also provide informa-
tion about parking spaces (see Section 3). Although in some cases social sensors could also be considered
as human sensors (e.g., humans can report what they see by sending tweets), we make a distinction by
requiring explicit (not indirect or casual) cooperation from people in the case of human sensors.

The previous classification is to some extent similar to the one provided for location sensors in the work by
Indulska et al. [15]. According to that work, physical location sensors provide the location of a physical device,
virtual location sensors extract information from the virtual space (software applications, operating systems, and
networks), and logical location sensors exploit virtual and physical location sensors to infer physical locations.
On the other hand, Islam et al. [16] distinguish between hard sensors (physical sensors) and soft sensors (which
actually represent trigger conditions, such as the reception of an email or a new entry in the user’s calendar).

3 Parking Spaces

A key element to improve urban transportation is to provide a suitable management of parking spaces. Among
the inconveniences of searching for parking, we can highlight that it is usually a time-consuming task, stressful
and frustrating for drivers, and it obviously contributes to increasing traffic and pollution. A well-known report
by Shoup [17] quantifies the yearly cost of parking in a commercial district next to the campus of the University
of California in Los Angeles (Westwood Village): 47000 gallons of gasoline, 730 tons of CO2 emissions, and
95000 hours of drivers’ time. According to a study in France [18], searching for parking represents between 5%
and 10% of the traffic in urban areas and it can rise up to 60% in the case of small streets. As a final example, a
study performed in the district of Schwabing in Munich (cited in [19]) indicates that about 44% of the traffic is
searching for an available parking space. These and many other reports emphasize the importance of promoting
an efficient management of parking spaces for sustainable transportation in cities.

For some types of parking, such as parking garages and paid parking lots, an existing infrastructure can
accurately monitor in real-time the occupancy of parking spaces and even provide effective reservation and
payment methods. However, in the general case, such as in the case of free street parking, a fixed sensor-
based infrastructure to detect the occupancy of parking spots (a popular example is SFPark in San Francisco,
see http://sfpark.org/, which covers 6000 metered spaces and 12250 spaces in parking garages [20])
usually does not exist or it is considered expensive to be deployed at a large scale (e.g., see [21, 22, 23, 24]).
Therefore, collaborative parking sensing is a promising avenue to explore.

It should be noted that a variety of methods could be used to capture information about the availability of a
parking space. Besides traditional approaches using fixed sensors (e.g., SFPark), smartphone-based techniques
are being developed to automatically detect parking and unparking events without user intervention [22, 23, 24,
25, 26]. Other approaches consider the vehicles themselves as mobile sensors that detect surrounding parking
spaces [21]. Finally, the driver himself or herself could also provide the information manually (as illustrated in
the work by Hoh et al. [27] or by a variety of ephemeral applications such as Google’s Open Spot, which is no
longer available).

Once the information about parking spaces is collected, the problem is how to effectively share it. Parking
spaces represent a scarce resource, and therefore if information about their availability is disseminated freely
among the potentially interested vehicles there is a high risk of generating a competition among them to try to
get the same parking space. There is a trade-off between competition and information dissemination [28], such
that eventually the time to find an available parking space could actually increase as compared to the situation
of blind search where no information is provided. Different approaches have been proposed to manage this
problem:

• Some approaches have proposed reservation protocols to guarantee the use of the parking space to only a
specific vehicle (e.g., the Centralized Assisted Parking Search approach [28]). They rely on an infrastruc-
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ture for reservation, payment and monitoring of the parking spaces, and so their use is limited to the case
of controlled parking facilities. An exception is the reservation protocol for VANETs (Vehicular Ad Hoc
Networks) proposed by Delot et al. [29], which uses the term reservation in a metaphorical way. What it
actually does is to provide the information about an available parking space to a single driver); without the
use of an infrastructure, ensuring that no other vehicle can take up the “reserved” space is not possible.

• Other approaches exploit the gap between the System Optimum (SO) and Nash Equilibrium (NE) in
matching vehicles and parking slots [30]. SO is more efficient (i.e., it involves minimum total travel-time
to slots), but an uncoordinated system of drivers acting selfishly settles into an NE state. One approach
to bridge the gap is to price the slots such that an NE matching when considering travel-time and price
is the same as an SO matching when considering travel-time alone [31]. Another approach involves
payments among drivers looking to park, through a platform, to convert one matching to another [31, 32].
In other words, through payments, selfish drivers are incentivized to behave in a manner that is globally
and environmentally responsible. Interestingly, payments raise the issue of truthful location disclosure by
a driver, and Vickrey-Clarke-Groves (VCG) mechanisms from economics can be adapted to incentivize
drivers to be truthful [32].

• Some approaches try to maximize the probability of finding an available parking space. For example,
one alternative is to compute a route that goes through all the available parking spaces [33]. As another
example, the Gravity-based Parking Algorithm (GPA) [30] is a gravitational model heuristic where each
parking space applies an attraction force on a vehicle searching for a parking space. The magnitude of
the force is inversely related to the distance between the space and the vehicle. The force-vectors on
the vehicle are added, thus areas with a higher density of parking spaces become more attractive. In
the approach proposed by Klappenecker et al. [34], parking lots periodically disseminate certain status
parameters (such as their capacity and the number of occupied parking spaces) that vehicles can use to
estimate the probability of finding there an available parking space at the time of arrival. Other proposals
highlight the interest of guiding drivers towards areas where the probability to find an available parking
space is high [35], instead of towards a specific parking space. Zekri et al. [36] present an approach that
aggregates information about available parking spaces to extract general knowledge about their spatio-
temporal availability.

Although most studies have focused on effectively exploiting availability data about parking spaces to min-
imize the parking time, the communication overhead should not be overlooked. As an example, a survey con-
cerning the Montreal Region [37] (an area of 5500 km2) reports 80500 parking events per day during the year
2003. As another example, from the analysis of a dataset of SFPark we conclude that an average of 56.8 records
(events) per city block are generated each day in San Francisco; the raw data of each record has a size of 129.7
bytes on average (the names of the blocks have different lengths) which can be reduced (filtering out unneces-
sary or redundant information) for later processing to an average of 33 bytes of useful data per record. If a high
number of messages about parking and unparking events are exchanged among vehicles with no control, this
could easily lead to network overload. If we imagine a country or world-wide cloud-based system, the volumes
of data in such a system may be particularly significant.

4 Traffic Information

For the collection of traffic information, different methods have been traditionally used. For example, for speed
or traffic density estimation static devices and sensors such as single and double loop detectors or traffic surveil-
lance cameras can be exploited. In the last years, rather than relying on sensing approaches based on the use
of a fixed infrastructure, which is usually an expensive and non-flexible approach with limited coverage (e.g.,
see [38]), other alternatives propose the use of vehicles as mobile sensors.
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Thus, probe vehicles (e.g., taxis and buses) could collect traffic data in a city. For example, they could
periodically report their speed and location to a central server (using cellular communication) for later aggre-
gation [38]. This collaborative traffic sensing is a promising approach, but it also faces important challenges:
the data are sensed opportunistically as the vehicles move through the city, and therefore the data collected may
exhibit significant gaps in time and space, as the spatio-temporal distribution of the vehicles is not uniform (e.g.,
compressive sensing could be used to deal with missing values [38]). Vehicles can use different types of sensors
to obtain the relevant information; for example, VTrack [39] exploits WiFi location samples to estimate the lo-
cation of the user (with less energy consumption than in a GPS-based solution) and identify travel-time patterns
along the road segments. Besides probe vehicles, floating cars (such as patrol cars for surveillance) can also
play the role of mobile sensors [42] for traffic estimation: the path of these floating vehicles could be controlled
and adjusted according to the traffic monitoring requirements.

The wireless bandwidth used for the transmission of traffic information is a resource to minimize [40, 41].
For example, Ayala et al. [41] proposed a flow-based update policy where cars use a transmission probability
computed based on the number of messages that the server expects to receive from the vehicles in each road seg-
ment in order to ensure a desired accuracy for the average speeds computed. They performed experiments based
on data generated by a sensor at the end of a road segment on highway 190 in Chicago from 6AM to 8AM on
May 22nd, 2007 (Tuesday). In the experiments presented, fewer that 500 messages are required by the proposed
policy, whereas the number of messages goes up to about 3000 with an alternative information cost based policy
(based on the existing trade-off between the communication cost and the data uncertainty) and about 5500 for a
deterministic policy (a vehicle transmits its velocity to a server if the difference between the broadcasted velocity
received from the server and the measured velocity exceeds a certain threshold), considering a data collection
period of 300 seconds and a velocity threshold of 1 mph for the information cost based policy and deterministic
policy; the benefits of the proposed policy are also shown for other combinations of thresholds.

Whereas traditional mobile traffic sensing approaches using vehicles are centralized and usually use cellular
communications, other novel solutions have been proposed in the field of VANETs, which exploit ad hoc com-
munications in a distributed way. In the proposal presented by Sanguesa et al. [43], vehicles in urban areas use
information of the beacons received from other neighboring vehicles, as well as features extracted from digital
maps, to estimate the density of vehicles in their neighborhood; in the experimental evaluation performed, the
authors infer that the optimal time period to estimate the density in vehicular environments is 30 seconds. To
offer an overall picture rather than just a local density estimation, some proposals advocate exploiting a comple-
mentary fixed-support infrastructure. Thus, the V2X-D architecture [44] combines vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) communications to estimate the traffic density, based on the number of beacons
received by vehicles and fixed support nodes on the roads (Road Support Stations or RSUs) and the features of
the road maps. Another recent VANET-based approach for speed estimation is proposed by Yang et al. [45].

It is also interesting to mention that it is possible to combine information provided by (fixed or mobile)
traffic sensors with other data sources. For example, several approaches [46, 47, 48] combine data provided by
traditional monitoring equipment with social media feeds to obtain a better perception and try to infer the causes
of the traffic situation.

The estimation of traffic density and travel times has a range of potential benefits. Providing drivers with
estimated travel times would help them to make more informed decision and take the best routes [49], even in
multimodal settings involving both public and private transportation. Moreover, traffic density has a significant
impact on the performance of dissemination protocols for VANETs, and therefore the knowledge of the traffic
density could be exploited to have a more robust data dissemination or routing protocol (e.g., see [50]). Traffic
awareness also implies the detection of hazards, such as traffic jams, accidents, or a malfunctioning bus line.

Besides estimating the current situation, once traffic data have been collected, it is also interesting to analyze
them to learn something useful that can help to improve traffic-based applications, such as travel recommen-
dation systems, even in the absence of real-time information. Predictive analytics, which implies extracting
information from data in order to predict future outcomes and trends, is a hot topic currently. Its potential appli-

7



cation to the field of transportation, particularly exploiting traffic information, is very promising. For example,
Chong et al. [51] present a use case that predicts traffic congestion by using a collaborative analytics system
proposed by the authors. Xu et al. [52] describe a time-series approach to prediction for processing moving
objects queries, and Min et al. [53] enhance it by exploiting spatial and temporal interactions and considering
the road network characteristics (the possible congestion or not of a link influences the traffic flow of others).

As an example application, Waze (http://www.waze.com) is a popular system allowing a community
of drivers to share information (e.g., traffic information). It captures contextual information (e.g., location,
speed) and aggregates the data collected to deliver real-time information about the surroundings of the user
(e.g., location and size of traffic jams). Another example is the exchange of multimedia data about traffic [54]; if
a 5 second video or voice recording is captured by each vehicle every minute and disseminated, the data volumes
generated and exchanged may be significant.

5 Trajectories

Trajectory-data management is another relevant topic in the field of urban transportation. We can identify three
basic tasks regarding the collection, processing, and use of trajectories:

• Capturing trajectory information. The use of GPS is now widespread and many mobile devices (such as
modern smartphones) are equipped with a GPS receiver. With such a positioning mechanism (or using
other similar satellite-based techniques, such as the upcoming European Galileo), the trajectory of the
device can be easily captured as a sequence of location data points. Moreover, less-precise positioning
techniques (e.g., network-based positioning [55]) can be applied outdoors if a GPS receiver is not available
or if the device is in a covered area with fewer than four satellites in view. Finally, in some cases it could be
possible to infer trajectories, such as popular travel paths, from other sources like geo-tagged pictures [56].

• Enriching trajectories. Raw location data is sometimes of little use. Therefore, the GPS locations have
to be cleaned and corrected. A common preprocessing step, in the case of vehicles, is applying map-
matching [57], which is based on the assumption that vehicles move along roads and that their movement
is smooth. This is not only a cleaning technique that allows the correction of GPS errors, but it also leads
to data enrichment, as it allows labeling raw locations with the corresponding streets and roads. This
enrichment can be further enhanced, going from raw trajectories to semantic trajectories [58], which not
only encode data points but also higher-level semantic information. For example, semantic annotations
could represent the type of movement (walking, running, driving, etc.), the transportation means used
(private car, bus, taxi, etc.) [59], or any other feature of interest, such as the type of business visited [60].
For example, trajectory data enriched with the transportation means could be useful for other users to
discover new multimodal routes using both public and private transportation. According to Ilarri et al. [61],
different mobility dimensions and levels of granularity could be considered, depending on the needs.

• Sharing trajectory data. A number of websites have been developed to support users in the task of sharing
and searching trajectory data (e.g., ShareMyRoutes and Bikely). These sites allow users to share and
find information about interesting touring routes, bike routes, hiking routes, etc. Similarly, there are also
many similar applications for smartphones, such as RouteShoot, which captures both a GPS trace and a
video of the surroundings of the trajectory. These applications and web sites are based on a centralized
architecture, where a server receives the information through the Internet (the mobile devices use cellular
communications such as 3G) and can serve trajectory requests from other interested users. Nevertheless,
we could also envision advanced applications where the trajectory data are also shared using peer-to-peer
(P2P) ad hoc wireless communications in an opportunistic way. As an example, although it is not a pure
P2P architecture because it exploits an infrastructure of access points, the Shared-Trajectory-based Data
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Forwarding Scheme (STDFS) [62] for VANETs is based on the estimation of an encounter graph that is
exploited for packet forwarding.

The previous tasks would make trajectory data available in an appropriate form. Then, it is also important
to develop techniques that can efficiently and effectively exploit the trajectory information. Trajectory data can
be collected and mined to learn and extract interesting information. For example, the T-Drive system [63] mines
historical GPS trajectories of taxis (taxi drivers are assumed to be experts in finding the fastest routes) in order
to recommend appropriate time-dependent driving directions. Ying et al. [64] advocate the use of a semantic
similarity measure between trajectories as the basis of a friend recommender system. Analyzing trajectories to
detect interesting areas and popular routes is another key application (e.g., see [65]). The information about
popular areas and routes can be exploited in recommendation systems, traffic and service planning, and route
finding. Trajectories can also be exploited for car pooling, by matching users with similar profiles based on
historical information [66], or even for real-time ride-sharing [67]. Finally, as mentioned above, trajectories
provide very useful information for opportunistic data forwarding in delay-tolerant networks (e.g., see [62]).
Depending on the specific scenario considered and the purpose of the trajectory-data management, huge volumes
of trajectory data may need to be processed; for example, in the study by Giannotti et al. [68] the authors consider
a data set of around 17000 cars performing around 200000 travels over a week in the city of Milan (Italy), as well
as a dataset of around 40000 cars performing around 1500000 travels over 5 weeks in the region surrounding
the city of Pisa (Italy).

6 Some Challenges and Future Trends

Although the wide availability of sensors offers very interesting opportunities for urban sensing in transportation,
there are also challenges that need to be tackled, such as:

• Encouraging cooperation among the users. A significant research topic is focused on providing incentives
for users to cooperate. For example, Yang et al. [69] propose both a platform-centric model (the system
itself provides a reward to the participating users) and a user-centric model (based on auctions, the users
demand a specific reward in exchange of their sensing services). Another interesting related work is
provided by Sugiyama et al. [70], who analyze incentive mechanisms in the context of data acquisition
and distributed computing applications. Although these are significant research contributions, we believe
that more effort is needed to propose specific incentive mechanisms for practical scenarios and evaluate
their real impact on the behavior of the users. The use of gamification to engage users should also be
further explored.

• Management of the data quality. With opportunistic sensing it is difficult to guarantee, or even estimate,
a specific degree of quality for the data provided. This could be alleviated through the development of
techniques that estimate the expected level of cooperation and the reliability of the different contributors.
With this type of information available, it would be possible to quantify the accuracy, completeness,
and freshness of the data. Guaranteeing a certain data quality could also require encouraging further
cooperation among the users, although best-effort (rather than optimal) approaches should be expected.
A number of data quality metrics for sensor feeds have been proposed [71, 72]. Recently, a metric called
quality of contributed service has been proposed to characterize the quality and timeliness of a sensed
quantity obtained through participatory sensing [73].

• Spatial crowdsourcing. This is a quite new topic that proposes the engagement of users in performing
certain tasks that may require them to explicitly move to specific areas to achieve the intended goals (i.e.,
capturing data that are linked to that geographic area) [12, 13, 14]. We can envision innovative applications
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that could be useful in the context of transportation, like asking vehicles to slightly detour from their route
to alleviate congestion, measure some environmental parameters in an area (e.g., the CO2), help in the task
of traffic sensing, verify if a certain parking spot is still available and take a picture that can be provided
to an interested car, or even just act as links in a multi-hop ad hoc data communication among vehicles.
The idea is very new and should be explored in more depth.

• Semantic data management. The use of semantic techniques, such as ontologies [74] and reasoners [75],
can provide significant benefits. Among them, we can highlight enabling the interoperability among
different devices and enriching sensor data with higher-level information, which could be potentially
queried in a flexible and semantic way. This is related to the so-called Semantic Sensor Web [76] and
to concepts such as semantic trajectory [58] and semantic location granule [77]. However, how to go
from raw sensor data to smart sensor data and exploit them effectively is an issue that requires further
exploration. Ilarri et al. [61] analyze the state of the art on the semantic management of moving objects
(e.g., vehicles) and propose a distributed framework for this purpose.

• Exploitation of different types of sensors and large-scale data analytics. How to effectively exploit and
integrate all the information that sensors can provide is still an unsolved issue. For example, a geo-
tagged picture posted on Facebook and local traffic data captured could be correlated to infer information
about the location of the user and the traffic conditions, or a user could tweet complaining about the
current service of a certain bus line in the city (which could be used to alert other people about a potential
malfunctioning of a public transportation service). There is a need to identify what is relevant and how
to benefit from it. The analysis of big spatio-temporal data to extract interesting information for urban
transportation is also an avenue that deserves further exploration.

• Different ways to cooperate, unobtrusive cooperation. There are many different ways in which users can
cooperate in the sensing process. Some of them will require explicit user interaction, but others could
benefit from existing sensors in an unobtrusive way, without any effort from the user. For example, as
commented in Section 3 there are several approaches to automatically detect park and unpark events
that can signal the unavailability and availability of a parking space (e.g., [22, 23, 24, 25, 26]). As an-
other example, vehicles could be used for environment monitoring without any direct action by the driver
(e.g., [78, 79]). Finally, there are also several approaches for context detection, such as automatic trans-
portation mode detection (e.g., see [59, 80]) and activity recognition (e.g., [81]), which could be exploited
in collaborative transportation applications to minimize the involvement required from the user. We can
also envision other intermediate possibilities that require intervention by the user but decreased to a certain
extent thanks to the use of wearable devices such as the Google Glasses or the Samsung Galaxy Gear.

• Management of trust and privacy. Collaborative sensing for transportation can imply the collection and
storage of data about users’ daily trips. So, ensuring their privacy is a key issue. Similarly, trust manage-
ment is a fundamental aspect of collaborative sensing in intelligent transportation, particularly if humans
actively provide information. For example, malicious users could provide false information to disturb the
system or to gain a competitive advantage. A survey of trust management in the transportation context
including properties of trust, trust metrics, potential attacks and defenses, is presented by Ma et al. [82].
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