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Abstract

Crisis informatics is a field of research that investigates the use of computer-mediated communication—
including social media—by members of the public and other entities during times of mass emergency.
Supporting this type of research is challenging because large amounts of ephemeral event data can
be generated very quickly and so must then be just as rapidly captured. Such data sets are challeng-
ing to analyze because of their heterogeneity and size. We have been designing, developing, and
deploying software infrastructure to enable the large-scale collection and analysis of social media
data during crisis events. We report on the challenges encountered when working in this space,
the desired characteristics of such infrastructure, and the techniques, technology, and architectures
that have been most useful in providing both scalability and flexibility. We also discuss the types of
analytics this infrastructure supports and implications for future crisis informatics research.

1 Introduction

The field of crisis informatics has arisen as a topic of study starting in the mid 2000s in response to the
pervasive access and use of technology by members of the public during times of mass emergency. First
coined by Christine Hagar during the UK foot and mouth disease crisis [3,4] and then expanded by the work
of Leysia Palen [6,7,9, 10], crisis informatics seeks to understand the range of techniques, services, and
technology that can be brought to bear to better understand how the public uses technology to respond to
disasters and mass emergencies. It also studies how that “informal” response interacts with and influences
the “formal” response by government agencies. From that understanding, crisis informatics hopes to guide
the design of future technology to better serve those needs with an eye towards making society’s response
to disaster more resilient and effective.

In our work as part of Project EPIC [8], we have investigated various software architectures and software
components needed to enable crisis informatics research [1,2]. Our approach is to fundamentally support the
larger international endeavor of crisis informatics that is geared towards developing end-user tools. These
tools are typically referred to as crisis dashboards or crisis mash-ups and they attempt to display information
about a specific event in various ways including reports, live streams, and maps.
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Figure 1: The Project EPIC Architecture for Scalable and Reliable Data Collection and Analysis

However, our larger goal has been to go further than individual tools and create crisis informatics in-
frastructure: a platform that can be used to develop general software tools that can be used on a variety
of events and that can enable the longitudinal study of hundreds of similar crisis events over many years.
With that goal in mind, we have designed and developed a layered software architecture with clear delin-
eations between physical storage, persistence-related services, domain-specific services, and applications
that can be implemented by a flexible, highly available, horizontally scalable, reliable, and robust software
infrastructure [1].

Within this framework, we have investigated the capabilities of various production-class software com-
ponents (such as Cassandra, Lucene, MongoDB, MySQL, and Spring) and developed the software that glues
them together into a reliable and robust system that can collect large amounts of social media data during
times of mass emergency while maintaining 24/7 operation with 99% system uptime [2].

Our current infrastructure adopts the logical software architecture shown in Fig. 1 and is deployed on a
cluster of machines that includes one machine for web-based applications, one for analytics, one for backup,
and four nodes for the storage of terabytes of collected social media data. With this infrastructure, Project
EPIC has collected nearly three billion tweets across hundreds of events over the past three years.

Below, we highlight the software engineering challenges encountered when working to capture and
analyze the data needed to support crisis informatics research. We present the types of questions asked
of the social media data sets generated during a crisis event and the range of problems that such data sets
present for collection. We also discuss the adjustments we have made to our crisis informatics infrastructure
to support social media analytics and provide insight into the types of analysis enabled by our software
platform.

2 Analytics for Crisis Informatics Research

The software infrastructure in Fig. 1 is able to collect millions of tweets per day for many weeks to track
the social media conversations about crisis events during their immediate response and recovery period and
sometimes during the warning period, depending on the nature of the hazard. Once the conversation dimin-
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ishes, collection for events can end and analysis can begin. Crisis informatics researchers may then pose a
wide range of queries about collected data sets [5] including identifying how many unique users contributed
to the sets; the most retweeted tweets; tweets containing popular links; the most influential twitter users; the
percentage of tweets that were retweets; number of geolocated tweets; a high-level description of common
terms and their evolution; etc. Other questions include more prosaic metrics such as what search terms were
used to generate the data set, the start and end dates of the collection, volume of tweets per day, and so on.

The analysts also like to identify a smaller representative set of tweets to study the event in more quali-
tative detail. They seek to understand how people use social media to cordinate or collaborate during events
with each other or with emergency response organizations. The challenge is that even these data sets can
consist of millions of tweets and a group of human researchers can only perform in-depth analysis on a set
of a few thousand tweets. As a result, an additional form of analysis is required to identify the rules and
procedures for creating a representative set of tweets. These rules and procedures can be different across
event types, but in general will include the need to filter out certain types of tweets (“filter out tweets that
contain the word ‘pray’ ”) or to sample tweets based on various characteristics (“include at least one tweet
from all users who contributed to the entire set””) or metrics (“include only tweets that were retweeted at
least 100 times™) [5].

3 Challenges in Analyzing Twitter Data

From a software engineering perspective, there are numerous challenges that must be confronted when both
collecting and analyzing large sets of Twitter data. On the collection side, the Twitter Streaming API can
deliver large amounts of tweets in real time but cannot provide access to tweets generated in the past, while
the Twitter Search API provides access to past tweets but significantly limits that access to just a small
sample, sometimes going back weeks but more typically just a few hours. Furthermore, most Twitter API
methods are rate limited which constrains the speed at which a data set can be generated. For instance, the
API method that allows the retrieval of the last 3200 tweets generated by a user is restricted to 720 requests
per hour where each request can retrieve 200 tweets of a particular user. If you assume that nothing goes
wrong and all users have at least 3200 tweets, then these rates limit you to the collection of just 45 users
per hour. The actual average is higher than that (since not all users have 3200 tweets) but not significantly
and problems can and do occur over the long periods of time that it takes to do this type of collection. Such
problems include network disconnects, hardware failures, Twitter service failure, and more. All of these
problems can be handled—but not easily—and the solution requires significant engineering effort, system
administation skill, and the use of (potentially unfamiliar) concurrency, distributed systems, and NoSQL
techniques.

On the analysis side, further complications abound. Twitter data can be “messy” and a significant amount
of time has to be invested to get it into a state where it can be effectively analyzed. In particular, each tweet
can contain a different set of fields (hindering the ability to write generic processing code) and can contain
text in multiple encodings (hindering the ability to parse and display them). In addition, an individual tweet
does not contain all of the information that an analyst might want. For instance, the user metadata of a tweet
indicates how many “followers™ that user has but not who those followers are. If an analyst wants to pull
follower information for the Twitter users of a data set that requires a second, significant data collection
effort, subject once again to the rate limits and problems discussed above. In addition, the collection of
follower graphs is a signficant engineering task itself. A collection of just “two hops” of follower/following
relationships can quickly lead to millions of user objects that need to be collected, stored, and later analyzed.

Another issue that occurs with the analysis of tweets is that the values of tweet metadata (e.g., retweet
count, follower count, favorite count, etc.) is dependent on when the tweet is collected. If a tweet is collected
during an event, the values reflect what had happened to that particular tweet at that particular time. Thus
a tweet that was just generated will have a retweet count of zero and may sit in a data set classified as
“uninteresting” when it later goes on to be retweeted thousands of times. Users who had only ten followers
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at the time they contributed their first tweet to a data set may go on to have thousands of followers if they
generate interesting content during that event. However, if that first tweet was the only one that matched the
search terms being used to collect the event, subsequent analysis may classify that user as “uninteresting’
since at the time his follower count was low.

One way around this problem is to collect again all tweets that make up a data set once the initial period
of interest for that event is ended. This would ensure that all tweets in the data set are stored with the latest
set of metadata. This approach would help reveal all tweets and users that went on to become “popular,”
but this approach is impractical when the size of the initial data set is large (100s of GBs). Firstly, the
original metadata values would be lost or, if both versions of the tweet are kept, the size of the data set
doubles. Secondly, one is required to switch from collecting tweets via the high-velocity Streaming API to
the rate-limited REST API, which, for large data sets, means facing months of data collection.

Fortunately, for long-running collection events, these problems are mitigated. Interesting users gain
influence by tweeting lots of useful information. Each tweet they contribute to the data set contains updated
values of their followers count. A useful tweet that is retweeted multiple times is “embedded” in the retweet;
the embedded tweet then contains updated values for retweet count, follower count, etc. As a result, we have
developed analytical tools that track the evolution of metadata values for tweets and Twitter users over the
time of a collection. Once the set of truly popular tweets and Twitter users for an event has been identified,
a smaller, more focused data collection can occur via the REST API to ensure that we have the most recent
metadata values for popular tweets and the complete set of tweets generated by influential users.

>

4 Extending the Infrastructure to Handle Analytics

The Project EPIC infrastructure, initially designed to solve the problem of collecting large amounts of social
media data in a scalable and flexible fashion [1, 2], is well situated for extension to handle the challenges
of social media analytics. New data stores, services, and applications can be added to the relevant layers
of the architecture to provide analytical capabilities. We currently make use of four different approaches to
performing analytics over our social media data sets.

Our first approach to analytics is enabled by exporting the tweets collected for an event from Cassandra
to the file system of our analytics machine. Once exported, scripts written in Ruby, Python, or Java can
process this data to look for the answers posed by Project EPIC analysts. These scripts are written in a
highly-iterative fashion on subsets of data to demonstrate the feasiblity of answering a question or to test
out the effectiveness of a particular algorithm in obtaining the answer as efficiently as possible. Once this
experimental stage is complete, these algorithms are encapsulated in MapReduce jobs and applied to the
entire data set.

Our second approach to analytics involves migrating event data out of Cassandra and into a NoSQL
store that is suited more for analytics; while Cassandra shines as a reliable and scalable data store, it is less
suited for more open-ended analytics where queries are not known ahead of time. We currently make use
of MongoDB and Hadoop/HDFS for this purpose. We have written software that can export events out of
Cassandra and import them into MongoDB or HDFS. We have standard queries (as described above) for
these data sets written as MapReduce jobs in both MongoDB and Hadoop that will extract the information
that our analysts require as a baseline. These queries currently run on a cluster of four machines generating
the answers to queries on data sets with tens of millions of tweets typically in just a few hours. As both
MongoDB and Hadoop are “horizontally scalable,” Project EPIC is in a situation where if we need to process
larger data sets (100M+ tweets) in a similar amount of time, we simply need to acquire new machines and
add them to the existing cluster.

Our third approach to analytics is looking at technologies that can enable “real time analytics.” For
Project EPIC, real-time analytics means producing the answers to our standard queries on data sets that are
still being collected. This capability would be useful both in the initial onset of an event to help our analysts
determing the keywords that we should be using to collect a representative set of tweets for the event and
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during the event itself to highlight influential users and tweets that are worthy of additional study after the
event. We have three strategies that we are pursuing in this area, all in the beginning stages of development.
These approaches are 1) making use of commercial tools, 2) making use of stream-processing frameworks,
and 3) making use of periodic MapReduce jobs. The first strategy is to make use of commerical software
designed for the processing of time series data. We are currently using Splunk to provide a “dashboard” for
monitoring the volume of tweets of an event and to make initial queries on the types of conversations that
are occuring for an event.! We do not store all of the tweets for an event in Splunk. Rather we delete older
tweets (where the definition of “old” evolves over the course of the event) to make way for more recent
tweets, allowing the dashboard to present a current picture of the event to our analysts.

The second strategy is to investigate the use of stream processing frameworks, such as Storm, to generate
answers to our standard questions on partially-collected data sets. Storm provides us with the ability to
generate metrics as tweets arrive, before they are stored in Cassandra. These metrics (number of unique
users, number of tweets per hour, etc.) can be stored in a small relational database and displayed using a
web-based dashboard.

The third strategy is to make use of periodic MapReduce jobs that run on a partially collected event and
report back the answers to our standard set of questions. Making use of MapReduce jobs in this fashion
provides the ability to be more expressive in the types of manipulations performed on the data set, and
can allow for the production of more complicated metrics, such as the number of unique users contributing
tweets matching an event’s keywords per hour. We are investigating whether it is more useful to run these
jobs on the entire data set (which implies that performance will be less and less “real time” as the data set
grows) or on a “sliding window” of tweets (e.g. the last 50,000 tweets collected) that can expand or shrink
as needed to enable fast query execution. In the future, we will be looking at how technologies such as
Pig and Spark enable the creation of MapReduce jobs at a higher level of abstraction. Such technologies
often integrate with existing NoSQL stores allowing us to avoid migrating data and instead execute queries
directly against our Cassandra data sets.

Finally, our fourth approach to analyzing our large data sets is via the use of graph databases (e.g. Neo4J,
FlockDB, and Titan). While the collection of social graphs on Twitter represents a significant engineering
challenge, we have software that can collect these graphs based on a given starting point (i.e. Twitter user).
Now we are developing software that makes use of a graph database to read in graphs to allow our analysts
to traverse the network of followers surrounding the influential contributors of a particular event with an eye
towards visualizing and understanding the growth of these networks over the course of an event. We are
also interested in incorporating non-Twitter data into this database where some nodes represent URLs that
appear in tweets to determine if it is possible to track the flow of information about an event in and out of
Twitter.

In summary, we view all four of these approaches as critical to providing a comprehensive analytics
platform for crisis informatics research. To give a sense for the utility of one of these techniques, we now
present a more in-depth look at the types of analysis that our work with MongoDB is providing.

S Challenges Using MongoDB for Social Media Analysis

Project EPIC makes use of Twitter to track the social media conversation about large-scale crisis events.
Members of the public increasingly make use of Twitter during mass emergencies [7]. Some of the tweets
can contribute data to build “situational awareness” of the emerging event. Others have URLs to information
that resides in other forums. As a result, Twitter often serves as a useful map to the range of online commu-
nications that occurred around a mass emergency event. Project EPIC makes use of Twitter’s Streaming API
to collect tweets; our infrastructure provides a web-based application to create/modify events, add/disable

ICitations to popular software tools and frameworks—e.g. Splunk, Storm, and Cassandra—are ellided as information about
these projects are easily discovered via internet-based search tools.
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keywords associated with an event, and manage when and for how long events are submitted to Twitter for
collection. The Streaming API delivers tweets in JSON format and a varient of JSON (known as BSON)
is the native format used by a popular NoSQL data store known as MongoDB. As MongoDB is designed
to support arbitrary queries over objects stored in this format, MongoDB has interesting potential for sup-
porting the analysis of large sets of tweets. MongoDB is not, however, a panacea. The use of indexes and
queries on a single instance of a MongoDB server quickly runs into problems that can only be solved via
the use of more complex techniques and client-server configurations.

For instance, answering the “unique number of users contributing to a data set” question identified in
Sec. 2 can easily be answered in MongoDB by first importing the data set into a MongoDB collection
(e.g. tweets) and issuing a command similar to db.tweets.distinct ("user.id_str") .2 This
command causes the MongoDB server to look at all documents in the tweets collection for an attribute
called “id_str” stored in an “embedded document” labelled “user.” It keeps track of all the unique values
found for this attribute, stores those values in an array, and, ultimately, returns that array to the caller for
display and further analysis. This command executes quickly on small datasets, especially if an index
has been created on the “user.id_str” attribute. However, on large data sets with many unique values, this
command can encounter an internal limit of the MongoDB server which prevents the results of in-memory
queries growing larger than 16MB.

For one of our smaller data sets—7.3GB of Twitter data consisting of 2.2M tweets with 932K unique
users—we hit exactly this limit and were thus unable to use the distinct () command to calculate this
particular metric. Instead, we had to make use of MongoDB’s ability to run MapReduce jobs to retrieve the
answer. This is straightforward to do but does represent an increase in complexity. An engineer must switch
from running the simple command shown above to code similar to the following:

def map_command
"function () { emit(this.user.id_str, 1); }"
end
def reduce_command
"function (key, values) { return Array.sum(values); }"
end
mongo = MongoClient.new

db = mongo.db("norway")[ tweets ]

db.map_reduce (map_command, reduce_command ,{:out => “users’ ,:verbose => true
p p

In particular, our map command is passed each input document in turn and generates an output document
containing the value of the input document’s user.id_str attribute as a key and the number one as a
value, i.e., {"key" : "1234", "value" : 1}. (Note: the input document is “passed” by setting the value of this
to point at each input document in turn.) After the map phase is complete, MongoDB combines documents
that have the same key by adding their values to an array. Conceptually, this produces documents that look
like this: {"key" : "1234", "value" : [1, 1, 1, 1, 1, 1]}. These combinations get passed to the reduce function
which in turn produces documents that look like this: {"key" : "1234", "value" : 6}. When the reduce phase
has processed all combination documents, these final output documents are stored in a users collection
in which there is one document for each unique user in the tweets collection. The value attribute for
each of these documents stores the total number of tweets that user contributed to the data set. It is still

2The use of id_str over screen_name is preferrable for determining unique users in a Twitter data set. Users can (and
do) change the value of the screen_name attribute whenever they want; the 1d_str value stays constant for the lifetime of a
Twitter user account.
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possible to encounter out-of-memory errors using this approach if you fail to specify an output collection.
In that case, MongoDB keeps all combination documents and all final output documents in memory and will
return the final set of output documents to the caller when the reduce phase is done. If this in-memory set of
documents consumes more than 32MB of space, the call to map_reduce will fail. Instead, you must tell
MongoDB to store the intermediate documents in a collection (as was done above on line 13). This causes
MongoDB to store the intermediate documents on disk rather than in memory and with those conditions in
place it becomes possible to reliably generate the answer to the “unique users” question independent of the
size of the overall data set.

However, without some additional work, the time it takes to generate the answer to this simple query
can still take a long time. The default configuration for MongoDB is for it to run as a single-threaded server
instance. In such a configuration, the MapReduce job above will look at all documents in a collection during
the map phase sequentially and will then process all the combination documents during the reduce phase
sequentially using a single thread (even on a server with multiple processors/cores). To take advantage of
MapReduce’s ability to run in parallel on very large data sets, MongoDB must be configured to run multiple
instances of the MongoDB database on multiple servers. It must be configured to “shard” the original
database across those servers. The good news here is that the programmatic interface to MongoDB does
not change in this set-up, but the administration of this configuration is non-trivial and one must deal with
issues such as selecting the key used to partition the database across the shards. However, the benefits of this
approach is horizontal scalability in terms of performance and disk space. If one needs additional storage
space or one needs queries to run faster for a given data set, adding another server to the configuration will
trigger automatic repartitioning of the database allowing for increased scalability and parallelism.

Once properly configured, MongoDB can offer powerful analytical tools on large data sets via disk-
based MapReduce jobs like the one above. Two analysis features that we make use of in our more complex
MapReduce jobs are MongoDB’s geospatial indexes and full-text indexes. For the latter, we create full-text
indexes on the text of a tweet. The full-text index allow us to search data sets with more complex queries
such as, “all tweets that contain ‘haiti’ but not ‘pray’.” This functionality, in turn, provides our analysts
with an ability to be more expressive in their queries and to broaden their research questions. We make use
of MongoDB'’s geospatial indexes to help narrow down tweets in a given data set to just those users who
were generating tweets local to an event. For instance, our 132 GB Hurricane Sandy data set contains 26M
tweets generated by 8.2M users from all over the world. However, for one of our research questions, our
analysts wanted to examine only tweets generated by users who were located on the eastern seaboard of the
United States right before the landfall of the hurricane. After importing the data set and ensuring that the
geocoordinates of the tweets matched the format expected by MongoDB, we generated a geospatial index
and wrote a MapReduce job that searched for tweets that fell within a particular bounding box. The query
took 13 minutes to run on our cluster and located the 101K users who were directly in the hurricane’s path.
This result was immediately useful as we were able to launch a new data collection in which all of the tweets
ever generated by those 101K users were collected and stored for later analysis (looking, for instance, to see
if these users had adopted Twitter because of Hurricane Sandy).

6 Conclusions

In this paper, we have highlighted the challenges associated with collecting and analyzing social media data.
While our experience is related to the support of crisis informatics research, many of these issues are inde-
pendent of application domain and our approach, techniques, software architecture—and its implementation
as Project EPIC’s software infrastructure—are broadly applicable to the collection and analysis of a wide va-
riety of application domains and types of social media. We have learned valuable lessons, including insight
into the questions most important to crisis informatics researchers, the challenges associated with collecting
representative Twitter data sets, and the need for multiple approaches to analysis. A single analysis tech-
nique is insufficient to answer the wide range of questions posed across the different timescales in which
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those answers are needed. We also learned that it is critical to develop a reasoned, modular, and extensible
approach to the design and development of social media analysis tools. It is otherwise impossible to perform
this analysis at scale with sufficient functionality, flexibility, and performance to make meaningful progress
on societal-scale issues.

One important implication of our experience is how work in this area requires a large team with a diverse
set of skills and expertise to do this type of research effectively. Project EPIC required a team with skills not
only in software architecture, software design, software engineering, web engineering, distributed systems,
networking, and system administration, but also with skills in human-centered computing, information vi-
sualization, statistics, and qualitative/quantitative experimental methods. The former were needed to create,
deploy, and operate the scalable, flexible, reliable, and robust Project EPIC software infrastructure but the
latter were needed to identify the problems it solves in the first place, what questions it must answer, how
it should present those answers, and how it supports the ongoing, highly-iterative, multi-method techniques
required by crisis informatics research. With such a team, our interdisciplinary approach to the collection
and analysis of social media has enabled significant progress to be made in the area of crisis informatics
research.
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