
Large Scale Tensor Decompositions: Algorithmic Developments
and Applications

Evangelos Papalexakis⋆∗, U Kang† , Christos Faloutsos⋆, Nicholas Sidiropoulos§, Abhay Harpale⋆
⋆ Carnegie Mellon University, † KAIST, § University of Minnesota

Abstract

Tensor decompositions are increasingly gaining popularity in data science applications. Albeit ex-
tremely powerful tools, scalability to truly large datasets for such decomposition algorithms is still
a challenging problem. In this paper, we provide an overview of recent algorithmic developments
towards the direction of scaling tensor decompositions to big data. We present an exact Map/Reduce
based algorithm, as well as an approximate, fully parallelizable algorithm that is sparsity promoting.
In both cases, careful design and implementation is key, so that we achieve scalability and efficiency.
We showcase the effectiveness of our methods, by providing a variety of real world applications -
whose volume previously rendered their analysis very hard, if not impossible- where our algorithms
were able to discover interesting patterns and anomalies.

1 Introduction
Tensors and tensor decompositions are powerful tools, and are increasingly gaining popularity in data analyt-
ics and mining. Despite their power and popularity, tensor decompositions prove very challenging when it
comes to scalability towards big data. Tensors are, essentially, multidimensional generalizations of matrices;
for instance, a two dimensional tensor is a plain matrix, and a three dimensional tensor is a cubic structure.

As an example, consider a knowledge base, such as the "Read the Web" project [1] at Carnegie Mellon
University, which consists of (noun phrase, context, noun phrase) triplets, such as ("Obama", "is the presi-
dent of", "USA"). Figure 1 demonstrates how we can formulate this data as a three mode tensor and how
we may analyze it in latent concepts, each one representing an entire cluster of noun phrases and contexts.

Alternatively, consider a social network, such as Facebook, where users interact with each other, and
post on each others’ "Walls". Given this posting activity over time, we can formulate a tensor of who
interacted with whom and when; subsequently, by decomposing the tensor into concepts, as in Fig. 1, we
are able to identify cliques of friends, as well as anomalies.

In this paper, we present a brief overview of tensor decompositions and their applications in the social
media context, geared towards scalability.

Copyright 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse
any copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗Funding was provided to the first three authors by the U.S. ARO and DARPA under Contract Number W911NF-11-C-0088, by
DTRA under contract No. HDTRA1-10-1-0120, by ARL under Cooperative Agreement Number W911NF-09-2-0053, and by grant
NSF IIS-1247489. N. Sidiropoulos was partially supported by ARO contract W911NF-11-1-0500 and by NSF IIS-1247632 Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the funding parties

59

X

≈

noun-phrase

noun-phrase

context

a1

b1

c1

+

Concept1

a2

b2

c2

+

Concept2

aF

bF

cF

Concept F

. . . +

Figure 1: PARAFAC decomposition of three-way tensor as sum of F outer products (rank-one tensors),
reminiscent of the rank-F Singular Value Decomposition of a matrix.

1.1 A note on notation
Tensors are denoted as X. Matrices are denoted as X. Vectors are denoted as x. We use Matlab notation for
matrix indexing, e.g. A(1, 2) refers to the (1,2) element of A, and A(:, 1), refers to the entire first column
of A. The rest of the symbols used are defined throughout the text.

1.2 Tensors and the PARAFAC decomposition
Tensors are multidimensional matrices; in tensor terminology, each dimension is called a ’mode’. The
most popular tensors are three mode ones, however, there exist applications that analyze tensors of higher
dimensions. There is a rich literature on tensor decompositions; we refer the interested reader to [12] for a
comprehensive overview thereof. This work focuses on the PARAFAC decomposition [8] (which is the one
shown in Fig. 1).

The PARAFAC decomposition can be seen as a generalization of matrix factorizations, such as the
Singular Value Decomposition, in higher dimensions, or as they are referred to in tensor literature, modes.

The PARAFAC [7, 8] (also known as CANDECOMP/PARAFAC or Canonical Polyadic Decomposi-

tion) tensor decomposition of X in F components is X ≈
F∑

f=1

af ◦ bf ◦ cf , where [a ◦ b ◦ c](i, j, k) =

a(i)b(j)c(k) and denotes the three mode outer product.
Often, we represent the PARAFAC decomposition as a triplet of matrices A,B, and C, i.e. the f -th

column of which contains af ,bf and cf , respectively.

Definition 1 (Tensor Matricization): We may matricize a tensor X ∈ RI×J×K in the following three
ways: X(1) of size (I × JK), X(2) of size (J × IK) and X(3) of size (K × IJ). We refer the interested
reader to [10] for details.

Definition 2 (Kronecker product): The Kronecker product of A and B is:

A⊗B :=

BA(1, 1) · · · BA(1, J1)
...

. . .
...

BA(I1, 1) · · · BA(I1, J1)

If A is of size I1 × J1 and B of size I2 × J2, then A⊗B is of size I1I2 × J1J2.

Definition 3 (Khatri-Rao product): The Khatri-Rao product (or column-wise Kronecker product) (A⊙B),
where A,B have the same number of columns, say F , is defined as:

A⊙B =
[
A(:, 1)⊗B(:, 1) · · ·A(:, F)⊗B(:, F)

]
If A is of size I × F and B is of size J × F then (A⊙B) is of size IJ × F .

60

The Alternating Least Squares Algorithm for PARAFAC. The most popular algorithm for fitting the
PARAFAC decomposition is the Alternating Least Squares (ALS). The ALS algorithm consists of three
steps, each one being a conditional update of one of the three factor matrices, given the other two. Without
delving into details, the update of, e.g., the factor matrix A, keeping B,C fixed, involves the computation
and pseudoinversion of (C⊙B) (and accordingly for the updates of B,C). For a detailed overview of the
ALS algorithm, see [7, 8, 12].

2 Related Work
2.1 Applications
In [11], the authors incorporate contextual information to the traditional HITS algorithm, formulating it as
a tensor decomposition. In [5] the authors analyze the ENRON email social network, formulating it as a
tensor. In [2] the authors introduce a tensor-based framework in order to identify epileptic seizures. In [17],
the authors use tensors in order to incorporate user click information and improve web search. The list
continues, including applications such as [13], [16], and [2].

2.2 State of the art
The standard framework for working with tensors is Matlab; there exist two well known toolboxes, both
of very high quality: The Tensor Toolbox for Matlab [4, 6] (specializing in sparse tensors) and the N-Way
Toolbox for Matlab [3] (specializing in dense tensors).

In [15], the authors propose a partition-and-merge scheme for the PARAFAC decomposition which, how-
ever, does not offer factor sparsity. In terms of parallel algorithms, [19] introduces parallelization strategies
for speeding up each factor matrix update step in the context of alternating optimization. Finally, [16, 18]
propose randomized, sampling based tensor decompositions (however, the focus is on a different tensor
model, the so called Tucker3).

The latest developments on scalable tensor decompositions are the works summarized in this paper:
in [9], a massively distributed Map/Reduce version of PARAFAC is proposed, where, after careful design,
issues fatal to scalability are effectively alleviated. In [14], a sampling based, parallel and sparsity promoting,
approximate PARAFAC decomposition is proposed.

3 Scaling Tensor Decompositions Up
3.1 Main Challenge
Previously, when describing the ALS algorithm, we mentioned that the update of A involves manipulation
of (C⊙B). This is the very weakness of the traditional ALS algorithm, a naive implementation thereof will
have to materialize matrices (C⊙B) , (C⊙A) , and (B⊙A), for the respective updates of A,B, and C.

Problem 1 (Intermediate Data Explosion): The problem of having to materialize (C⊙B) , (C⊙A),
and (B⊙A) is defined as the intermediate data explosion.

In order to give an idea of how devastating this intermediate data explosion problem is, consider the knowl-
edge base dataset, such as the one referenced in the Introduction. The version of the data that we analyzed,
consists of about 26 · 106 noun-phrases. Consequently, a naive implementation of ALS would generate and
store a matrix of ≈ 7 · 1014. As an indication of how devastating this choice is, we would probably need a
data center’s worth of storage, just to store this matrix, let alone manipulate it.

In [4], Bader et al. introduce a way to alleviate the above problem, when the tensor is stored in Matlab
sparse format. However, this implementation is bound by Matlab’s memory limitations.

In the following subsections we provide an overview of our two recent works, which both achieve
scalability, pursuing two different directions.

61

(a) (b)

Figure 2: Subfigure (a): The intermediate data explosion problem in computing X(1)(C⊙B). Although
X(1) is sparse, the matrix C⊙B is very dense and long. Materializing C⊙B requires too much storage:
e.g., for J = K ≈ 26 million as the main dataset of [9], C⊙B explodes to 676 trillion rows. Subfigure
(b): Our solution to avoid the intermediate data explosion. The main idea is to decouple the two terms in
the Khatri-Rao product, and perform algebraic operations using X(1) and C, and then X(1) with B, and
combine the result. The symbols ◦,⊗, ∗, and · represents the outer, Kronecker, Hadamard (element-wise),
and the standard product, respectively. Shaded matrices are dense, and empty matrices with several circles
are sparse. The clouds surrounding matrices represent that the matrices are not materialized. Note that the
matrix C⊙B is never constructed, and the largest dense matrix is either the B or the C matrix. Both figures
are taken from [9].

3.2 GigaTensor
GigaTensor, which was introduced in [9], is a highly scalable, distributed implementation of the PARAFAC
decomposition. Scalability was achieved through a crucial simplification of the algorithm, a series of careful
design choices and optimizations. Here, we provide an overview of our most important contributions in [9].

We observed that X(1)(C⊙B) can be computed without explicitly constructing C⊙B. The theorem
below solidifies our observation:
Theorem

Computing X(1)(C⊙B) is equivalent to computing (N1 ∗N2) · 1JK , where N1 = X(1) ∗ (1I ◦
(C(:, f)T ⊗ 1TJ)), N2 = bin(X(1)) ∗ (1I ◦ (1TK ⊗B(:, f)T)), and 1JK is an all-1 vector of size JK, and
f = 1 · · ·F .

The bin() function converts any nonzero value into 1. As a result, we can simplify every step of the ALS
algorithm without sacrificing accuracy, since the above theorem states that both operations are equivalent.
Computing X(1)(C⊙B) naively would require a total of JKF + 2nnz(X)F flops, and JKF + nnz(X)
intermediate data size, where nnz(X) denotes the number of non-zeros in X. On the other hand, the method
GigaTensor requires 5nnz(X)F flops, and max(J + nnz(X),K + nnz(X)) intermediate data size. Figure
2(b) illustrates our approach.

Other contributions in [9] include:

Order of computations: By leveraging associativity properties of the algebraic operations of ALS,
we chose the ordering of operations that yields the smallest number of flops. As an indication of how
crucial this optimization is, for the knowledge base dataset that we analyze in [9], a naive ordering
would incur 2.5× 1017 flops, whereas the ordering that we select results in 8× 109 flops.

Parallel Outer Products: Throughout the algorithm, we need to compute products of the form ATA.
We leverage row-wise matrix partitioning; we store each row of a matrix separately in HDFS, thus
enabling efficient matrix self join. Using column-wise storage would render this prohibitively expen-
sive.

62

Distributed Cache Multiplication: We broadcast small matrices to all reducers, thus eliminating
unnecessary loading steps. This improves both the latency, as well as the size of the intermediate
results produced and stored by the algorithm.

3.3 PARCUBE

On a different note, in [14], we introduce PARCUBE, an approximate, parallelizable algorithm for PARAFAC;
on top of parallelizability, PARCUBE is sparsity promoting: starting from a sparse tensor, the algorithm op-
erates, through its entire lifetime, on sparse data, and it finally produces a sparse output. In this way, we both
alleviate the intermediate data explosion problem, as well as producing sparse factors, an attribute which is
vital for interpretation purposes.

The algorithm, roughly, consists of the following steps:

Biased sampling: We use biased sampling to select indices from all three modes of the tensor, creating
a significantly smaller tensor. The sample bias is proportional to the marginal sum for each of the three
modes. We may draw multiple such samples, and indeed, we show in [14] that this improves accuracy.

Parallel decomposition on the samples: The second step includes fitting of the PARAFAC decom-
position to the sample tensors, obtained from the previous step. This step can be performed entirely
in parallel, offering great speedup gains.

Merging of partial results: The final step is merging the intermediate decomposition results into a
full sized set of decomposition factors. In [14], we introduce the FACTORMERGE, which is pictori-
ally represented in Fig. 3(b). The original paper contains theoretical justification of the algorithm’s
correctness.

Figure 3 contains a pictorial description of PARCUBE.

3.4 Results & Discoveries
Comparison against the state of the art

At the time when [9] and [14] were written, Tensor Toolbox [6] was the state of the art (and excluding
the work we showcase here, still is the state of the art), hence we chose it as our baseline. Comparison of
GigaTensor against the Tensor Toolbox was made, merely, to show that it was able to handle data at least
two orders of magnitude larger than what the state of the art was able to.

Figure 4 illustrates the comparison of both methods with the state of the art, in terms of scalability, as
well as output sparsity (for PARCUBE). Detailed comparisons can be found in the respective original papers.
Contextual Synonym Detection.

In [9], we analyzed a knowledge base dataset, coming from the Read the Web project [1]; this dataset
recorded (noun-phrase, noun-phrase, context) relationships (such as the example of Figure 1); the size of
the tensor was 26M × 26M × 48M , which made it prohibitive to analyze, for any existing tool. After
obtaining the PARAFAC decomposition, we were able to perform contextual synonym detection, i.e. detect
noun-phrases that may be used in similar contexts. Using cosine similarity, we took the low dimensional
representation of each noun-phrase, as expressed by matrix A, and we calculated the similarity of each
noun-phrase to the rest. In this way, we were able to obtain noun-phrases that are contextually similar, albeit
not synonyms in the traditional sense. Figure 5 contains the most notable ones.
Facebook Wall posts

In [14], we analyze a Facebook wall posts dataset 1. More specifically, the dataset we analyzed consists
of triplets of the form (Wall owner, Poster, day), where the Poster created a post on the Wall owner’s Wall on
the specified timestamp, resulting in a 63891×63890×1847 tensor. After running PARCUBE, we stumbled

1Download the Facebook dataset from http://socialnetworks.mpi-sws.org/data-wosn2009.html

63

a1"
b1"

c1"

ar"

br"

cr"

s,1"

…
"

a1"

b1"

c1"

s,r"

(a)

…"

Algorithm 4: FactorMerge
Input: Factor matrices Ai of size I ⇥ F each, where i = 1 · · · r, and r is the number

of repetitions, Ip: set of common indices.
Output: Factor matrix A of size I ⇥ F .
1: Set A = A1

2: for i = 2 · · · r do
3: for f1 = 1 · · ·F do
4: for f2 = 1 · · ·F do
5: Compute similarity v(f2) = (A(Ip, f2))

T (Ai(Ip, f1)))
6: end for
7: c = argmaxc0 v(c

�)
8: Update only the zero entries of A(:, c) using vector Ai(:, f1).
9: end for
10: end for

Proposition 1. Let (A,B,C) be the Parafac decomposition of X, and assume
that A(Ip, :) (A restricted to the common I-mode reference rows) is such that any
two of its columns are linearly independent; and likewise for B(Jp, :) and C(Kp, :
). Note that if A(Ip, :) has as few as 2 rows (|Ip| ⇥ 2) and is drawn from a jointly
continuous distribution, this requirement on A(Ip, :) is satisfied with probability
1. Further assume that each of the sub-sampled models is identifiable, and the
true underlying rank-one (punctured) factors are recovered, up to permutation
and scaling, from each sub-sampled dataset. Then Algorithm 4 is able to merge
the factors coming from the di�erent samples of the tensor correctly, i.e., is able
to find the correct correspondence between the columns of the factor matrices
Ai,Bi,Ci.

Proof sketch 1 Consider the common part of the A-mode loadings recovered
from the di�erent sub-sampled versions of X: under the foregoing assumptions,
the Ai(Ip, :) will be permuted and column-scaled versions of A(Ip, :). After scal-
ing the common part of each column to unit norm, Algorithm 4 seeks to match
the permutations by maximizing correlation between pairs of columns drawn from
Ai(Ip, :) and Aj(Ip, :). From the Cauchy-Schwartz inequality, correlation be-
tween any two unit-norm columns is � 1, and equality is achieved only when
the correct columns are matched, because any two distinct columns of the under-
lying A(Ip, :) are linearly independent. Furthermore, by normalizing the scales
of the matched columns to equalize the norm of the common reference part, the
insertions that follow include the correct scaling too. This shows that Algorithm
4 works correctly in this case.⌅

The above proposition serves as a sanity check for correctness. In reality, there
will be noise and other imperfections that come into play, implying that the
punctured factor estimates will at best be approximate. This implies that a
larger common sample size (|Ip| ⇥ 2, |Jp| ⇥ 2, |Kp| ⇥ 2) will generally help
Algorithm 4 to correctly merge the pieces coming from the di�erent samples.

(b)

Figure 3: Subfigure (a): From the original tensor, draw r different samples, by sampling indices from
each mode. It is crucial for this step, that a small subset of the drawn indices is common across different
samples. Without delving into the details, this plays a major role in the third step of the algorithm, which
merges partial results. For each sample tensor, compute its PARAFAC decomposition and merge the partial
results. Here, for simplicity, we show a simple, rank one, case. This figure comes from our recent paper
[14]. Subfigure (b): Here, we describe the merging procedure, where the rank is larger than one. From
each sample tensor, we obtain a set of vectors for each mode. Let each one of the small matrices on
the top represent the "sample" factor matrices. Our goal is to merge all partial components into a full-
sized component, as shown at the bottom. Each color corresponds to a distinct latent component, and
the upper part is marked as common across samples; notice that there are component permutations across
matrices which need to be resolved in order to merge the components correctly. In [14] we provide the
FACTORMERGE algorithm, as well as theoretical analysis of correctness.

(a) (b)

0 1 2 3 4 5
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

s = 1.5, r = 3
s = 2, r = 4

s = 2.5, r = 5

s = 3, r = 6

s = 5, r = 10

s = 10, r = 20

Relative cost

R
e

la
ti
v
e

 o
u

tp
u

t
s
iz

e

I = J = K = 100, F = 10, avg. fraction of non−zeros = 0.001173

(c)

Figure 4: Subfigures (a), (b): The scalability of GigaTensor compared to the Tensor Toolbox [6], for syn-
thetic tensors of size I × I×, for two different scenarios. (a) Increasing mode dimensions, and number of
nonzeros fixed and set to 104. (b) For a tensor of size I × I × I , increasing both the mode dimensions, and
the number of nonzeros, which is set to I/50. In both cases, GigaTensor solves at least 100× larger problem
than the Tensor Toolbox which runs out of memory, for tensors of sizes beyond 107. We should note that
in cases where the tensor fits in main memory, Tensor Toolbox is faster than GigatTensor, since it does not
need to load anything from the disk (like MapReduce does). However, GigaTensor’s strength is prominent
when the tensor does not fit in memory, where the state of the art is unable to operate. These two subfigures
are taken from our recent paper [9]. Subfigure (c): PARCUBE outputs sparse factors: Relative Output size
(PARCUBE/ ALS-PARAFAC) vs Relative cost (PARCUBE PARAFAC objective function / ALS PARAFAC
objective function). We see that the results of PARCUBE are more than 90% sparser than the ones from
Tensor Toolbox [6], while maintaining the same approximation error. Parameters s and r are the sampling
factor and the number of sampling repetitions for PARCUBE. This figure is taken from our paper [14].

64

(Given) (Discovered)
Noun Phrase Potential Synonyms

pollutants dioxin, sulfur dioxide,

greenhouse gases,

particulates, nitrogen oxide,

air pollutants, cholesterol

vodafone verizon, comcast

Christian history European history,

American history,

Islamic history, history

disbelief dismay, disgust, astonishment

Figure 5: By decomposing a tensor of text corpus statistics, which con-

sists of noun-phrase, context, noun-phrase triplets, we are able to identify

near-synonyms of given noun-phrases. We propose to scale up this process,

to form the basis for automatic discovery of new semantic categories and

relations in the "Read the Web" project. This table comes from our recent

paper [9].

0 1 2 3 4 5 6 7

x 10
4

0

10

20

0 1 2 3 4 5 6 7

x 10
4

0

0.5

1

0 500 1000 1500 2000
0

0.5

1

Wall Owner

Posters

Day

Figure 6: Facebook "anomaly": One Wall, many posters and only one

day. This possibly indicates the birthday of the Wall owner. This figure is

taken from our recent paper [14].

the specified timestamp, resulting in a 63891 × 63890 × 1847 tensor. After running PARCUBE, we stumbled

upon a series of surprising findings, an example of which we demonstrate in Figure 6: this Figure shows what

appears to be the Wall owner’s birthday, since many posters posted on a single day on this person’s Wall; this

event constitutes an "anomaly", since it deviates from normal behaviour, both intuitively, and by inspecting

the majority of the decomposition components, which model the "normal" behaviour. If it hadn’t been for

PARCUBE’s sparsity, we wouldn’t be able to spot this type of anomaly without post-processing the results.

4 Insights and Conclusions

In this paper, we provided an overview of two different, successful means of scaling up tensor decompositions

to big data:

GigaTensor: Scalability is achieved through simplifications of the most costly operations involved in

the PARAFAC decomposition. In particular, we show how a prohibitively expensive operation can be

alleviated, without sacrificing accuracy. Furthermore, we introduce a series of optimizations, which,

in combination with the Map/Reduce environment, lead to a highly scalable PARAFAC decomposition

algorithm.

PARCUBE : Scalability is achieved through sketching of the tensor, using biased sampling, parallelization

of the decomposition on a number of sketches, and careful merging of the intermediate results, which,

provably, produces correct PARAFAC components. Sketching might be a familiar concept in databases

and data stream processing, however, in the context of large scale tensor decompositions, it has been fairly

under-utilized, thus offering ample room for improvement.

The aforementioned approaches constitute, by no means, an exhaustive list of approaches one may envision

in order to scale tensor decompositions up, however, we hope that they will be able to spark new research

challenges and ideas, towards faster and more scalable tensor decompositions.

References

[1] Read the web. http://rtw.ml.cmu.edu/rtw/.

7

upon a series of surprising findings, an example of which we demonstrate in Figure 6: this Figure shows
what appears to be the Wall owner’s birthday, since many posters posted on a single day on this person’s
Wall; this event constitutes an "anomaly", since it deviates from normal behaviour, both intuitively, and by
inspecting the majority of the decomposition components, which model the "normal" behaviour. If it hadn’t
been for PARCUBE’s sparsity, we wouldn’t be able to spot this type of anomaly without post-processing the
results.

4 Insights and Conclusions
In this paper, we provided an overview of two different, successful means of scaling up tensor decomposi-
tions to big data:

GigaTensor: Scalability is achieved through simplifications of the most costly operations involved in
the PARAFAC decomposition. In particular, we show how a prohibitively expensive operation can be
alleviated, without sacrificing accuracy. Furthermore, we introduce a series of optimizations, which, in
combination with the Map/Reduce environment, lead to a highly scalable PARAFAC decomposition
algorithm.
PARCUBE: Scalability is achieved through sketching of the tensor, using biased sampling, paralleliza-
tion of the decomposition on a number of sketches, and careful merging of the intermediate results,
which, provably, produces correct PARAFAC components. Sketching might be a familiar concept in
databases and data stream processing, however, in the context of large scale tensor decompositions, it
has been fairly under-utilized, thus offering ample room for improvement.

The aforementioned approaches constitute, by no means, an exhaustive list of approaches one may
envision in order to scale tensor decompositions up, however, we hope that they will be able to spark new
research challenges and ideas, towards faster and more scalable tensor decompositions.

References
[1] Read the web. http://rtw.ml.cmu.edu/rtw/.
[2] E. Acar, C. Aykut-Bingol, H. Bingol, R. Bro, and B. Yener. Multiway analysis of epilepsy tensors.

Bioinformatics, 23(13):i10–i18, 2007.
[3] C.A. Andersson and R. Bro. The n-way toolbox for matlab. Chemometrics and Intelligent Laboratory

Systems, 52(1):1–4, 2000.
[4] Brett W. Bader and Tamara G. Kolda. Efficient MATLAB computations with sparse and factored

tensors. SIAM Journal on Scientific Computing, 30(1):205–231, December 2007.

65

[5] B.W. Bader, R.A. Harshman, and T.G. Kolda. Temporal analysis of social networks using three-way
dedicom. Sandia National Laboratories TR SAND2006-2161, 2006.

[6] B.W. Bader and T.G. Kolda. Matlab tensor toolbox version 2.2. Albuquerque, NM, USA: Sandia
National Laboratories, 2007.

[7] R. Bro. Parafac. tutorial and applications. Chemometrics and intelligent laboratory systems, 38(2):149–
171, 1997.

[8] R.A. Harshman. Foundations of the parafac procedure: Models and conditions for an" explanatory"
multimodal factor analysis. 1970.

[9] U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos. Gigatensor: scaling tensor analysis up by 100
times-algorithms and discoveries. In SIGKDD, pages 316–324. ACM, 2012.

[10] H.A.L. Kiers. Towards a standardized notation and terminology in multiway analysis. Journal of
Chemometrics, 14(3):105–122, 2000.

[11] T.G. Kolda and B.W. Bader. The tophits model for higher-order web link analysis. In Workshop on
Link Analysis, Counterterrorism and Security, volume 7, pages 26–29, 2006.

[12] T.G. Kolda and B.W. Bader. Tensor decompositions and applications. SIAM review, 51(3), 2009.
[13] K. Maruhashi, F. Guo, and C. Faloutsos. Multiaspectforensics: Pattern mining on large-scale het-

erogeneous networks with tensor analysis. In Proceedings of the Third International Conference on
Advances in Social Network Analysis and Mining, 2011.

[14] E. Papalexakis, C. Faloutsos, and N. Sidiropoulos. Parcube: Sparse parallelizable tensor decomposi-
tions. Machine Learning and Knowledge Discovery in Databases, pages 521–536, 2012.

[15] A.H. Phan and A. Cichocki. Block decomposition for very large-scale nonnegative tensor factoriza-
tion. In Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2009 3rd IEEE
International Workshop on, pages 316–319. IEEE, 2009.

[16] J. Sun, S. Papadimitriou, C.Y. Lin, N. Cao, S. Liu, and W. Qian. Multivis: Content-based social
network exploration through multi-way visual analysis. In Proc. SDM, volume 9, pages 1063–1074,
2009.

[17] J.T. Sun, H.J. Zeng, H. Liu, Y. Lu, and Z. Chen. Cubesvd: a novel approach to personalized web search.
In Proceedings of the 14th international conference on World Wide Web, pages 382–390. ACM, 2005.

[18] C.E. Tsourakakis. Mach: Fast randomized tensor decompositions. Arxiv preprint arXiv:0909.4969,
2009.

[19] Q. Zhang, M. Berry, B. Lamb, and T. Samuel. A parallel nonnegative tensor factorization algorithm
for mining global climate data. Computational Science–ICCS 2009, pages 405–415, 2009.

66

