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Letter from the Editor-in-Chief
TCDE Activities
Maintaining the vitality of the database community within the IEEE Computer Society is important for the
long term health of the database field. In his role as TCDE Chair, Kyu-Young Whang has initiated a number
of new activities designed for this purpose. Each is described below.

Awards: The TCDE now supports a number of awards for outstanding work, both of a technical nature
and for professional contributions. Amr El Abadi has led this effort. For technical work, there is the
Computer Science, Engineering and Education Impact Award. For young members of our community,
there is the TCDE Early Career Award. And finally, there is the TCDE Service Award for contributions
to the community. These awards are described in detail at http://tab.computer.org/tcde/
tcdeawards.html.

Archive: To provide institutional memory about both the TCDE and the ICDE Conferences, a web site is
being designed, the effort led by Wookey Lee, that will serve as an archive for historical information.
Combined with our current web site, this should provide everyone with comprehensive information
over time about the database community within the Computer Society.

Membership: Membership in the TCDE is important for the long term organizational health of the database
community within the Computer Society. Xiaofang Zhou leads the effort to strengthen our commu-
nity’s participation in TCDE. One result of this effort was the New Members’ Reception at ICDE’13
in Brisbane. Another is the membership application on the back inside cover of the current (and
subsequent) issues of the Bulletin. If you are not currently a member, I urge you to join.

The Current Issue
Hundreds of millions of people the world over (perhaps billions) engage in social interaction at a growing
number of web sites. To say that this has changed peoples lives and the way they interact with each other
is to understate the obvious. These sites are a wonderful way to stay in touch, to follow what is happening,
and who it is happening to. People who barely used computers in the past (e.g. folks of my generation or
older) now participate eagerly in this new world.

Web based social services also produce useful data, ripe for analysis. Web services are usually businesses
with a profit motive, and hence a need to secure revenue. Advertising is almost always an important revenue
component, so social data analysis for ad placement is usually crucial for success in this space.

But direct profit enhancement is not the only function that can be served by analysis of social media
data. The utility of social services can also be improved by exploiting geo-spatial and temporal information,
social connections, trust relationships, etc. One can, for example, arrange to meet friends who happen to be
nearby at the moment in the closest coffee shop. One might use such real time data collection to track any
number of interesting social phenomena.

This area of social media data analysis is the focus of the current issue, assembed by Sharad Mehrotra.
This area is truly an opportunity for NOW. A social media industry is in its infancy, and will surely grow to
enormous size. So Sharad’s focus on this area in the current issue is a great opportunity to become familiar
with what is happening and has happened, as you position yourself for possible participation in a huge
collaborative ("social"?) and technical effort that is changing the world. I want to thank Sharad for bringing
together a great set of papers, by leading practitioners, focused on this very timely and exciting topic.

David Lomet
Microsoft Corporation
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Letter from the Special Issue Editor
Over the past decade, social media has emerged as a dominant means through which people communicate.
Even if we restrict ourselves to Twitter, it is estimated that people send about 400M tweets on a daily
basis covering a variety of topics and opinions. While, individually, such tweets might or might not be
very informative, many studies have now clearly established that collectively, such data contain a wealth
of information that can be leveraged in various application contexts to bring new capabilities, use-cases,
and value propositions. It is getting to be well recognized that technologies for collecting, monitoring
and analyzing social media can bring transformative changes to variety of real-world domains. Already,
many organizations in service-oriented industry such as hospitals and customer care monitor social media
to determine public opinions about their services. Similar strategies are used by product companies (e.g.,
electronics, cell phones) to determine the public opinion about their products and by political parties and
policy makers to assess the sentiment of the community. Department of homeland security in USA has
a social media program that in addition to understanding public satisfaction with their services also uses
social media as a sensor to detect emerging needs and events during crisis. Social media analysis has
always been important to internet companies to understand user profiles in order to bring new customization
and/or targeted advertising. Social media (specially when mixed with mobile computing and location based
services) is a major driver for startup activity in the Silicon Valley and other IT hubs around the world.
There are many new proposals, ideas, products that are attempting to seamlessly integrate social media with
pervasive computing technologies including localization and sensing to bring an immersive experience and
capabilities to users.

While social media monitoring and analysis offers numerous opportunities, it also poses a large number
of technical hurdles. Challenges arise at every technological layer – consider, for instance, building a system
or a capability that relies on social media. Only a very small part of the gargantuan amount of information
may be relevant to the end-goal leading to the challenge of effective acquisition, filtering, and ranking of
social media data. Another challenge arises due to relatively short form of the messages such as tweets
and Facebook posts that are seldom well structured or grammatically correct limiting the effectiveness of
standard NLP and information extraction mechanisms. Yet another layer of complexity arises due to the
“big and fast” nature of such data – the amount of such data and the velocity at which it arrives (coupled
with the near real-time need for analysis for certain applications) poses a significant challenge in building
infrastructures that can scale. No doubt, social media monitoring and analysis is the driving force behind
a large amount of research and innovations at all technology levels – infrastructure level where researchers
are exploring hardware and software infrastructures that can support complex social media analysis, at the
representation and analysis level, where researchers are exploring mechanisms that can provide valuable
insights from social media data, and application level where researchers are exploring diverse applications
and new uses of social media. This special issue consists of a set of articles from leading researchers
exploring social media at different technology levels.

The special issue is roughly divided into four parts. We begin the bulletin by two articles that highlight
experiences and challenges in exploiting social media analysis in the context of concrete applications from
researchers who have built significant such systems.

In the article entitled “Social Media Analytics: The Kosmix Story”, the authors provide a glimpse of
the “insider story” in building a large real-time social knowledge base entitled Social Genome in a com-
mercial setting as part of Kosmix which was a bay area startup that was later acquired by Walmart. In the
article entitled “The Architectural Implications of Social Media Analytics in Support of Crisis Informatics
Research”, the authors highlight the software architecture and challenges in building large-scale systems for
event monitoring on twitter to support crisis management. The article further address the key lessons learnt
and the implication of social media to crisis informatics in the future.

The second set of papers describe variety of ideas and issues related to social media analytics.
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“Social Media Analytics Research in MSR Search Labs” focuses on ongoing and current research within
Microsoft Search Labs on modeling how information spreads and propagates through social networks and
how people assimilate the information and form relationships. In the article entitled “Geospatial Footprints
in Social Media: Towards GeoSocial Intelligence”, the authors focus on how geotagged social media col-
lected through smart devices opens new opportunities for developing new geo-social systems which can
help uncover how ideas flow from people to people and how people organize. The next two articles in
the bulletin focus on the important problem of event identification in social media which is at the heart of
much of the use-cases for social media. In the article entitled “Effective and Efficient Event Identification
in Social Media”, the authors discuss the limitations of current solutions and describe new approaches to
improving detection by increasing the set of features used for clustering as well as using a more informed
event model that accounts for time decay. In the article entitled “Event Detection from Social Media Data”,
the authors propose using concepts from emotional theories combined with Spatio-Temporal information to
build a robust and scalable event detector.

The next set of papers deal with issues related to efficient processing of large social media data. In
“Large Scale Tensor Decomposition: Algorithmic Developments and Applications”, the authors summarize
recent algorithmic developments in scaling tensor decomposition to big data using map/reduce framework.
Such tensor-based analysis is a core technique for analyzing social media data for interesting patterns and
anomalies. In “Summarization via Pattern Utility and Ranking: a Novel Framework for Social Media Data
Analytics”, the authors describe a new dynamic pattern driven approach to summarizing social networks
and topologies that enables efficient processing of user-specific and topic-specific temporal analysis.

The final set of papers in the bulletin deal with new / novel emerging applications and new research
opportunities for social media analytics. In “Some Research Opportunities on Twitter Advertisement”, the
authors revisit the issue of social advertising which is omnipresent in social media. The authors discuss
the new advertising opportunities introduced by Twitter to promote advertisements to targeted individuals
and identify the research challenges/opportunities such a model promotes. “S3: A framework for Efficient
Social Media Search in the Cyber Physical Systems” describes a new direction of research that seamlessly
integrates sensors and cyber physical systems with social media. In particular, the authors describe a frame-
work entitled S3 that supports social media search when queries may be a result of integrating the physical
world with communication and computational devices as in a cyber physical system. In the article entitled
“Building Social Life Networks”, the authors discuss a novel concept of social life networks that connect
people with essential life resources. They identify key challenges in building such networks (viz., alge-
braic framework for situation modeling and recognition, context determination) and briefly describe their
experience in building such systems.

As is often the case with Data Engineering Bulletins, the range of articles vary in the level of depth
and treatment of the subject – while some papers focus more on vision and challenges that lie ahead, others
describe technically mature approaches based on significant prior work by the authors. Irrespective of the
nature of the papers, collectively they provide a good view of the state-of-the-art thoughts and research in
the area of social media analytics.

Finally, I would like to acknowledge the generous help by Mehdi Sadri in following up with the authors
and compiling the papers into the bulletin. Without his help, production of the bulletin would have been
significantly more difficult.

Sharad Mehrotra
University of California, Irvine
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Social Media Analytics: The Kosmix Story

Xiaoyong Chai1, Omkar Deshpande1, Nikesh Garera1, Abhishek Gattani1, Wang Lam1,
Digvijay S. Lamba1, Lu Liu1, Mitul Tiwari2, Michel Tourn3, Zoheb Vacheri1,

STS Prasad1, Sri Subramaniam1, Venky Harinarayan4, Anand Rajaraman4,
Adel Ardalan5, Sanjib Das5, Paul Suganthan G.C.5, AnHai Doan1,5

1 @WalmartLabs, 2 LinkedIn, 3 Google, 4 Cambrian Ventures, 5 University of Wisconsin-Madison

1 Introduction
Kosmix was a Silicon Valley startup founded in 2005 by Anand Rajaraman and Venky Harinarayan. Initially
targeting Deep Web search, in early 2010 Kosmix shifted its main focus to social media, and built a large
infrastructure to perform social media analytics, for a variety of real-world applications.

In 2011 Kosmix was acquired by Walmart and converted into @WalmartLabs, the advanced research
and development arm of Walmart. The goals of the acquisition were to provide a core of technical people in
the Valley and attract more, to help improve traditional e-commerce for Walmart, and to explore the future
of e-commerce. This future looks increasingly social, mobile, and local. Accordingly, @WalmartLabs
continues to develop the social media analytics infrastructure pioneered by Kosmix, and uses it to explore a
range of social e-commerce applications.

In this paper we describe social media analytics, as carried out at Kosmix. While our framework can
handle many types of social media data, for concreteness we will focus mostly on tweets. Section 2 describes
the analytics architecture, the applications, and the challenges. We describe in particular the Social Genome,
a large real-time social knowledge base that lied at the heart of Kosmix and powered most of its applications.
Section 3 describes how the Social Genome was built, using Wikipedia, a set of other data sources, and
social media data. Section 4 describes how we classify and tag tweets, and extract entities from tweets and
link them to a knowledge base. Section 5 describes how we detect and monitor events in the Twittersphere.
Section 6 discusses how we process the high-speed Twitter stream using Muppet, a scalable distributed
stream processing engine built in house [1]. Section 7 discusses lessons learned and related work, and
Section 8 concludes. Parts of the work described here have been open sourced [1] and described in detail in
recent papers [18, 23, 25, 32].

2 Architecture, Applications, and Challenges
The overall Kosmix architecture for social media analytics is shown in Figure 1.a. To start, we retrieve
data from multiple sources, including Web sources (e.g., Wikipedia, Musicbrainz, Chrome, Yahoo Stocks)
and social media sources (e.g., Twitter, Foursquare, YouTube, Facebook, Flickr). In particular, Kosmix had
access to the full Twitter fire hose, which streamed in at about 3,000 tweets per second. Thus, fast and
accurate processing of this fire hose became a major challenge.

In the next step, we process the retrieved data using a variety of techniques in information extraction,
integration, entity matching and merging, schema matching, and event detection and monitoring, among

Copyright 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse
any copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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Figure 1: (a) The overall architecture for analytics, and (b) a sample fragment of the Social Genome.

others. Our goal was to build a large real-time knowledge base called Social Genome, which captures
all important entities, relationships, and events that are happening in real time in social media. Then we
leverage the Social Genome to build a variety of applications, such as TweetBeat, Firsthand, Social Cube,
and RightHealth. We run the above pipeline on a highly scalable real-time data processing infrastructure,
which uses the file system, RDBMSs, Hadoop, and Muppet. Muppet is a distributed stream processing
engine developed in house, and was used to process the high-speed stream of tweets flowing into Kosmix.
Thus, it is similar to Storm at Twitter, but with important differences (see Section 7). Throughout the entire
processing pipeline, we also employed crowdsourcing (using internal analysts, Amazon Mechanical Turk’s
workers, end users, etc.) to improve the accuracy of the processed data.

As described, the Social Genome knowledge base lies at the heart of the Kosmix analytics infrastructure.
This knowledge base consists of the following (as illustrated in Figure 1.b):

• A Freebase-like knowledge base of popular concepts and instances on the Web, such as places, peo-
ple, actors, politicians, Angelina Jolie, and Mel Gibson (see the top-left corner of the figure). This
Web knowledge base, called Kosmix KB, was constructed by integrating Wikipedia with several other
databases (see Section 3).

• Profiles of social media users: Twitter users such as @melgibson, @dsmith; Facebook users; Foursquare
users, and so on (see the top-right corner of the figure).

• Popular events detected in the Twittersphere, such as Gibson car crash, Egyptian uprising, earthquakes
(see the bottom-right corner).

• Tweets and other raw data such as Web pages (e.g., “Mel crashed. Maserati is gone.” and “Tahrir is
packed” in the figure).

In addition, the Social Genome also contains many relationships inferred by our algorithms. For example,
we matched person instances in the Web knowledge base (i.e., the Kosmix KB) with social media user
profiles, to create “the-same-as” relationship wherever appropriate. For example, we created a “the-same-
as” relationship between the person instance “Mel Gibson” in the Kosmix KB and Twitter user @melgibson
(see Figure 1.b), because they refer to the same real-world person.

As another example, when receiving the tweet “Mel crashed. Maserati is gone.”, we established that
“Mel” in the tweet is a person name, and that it refers to the person instance “Mel Gibson” in the Kosmix
KB (see Figure 1.b). In other words, we perform entity extraction over tweets and link the discovered entities

5



(c) (a) (b) 

Figure 2: (a)-(b) Screen shots of the TweetBeat homepage showing the 2011 Japanese earthquake event, and
(c) a TweetBeat widget embedded in ABC news homepage showing the 2011 Egyptian uprising event.

to the same entities in the Kosmix KB. Other examples of relationships include a Twitter user tweeting about
an event (e.g., @dsmith tweeting about Egyptian uprising), and an event (e.g., Egyptian uprising) is related
to an instance in the Kosmix KB (e.g., Tahrir).

We used the Social Genome to build a variety of real-world applications. Our flagship application
was TweetBeat, which monitors the Twittersphere to detect important emerging events (e.g., earthquake,
uprising, stock crash), then displays the most important tweets of these events in real time. For example,
when TweetBeat detected that the 2011 Japanese earthquake was happening, it created an entire page for
this event. The top part of this page (Figure 2.a) names the event, and gives a brief description and a picture
or video (if available). The bottom part of the page (Figure 2.b) shows important tweets about this event in
real time, in a continuously scrolling fashion (see the left part of this figure). Figure 2.c shows a TweetBeat
widget that was embedded in the ABC news homepage back in 2011. This widget shows important tweets for
the event Egyptian uprising in real time. During the period 2010-2011, TweetBeat detected and monitored
hundreds of important events per day.

Firsthand is another example application that used the Social Genome1. When a user is reading a news
article, Firsthand (installed as a browser widget) detects and highlights entities (e.g., people, organizations)
that appear the article and have Twitter accounts. If the user hovers the mouse over such an entity, Firsthand
will retrieve and display the latest tweets from the corresponding account. This application makes use of
“the-same-as” relationships in the Social Genome. Specifically, we extract and link entities that appear in
the article to instances in the Kosmix KB, then follow “the-same-as” links to access the Twitter accounts of
these entities.

SocialCube is another application in which we leveraged the Social Genome to build a real-time data
cube with dimensions such as location, topics, and sentiment, then used it to answer questions such as “How
many are tweeting about Barack Obama in New York, by the minute for the last hour?” and “How many
Twitter users in Arizona feel positive about the new Medicare plan?”.

As described, developing the analytics infrastructure and the applications on top of it raises difficult
challenges. First, how do we build the various knowledge bases? Second, when a tweet comes in, how do
we classify and tag the tweet, and extract and link entities, such as finding out that “Mel” in the tweet is
a person name and refers to the person instance Mel Gibson in the Kosmix KB? Third, how do we detect
emerging important events in the Twittersphere (e.g., earthquakes), and how do we monitor tweets of these
events? Finally, how do we process social media data in real time? We discuss our solutions to these
challenges in the subsequent sections.

1appscout.pcmag.com/social-networking/269719-tweetbeat-firsthand-read-someone-s-tweets-anywhere-they-re-mentioned
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3 Building the Social Genome Knowledge Base
We now describe building the Social Genome. But before that, we briefly describe the notion of a knowledge
base. A knowledge base (KB) typically consists of a set of concepts organized into a taxonomy, instances
for each concept, and relationships among the concepts. Figure 1.b shows a tiny KB (in the top-left corner),
which illustrates the above notions. In this KB, for example, “actors” are a kind of “people”, and Angelina
Jolie and Mel Gibson are instances of “actors”.

To build the Social Genome, we first build the Kosmix KB, which is a knowledge base of popular
concepts and instances on the Web, such as places, people, actors, politicians, Angelina Jolie, Mel Gibson,
etc. In this sense it is similar to Freebase and Google’s Knowledge Graph. Then we augment the Kosmix
KB with social-media information, such as Twitter user profiles, events, and tweets. We now describe these
two steps in more details.

To build the Kosmix KB (see [18] for a detailed description), we convert Wikipedia into a KB, then inte-
grate it with additional data sources, such as Chrome (an automobile source), Adam (health), MusicBrainz,
City DB, and Yahoo Stocks. Here we highlight several interesting aspects that have not commonly been
discussed in the KB construction literature. First, we found that converting Wikipedia into a taxonomy is
highly non-trivial, because each node in the Wikipedia graph can have multiple paths (i.e., lineages) to the
root. We developed an efficient solution to this problem. Interestingly, it turned out that different applica-
tions may benefit from different lineages of the same node, so we convert Wikipedia into a taxonomy but
preserve all lineages of all Wikipedia nodes.

Second, extracting precise relationships from Wikipedia (and indeed from any non-trivial text) is no-
toriously difficult. We developed a solution that sidesteps this problem and extracts “fuzzy relationships”
instead, in the form of a relationship graph. Later we were able to use this fuzzy relationship graph in a
variety of real-world applications. Third, we extracted meta information for the nodes in the KB, focusing
in particular on social information such as Wikipedia traffic statistics and social contexts. For example,
given the instance “Mel Gibson”, we store the number of times people click on the Wikipedia page associ-
ated with it, the most important keywords associated with it in social media in the past 1 hour (e.g., “mel”,
“crash”, “maserati”), and so on. Such meta information turns out to be critical for many of our applications.
Finally, we added new data sources to the KB constructed out of Wikipedia. In doing so, we had to match
external instances with those in the KB, and heavily used taxonomy matching and entity instance matching
algorithms.

Building the initial KB is difficult, but is just the very first step. In the long run, maintaining and curating
the KB pose the most challenges and incur most of the workload. We developed a solution to refresh the
KB every day by rerunning most of it from the scratch. We also had to address a major technical challenge:
how to curate the KB and preserve the curation after refreshing the KB. Our solution is to capture most of
the human curation in terms of commands, and then apply these commands again when we refresh the KB.

Once we had built the Kosmix KB, we added social media data to it. Examples include adding profiles of
social media users (e.g., Twitter users), events, and annotated tweets. This process raises two key challenges.
First, how do we perform entity extraction, linking, classification, and tagging for tweets? And second,
how do we detect and monitor events in the Twittersphere? In the next two sections we discuss these two
challenges.

4 Entity Extraction, Linking, Classification, and Tagging
To augment the Kosmix KB with social media data, we need to perform entity extraction, linking, classifica-
tion, and tagging for the incoming tweets. For example, given a tweet such as “Obama gave an immigration
speech while on vacation in Hawaii”, entity extraction determines that string “Obama” is a person name,
and that “Hawaii” is a location. Entity linking goes one step further, inferring that “Obama” actually refers
to a particular entity in the Kosmix KB and that “Hawaii” refers to another entity. Classification assigns a
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set of predefined topics to the tweet, such as “politics” and “travel”. Finally, tagging assigns descriptive tags
to the tweet, such as “politics”, “tourism”, “vacation”, “President Obama”, “immigration”, and “Hawaii”,
the way a person may tag a tweet today. Our applications heavily use the results of such extraction, linking,
classification, and tagging.

To solve the above problems, we proceed as follows (see [23] for more details). Given a tweet, we
preprocess it, e.g., detecting the language, tokenizing. Next, we use the Kosmix KB to extract mentions
from the tweet, remove certain mentions, then score the remaining ones. Here a mention refers to a pair
of (string, KB node), which states that the string refers to a particular node in the Kosmix KB. So we are
effectively performing entity extraction and linking at the same time. Then in the next step we use these
mentions to classify and tag the tweet. Next, we go back to processing the mentions, but do so in more
depth. Specifically, we extract 30+ mention features, remove certain mentions using rules involving these
features, disambiguate the mentions (e.g., linking “apple” to Apple the company not Apple the fruit), then
score the mentions again. Next, we use the “clean” mentions to classify and tag the tweet again. Finally
we apply hand-crafted editorial rules to filter mentions and classification and tagging results. Compared to
current work, our solution is distinguished in several important aspects:

• Using a Global and “Real-Time” Knowledge Base: The Kosmix KB (which we use to find and link
to entities mentioned in tweets) is built from Wikipedia. Wikipedia is global in that it contains most
concepts and instances judged important in the world. Thus, it provides a good coverage for the tasks.
More importantly, it is “real time” in that contributors continuously update it with new entities that
just appear in real-world events. This “real time” nature makes it especially well-suited for processing
social data. In contrast, many current solutions use knowledge bases that are updated less frequently.

• Synergistic Combination of the Tasks: Our system interleaves the four tasks of extraction, linking,
classification, and tagging in a synergistic fashion. For example, given a tweet, we begin by perform-
ing a preliminary extraction and linking of entity mentions in that tweet. Suppose many such mentions
link to many nodes under the subtree “Technology” in the Kosmix KB. Then we can infer that “Tech-
nology” is a likely topic for the tweet, thereby helping classification. In return, if we have determined
that “Technology” is indeed a topic for the tweet, then we can infer that string “apple” in the tweet
likely refers to the node “Apple Corp.” in the KB, not the node “Apple (fruit)”, thereby helping entity
linking.

• Using Contexts and Social Information: Given a tweet such as “go giants!”, without some context,
such as knowing that this user often tweets about the New York Giants football team, it is virtually
impossible to extract and link entities accurately. As another example, it is not possible to process
the tweet “mel crashed, maserati gone” in isolation: we have no idea which person named Mel the
user is referring to. However, if we know that in the past one hour, when people tweeted about Mel
Gibson, they often mentioned the words “crash” and “maserati” (a car brand), then we can infer that
“mel” likely refers to the node Mel Gibson in the KB. Our system exploits such intuitions. It collects
contexts for tweets, Twitter users, hash tags, Web domains, and nodes in the Kosmix KB. It also
collects a large number of social signals (e.g., traffic on Wikipedia and Pinterest pages). The system
uses these contexts and signals to improve the accuracy of the tasks.

Other important features of our system include a minimal use of complex time-intensive techniques, to
ensure that we can process tweets in real time (at the rate of up to 6000 tweets per second), and the use
of hand-crafted rules at various places in the processing pipeline to exert fine-grained control and improve
system accuracy.
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5 Event Detection and Monitoring
As discussed earlier, we process the social media stream (e.g., Twitter fire hose, Foursquare checkins) to
detect important emerging events, then monitor these events. Much work in academia and industry has
addressed event detection. However, this work has been limited in three main ways. First, it typically
exploits just one kind of heuristics, such as finding popular and strongly related keywords (e.g., Egypt,
revolt). Second, it does not scale to the high volume of data streaming in, typically because the work does
not exploit distributed and parallel processing on a cluster of machines. Finally, the work has not exploited
crowdsourcing to improve the accuracy of event detection.

Our current event detection solution addresses these limitations. First, we employ many heuristics to
detect event candidates. For example, a heuristic finds keywords that suddenly become hot and strongly
related (e.g., “Haiti” suddenly became hot, and “Haiti” and “earthquake” suddenly co-occurred in many
tweets). Another heuristic monitors Twitter accounts that are well known for broadcasting breaking news.
Yet another heuristic checks to see if a large number of people (e.g., more than 15) check into the same
location in Foursquare (potentially indicating that an event is taking place at that location), and so on. We
evaluate these heuristics against the social media stream using Muppet, our in-house distributed stream
processing engine, run over a cluster of machines. Finally, we employ crowdsourcing to remove false-
positive events and to extract important meta data for the remaining events.

Once we have detected an event, we monitor the Twitter sphere to find tweets related to this event, then
display the most important tweets. This is often called event monitoring or tracking. The simplest, and most
common, solution for event monitoring is to manually write rules to match tweets to events. For example,
if a tweet contains certain keywords or user IDs, then it is flagged as positive. This solution is conceptually
simple, easy to implement, and often achieves high initial precision. But it suffers from three limitations.
First, manually writing rules is labor intensive and does not scale to hundreds or thousands of events per
day. Second, manually writing good rules can be quite hard for many events. Finally, and most importantly,
rules often become invalid or inadequate over time. For example, when a shooting happened in Baltimore in
2011, initially Twitter users referred to it using the keywords “Baltimore” and “shooting”. A few hours later,
however, when it was clear that the shooting happened on the John Hopkins campus, most Twitter users
referred to it as the “John Hopkins shooting” instead of the “Baltimore shooting”, thus rendering ineffective
any rules that mention “Baltimore” and “shooting”. To address the above limitations, our solution uses
machine learning to evolve the profile of an event over time, then uses the learned profile to find tweets
related to the event.

6 Scalable Processing of Fast Data
We run most of the social media analytics pipeline on Muppet, an in-house system that processes the incom-
ing social data streams (e.g., Twitter fire hose, Foursquare checkins) in a distributed fashion, over a cluster
of machines. Muppet was motivated by the need to process such streams with minimal latency and high
scalability. For example, an application that monitors the Twitter fire hose for an ongoing earthquake may
want to report relevant information within a few seconds of when a tweet appears, and must handle drastic
spikes in the tweet volumes. The key idea behind Muppet is to provide a MapReduce-like framework for
fast data (i.e., high-speed data streams), so that developers can quickly write and execute such applications
on large clusters of machines.

To realize the above idea, we first developed MapUpdate, a framework to process fast data. Like MapRe-
duce, in MapUpdate the developer only has to write a few functions, specifically map and update ones. The
system automatically executes these functions over a cluster of machines. MapUpdate however differs from
MapReduce in several important aspects. First, MapUpdate operates on data streams. So map and update
functions must be defined with respect to streams. For example, mappers map streams to streams, split
streams, or merge streams, while updaters process events flowing in from one or multiple streams.
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Second, streams may never end. So updaters use storage called slates to summarize the data that they
have seen so far. The notion of slates does not arise in MapReduce, nor in many recently proposed stream
processing systems (see the related work section). In MapUpdate, slates are in effect the “memories” of
updaters, distributed across multiple map/update machines, as well as persisted in a key-value store for later
processing. Making such “memory pieces” explicit and managing them as “first-class citizens”, in a real-
time fashion, is a key distinguishing aspect of the MapUpdate framework. Finally, a MapUpdate application
often involves not just a mapper followed by an updater, but many of these, in an elaborate workflow that
consume and generate data streams.

We then developed Muppet, a MapUpdate implementation. In [25] we discuss the key challenges of
Muppet in terms of distributed execution, managing slates, handling failures, reading slates, and sketch our
solutions. Since mid-2010, we have used Muppet extensively to develop many social media and e-commerce
applications.

7 Lessons Learned & Related Work
Our work on social media analytics suggests several important lessons. First, analyzing social data is fun-
damentally much harder than analyzing “traditional” data, due to a lack of context, dynamic environment
(concepts appear and disappear quickly), quality issues (lots of spam), quick spread of information, and fast
data. Second, context is vital to analyzing social data. Given a tweet such as “go giants!”, without some
context, such as knowing that this user often tweets about the New York Giants football team, it is virtually
impossible to extract and link entities accurately. As another example, it is not possible to process the tweet
“mel crashed, maserati gone” in isolation: we have no idea which person named Mel the user is referring to.
Third, it is important to use a knowledge base to help classify and tag tweets, and to extract and link entities
in tweets. Finally, crowdsourcing is indispensable (e.g., in building knowledge bases, evaluating detected
events), but raises many interesting challenges.

In terms of related work, in the past few years a wealth of work has addressed the problem of social
media analytics, in both academia and industry (e.g., Topsy, Stocktwits, [9–11,14,16,33]). But this work has
mostly analyzed the data at the keyword level, to answer questions such as “how many tweets mention the
word ’Obama’ today?”. In contrast, Kosmix aimed to analyze at the semantic level, to answer questions such
as “how many tweets mention President Obama today?”. To do this, we need to recognize that “Obama”,
“the pres”, “BO”, and “the messiah” for example can all refer to the same person.

Regarding knowledge bases, recent work has utilized Wikipedia (and other data sources) to build global
ontology-like KBs. Well-known examples include Freebase [13], DBpedia [8,12], YAGO [37,38], and Wol-
framAlpha [41]. These works however have not described the end-to-end process of building, maintaining,
and using these KBs. In particular, they have not discussed converting the Wikipedia graph into a taxonomy
(as we do here and in [18]). Finally, as far as we know, no work has addressed the problem of building a
large real-time social KB, such as the Social Genome.

Entity extraction and classification of formal text has been widely studied for more than two decades
(e.g., [4, 5, 17, 24, 26, 28]), with competitions (e.g., CoNLL [35, 40], MUC [39] and ACE [20]) and off-the-
shelf tools (e.g., Stanford NER, OpenNLP, GATE, LingPipe). Entity extraction and classification for tweets,
on the other hand, has been a less studied problem. Liu et al. [27] extracts only person, organization and
location entities, while we do it for a large number of entity types with links to a knowledge base. Finn et
al. [21] use crowdsourcing to annotate a large corpus of tweets. Recently Ritter et al. [34] have developed
a NLP pipeline spanning POS tagging, chunking and named entity recognition and classification for tweets.
SemTag and Seeker [19] perform automatic semantic tagging of a large Web corpus using an ontology.
Industrial systems for entity extraction and classification include OpenCalais [31], AlchemyAPI [6], and
Semantria [36]. Semantria does not have support for linked data whereas OpenCalais and AlchemyAPI
do. OpenCalais additionally extracts relations, facts and events. The paper [23] empirically shows that
our system outperforms OpenCalais in many aspects. Event and trend detection in social media have been
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actively studied (e.g., [11, 33]). However, they typically do not use multiple heuristics, as we do, and few
of them have considered scaling to the Twitter fire hose. Research has also addressed event monitoring but
mostly in news stories (e.g., [7]). Our event monitoring work is perhaps most similar to Twitcident [3], but
that work uses deep semantic techniques (based on named entity recognition) that tend to be error prone,
and hence achieves limited accuracy.

Regarding scalable stream processing, recent works (e.g., [15, 30]) have extended MapReduce to incre-
mental batch processing. However, they retain the MapReduce model, where a Reducer is a “blocking”
operator, in that it still has to see all the necessary data from the Mappers before it can “reduce” and emit
the final result. So this data has to be stored in the system. In contrast, MapUpdate uses slates to summarize
the past data, so an updater can immediately process each event as the event comes in. This allows us to
stream events through the system with millisecond to second latencies. Numerous stream processing sys-
tems have been developed in the database community [22] (e.g., Borealis; STREAM; Telegraph; SPADE for
System S, commercialized as IBM InfoSphere Streams; Aurora, commercialized as StreamBase Systems;
and Truviso). These systems often employ declarative query languages over data with schemas. In contrast,
we make few assumptions about the data structure, and adopt a MapReduce style in which applications are
decomposed into a procedural workflow of custom code. Second, much work has focused on optimizing
query processing over data streams in an RDBMS style. In contrast, we focus on how to efficiently execute
Maps and Updates over a cluster of machines, to achieve ultra-low-latency and high scalability. Our work
is similar to S4 [29] and Storm [2]. These systems, however, leave it to the application to implement and
manage its own state. Our experience suggests that this is highly non-trivial in many cases. In contrast,
Muppet transparently manages application storage, which are slates in our case.

8 Concluding Remarks
In this paper we have described how Kosmix performed semantic analysis of social media, by extracting
the most important entities, relationships, and events from the data. We believe that such semantic analysis
will become increasingly important to a variety of applications, and that a key to perform them effectively
is to leverage large-scale knowledge bases (such as the Kosmix KB), crowdsourcing (e.g., to clean up the
knowledge bases and process the discovered events), as well as distributed stream processing infrastructure
(such as Muppet).
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Abstract

Crisis informatics is a field of research that investigates the use of computer-mediated communication—
including social media—by members of the public and other entities during times of mass emergency.
Supporting this type of research is challenging because large amounts of ephemeral event data can
be generated very quickly and so must then be just as rapidly captured. Such data sets are challeng-
ing to analyze because of their heterogeneity and size. We have been designing, developing, and
deploying software infrastructure to enable the large-scale collection and analysis of social media
data during crisis events. We report on the challenges encountered when working in this space,
the desired characteristics of such infrastructure, and the techniques, technology, and architectures
that have been most useful in providing both scalability and flexibility. We also discuss the types of
analytics this infrastructure supports and implications for future crisis informatics research.

1 Introduction
The field of crisis informatics has arisen as a topic of study starting in the mid 2000s in response to the
pervasive access and use of technology by members of the public during times of mass emergency. First
coined by Christine Hagar during the UK foot and mouth disease crisis [3,4] and then expanded by the work
of Leysia Palen [6, 7, 9, 10], crisis informatics seeks to understand the range of techniques, services, and
technology that can be brought to bear to better understand how the public uses technology to respond to
disasters and mass emergencies. It also studies how that “informal” response interacts with and influences
the “formal” response by government agencies. From that understanding, crisis informatics hopes to guide
the design of future technology to better serve those needs with an eye towards making society’s response
to disaster more resilient and effective.

In our work as part of Project EPIC [8], we have investigated various software architectures and software
components needed to enable crisis informatics research [1,2]. Our approach is to fundamentally support the
larger international endeavor of crisis informatics that is geared towards developing end-user tools. These
tools are typically referred to as crisis dashboards or crisis mash-ups and they attempt to display information
about a specific event in various ways including reports, live streams, and maps.

Copyright 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse
any copyrighted component of this work in other works must be obtained from the IEEE.
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Figure 1: The Project EPIC Architecture for Scalable and Reliable Data Collection and Analysis

However, our larger goal has been to go further than individual tools and create crisis informatics in-
frastructure: a platform that can be used to develop general software tools that can be used on a variety
of events and that can enable the longitudinal study of hundreds of similar crisis events over many years.
With that goal in mind, we have designed and developed a layered software architecture with clear delin-
eations between physical storage, persistence-related services, domain-specific services, and applications
that can be implemented by a flexible, highly available, horizontally scalable, reliable, and robust software
infrastructure [1].

Within this framework, we have investigated the capabilities of various production-class software com-
ponents (such as Cassandra, Lucene, MongoDB, MySQL, and Spring) and developed the software that glues
them together into a reliable and robust system that can collect large amounts of social media data during
times of mass emergency while maintaining 24/7 operation with 99% system uptime [2].

Our current infrastructure adopts the logical software architecture shown in Fig. 1 and is deployed on a
cluster of machines that includes one machine for web-based applications, one for analytics, one for backup,
and four nodes for the storage of terabytes of collected social media data. With this infrastructure, Project
EPIC has collected nearly three billion tweets across hundreds of events over the past three years.

Below, we highlight the software engineering challenges encountered when working to capture and
analyze the data needed to support crisis informatics research. We present the types of questions asked
of the social media data sets generated during a crisis event and the range of problems that such data sets
present for collection. We also discuss the adjustments we have made to our crisis informatics infrastructure
to support social media analytics and provide insight into the types of analysis enabled by our software
platform.

2 Analytics for Crisis Informatics Research
The software infrastructure in Fig. 1 is able to collect millions of tweets per day for many weeks to track
the social media conversations about crisis events during their immediate response and recovery period and
sometimes during the warning period, depending on the nature of the hazard. Once the conversation dimin-

14



ishes, collection for events can end and analysis can begin. Crisis informatics researchers may then pose a
wide range of queries about collected data sets [5] including identifying how many unique users contributed
to the sets; the most retweeted tweets; tweets containing popular links; the most influential twitter users; the
percentage of tweets that were retweets; number of geolocated tweets; a high-level description of common
terms and their evolution; etc. Other questions include more prosaic metrics such as what search terms were
used to generate the data set, the start and end dates of the collection, volume of tweets per day, and so on.

The analysts also like to identify a smaller representative set of tweets to study the event in more quali-
tative detail. They seek to understand how people use social media to cordinate or collaborate during events
with each other or with emergency response organizations. The challenge is that even these data sets can
consist of millions of tweets and a group of human researchers can only perform in-depth analysis on a set
of a few thousand tweets. As a result, an additional form of analysis is required to identify the rules and
procedures for creating a representative set of tweets. These rules and procedures can be different across
event types, but in general will include the need to filter out certain types of tweets (“filter out tweets that
contain the word ‘pray’ ”) or to sample tweets based on various characteristics (“include at least one tweet
from all users who contributed to the entire set”) or metrics (“include only tweets that were retweeted at
least 100 times”) [5].

3 Challenges in Analyzing Twitter Data
From a software engineering perspective, there are numerous challenges that must be confronted when both
collecting and analyzing large sets of Twitter data. On the collection side, the Twitter Streaming API can
deliver large amounts of tweets in real time but cannot provide access to tweets generated in the past, while
the Twitter Search API provides access to past tweets but significantly limits that access to just a small
sample, sometimes going back weeks but more typically just a few hours. Furthermore, most Twitter API
methods are rate limited which constrains the speed at which a data set can be generated. For instance, the
API method that allows the retrieval of the last 3200 tweets generated by a user is restricted to 720 requests
per hour where each request can retrieve 200 tweets of a particular user. If you assume that nothing goes
wrong and all users have at least 3200 tweets, then these rates limit you to the collection of just 45 users
per hour. The actual average is higher than that (since not all users have 3200 tweets) but not significantly
and problems can and do occur over the long periods of time that it takes to do this type of collection. Such
problems include network disconnects, hardware failures, Twitter service failure, and more. All of these
problems can be handled—but not easily—and the solution requires significant engineering effort, system
administation skill, and the use of (potentially unfamiliar) concurrency, distributed systems, and NoSQL
techniques.

On the analysis side, further complications abound. Twitter data can be “messy” and a significant amount
of time has to be invested to get it into a state where it can be effectively analyzed. In particular, each tweet
can contain a different set of fields (hindering the ability to write generic processing code) and can contain
text in multiple encodings (hindering the ability to parse and display them). In addition, an individual tweet
does not contain all of the information that an analyst might want. For instance, the user metadata of a tweet
indicates how many “followers” that user has but not who those followers are. If an analyst wants to pull
follower information for the Twitter users of a data set that requires a second, significant data collection
effort, subject once again to the rate limits and problems discussed above. In addition, the collection of
follower graphs is a signficant engineering task itself. A collection of just “two hops” of follower/following
relationships can quickly lead to millions of user objects that need to be collected, stored, and later analyzed.

Another issue that occurs with the analysis of tweets is that the values of tweet metadata (e.g., retweet
count, follower count, favorite count, etc.) is dependent on when the tweet is collected. If a tweet is collected
during an event, the values reflect what had happened to that particular tweet at that particular time. Thus
a tweet that was just generated will have a retweet count of zero and may sit in a data set classified as
“uninteresting” when it later goes on to be retweeted thousands of times. Users who had only ten followers
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at the time they contributed their first tweet to a data set may go on to have thousands of followers if they
generate interesting content during that event. However, if that first tweet was the only one that matched the
search terms being used to collect the event, subsequent analysis may classify that user as “uninteresting”
since at the time his follower count was low.

One way around this problem is to collect again all tweets that make up a data set once the initial period
of interest for that event is ended. This would ensure that all tweets in the data set are stored with the latest
set of metadata. This approach would help reveal all tweets and users that went on to become “popular,”
but this approach is impractical when the size of the initial data set is large (100s of GBs). Firstly, the
original metadata values would be lost or, if both versions of the tweet are kept, the size of the data set
doubles. Secondly, one is required to switch from collecting tweets via the high-velocity Streaming API to
the rate-limited REST API, which, for large data sets, means facing months of data collection.

Fortunately, for long-running collection events, these problems are mitigated. Interesting users gain
influence by tweeting lots of useful information. Each tweet they contribute to the data set contains updated
values of their followers count. A useful tweet that is retweeted multiple times is “embedded” in the retweet;
the embedded tweet then contains updated values for retweet count, follower count, etc. As a result, we have
developed analytical tools that track the evolution of metadata values for tweets and Twitter users over the
time of a collection. Once the set of truly popular tweets and Twitter users for an event has been identified,
a smaller, more focused data collection can occur via the REST API to ensure that we have the most recent
metadata values for popular tweets and the complete set of tweets generated by influential users.

4 Extending the Infrastructure to Handle Analytics
The Project EPIC infrastructure, initially designed to solve the problem of collecting large amounts of social
media data in a scalable and flexible fashion [1, 2], is well situated for extension to handle the challenges
of social media analytics. New data stores, services, and applications can be added to the relevant layers
of the architecture to provide analytical capabilities. We currently make use of four different approaches to
performing analytics over our social media data sets.

Our first approach to analytics is enabled by exporting the tweets collected for an event from Cassandra
to the file system of our analytics machine. Once exported, scripts written in Ruby, Python, or Java can
process this data to look for the answers posed by Project EPIC analysts. These scripts are written in a
highly-iterative fashion on subsets of data to demonstrate the feasiblity of answering a question or to test
out the effectiveness of a particular algorithm in obtaining the answer as efficiently as possible. Once this
experimental stage is complete, these algorithms are encapsulated in MapReduce jobs and applied to the
entire data set.

Our second approach to analytics involves migrating event data out of Cassandra and into a NoSQL
store that is suited more for analytics; while Cassandra shines as a reliable and scalable data store, it is less
suited for more open-ended analytics where queries are not known ahead of time. We currently make use
of MongoDB and Hadoop/HDFS for this purpose. We have written software that can export events out of
Cassandra and import them into MongoDB or HDFS. We have standard queries (as described above) for
these data sets written as MapReduce jobs in both MongoDB and Hadoop that will extract the information
that our analysts require as a baseline. These queries currently run on a cluster of four machines generating
the answers to queries on data sets with tens of millions of tweets typically in just a few hours. As both
MongoDB and Hadoop are “horizontally scalable,” Project EPIC is in a situation where if we need to process
larger data sets (100M+ tweets) in a similar amount of time, we simply need to acquire new machines and
add them to the existing cluster.

Our third approach to analytics is looking at technologies that can enable “real time analytics.” For
Project EPIC, real-time analytics means producing the answers to our standard queries on data sets that are
still being collected. This capability would be useful both in the initial onset of an event to help our analysts
determing the keywords that we should be using to collect a representative set of tweets for the event and
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during the event itself to highlight influential users and tweets that are worthy of additional study after the
event. We have three strategies that we are pursuing in this area, all in the beginning stages of development.
These approaches are 1) making use of commercial tools, 2) making use of stream-processing frameworks,
and 3) making use of periodic MapReduce jobs. The first strategy is to make use of commerical software
designed for the processing of time series data. We are currently using Splunk to provide a “dashboard” for
monitoring the volume of tweets of an event and to make initial queries on the types of conversations that
are occuring for an event.1 We do not store all of the tweets for an event in Splunk. Rather we delete older
tweets (where the definition of “old” evolves over the course of the event) to make way for more recent
tweets, allowing the dashboard to present a current picture of the event to our analysts.

The second strategy is to investigate the use of stream processing frameworks, such as Storm, to generate
answers to our standard questions on partially-collected data sets. Storm provides us with the ability to
generate metrics as tweets arrive, before they are stored in Cassandra. These metrics (number of unique
users, number of tweets per hour, etc.) can be stored in a small relational database and displayed using a
web-based dashboard.

The third strategy is to make use of periodic MapReduce jobs that run on a partially collected event and
report back the answers to our standard set of questions. Making use of MapReduce jobs in this fashion
provides the ability to be more expressive in the types of manipulations performed on the data set, and
can allow for the production of more complicated metrics, such as the number of unique users contributing
tweets matching an event’s keywords per hour. We are investigating whether it is more useful to run these
jobs on the entire data set (which implies that performance will be less and less “real time” as the data set
grows) or on a “sliding window” of tweets (e.g. the last 50,000 tweets collected) that can expand or shrink
as needed to enable fast query execution. In the future, we will be looking at how technologies such as
Pig and Spark enable the creation of MapReduce jobs at a higher level of abstraction. Such technologies
often integrate with existing NoSQL stores allowing us to avoid migrating data and instead execute queries
directly against our Cassandra data sets.

Finally, our fourth approach to analyzing our large data sets is via the use of graph databases (e.g. Neo4J,
FlockDB, and Titan). While the collection of social graphs on Twitter represents a significant engineering
challenge, we have software that can collect these graphs based on a given starting point (i.e. Twitter user).
Now we are developing software that makes use of a graph database to read in graphs to allow our analysts
to traverse the network of followers surrounding the influential contributors of a particular event with an eye
towards visualizing and understanding the growth of these networks over the course of an event. We are
also interested in incorporating non-Twitter data into this database where some nodes represent URLs that
appear in tweets to determine if it is possible to track the flow of information about an event in and out of
Twitter.

In summary, we view all four of these approaches as critical to providing a comprehensive analytics
platform for crisis informatics research. To give a sense for the utility of one of these techniques, we now
present a more in-depth look at the types of analysis that our work with MongoDB is providing.

5 Challenges Using MongoDB for Social Media Analysis
Project EPIC makes use of Twitter to track the social media conversation about large-scale crisis events.
Members of the public increasingly make use of Twitter during mass emergencies [7]. Some of the tweets
can contribute data to build “situational awareness” of the emerging event. Others have URLs to information
that resides in other forums. As a result, Twitter often serves as a useful map to the range of online commu-
nications that occurred around a mass emergency event. Project EPIC makes use of Twitter’s Streaming API
to collect tweets; our infrastructure provides a web-based application to create/modify events, add/disable

1Citations to popular software tools and frameworks—e.g. Splunk, Storm, and Cassandra—are ellided as information about
these projects are easily discovered via internet-based search tools.
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keywords associated with an event, and manage when and for how long events are submitted to Twitter for
collection. The Streaming API delivers tweets in JSON format and a varient of JSON (known as BSON)
is the native format used by a popular NoSQL data store known as MongoDB. As MongoDB is designed
to support arbitrary queries over objects stored in this format, MongoDB has interesting potential for sup-
porting the analysis of large sets of tweets. MongoDB is not, however, a panacea. The use of indexes and
queries on a single instance of a MongoDB server quickly runs into problems that can only be solved via
the use of more complex techniques and client-server configurations.

For instance, answering the “unique number of users contributing to a data set” question identified in
Sec. 2 can easily be answered in MongoDB by first importing the data set into a MongoDB collection
(e.g. tweets) and issuing a command similar to db.tweets.distinct("user.id_str").2 This
command causes the MongoDB server to look at all documents in the tweets collection for an attribute
called “id_str” stored in an “embedded document” labelled “user.” It keeps track of all the unique values
found for this attribute, stores those values in an array, and, ultimately, returns that array to the caller for
display and further analysis. This command executes quickly on small datasets, especially if an index
has been created on the “user.id_str” attribute. However, on large data sets with many unique values, this
command can encounter an internal limit of the MongoDB server which prevents the results of in-memory
queries growing larger than 16MB.

For one of our smaller data sets—7.3GB of Twitter data consisting of 2.2M tweets with 932K unique
users—we hit exactly this limit and were thus unable to use the distinct() command to calculate this
particular metric. Instead, we had to make use of MongoDB’s ability to run MapReduce jobs to retrieve the
answer. This is straightforward to do but does represent an increase in complexity. An engineer must switch
from running the simple command shown above to code similar to the following:

1 def map_command
2 " f u n c t i o n ( ) { emi t ( t h i s . u s e r . i d _ s t r , 1 ) ; } "
3 end
4
5 def reduce_command
6 " f u n c t i o n ( key , v a l u e s ) { r e t u r n Array . sum ( v a l u e s ) ; } "
7 end
8
9 mongo = MongoClient . new

10
11 db = mongo . db ( " norway " ) [ ’ t w e e t s ’ ]
12
13 db . map_reduce ( map_command , reduce_command , { : o u t => ’ u s e r s ’ , : v e r b o s e => t rue } )

In particular, our map command is passed each input document in turn and generates an output document
containing the value of the input document’s user.id_str attribute as a key and the number one as a
value, i.e., {"key" : "1234", "value" : 1}. (Note: the input document is “passed” by setting the value of this
to point at each input document in turn.) After the map phase is complete, MongoDB combines documents
that have the same key by adding their values to an array. Conceptually, this produces documents that look
like this: {"key" : "1234", "value" : [1, 1, 1, 1, 1, 1]}. These combinations get passed to the reduce function
which in turn produces documents that look like this: {"key" : "1234", "value" : 6}. When the reduce phase
has processed all combination documents, these final output documents are stored in a users collection
in which there is one document for each unique user in the tweets collection. The value attribute for
each of these documents stores the total number of tweets that user contributed to the data set. It is still

2The use of id_str over screen_name is preferrable for determining unique users in a Twitter data set. Users can (and
do) change the value of the screen_name attribute whenever they want; the id_str value stays constant for the lifetime of a
Twitter user account.
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possible to encounter out-of-memory errors using this approach if you fail to specify an output collection.
In that case, MongoDB keeps all combination documents and all final output documents in memory and will
return the final set of output documents to the caller when the reduce phase is done. If this in-memory set of
documents consumes more than 32MB of space, the call to map_reduce will fail. Instead, you must tell
MongoDB to store the intermediate documents in a collection (as was done above on line 13). This causes
MongoDB to store the intermediate documents on disk rather than in memory and with those conditions in
place it becomes possible to reliably generate the answer to the “unique users” question independent of the
size of the overall data set.

However, without some additional work, the time it takes to generate the answer to this simple query
can still take a long time. The default configuration for MongoDB is for it to run as a single-threaded server
instance. In such a configuration, the MapReduce job above will look at all documents in a collection during
the map phase sequentially and will then process all the combination documents during the reduce phase
sequentially using a single thread (even on a server with multiple processors/cores). To take advantage of
MapReduce’s ability to run in parallel on very large data sets, MongoDB must be configured to run multiple
instances of the MongoDB database on multiple servers. It must be configured to “shard” the original
database across those servers. The good news here is that the programmatic interface to MongoDB does
not change in this set-up, but the administration of this configuration is non-trivial and one must deal with
issues such as selecting the key used to partition the database across the shards. However, the benefits of this
approach is horizontal scalability in terms of performance and disk space. If one needs additional storage
space or one needs queries to run faster for a given data set, adding another server to the configuration will
trigger automatic repartitioning of the database allowing for increased scalability and parallelism.

Once properly configured, MongoDB can offer powerful analytical tools on large data sets via disk-
based MapReduce jobs like the one above. Two analysis features that we make use of in our more complex
MapReduce jobs are MongoDB’s geospatial indexes and full-text indexes. For the latter, we create full-text
indexes on the text of a tweet. The full-text index allow us to search data sets with more complex queries
such as, “all tweets that contain ‘haiti’ but not ‘pray’.” This functionality, in turn, provides our analysts
with an ability to be more expressive in their queries and to broaden their research questions. We make use
of MongoDB’s geospatial indexes to help narrow down tweets in a given data set to just those users who
were generating tweets local to an event. For instance, our 132 GB Hurricane Sandy data set contains 26M
tweets generated by 8.2M users from all over the world. However, for one of our research questions, our
analysts wanted to examine only tweets generated by users who were located on the eastern seaboard of the
United States right before the landfall of the hurricane. After importing the data set and ensuring that the
geocoordinates of the tweets matched the format expected by MongoDB, we generated a geospatial index
and wrote a MapReduce job that searched for tweets that fell within a particular bounding box. The query
took 13 minutes to run on our cluster and located the 101K users who were directly in the hurricane’s path.
This result was immediately useful as we were able to launch a new data collection in which all of the tweets
ever generated by those 101K users were collected and stored for later analysis (looking, for instance, to see
if these users had adopted Twitter because of Hurricane Sandy).

6 Conclusions
In this paper, we have highlighted the challenges associated with collecting and analyzing social media data.
While our experience is related to the support of crisis informatics research, many of these issues are inde-
pendent of application domain and our approach, techniques, software architecture—and its implementation
as Project EPIC’s software infrastructure—are broadly applicable to the collection and analysis of a wide va-
riety of application domains and types of social media. We have learned valuable lessons, including insight
into the questions most important to crisis informatics researchers, the challenges associated with collecting
representative Twitter data sets, and the need for multiple approaches to analysis. A single analysis tech-
nique is insufficient to answer the wide range of questions posed across the different timescales in which
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those answers are needed. We also learned that it is critical to develop a reasoned, modular, and extensible
approach to the design and development of social media analysis tools. It is otherwise impossible to perform
this analysis at scale with sufficient functionality, flexibility, and performance to make meaningful progress
on societal-scale issues.

One important implication of our experience is how work in this area requires a large team with a diverse
set of skills and expertise to do this type of research effectively. Project EPIC required a team with skills not
only in software architecture, software design, software engineering, web engineering, distributed systems,
networking, and system administration, but also with skills in human-centered computing, information vi-
sualization, statistics, and qualitative/quantitative experimental methods. The former were needed to create,
deploy, and operate the scalable, flexible, reliable, and robust Project EPIC software infrastructure but the
latter were needed to identify the problems it solves in the first place, what questions it must answer, how
it should present those answers, and how it supports the ongoing, highly-iterative, multi-method techniques
required by crisis informatics research. With such a team, our interdisciplinary approach to the collection
and analysis of social media has enabled significant progress to be made in the area of crisis informatics
research.
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Abstract

This paper summarizes the results of our recent investigations into how information propagates, how
people assimilate information, and how people form relationships to gain information in Internet-
centric social settings. It includes key ideas related to the role of the nature of information items in
information diffusion as well as the notion of receptivity on part of the receiver and how it affects
information assimilation and opinion formation. It describes a system that incorporates availability,
willingness, and knowledge in recommending friends to a person seeking advice from social network.
It discusses whether having common interests makes it more likely for a pair of users to be friends
and whether being friends influences the likelihood of having common interests, and quantifies the
influence of various factors in an individual’s continued relationship with a social group. Finally, it
gives current research directions related to privacy and social analytics.

1 Introduction
The mission of Microsoft Research’s Search Labs in Silicon Valley that I lead is to advance the state of art in
Internet technologies and Internet-based applications. One of our focus areas is to understand how informa-
tion propagates, how people assimilate information, and how people form relationships to gain information
in Internet-centric social settings. This paper presents a condensed overview of some of our recent research
on these topics. It includes key ideas related to the role of the nature of information items in information
diffusion, presented by Agrawal, Potamias, and Terzi in [1]. It also discusses the notion of receptivity on
part of the receiver and how it affects information assimilation from the same paper. Related to the same
topic, it introduces the work of Bhawalkar, Gollapudi, and Munagala on opinion formation games from [2]
and that of Das, Gollapudi, Panigrahy, and Salek on dynamics of opinion formation from [5]. It then reviews
the system of Nandi, Paparizos, Shafer, and Agrawal that factors in availability, willingness, and knowledge
to recommend friends for person to turn to for advice. Next, it recalls the work of Lauw, Shafer, Agrawal,
and Ntoulas from [6] to shed light on whether having common interests makes it more likely for a pair of
users to be friends, and whether being friends influences the likelihood of having common interests. Finally,
it abstracts the work of Budak and Agrawal from [3] on factors that influence an individual’s continued re-
lationship with a social group. The work in [3] is based on data from thirty Twitter chat groups; algorithmic
mining of chat groups from Twitter stream is described by Cook, Kenthapadi, and Mishra in [4].

Copyright 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse
any copyrighted component of this work in other works must be obtained from the IEEE.
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Mea Culpa: Given the space restriction, I have prioritized the presentation of Search Labs work over
discussion of related research. For the latter, I refer the reader to the original papers.

2 Nature of Information
A key issue in social networks is understanding how people assimilate information in their daily lives. Re-
cent research has focused on understanding the role that node characteristics (i.e., homophily) and peer
influence, (i.e., link structure), play in explaining the appearance of information items on certain nodes of
the social network. The underlying assumption is that it is the nature of the people, or the nature of the
people’s connections, which determines the form of information cascades.

While we recognize the importance of network structure and nodes’ characteristics on information prop-
agation, we postulate in [1] that the very nature of information items is an additional important parameter
that affects the observed spread. We claim that certain information items are endogenous and they indeed
propagate primarily through the connections between the nodes. On the other hand, some information items
are exogenous – they will be acquired by many nodes independently of the underlying network. Given a
social network and data related to the ordering of adoption of information items by nodes, our goal is to
develop a framework for estimating endogeneity and exogeneity parameters.

E2 Model: Consider a social network G = (V,E) of |V | = n users, in which there is a link (u → u′)
between two nodes u, u′ ∈ V , if node u follows node u′. Such a directed link suggests that there is potential
of information propagation from u′ to u. Assume a finite set of information items I with |I| = m.

At every point in time t, every node u ∈ V is associated with an m-dimensional vector At
u, whence

At
u(i) = 1 if node u is active with respect to information item i at time t; otherwise At

u(i) = 0. If
A

(t−1)
u (i) = 0 and At

u(i) = 1, then we say that an activation has occurred to node u with respect to item
i at time t. The observed activation state at the end of the observation period is encoded in A such that
A(u, i) = 1 iff node u has, at some point, become active with respect to item i. Give the sequence of
activations encoded in vectors At

u, one can construct the active-neighborhood matrix Γ, such that Γ(u, i)
denotes the number of neighbors of u that were active with respect to item i, the moment u became active
with respect to i. If A(u, i) = 0, then Γ(u, i) is the number of neighbors of u that were active at the end of
the observation period.

Every item i ∈ I is characterized by a pair of parameters θi = (ei, xi), where ei ∈ [0, 1] is its endogene-
ity and xi ∈ [0, 1] is its exogeneity. Endogeneity characterizes the item’s tendency to propagate through the
network due to the peer effect. Exogeneity captures the item’s tendency to be independently generated by
nodes in the network. Parameters ei and xi have a probability interpretation: node u becomes active with
respect to i, independently of its neighbors, with probability xi. If u has Γ(u, i) neighbors that are already
active with respect to i, then each one of them succeeds in activating u with probability ei. At the end of the
observation period, u becomes active with respect to i, with probability: 1 − (1 − xi)(1 − ei)

Γ(u,i). Use e
and x to represent the vectors of all items’ endogeneity and exogeneity parameters, and use Θ = ⟨e,x⟩ to
denote the vector of these pairs of values for all items.

Generative Process: Our model defines a generative process in which every item i ∈ I is given a set of
chances to activate the nodes in G = (V,E). Intuitively, for every item i ∈ I, our model assumes activation
graph Hi = (V ∪ {si}, Ei). The nodes of Hi consist of all the nodes in V plus an additional node si
that corresponds to item i. The set of links Ei contains all the links in E plus n additional directed links
(u → si). That is, in Hi every node follows the item-node si. Initially, only node si is active and the rest n
nodes are inactive. An information item propagates from an active node only to its inactive followers. The
activation proceeds in discrete steps. At each time step, activation of any node u, through links (u → si),
succeeds with probability xi. At the same time, activation of u through links (u → u′) for u′ ∈ V succeeds
with probability ei. At most one activation attempt can be made by every link. The final activation state of
all nodes with respect to all items is stored in the final activation matrix A.
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Problem Definition: Given the active-neighborhood information Γ and parameters Θ, the likelihood of the
observed activation matrix A can be computed as:

Pr (A | Γ,Θ) =
m∏
i=1

n∏
u=1

Pr (A(u, i) | Γ(u, i), ei, xi) . (1)

Given Γ and A, we want to estimate vectors e and x such that the compatibility between the observed
activation matrix A and the estimated parameters, Θ = ⟨e,x⟩, is maximized. Different definitions of
compatibility lead to different problems. We focus on the parameters Θ that maximize the loglikelihood of
the data:

Θ = argmax
Θ′

L
(
A | Γ,Θ′) = argmax

Θ′
log Pr

(
A | Γ,Θ′)

Parameter Estimation: Using Eq. (1), we rewrite the likelihood as

L (A | Γ,Θ) =
∑
i∈I

∑
u∈V

log (Pr (A(u, i) | Γ(u, i), ei, xi)) .

Thus, the parameters (ei, xi) of every item i can be computed independently by solving a two-variable opti-
mization problem in the [0, 1]× [0, 1] range. Further, the independence of the items allows us to parallelize
the item-parameter estimation. The function Li is convex with respect to the item’s parameters (ei, xi).
Therefore, an off-the-shelf optimization method (e.g., Newton Raphson method) can be used to efficiently
find the optimal values of the parameters.

Experiments with Synthetic Data: The goal of synthetic data experiments is to study how well the param-
eter estimation procedure recovers exogeneity and endogeneity values. Define the exogeneity absolute error
for the exogeneity parameters as X-ERROR(Θ, Θ̂) = 1/m

∑
i∈I |xi − x̂i|, where x̂i is the recovered value

of the parameter xi. The endogeneity absolute error, E-ERROR, is defined similarly. Figure 1 shows the
results.
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Figure 1: Synthetic ScaleFree graphs: #nodes=1000, density=1%, #items=1000, endogeneity and exogeneity
∈ [0, 0.8] (separately picked uniformly at random).

We see that the smaller the values of the input parameters, the lower the X-ERROR and the E-ERROR.
Small values of these parameters generate sparse data, i.e., data with small number of activations. Real data
exhibit this behavior; the most frequent item in the dataset we consider in the next section appears in less
than 10% of the nodes.
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Figure 2: Histogram of exogeneity and endogeneity of quotes in MemeTracker.
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Figure 3: Scatter plot of Exogeneity and endogeneity of quotes (marker area ∝ frequency).

Experiments with MemeTracker Data: We next turn our attention to real data. We use the memetracker
data available from Stanford University, which consists of quotes that have been posted on articles/blogposts
from August 2008 to April 2009. Timestamps in the data capture the time that a quote was used in a post.
From these data, we construct our network GB = (VB, EB) by selecting as nodes all the blogs hosted either
by blogspot.com or by wordpress.com. For blogs b, b′ ∈ VB , there is a directed link (b → b′) if there exists at
least one blogpost of b linking to b′. The set of information items consists of the set of quotes that appeared
in at least one blogpost of any of the blogs in VB . We say that blog u became active with respect to quote q
at time t, if t was the first timestamp that u used q in one of his blogposts.

Figure 2 plots the distribution of endogeneity and exogeneity values of the quotes. The skewed distri-
bution of both exogeneity and endogeneity values shows that a non-negligible number of quotes are much
more endogenous/ exogenous than most quotes. Figure 3 is a scatter-plot of the exogeneity and endogeneity
values of the quotes. The area covered by each marker is proportional to the number of nodes it appears. For
concreteness, we have also shown frequent quotes for some combinations of endogeneity and exogeneity val-
ues. Clearly, exogeneity and endogeneity are not correlated; there some quotes that have high endogeneity
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but low endogneity and vice versa.

Table 1: Top-5 frequent quotes.

Exogeneity=H Endogeneity=H

1. yes we can yes we can
2. hate that i love you so
3. joe the plumber
4. i think when you spread the

wealth around it’s good for everybody
5. you can put lipstick on a pig

Exogeneity=H Endogeneity=L

1. i don’t know what to do
2. oh my god oh my god
3. hi how are you doing today
4. why where are you going to john
5. what is it

Exogeneity=L Endogeneity=H

1. there appears to be a sizeable number of
duplicate and fraudulent applications

2. we shouldn’t let partisan politics derail what
are very important things that need to get done

3. likened zionist settlers on the
west bank to osama bin laden saying
both had been blinded by ideology

4. as far as the eye can see
5. she doesn’t know yet that she has been married

Exogeneity=L Endogeneity=L

1. the age of turbulence adventures in a new world
2. i’ve got friends in low places
3. you shall not bear false witness against your
4. neighbor instead of complaining about the

state of the education system as we correct
the same mistakes year after year
i’ve got a better idea

5. a woman who loves me as much as she loves
anything in this world but
who once confessed her...

Table 1 shows the top-5 frequent quotes for combinations of high and low exogeneity and endogeneity
values. We make two observations: first, that quotes with “Exogeneity=H” exhibit shorter length than quotes
with “Exogeneity=L”. Second, a web search reveals that most quotes with “Endogeneity=H” were news-
stories or popular quotes of the observation period. Amongst the high-exogeneity quotes, we can distinguish
between those with “Endogeneity=H” and those with “Endogeneity=L”. Quotes “joe the plumber”, “you can
put lipstick on a pig” etc. from the (H,H) bucket are front-page quotes that drew notable attention during the
2008 elections period. They are highly exogenous because they gained popularity via external media such
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as the television. They are also highly endogenous because they heavily propagated through the network
links of the blogs. In contrast, (H,L) quotes: “i don’t know what to do”, “oh my god”, “hi how are you
doing today”, and “what is it”, are popular phrases that appear in various contexts ranging from casual
conversations to pop songs. Such quotes are expected to be purely exogenous – they do not trigger cascades.

Amongst the low-exogeneity quotes, we can again distinguish between those for which “Endogene-
ity=H” and those with “Endogeneity=L”. The first correspond to long phrases that were news stories during
the observation period. For example, the quote “she doesn’t know yet that she has been married”, propa-
gated in a set of connected blogs that discussed the case of the marriage of a fourth-grade girl. Similarly,
the rest of the quotes in (L,H) (except for “as far as the eye can see”) were also news stories of that period.
These are highly endogenous quotes. Compare these quotes with the quotes in bucket (L,L). Neither exoge-
nous sources nor peer influence affect the propagation of these quotes. These are all infrequently occurring
phrases, e.g., lyrics from older songs and previous year book titles.

3 Nature of People
Although E2 models the observed variation between information items, it does not capture that different peo-
ple may react differently to the same information item. The E2R model incorporates a receptivity parameter
to capture this difference in the nature of people.

E2R Model: Associate with every node u a parameter ru ∈ [0, 1] that quantifies the node’s tendency to
be receptive to information items coming either from u’s neighbors or from sources outside the network.
Same as with ei and xi, ru has a probabilistic interpretation: node u accepts any candidate activation with
probability ru. Then, the probability of the observed activation matrix A given the item parameters Θ and
user receptivities r is:

Pr (A | Γ,Θ, r) =
∏

i∈I,u∈V
Pr (A(u, i) | Γ(u, i), ei, xi, ru) .

The probability of node u being active with respect to item i is computed as:

Pr (A(u, i) = 1|Γ(u, i), ei, xi, ru) = 1− (1− ru · xi)(1− ru · ei)Γ(u,i).

Intuitively, every time we have an endogenous or exogenous attempt to activate a user, the user also needs
to accept that activation. Receptivity is both a characteristic of the nodes and a means to allow items to
reveal their true nature. Consider the extreme case of a very endogenous item that all, but a small fraction
of the nodes, adopt through their neighbors. In order to capture the behavior of this minority of nodes, the
E2 model would assign to i endogeneity value lower than 1. On the other hand, the E2R model will capture
the behavior of these nodes through receptivity and will assign to i larger endogeneity value, allowing it to
reveal its true nature.

See [1] for further details, computational techniques, and experimental results.

Dynamics of Opinion Formation: In a recent work [5], we differentiate between the innate and expressed
opinions and postulate that individuals update their expressed opinions in discrete time steps by taking a
convex combination of their innate opinion and the expressed opinions of their social neighbors. The weights
in the convex combination depends on a user’s propensity to conform, which is remniscent of the idea of
receptivity just discussed. Through real-world experiments, they show that this value is largely specific to a
given user and does not change significantly from topic to topic. In [2], we present game-theoretic models
of opinion formation where opinions themselves co-evolve with friendships. In these models, nodes form
their opinions by maximizing agreements with friends weighted by the strength of the relationships, which
in turn depend on difference in opinion with the respective friends.
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(a) Given common interests (b) Given common communities

Figure 4: Probability of friendship

Availability, Willingness, and Knowledge: A typical person has many friends that the person can consult
for opinions and advice. However, public broadcasting a question can use up social capital and the request
can get lost in a myriad of status updates. Direct messaging requires manual selection and a user may have
difficulty guessing which of the friends will be able to provide a quality answer in a timely manner. In [7],
we describe a decision aide that provides the ranked subset of friends for a user to seek. The system mines
social network data focusing on a novel set of criteria: availability, willingness and knowledge. The system
response depends on (1) how likely it is that a friend is online in the near future based on past activity
patterns, (2) the likelihood that a friend will respond based on the strength and nature of the interpersonal
connection and past interaction behavior, and (3) a friend’s knowledge and expertise on a topic and their
potential for providing an informed response based on the past message content.

4 Nature of Relationships

Interests and Friendship: In [6], we use LiveJournal data to investigate two central questions: (1) whether
having common interests makes it more likely for a pair of users to be friends, and (2) whether being friends
influences the likelihood of having common interests. LiveJournal users identify each other as friends and
express their interests in two ways. First, users have a list of self-proclaimed interests on their User Info page.
Second, users can subscribe to communities or group blogs oriented around a given topic. We extract three
binary adjacency matrices from LiveJournal data: (1) F , a user × user friendship matrix, with Fuu′ = 1 iff
users u and u′ have friended each other, (2) I , a user × interest matrix, with Fui = 1 iff user u specifies i as
an interest, and (3) C, a user × community matrix, with Cuc = 1 iff user u watches community c.

Without any prior information, the best estimate for the probability of friendship is the fraction of ran-
dom pairs that turn out to be friends. Conditional on that a pair of users share a minimum number of X
interests, the probability of friendship is:

P (friendship | X) =

|{(u, u′) ∈ U × U | (Fuu′ = 1) ∧ (Iu · Iu′ ≥ X)}|
|{(u, u′) ∈ U × U | (u ̸= u′) ∧ (Iu · Iu′ ≥ X)}|

,

where U denotes the set of users in consideration. Fig. 4(a) plots P (friendship | X) for different values
of X and different subsets of users; Active (Highly Active) users have at least ten (fifty) each of friends,
interests, and communities. We see that having common interests, even just one, significantly increases the
probability of friendship for all data sets. This trend is also monotonic: higher X leads to higher probability.
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(a) Common Interests (b) Common Communities

Figure 5: Probability of Commonality Given Friendship

This is a surprising outcome, given that without geographic constraint, we would not expect the conditional
probability to be significantly higher. It suggests that an underlying factor is at work in LiveJournal that
encourages users to make friends with those having common interests. Several LiveJournal features might
contribute to this. For every interest with more than one claimant, LiveJournal provides a hyperlink to the
list of users who claim that interest, thus letting one user find others to connect with on the basis of interest.
Blogging and commenting is another set of activities that could help users get to know others who share
similar interests.

We next investigate whether a similar relationship exists between friendship and common communities.
The probability of friendship given that a user pair shares a minimum of Y common communities is:

P (friendship | Y ) =

|{(u, u′) ∈ U × U | (Fuu′ = 1) ∧ (Cu ·Cu′ ≥ Y )}|
|{(u, u′) ∈ U × U | (u ̸= u′) ∧ (Cu ·Cu′ ≥ Y )}|

.

Fig. 4(b) plots P (friendship | Y ) for different Y values and data sets. We observe similar trends as those
in Fig. 4(a): a user pair is monotonically more likely to consist of friends if they share more common
communities.

To study the second question raised at the beginning of this section, we write the probability that a pair
of friends shares at least X common interests as:

P (X | friendship) =
|{(u, u′) ∈ U × U | (Fuu′ = 1) ∧ (Iu · Iu′) ≥ X}|∑

u∈U
∑

u′∈U Fuu′
.

Fig. 5(a) compares P (X | friendship) to P (X) for different values of X on Highly Active subset of users.
Similar trends are observed on other datasets. It shows that for every X , P (X | friendship) is significantly
higher – between 1.5 and 3.5 times higher – than P (X). The likelihood of common interests conditioned on
friendship is as high as P (X = 1 | friendship) = 0.89 and P (X = 2 | friendship) = 0.77. This result
suggests that friendship is a potentially significant source of signals in inferring a person’s interests.

We conducted a similar exercise on communities. Fig 5(b) plots P (Y ) and P (Y | friendship) for
various Y ’s and for the Highly Active dataset. We see similar trends as in Fig. 5(a), but the difference is
even higher. P (Y | friendship) is 2.4 to 7.3 times higher than P (Y ), suggesting that friendship is an even
stronger signal in detecting common communities.

See [6] for extensions where friendship has strength associated with it.
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Figure 6: Overview of the 5F Model

Group Participation: In [3], we study what makes a person become a member of a group. We addressed
this question in the context of Twitter chats, which are time-bound synchronous group interactions carried
out in real time on a focused topic. For instance, #engchat is a chat about English education held at 7-8pm
EST on every Monday. During a chat session, the participants continuously interact on the designated topic
by tweeting their opinions and marking their tweets with the hashtag of the particular chat group. While
weekly groups like #engchat are the most common ones, there are others such as #mathchat that meet twice
a week, #collegechat that meet bi-weekly or #edchat that are week-long conversations. Most of the chat
groups also have dedicated blogs that provide various resources such as transcripts of past sessions and
schedule of upcoming discussions. In a companion work [4], we describe algorithms for mining chat groups
from Twitter data stream.

We developed 5F Model that predicts whether a person attending her first chat session in a particular
Twitter chat group will return to the group. This model, pictorially depicted in Figure 6, considers five dif-
ferent classes of factors: individual-initiative, group characteristics, perceived receptivity, linguistic affinity
and geographical proximity. For example, the number of tweets, the number of URLS in the tweets, the
number of mentions and retweets contributed by the person during her first session provide indication of her
individual initiative. Using data from thirty education-related chat groups, we study the predictive power
of these factors individually as well as collectively. We use logistic regression for statistical analysis and a
Pseudo-R measure (Nagelkerke R2 Index) to compare the models.

The regression results are summarized in Table 2. This table has four columns. The first column is
the name of the model and corresponds to one of the five factors. The second column lists the Twitter
specific variables used for each of the corresponding factors. The third column consists of two subcolumns.
The first subcolumn shows the cofficients of the corresponding explanatory variables in the individual-level
models, whereas the second subcolumn gives the coefficients for the unfied model. The third column gives
the pseudo-R measure for the individual models. The pseudo-R value for the unfied model is 0.14 and is
shown at the bottom of the table. The statistically significant variables are marked with * for p-value < 0.05,
** for p-value < 0.01 and *** for p-value < 0.001.

Individual initiative model: The results show that all the variables except for usermentions are statistically
significant. The number of tweets are positively correlated with returning to the chat group, emphasizing the
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Factors Variables Coefficients Pseudo-R
Individual Unified
Model 5F Model

Individual usermentions -0.016 -0.007 0.09
Initiative userretweets -0.13*** -0.077***

userurl -0.16*** -0.092***
usertweetcount 0.147*** 0.05***

Group groupmentions -0.0001 -0.0004 0.03
Characteristics groupretweets 0.0014* 0.002***

sessionurl -0.003*** -0.002*
sessiontweetcount -0.0005 -0.0008*
groupmaturity -0.01*** -0.007***

Perceived ismentioned 1*** 0.445*** 0.08
Receptivity isretweeted 0.69*** 0.24
Linguistic liwccors 2.159*** 1.215*** 0.1
Affinity
Geographical distance -0.00005*** - 0.01
Proximity

Pseudo-R for the unified 5F Model = 0.14
* p < .05, ** p < .01, *** p < .001

Table 2: Results of Statistical Analysis

predictive power of early interest exhibited by the user. The variable userurl is negatively correlated with
returning to the group. One possible explanation for this result can be given as follows: For users that share
a large number of urls, i.e. users that already acquire a certain level of knowledge, the added informational
gain from chat sessions can be smaller, resulting in less incentive to attend future sessions.

The negative correlation for userretweets indicates that retweeting behavior can be used to distinguish
real participants of chat groups from those that are merely retweeting the tweets of their friends who are
attending a chat session. Consider the following illustrative scenario. Assume that user1 attending #1stchat
shares a tweet “Check out article bit.ly/342dfser #1stchat”. This tweet is seen not only by the attendees of
#1stchat but also the followers of user1. One such follower, say user2, can find the tweet interesting and
retweet it. Here, user2 who appears to be attending his first #1stchat session may not return to this group.

Group characteristics model: Statistically significant variables are groupretweets, sessiontweetcount, ses-
sionurl and groupmaturity. Capturing the significance of information overload, sessionurl and sessiontweet-
count have negative correlation. The variable groupmaturity has negative correlation with the odds of come
back, i.e. users that attempt to join more mature groups are less likely to return to the group. The results also
indicate the significance of informational influence as demonstrated by the statistical significance and pos-
itive correlation of groupretweets. However we observe that the correlations of these factors are relatively
mild. For instance, an increase of 1 retweet in group discussion decreases the log odds of come back by
0.0014. Pseudo-R(=0.03) values for this model are worse when compared to those of individual initiative
model, showing that individual initiative factors are relatively better indicators of future participation.

Perceived receptivity model: Our results show the importance of social inclusion in ensuring continued
participation. For instance, the log odds of returning to a group increases by 1 if a user is mentioned in the
first session that he/she attends. Similarly, the odds of returning improves by 0.69 if the user is retweeted
by others in the chat session. Both of these findings are statistically significant. This result is in agreement
with relevant research in other online communities.

Linguistic affinity model: We make use of the Linguistic Inquiry and Word Count (LIWC) tool to compare
linguistic markers between a user and a group. We consider the set of tweets a user shares in her first session
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as a text document and compute the value of each linguistic marker to obtain her LIWC-vector for that
particular session. Similarly, we aggregate all the tweets from other users and compute the LIWC vector
of the group. To compute affinity, we use Pearson correlation measure. We find that linguistic affinity is
statistically significant and highly correlated with returning to a chat group, which is in line with research in
social sciences, particularly the speech codes theory. The highest Pseudo-R value for this model shows that
the linguistic characteristics are the best indicators of future participation.

Geographical proximity model: To study the influence of geographical proximity, we calculate the mean
distance of the user to everyone else in the group using the Haversine formula. The location for each user
is determined based on the location field of the user profile. We see that returning to a group is only mildly
correlated with geographical proximity. An increased distance of 1km reduces the log odds of returning to
the group by only 0.00005. Regression tasks performed per-chat group showed that geographical proximity
is statistically significant for only seven educational Twitter chats. Two chats had positive correlation and
five had negative correlation. For instance, #globalclassroom has positive correlation with the variable
distance, indicating the positive effect of diverse locations in returning to the group. Such behavior is to be
expected given the global goal of this particular group. Yet groups like #jedchat have negative correlation
with increased distance. This group is on Jewish education and is mostly popular in Israel. Overall, the
Pseudo-R value for this model is the worst among all models, showing that geographical characteristics are
generally poor indicators of future participation.

Unified 5F Model: In this model, we consider all the explanatory variables in conjunction, except geographic
proximity (distance). The reason for omitting the latter is that we could determine the location of only a
subset of users and this factor anyway turned out to have limited fit. As expected, this model has the largest
Pseudo-R value. Each independent variable has similar explanatory trend as we observed with individual
models.

User Survey: We complemented the results from the statistical data analysis with a user survey to directly
understand from users involved in Twitter chats their attitudes towards these chats. The survey had three
main parts, addressing questions related to: (1) usage, advantages and disadvantages, (2) sense of community
and responsibility, and (3) evolution of participation. The survey was tweeted through the hashtag of each
chat group studied. Respondents of the survey were encouraged to share the survey with their Twitter
followers.

The survey results highlighted various distinctions between Twitter chats and other online groups and
face-to-face discussions. We found informational support to be more important to Twitter chat members
than emotional support. Although prior work suggests that informational support is negatively correlated
with the sense of community, we found the sense of community to be very strong in Twitter chats. In fact, its
members communicate with one another outside chat sessions much more than expected from the literature.
Disadvantages identified by the survey respondents also mark an interesting distinction between Twitter
chats and other online groups. While for other online communities, the lack of face-to-face interactions is a
main disadvantage, Twitter chat users focus on the content. More specifically, due to the synchronous and
open nature of Twitter, the pace of information is the biggest challenge of Twitter chats.

The survey results reinforced most findings of the statistical analysis. Groups becoming closed to new
members over time (as captured by groupmaturity in our model) is seen anecdotally in survey results. The
importance of social inclusion is also observed in the responses of two survey participants that reduced (one
ending) their participation due to the lack of receptivity. The geographical diversity listed as an advantage
in the survey also indicates that geography is not a limiting factor for Twitter chats.

5 Ongoing Work
Social analytics continue to provide us opportunities for exploring critical issues and building useful systems.
Some of our current research directions include:
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• Many users of social media entertain an illusory sense of “privacy by hiding in the crowd”. We are
interested in ascertaining if one could accurately determine a user’s attributes by building an inference
system over the history of user interactions, and thus shattering this illusion. We are also interested in
exploring what a user can do in order to achieve privacy (short of not participating in social media).

• A huge potential exists to leverage aggregate information from social media, news sites, and the
internet as a whole for enterprise and market insights as well as enabling interesting user applications.
We aim to ingest, mine, and analyze such information in order to enable a wide variety of social
intelligence applications and provide useful insights by identifying interesting patterns, alerting users
to unusual or trending events, allowing adhoc, “what if" analysis, and other capabilities.
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Abstract

The widespread adoption of GPS-enabled tagging of social media content via smartphones and
social media services (e.g., Facebook, Twitter, Foursquare) uncovers a new window into the spatio-
temporal activities of millions of people. These “footprints” open new possibilities for understand-
ing how ideas flow across the globe, how people can organize for societal impact, and lay the
foundation for new crowd-powered geosocial systems. We describe recent efforts to mine, model,
and analyze large-scale geospatial footprints toward enabling new intelligent geo-social systems
that leverage these footprints.

1 Introduction
The exponential growth in social media over the past decade has recently been joined by the rise of location
as a central organizing theme of how users engage with online information services and with each other.
Enabled by the widespread adoption of GPS-enabled smartphones, users are now forming a comprehensive
geo-social overlay of the physical environment of the planet. For example, the Foursquare location sharing
service has enabled over 4.5 billion “check-ins” [13], whereby users can link their presence, notes, and
photographs to a particular venue. The mobile image sharing service Instagram allows users to selectively
attach their latitude-longitude coordinates to each photograph; similar geo-tagged image sharing services
are provided by Flickr and a host of other services. And the popular Twitter service sees 500 million Tweets
per day, of which around 5 million are tagged with latitude-longitude coordinates. Confirming this trend, a
recent Pew Research Center report finds that location is now an increasingly central part of the social media
experience [41].

In contrast to proprietary location-based data collected by many entities – e.g., search engine query
logs with an associated IP address that can be resolved to a rough location, cell-phone call records that can
pinpoint a user to a particular cell tower, and point-of-sale data collected by retailers – geo-social tags and
check-ins are inherently voluntary and public. As a result, they provide a rich and growing body of geo-
location evidence that can potentially support basic scientific inquiry into questions that heretofore were
difficult for researchers to study. These difficulties were often due to the proprietary nature of traditional
location data, the cost of acquiring new data through small lab-based studies (e.g., due to navigating univer-
sity IRB protocols, overcoming resistance to personal tracking devices), and the difficulty of sharing such
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sensitive data with other researchers. Not only do voluntarily shared geo-location cues provide an alterna-
tive basis for scientific inquiry, in addition, designers of information management systems (e.g., web search
systems, social media discovery, personal information management) can integrate these new public location
signals into more robust user models, intelligent “location-aware” services, and so forth. Indeed, we believe
that the proliferation of these fine-grained (public) spatio-temporal footprints provides an unprecedented
opportunity to gain new insights into:

• The dynamics of human behavior and rhythm/pulsation of social life from local to global levels;

• The dynamics of how ideas spread and how people can organize for societal impact; and

• The development of new geo-social information systems that leverage these global-scale geospatial
footprints for real-world impact.

Already, we have witnessed compelling new studies along all three of these dimensions, spanning many
research communities – including the data mining and machine learning [1, 4, 6, 11, 12, 28, 30], geographic
information systems [9,14,27,34,38], web search and information retrieval [31,33], and the emerging com-
putational social science paradigm [15,21,23,25,29,32,36,40]. For example, the dynamics of fundamental
human mobility patterns have been modeled from check-ins mined from two location sharing services –
Gowalla and Brightkite – and inherent constraints on these patterns by both geographic and social factors
have been discovered [6]. Facebook researchers have provided a comprehensive analysis of the distance
between Facebook users, leading to new insights into how social networks are impacted by geography [1].
The LiveHoods [10] project has shown how to identify “living neighborhoods” based on the revealed loca-
tions and movements of social media users. And new geo-social information systems have been proposed
based on these location cues, including earthquake detection from Twitter information flows [31], a local
search system that estimates a user’s location utilizing the aggregate signals from the check-ins with real-
time contextual information [33], and an event discovery system that organizes spatio-temporal footprints
and corresponding media to allow consumers to travel through space and time to experience the world’s
stories [7].

Challenges. Yet there are key challenges to delivering on this promise. First, many users in social media
reveal broad, imprecise locations (e.g., at the city or state level), while others provide fine-grained latitude-
longitude information. In particular, users are less likely to post precise locations such as street addresses
on Twitter and related services. How can these multiple location granularities be integrated to account for
uncertainty at different levels? Second, models based on users who do willingly share fine-grained location
information will necessarily be biased away from the general population of social media users (and more
generally, from the underlying population). How can we model and assess the impact of this bias (and its
ultimate impact on applications like local information access or expert finding)? Third, personal location-
revealing information may be interspersed in an inherently noisy stream of updates reflecting many daily
interests (e.g., food, sports, daily chatting with friends). Are there clear location signals embedded in this
mix of topics and interests that can be accurately extracted? Fourth, not all relationships in social media
are the same. Some ties are stronger than others, and presumably some ties are more impactful on the
development of a location-oriented user profile. How does this variable tie strength nature impact these
profiles?

Even the design space of geo-social information systems is not clearly understood. For example, the
ecosystem is driven both by the many users of current location sharing technologies who explicitly share
location across multiple platforms (e.g., via Twitter geo-tagged posts, by Foursquare check-in) as well as
the many “non-sharing” users who still leave implicit clues based on their non-geo-tagged content posts,
via location-revealing images left on their social networks, and other implicit signals. How do new systems
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integrate these disparate signals? Do users perceive a difference in ownership of their “location” in scenar-
ios where they explicitly reveal it versus it being inferred from large-scale data-driven approaches (e.g., by
applying machine learning approaches)? And how does information access in geo-social information sys-
tems differ from traditional web search and friend finding in social networks? These and related questions
lead us to believe that there is a compelling need for new techniques for mining, analyzing, and leveraging
geospatial footprints in social media.

Roadmap. The rest of this paper highlights two of our parallel efforts towards the goal of enabling new geo-
social intelligence. The first focuses on the dynamics of ideas via an exploration of fine-grained Twitter based
geospatial footprints, coupled with a predictive analytics application that seeks to estimate the popularity of
future ideas (approximated by Twitter hashtags) in particular locations. The second focuses on the dynamics
of people via an exploration of location sharing through services like Foursquare, coupled with a prototype
location-based search system that takes advantage of these new signals. We conclude with final thoughts
on the future of geo-spatial intelligence research at the intersection of the emerging spatial computing and
computational social science.

2 GeoSocial Footprints: Modeling and Predicting Spatial Diffusion
Geospatial footprints provide a new perspective on how information is shared at a global scale. Understand-
ing how ideas are adopted, how new communities form and evolve, and how these activities shape opinions
and actions are all long-standing questions, e.g. [19, 20, 22, 26, 39]. With access to fine-grained geo-spatial
footprints, we face new opportunities to investigate the spatio-temporal dynamics of ideas. In this section,
we highlight our research on analyzing the spatial diffusion of one type of social media – Twitter hashtags
– and in building predictive models of what hashtags will ultimately be popular where. In addition to im-
pacting these long-standing foundational questions about information diffusion, such investigations have
the potential to impact the design of a variety of systems and applications, including targeted advertising,
location-based services, social media search, and content delivery networks.

2.1 Dynamics of Ideas: Spatial Diffusion
We begin by describing a study of the spatio-temporal properties of social media spread through an exami-
nation of the fine-grained sharing of one type of global-scale social media – a sample of 2 billion geo-tagged
Tweets with precise latitude-longitude coordinates collected over the course of 18 months. The study itself
(reported more fully in [18]) focuses on the propagation of hashtags across Twitter, where a hashtag is a
simple user-generated annotation prefixed with a # and serves as a simplified “semantic” marker that we can
track across space and time. Questions we have explored include: (i) What role does distance play in the
adoption of hashtags? Does distance between two locations influence both what users in different locations
adopt and when they do so? (ii) While social media is widely reported in terms of viral and global phe-
nomenon, to what degree are hashtags truly a global phenomenon? (iii) What are the geo-spatial properties
of hashtag spread? How do local and global hashtags differ? (iv) How fast do hashtags peak after being
introduced? And what are the geo-spatial factors impacting the timing of this peak? (v) How can the spatio-
temporal characteristics of hashtags describe locations? Are some locations more “impactful” in terms of
the hashtags that originate there?

Here we focus on two findings: the geo-spatial constraints of information sharing and peak analysis.

Geo-spatial constraints. Let’s begin by modeling a location by the set of hashtags that have been observed
there over a particular time window. We could define a “location” using a simple grid technique overlaid on
the globe of equal-area locations, or equal-population locations, or encode some other semantic cues (e.g.,
by metropolitan statistical area). What then is the impact of distance between two locations on the adoption
of an idea? Tobler’s first law of geography [37] states that locations that are closer to each other are more
alike; hence, it is reasonable to assume that nearby locations will share similar ideas (here, represented by
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Figure 1: Hashtag sharing similarity vs Distance. Figure 2: Hashtag adoption lag vs Distance

hashtag adoption). Alternatively, there is growing evidence of the “flattening” of the world as information
spreads through Internet-enabled (geographically-neutral) media.

Given two locations, we can measure their hashtag “similarity” using the Jaccard coefficient between

the sets of hashtags observed at each location: Hashtag Similarity(li, lj) =
Hli

∩Hlj

Hli
∪Hlj

, where Hl is the set of

unique hashtags observed in a location l. Locations that have all hashtags in common have a similarity score
of 1.0, while those that share no hashtags have a score of 0.0.

Similarly, we can measure the adoption lag between two locations, to capture the time of when a new
hashtag made its first appearance. Locations that adopt a common hashtag at the same time can be con-
sidered as more temporally similar than are two locations that are farther apart in time (with a greater lag).
Letting thl be the first time when hashtag h was observed in location l, we can define the hashtag adoption
lag of two locations as: Adoption Lag(li, lj) = 1

|Hli
∩Hlj

|
∑

h∈Hli
∩Hlj

|thli −thlj |, where the adoption lag mea-

sures the mean temporal lag between two locations for hashtags that occur in both the locations. A lower
value indicates that common hashtags reach both the locations around the same time.

The relationship between hashtag similarity and distance is plotted in Figure 1. We see a strong corre-
lation, suggesting that the closer two locations are, the more likely they are to adopt the same hashtags. As
distance increases, the hashtag sharing similarity drops accordingly. Similarly, we see in Figure 2 a rela-
tively flat temporal adoption relationship up to ∼500 miles, then a generally positive correlation, suggesting
that locations that are close in spatial distance tend also to be close in time (e.g., they adopt hashtags at ap-
proximately the same time). Locations that are more spatially distant tend to adopt hashtags at greater lags
with respect to each other. These findings suggest the strong impact of geographic constraints (representing
language commonalities, culture sharing) on meme spreading.

Peak Analysis. We next zoom in on the spatial properties of hashtag propagation during the minutes pre-
and post- peak. When hashtags peak, do they peak suddenly in different locations simultaneously or do
they slowly accumulate a larger spatial footprint? What are the dynamics of their spatial properties as they
become popular? For every hashtag (h ∈ H) and location (l ∈ L) pair, if we let Oh

l be the set of all

occurrences of h in l, then the probability of observing hashtag h in location l is defined as P h
l =

Oh
l∑

l∈L{Oh
l }

and the hashtag entropy is defined as Eh = −
∑

l∈L P h
l log2 P

h
l , which measures the randomness in spatial

distribution of a hashtag and determines the minimum number of bits required to represent the spread. A
hashtag that occurs in only a single location will have an entropy of 0.0. As a hashtag spreads to more
locations, its entropy will increase, reflecting the greater randomness in the distribution.

Here we divide each hashtag’s lifecycle into equal length time intervals of 10 minutes. For each time
interval, we compute the hashtag entropy (Eh(t)) over just that interval. We plot this interval-specific entropy
in Figure 3. We observe that hashtags reach their lowest interval focus and highest interval entropy about
10-20 minutes after their peak. Rather than peaking with their most “global” footprint, hashtags instead
reach this state after their peak. In effect, this single location is “championing” a hashtag. In the 10-20
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Figure 3: Hashtags peak with their most “global” footprint 10-20 minutes after their peak

minutes after this peak period, other locations adopt the hashtag, resulting in a decrease in interval focus
and an increase in entropy as the hashtags becomes more global. About 30 minutes after reaching peak,
focus and entropy reverse, with focus increasing and entropy decreasing as the hashtag withdraws back to
its original focus location. In essence, hashtags are spread via a single location “championing” a hashtag
initially, spreading it to other locations and then continuing to propagate it after it has become popular. In [2],
the authors observed a similar pattern for YouTube videos which they called the “spray-and-diffuse” pattern.
Our observations over hashtags suggest that this pattern may be a fundamental property of social media
spread.

2.2 Dynamics of Ideas: Predictive Analytics
Given these and related insights into the spatio-temporal spread of ideas, we can directly inform the design
of distributed content delivery networks and search infrastructure for real-time Twitter-like content. For
example, caching decisions to improve fast delivery of social media content to users and to support applica-
tions like real-time search can build upon the results presented here. Insights into the role distance plays and
the impact locations have on hashtag spread could inform new algorithms for geo-targeted advertising. This
work can also complement efforts to model network structures that support (or impede) the “viralness” of
social media, measure the contagion factors that impact how users influence their neighbors, develop models
of future social media adoption, and so forth.

Towards putting these results into practice, we have developed new predictive models to estimate what
hashtags will eventually be popular where [17]. For example, can we accurately predict which hashtags
will be popular in San Francisco over the next two hours? Can the same model also predict which hashtags
will be popular in a small town like College Station, Texas? Can we identify which hashtags that have been
popular in New York in the past two hours but will drop in interest? Toward answering these questions,
we have develop a reinforcement learning-based approach that builds upon two competing hypotheses of
information spread over geo-spatial networks we first discussed in the previous section.

• Spatial Affinity: The first hypothesis, based on Tobler’s first law of geography, states that the informa-
tion spread between two locations is impacted by the distance between two locations. For example,
according to this hypothesis hashtags spread faster between San Francisco and Mountain View, since
they are closer to each other; but slower between San Francisco and Austin.

• Community Affinity: The second hypothesis is that the “world is flat” and information spreads based
on virtual communities enabled by the prevalence of the Internet. In this hypothesis, distance is less
important than are the strength of these virtual ties between locations; e.g., under this hypothesis
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(a) Predicted (estimated using spatial influence model after
5 minutes)

(b) Actual (real distribution after 2 hours of propagation),

Figure 4: Example of using spatial influence model for the hashtag #ripstevejobs

San Francisco and Austin may be considered closer in terms of common interest (and hence, hash-
tags should flow more rapidly between the two), rather than Austin and its more proximate neighbor
Houston.

We have investigated a series of features inspired by these two hypotheses for predicting which hashtags
will be popular in a specific location at a specific time. An example of modeling propagations using the spa-
tial influence model for the hashtag #ripstevejobs is shown in Figure 4. We predicted the future distribution
of this hashtag using the spatial influence model based solely on its initial (first 5 minutes) distribution. The
comparison between the predicted and actual distribution is shown in Figure 4(a) and Figure 4(b) respec-
tively. We observe that the relative distribution (indicated by color) and its values (indicated by scale) are
very close to each other. In our experimental evaluation over 755 million geo-tagged tweets, we find the best
approach is able to predict close to 70% of future hashtags occurrences accurately. Interestingly, both the
spatial affinity and community affinity models are valid for particular hashtags and for particular locations,
suggesting the interplay of both geographic constraints and community homophily across large distances
impacting what ideas flow where.

3 GeoSocial Footprints: Activity-Based Information Access
While geosocial footprints provide evidence of idea spread, they also can provide an insight into actual
human movements. This human mobility and the interaction of human movement with space provides
a fascinating and unique opportunity. What do large-scale voluntarily contributed human mobility data
reveal? And how can these insights be incorporated into the design of new mobile+location-based services,
traffic forecasting, urban planning, and models of disease spread?

3.1 From Dynamics of People to Location-Based Information Search
Toward better understanding the spatial, temporal, and social characteristics of how people use these ser-
vices, we have engaged in a large-scale study of location sharing services in [5] that focuses on the wheres
and whens of over 22 million check-ins across the globe. Specifically, we have studied human mobility
patterns revealed by these check-ins and explored factors that influence this mobility, including social status,
sentiment, and geographic constraints. We have found (i) that locations can be modeled by the activity pat-
terns of people; and (ii) that people follow simple, reproducible patterns – motivating us to explore whether
activity patterns (i.e., the temporal dynamics of check-ins) can be used to augment traditional information
access (see, e.g., [3]) through a prototype location-based search system. In many ways analogous to how
clickstreams have been successfully incorporated into traditional search systems based on content similar-
ity and link analysis by connecting real-world user actions (clicks) to relevance, this prototype framework
mines the spatio-temporal activity patterns of location-based crowds for augmenting traditional location-
based search and for supporting enhanced location recommendations. In particular, we have developed
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an activity pattern-driven approach for supervised location categorization, wherein activity patterns can be
used to accurately predict the semantic category of uncategorized locations. We augment this approach with
an activity-driven location clustering algorithm that can group semantically related locations, and we show
how activity-driven semantic organization of locations may be naturally incorporated into location-based
web search. We conclude with an activity-driven location recommendation system that incorporates multi-
ple factors, including physical distance, semantic correlation, social desires, interest-based reputation, and
temporal dynamics.

Enhancing Local Search. Activity patterns and category information for venues can be easily incorporated
into traditional location-based search to answer the information need for traffic. One scenario for answering
the activity-driven query is: Karen is searching for a restaurant which is off-peak during dinner time between
5 - 7 PM, so that she can enjoy the quiet environment talking with her friends. Knowing the activity patterns
and category for venues, the system could easily retrieve the venues nearby in the category of food, and rank
the results by the descending order of busyness.

Location Recommendation. Another use case is recommendation of venues having similar activity pat-
terns. For example, Jerry plays a lot of basketball, and tennis. He usually goes to the Williams Park during
Wednesday early evening, and Saturday afternoon, which are both free time for him and peak times for guys
to get-together and play basketball and tennis. Recently, he moves to a new neighborhood, and wants to find
places nearby that have similar activity patterns, so that he can meet new friends there and play some bas-
ketball or tennis. A activity-driven location-based search can also easily handle this kind of queries. Given
the name of the venue, the system calculates temporal similarity between activity patterns of the venue and
other venues in the same category (or in other categories as well), and return the locations with the highest
temporal similarities.

4 Conclusion
We believe that the increasing ubiquity of location-based social media has the potential to fundamentally
disrupt basic scientific inquiry into questions that heretofore were difficult to study and to provide the basis
for new “intelligent” geo-social information systems. Accomplishing this will require new methods, new
algorithms, and new frameworks for mining and analyzing vast fine-grained (public) spatio-temporal foot-
prints, as well as new systems and techniques to leverage these footprints. We have outlined some of the
challenges facing this opportunity and highlighted two of our related efforts toward informing this emerging
research area. Moving forward, we believe that geo-social intelligence research is poised to make major
breakthroughs in the years to come due to the growing interests of social scientists in computational/data-
intensive approaches and the 4th paradigm [16, 24] and computer scientists in spatial computing [8]. We
also believe that transformative research in geo-social system can be accelerated along multiple fronts if we
continue to embrace and fine-tune the emerging open science paradigm [35] to promote interdisciplinary
collaboration and improve the infrastructure for geo-social intelligence research.
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Abstract

Online social media sites are extensively used by individuals to produce and distribute content re-
lated to real-world events. Unfortunately, this social media content associated with an event is gen-
erally not provided in any structured and readily available form. Thus, identifying the event-related
content on social media sites is a challenging task. Prior work has addressed the event identification
task under two different scenarios, namely, when the events are known ahead of time, as is some-
times the case for planned events, and when the events are unknown, as is the case for spontaneous,
unplanned events. In this article, we discuss both the unknown- and known-event identification
scenarios, and attempt to characterize the key factors in the identification process, including the
nature of social media content as well as the behavior and characteristics of event content over time.
Furthermore, we propose enhancements to our earlier techniques that consider these factors and
improve the state-of-the-art unknown-event identification strategies. Specifically, we propose novel
features of the social media content that we can exploit, as well as the modeling of the typical time
decay of event-related content. Large-scale experiments show that our approach exhibits improved
effectiveness relative to the state-of-the-art approaches.

1 Introduction
Online social media sites (e.g., Flickr, YouTube, Twitter) serve as the main outlet for individuals to dis-
tribute and receive meaningful content about real-world events. This content may appear in various forms,
including status updates, photos, and videos, that can be created or posted before, during, and after an event.
Furthermore, for known and planned events, structured information (e.g., title, time, location) might be
available through event-aggregation social media sites (e.g., Facebook Events, Meetup, EventBrite). Such
prior knowledge, however, is not available for unknown or spontaneous events (e.g., natural disasters). By
automatically identifying the social media content related to either known or unknown events, which is the
focus of this article, we can enhance powerful event browsing and search.

In the known-event identification scenario, information is available explicitly online. For instance, con-
sider the 2013 NBA All-Star game in Houston, Texas. Structured information about the event (e.g., time
and location) may be available on a related Facebook Event page. Because this information may be limited,
though, users may seek to obtain additional content for the event from other social media sites (e.g., check
what Twitter users discuss about the event or watch the game again on YouTube after the event). Thus,
automatically identifying social media content related to known events enhances the event-based experience
a user may seek by providing meaningful information before, during, and after an event.
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Figure 1: Known-event identification: Retrieving
relevant content for the Super Bowl event, starting
with its (known) title and location.

Figure 2: Unknown-event identification: Online clus-
tering over a stream of social media content using time,
text, and location as weak indicators.

In contrast, in the unknown-event identification scenario there is no a priori knowledge of the events.
For instance, consider an unplanned presidential announcement on a political issue. Such an event, although
it is not known beforehand, prompts individuals to react and discuss, often extensively (e.g., through Twitter
messages discussing the event or YouTube videos of the announcement). Just as in the known-event scenario,
users also turn to social media in search of content for the event, both during the event and after it has ended.

Attempting to automatically identify event-related social media content in both scenarios is a challenging
task. First, social media content is noisy and heterogeneous. For instance, Twitter messages are short,
informal, and often grammatically incorrect. The event identification process should then account for these
characteristics of social media content. Furthermore, social media content is not always related to an event.
For instance, a Facebook post that states “@alice I am impressed by your new song!!” corresponds to
chatter or social activity, and is not event-related. The event identification process should then discard such
non-event content. Finally, the manner in which event-related discussions evolve in social media affects the
event identification process. For example, the fact that an event has been inactive for a long time might serve
as a strong indicator that new social media content is unlikely to correspond to the event, as we argue in
Section 3.

Most related research identifies event-related social media content by considering only a subset of these
factors. For instance, Shakaki et al. [7] identify event-related social media content by using a predefined
set of terms (e.g., “earthquake”) as keywords that social media documents should contain. However, social
media documents are noisy and heterogeneous, and might not contain a specific keyword or have arbitrary
variations thereof (e.g., “eaaarthquaaake”). Improving on this point, Sankaranarayanan et al. [13] use both
textual and temporal features to reduce the impact of the noisy data, but they ignore other features, such as
location. Also, to further distinguish between event and non-event documents their methodology assumes
the existence of “seeders,” which are treated as always producing event-related content. However, these
seeders might distribute documents unrelated to events that the identification process should differentiate
from the event-related ones.

In this article, we first summarize our earlier work on known- and unknown-event identification [2–4],
which addresses many of the factors discussed above (Section 2). Furthermore, we also propose novel
techniques to better address these key factors in the context of the unknown-event identification scenario
(Section 3). More precisely, we introduce novel features to address the noise and heterogeneity of the social
media content, as well as a time decay function that fits the behavior of event-related discussions over time.
Finally, we evaluate our techniques using a large real-world dataset compiled from photo-sharing social
media site Flickr (Section 4). Our experiments show that our proposed techniques substantially improve the
effectiveness for the unknown-event identification scenario compared to our baselines.
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2 Event Content Identification in Social Media
Major social media sites are popular venues for publishing rich and diverse information about a variety of
real-world events. As an example of such an event, consider the 2014 NFL’s Super Bowl in New York and
New Jersey. Event-aggregation platforms (e.g., Facebook Events, Meetup, EventBrite) might list a descrip-
tion of this event, including some of its prominent features (e.g., title, time, location). Also, individuals
share their reactions and discuss the event on different social media sites (e.g., Flickr, YouTube, Twitter).
Such content is highly valuable, because it offers a user perspective of events that would otherwise not be
found on the Web. Unfortunately, this meaningful user-contributed information is not readily available in
any structured form, so it is generally unclear what social media content refers to which event. Overall, au-
tomatically identifying event content poses interesting challenges, because the social media content is noisy
and highly heterogeneous.

To address the event identification task, we consider two substantially different scenarios. The first
scenario corresponds to events that are known ahead of time, as is the case for planned events announced,
say, on Facebook Events or Meetup. In the second scenario, we do not have have any a priori knowledge of
an event, either because the event occurred unexpectedly (e.g., an earthquake or an automobile accident) or
because the event was not announced online (e.g., a local street fair or a birthday celebration). Both scenarios
of the event identification task, namely, known-event identification and unknown-event identification, present
distinctive challenges and opportunities, which we discuss next:

Known-Event Identification: In this scenario, key properties of the events (e.g., title, time, location) are
known ahead of time, usually posted on event-aggregation social media sites. Social media content related
to these known events could reside in multiple social media sites, each contributing different information
about the event. For instance, YouTube might contain videos for the Super Bowl event, whereas Twitter
users might discuss the event by sharing short text messages, or tweets. To retrieve cross-site social media
documents associated with the Super Bowl event, we could then use the APIs provided by major social
media sites, such as the Twitter or YouTube APIs, to formulate high-precision queries using the event’s
known features (e.g., a [2014 NFL Super Bowl] query using the event title “2014 NFL Super Bowl”) and
extract the related tweets and YouTube videos. However, such highly specific queries tend to retrieve event-
related documents with high precision but with low recall, meaning that they miss many relevant event
documents.

In our previous work [2], we have addressed these challenges by proposing a two-step query formulation
approach. Figure 1 illustrates this process for our example. In the first step, we use highly specific queries,
using the known event properties of an event, to achieve high-precision results. For instance, in Figure 1 we
use the title and the location of the Super Bowl to construct queries that retrieve related YouTube videos,
Facebook posts, and tweets. As we mentioned, however, these high-precision queries result in low recall.
Thus, the second step builds on these high-precision cross-site results, using term extraction and frequency
analysis, aiming to improve recall and contribute to the high quality and diversity of the identified informa-
tion. Interestingly, we also proposed ways to leverage the event-related social media content retrieved from
one social media site, retrieved using high-precision queries, to obtain additional content from other social
media sites [2]. This task is important in the case where the high-precision queries do not return sufficiently
many results from some of the available social media sites (e.g., querying YouTube using the title of a local
event might not yield any results). Thus, we proposed using the content from one social media site (e.g.,
Twitter) to build recall-oriented queries to be used on other social media sites (e.g., YouTube).

Unknown-Event Identification: In contrast to the known-event identification scenario, in the unknown-
event identification scenario we do not have any a priori information about the events and their properties.
Therefore, we are presented with a stream of event-related social media documents without any knowledge
of the events that may be reflected in the stream. For example, a Twitter stream (see Table 3) may contain
many tweets related to an event (e.g., a high-profile announcement of U.S. President Obama about the
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Publisher Text Time

New York Times Apple Shows Off 2 New iPhones, One a Lower-Cost Model http://nyti.ms/19EP2DI 10:06 PM - 10 Sep 13
iPhone News Apple changes up colors: ‘space gray’ comes to iPhone 5s & iPods http://dlvr.it/3xdkm5 #iPhone 03:44 AM - 11 Sep 13
Wall Street Journal President Obama addresses the nation on #Syria. Follow our live blog: http://on.wsj.com/1aoGPV0 04:05 AM - 11 Sep 13
Bob @alice He is my favorite illusionist davidcopperfield.com . . . 04:08 AM - 11 Sep 13
Huffington Post Obama now: “I will not put American boots on the ground in Syria." http://wapo.st/1aoHmX8 04:10 AM - 11 Sep 13
IGN Apple iPhone 5s vs. iPhone 5c: Which phone should you buy? - MobileïijŽThe iPhone 5c is $100 cheaper than the iPhone 04:14 AM - 11 Sep 13
New York Times Breaking News: Obama Asks Congress to Postpone a Vote on Syria Action 04:22 AM - 11 Sep 13

Table 3: Twitter messages including both event and non-event content.
Middle-East) interspersed with messages related to other events (e.g., Apple’s announcement of new iPhone
models) as well as messages unrelated to events (e.g., Bob mentioning to Alice his favorite illusionist).
Automatically identifying unknown-event content in this scenario poses some interesting challenges both
due to the high rate of the social streams and the noisy nature of the data.

To address these challenges, we proposed an online clustering framework (see Figure 2) that leverages
the multiple features associated with each social media document (e.g., publisher, text, and time for the
tweets in Table 3) [3]. These features help define weak indicators of event-related content and collectively
produce stronger document-similarity judgments, to decide when two social media documents correspond to
the same event, than when used individually. To see why, consider the first tweet in Table 3, from The New
York Times, discussing the iPhone 5c release. Judging solely based on the text, the tweet might (erroneously)
be linked to earlier Apple announcements involving iPhones. To link the tweet to the correct event, however,
we can exploit the fact that the publication time of the New York Times tweet (first row of Table 3) is close to
the publication time of other tweets that explicitly discuss the iPhone 5c release. In contrast, considering the
publisher and text together does not assist in correctly determining the correct event content in the example
above.

Different features of social media documents thus have significantly varying impact on the final cluster-
ing —and hence unknown-event identification— decision. Based on this observation, we have proposed [3]
an ensemble learning methodology that decides for each feature (e.g., text, time, and location in Figure 2)
(a) how more indicative of event-related content it can be compared to the rest of the features (e.g., the time
feature is considered more revealing than the publisher one in our example), and (b) under what circum-
stances its judgment on the similarity of two social media documents (e.g., simtext(d, d

′), simtime(d, d
′),

simlocation(d, d
′) in Figure 2, where d, d′ are social media documents) is considered trustworthy. More

precisely, we deployed ensemble learning methods to learn and associate each feature with a weight and a
threshold that capture the importance of the features. Furthermore, based on the set of weights w⃗, thresholds
⃗thr, and individual feature similarity functions, we constructed a “consensus function" f( ⃗sim(d,C), w⃗, ⃗thr)

that plays the role of the final similarity function between a document d and a cluster C in the document
clustering process (see Figure 2). Cluster C can be alternatively represented as its centroid vector c (i.e.,
⃗sim(d,C) = ⃗sim(d, c)) or by all the cluster documents (i.e., ⃗sim(d,C) = 1

|C| ·
∑

d′∈C
⃗sim(d, d′)).

Social media documents, however, are not always event-related. For instance, the tweet by Bob (see
Table 3) does not relate to any event. Therefore, after clustering the social media documents, we need to
identify which clusters correspond to events and which ones do not. For this, we deployed event classifi-
cation techniques that operate on the output of the clustering process. Specifically, they help distinguish
between event-related clusters and non-event ones (e.g., clusters that contain event-related social media doc-
uments, such as those related to the iPhone 5c release, and clusters that contain chatter and social activity,
like Bob’s message). Technically, our event classification techniques rely on a rich family of aggregate
cluster statistics, including temporal (e.g., frequency of the terms associated with a cluster), social (e.g.,
proportion of retweets and mentions of a tweet within a cluster), topical (e.g., topical coherence in a cluster),
and platform-centric (e.g., tags and presence of multi-word hashtags), as best suitable indicators for event
and non-event content separation.

The overall process above yields high-quality results [3, 4] on the unknown-event identification task.
Nonetheless, its effectiveness can be further improved. For instance, the text feature of Figure 2 would treat
the terms Obama and Syria as equal to the terms follow and blog of the Wall Street Journal tweet in Table 3.
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Feature Type Example Jaccard Similarity

Whole URL mashable.com/2013/09/08/bruno-mars-super-bowl-halftime-show-confirmed
rollingstone.com/music/news/bruno-mars-will-perform-at-super-bowl-20130908 0.0

Parsed URL 2013, 09, 08, bruno, mars, super, bowl, halftime, show, confirmed
music, news, bruno, mars, will, perform, at, super, bowl, 20130908 0.25

Parsed Query Part of URL bruno, mars, super, bowl, halftime, show, confirmed,
bruno, mars, will, perform, at, super, bowl, 20130908 0.36

Table 4: Extracted URL features for two URLs and the Jaccard similarity for each feature.
The former play an important role with respect to the corresponding event, while the latter only add noise.
Furthermore, events evolve in certain ways over time. For instance, by the time tweets were discussing the
iPhone 5c model release (see Table 3), discussions about previous iPhone releases were limited. If the first
social document about the iPhone 5c release does not explicitly mention the 5c model (e.g., as is the case
with the first tweet by The New York Times in Table 3), the clustering procedure may erroneously relate
the new event to the iPhone 4 release event it has already identified, hence compromising the effectiveness
of the clustering procedure. Next, we introduce a variety of refinements to our techniques to improve
the effectiveness of the unknown-event identification task. (Improving the known-event identification task
remains the subject of our future work.)

3 Improving Unknown-Event Identification Effectiveness
The textual features of the social media documents (e.g., text, publisher of the tweets in Table 3) and how
events behave over time have a significant impact on the effectiveness of the document clustering procedure.
How to refine the clustering procedure to benefit from these factors is a challenging task that we discuss
next. Specifically, we discuss new features for the unknown-event identification process, namely, “URLs”
and “bursty vocabularies.” Then we show how to leverage the typical temporal characteristics of event
content.
URLs: URLs in event-related social streams are ubiquitous. Individuals use them to share meaningful
event-related external content. Furthermore, using URLs assists users to adhere to the limited-length text
that characterizes the social media documents. For instance, we can directly discuss the confirmation of the
Super Bowl’s halftime performer using an appropriate URL instead of explicitly describing the choice of
performer. To capitalize on this behavior, we propose the modeling of three new textual features as event
indicators, namely, whole URL, parsed URL, and parsed query part of URL (see Table 4). Intuitively, the
whole URL feature captures the similarity of social media documents that use the same URL. However,
multiple sources might discuss the same event-related content, a case where the whole URL feature fails to
identify their similarity (see Table 4). In such cases, the parsed URL feature appropriately tokenizes the
URL, as illustrated in Table 4, and uses the extracted tokens to identify the underlying similarity. However,
different sources use different URL patterns, so the parsed URL might introduce noise into the underlying
similarity metric. For instance, the parsed URL for the Mashable URL in Table 4 contains the terms 2013,
09, and 08 while the Rolling Stones parsed URL contains the terms music and news, which are both not
descriptive and add noise to the similarity computation. To address this challenge, we finally introduce the
parsed query part of URL as a highly indicative feature of event content. We note, however, that there are
cases (e.g., http://tinyurl.com/nove79c1) where the parsed query part of URL feature fails to recognize the
underlying similarity and the parsed URL feature performs substantially better.
Bursty Vocabulary: The social media content related to an event tends to revolve around a central topic.
In social media documents related to an event, this central topic is expressed by a set of terms that is
significantly more frequent than the rest of the terms (e.g., NFL, Super, and Bowl for the 2014 NFL Super
Bowl event). However, events that span a wide time range typically exhibit a different set of these bursty
terms at different points of their lifetime. Figure 4 shows three different time windows for the Super Bowl
event. Initially, terms like Super, Bowl, and NFL are the most bursty. Then, the announcement of the

1The url http://tinyurl.com/nove79c resolves to http://www.usatoday.com/story/sports/nfl/2013/09/07/bruno-mars-super-bowl-
halftime-show-metlife-stadium-february-2014/2779895.
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Figure 3: Histogram of the log-scaled num-
ber of events as a function of their discussion
time (step ∆t = 15 days).

Figure 4: Bursty vocabulary of the Super Bowl event in
various time windows (Wi and BurstyV i denote the i-th time
window and its bursty vocabulary).

(a) (b)
Figure 5: Example of two event discussions, over duration time, expressed as the log-scaled number of social
media documents discussing the event (step ∆t ≈ 4 and 7 days for (a) and (b), respectively).
location of the Super Bowl (i.e., New York and New Jersey) triggers terms like NY and NJ to exhibit bursty
behavior. Finally, the announcement of Bruno Mars as the Super Bowl halftime performer causes terms such
as Bruno and Mars to exhibit bursty behavior. To capture the terms associated with an event that exhibit a
bursty behavior within a given time window, we introduce the notion of bursty vocabulary per time window.

Technically, we tailor the notion of bursty vocabulary within the clustering framework [3] using the
following methodology: For each cluster, at the end of a time window Wi, we extract the bursty vocabulary
BurstyV i, which we model as a weak indicator for the next time window Wi+1. To determine if a term is
about to be bursty in the next time window, we follow a technique similar to the one proposed in [5]. More
precisely, we say that a term t is bursty in Wi+1 if the expected number of occurrences of t in Wi+1 is higher
than the average number of occurrences that the term had in the previous time windows. To compute the
expected occurrences of a term t in the time window Wi+1 we can model the probability of the occurrences of
the term t by a hyper-geometric distribution [5]. Here, however, we use the less computationally expensive
binomial distribution, which in fact coincides with the hyper-geometric distribution for large volumes of
data [5]. Moreover, the time windows are determined by partitioning the incoming document space into
chunks of B documents, for a value of B that we can determine experimentally.
Clustering with Time Decay: Beyond developing new features for clustering, we can improve the effective-
ness of the event identification process by exploiting the typical temporal behavior of event-related content.
Figure 3 shows that the number of events as a function of the duration of their discussions in social media
tends to follow a power law distribution with a noisy tail (Figure 3 was derived from the Upcoming dataset
that we describe in Section 4). Consequently, small-scale events (e.g., street fairs and birthdays) tend to
dominate the event space while they are discussed significantly less than large-scale events. As a result, the
clustering procedure considers many events that have ended as alive, thus adding noise to the identification
process of active events. To alleviate this problem, we could attempt to identify the end of the discussions
for an event. However, event-related discussions might not exhibit a clear, or any, ending time. Figure 5
shows two events from the Upcoming dataset that last more than one year and are discussed at different
points in time at different rates.

To address these challenges, we leverage an interesting observation of event-related discussions in social
media: these discussions generally attract massive participation initially, followed by a decline in attention.
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This decline might be permanent or be followed by a massive restart, as shown in the examples of Figure 5.
As an illustration of the latter, consider our Super Bowl example. The announcement of the location of
the Super Bowl (i.e., New York and New Jersey) triggers a discussion of the event that is followed by a
decay. Then, the announcement of the halftime performer again triggers the discussion, followed by another
decay. Based on this observation, we introduce a time decay function to the clustering framework that
weighs the consensus function f( ⃗sim(d,C), ⃗thr, w⃗) described in Section 2, to best capture the behavior of
discussions over time. Technically, the new similarity score between an incoming document d and a cluster

C is computed as: simdecay(d,C) = f( ⃗sim(d,C), ⃗thr, w⃗) · e−a·
|Td−TeC

|
|TeC−TsC

| , where Td is the time of creation
of document d, TeC is the maximum time of document creation in the cluster C (i.e., TeC = max({Td′ : d

′ ∈
C})), TsC is the minimum time of document creation in the cluster C (i.e., TsC = min({Td′ : d

′ ∈ C})),
and a is the decay constant that we can decide experimentally. Using this time-decay function, the clustering
process (a) penalizes clusters that have been inactive for a long time (e.g., as is likely the case for small-scale
events) and (b) re-triggers events that have been inactive for some time if the similarity score without the
time-decay factor is strong enough (e.g., as is often the case for large-scale events). Both of these properties
capture the observations above and adequately improve the clustering procedure, as we show next in our
experimental evaluation.

4 Experimental Evaluation
In [3], we reported extensive experiments for the unknown-event identification task, showing that modeling
multiple features as weak indicators of event related content, and using them collectively, can produce
stronger judgments compared to using them individually. The similarity learning techniques described in
Section 2 yielded better performance than the baselines on which we built, including traditional approaches
that use text-based similarity. In this section, we report additional experiments to evaluate the contribution
of the URL and bursty vocabulary features, as well as the time decay function, which we introduced in
Section 3. Specifically, we summarize our experimental settings in Section 4.1 and report the experimental
results in Section 4.2.

4.1 Experimental Settings
Data: We use the Upcoming dataset presented in [3]. This dataset includes 273,842 multi-featured Flickr
photos that correspond to 9,613 real-world events from the Upcoming event catalog2. The features associ-
ated with each photo that we use as baseline indicators include the title, description, time shot, upload time,
and location in longitude-latitude format. (See Section 4.2 for a discussion on other social media sites.)
Methodology: Our evaluation methodology mirrors that of [3]. Specifically, to initiate the clustering pro-
cedure we are first required to learn, for each feature, an associated threshold and weight, used in the con-
struction of the consensus function (i.e., f( ⃗sim(d,C), w⃗, ⃗thr) in Section 2). To this end, we first sort the
Upcoming dataset (descending order of upload time to imitate a real-world streaming scenario) and divide
it into three equal parts. Then, we use the earliest two parts to learn the set of weights and thresholds. The
features that we use include all the features of the Flickr photos as well as the bursty vocabulary and URL
features. Consequently, we construct the final similarity function, using the centroid vector for the cluster
representation, and we run our experiments on the last part of the Upcoming dataset, on which we report our
results. To quantify the quality of our results, we use the well known NMI [10] and B–Cubed [1] quality
metrics.
Implementation: For the indexing of the textual features we deployed the Oracle Berkeley DB version
6.0.203, which assists on the construction of the tf-idf vectors, used to represent textual features. As sim-
ilarity functions, we use the cosine similarity for textual features, simtitle , simdescription ; the Haversine

2This web site, now defunct, was available at http://upcoming.org.
3http://www.oracle.com/us/products/database/berkeley-db/overview/index.htm
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Baseline Parsed Urls BurstyV TimeDec BurstyV+TimeDec
NMI 0.89703 0.90328 0.92192 0.92933 0.9414

B-Cubed 0.80345 0.7897 0.82095 0.81768 0.83919

Table 5: Effectiveness of proposed techniques
over the Upcoming test dataset.

Baseline Whole URL Parsed URL Parsed Query Part
NMI 0.93517 0.91567 0.95971 0.92634

B-Cubed 0.82759 0.81333 0.87162 0.82592

Table 6: Effectiveness of URL features for
the events of the Upcoming dataset associ-
ated with at least one URL.

distance [9] for the location feature, simlocation ; and the ℓ1 norm for the time feature, simtime-shot .
Techniques for Comparison: As a baseline approach, we consider the clustering procedure that models
all the individual features (i.e., title, description, time shot, location features) as weak indicators. We eval-
uate four options: (a) ParURLs: Baseline + Parsed URLs, (b) BurstyV: Baseline + Bursty Vocabulary, (c)
TimeDec: Baseline + Time Decay, and (d) BurstyV + TimeDec: Baseline + Bursty Vocabulary + Time Decay.

4.2 Experimental Results
As we show in Table 5, the BurstyV + TimeDec technique obtained the highest quality results. This tech-
nique combines the bursty vocabulary, which reduces the noise of the textual features, and the time decay
function, which fits the typical behavior of events over time. In contrast, the BurstyV technique improves
over the baseline, but is problematic in two scenarios. One scenario corresponds to large-scale event discus-
sions that were inactive for a long time (e.g., as in the Figure 5(a) example) but do not necessarily exhibit
a similar bursty vocabulary in the next active time window. Another problematic scenario corresponds to
discussions that are highly active but tend to change their bursty vocabulary frequently. Both scenarios
emphasize the importance of automatically adjusting the B parameter, which regulates the number of doc-
uments that have to be appended in a cluster in order to recompute its bursty vocabulary, as described in
Section 3. Similarly, the TimeDec technique yields better results than the baseline, but suffers from the
noise from unimportant terms, which is handled properly by the BurstyV technique.

In contrast, the ParUrls technique, which uses the parsed URLs feature, does not appear to further im-
prove the baseline in this benchmark (the same behavior applies for the whole URLs and the parsed query
part of URLs): Fewer than 11% of the Upcoming documents contain URLs, an expected behavior for pho-
tographs. In the absence of a URL feature, the corresponding indicator returns a zero similarity score,
translating to a failure to detect the true document similarity in most cases. Fortunately, the learning proce-
dure identifies this behavior and assigns a close–to–zero weight to the URL features. Thus the judgments
from URL features tend to have no impact on the final decision. If we limit the benchmark to the set of
events whose associated documents contain URLs, we observe an improvement over the baseline, as seen
in Table 6. This suggests that the proposed URL features may be beneficial for social media sites with a
more substantial presence of URLs in their documents (e.g., tweets tend to include URLs frequently, and the
presence of URLs could be indicative of event-related content [6]). We now turn to the performance of the
alternate URL features (see Table 6). The Parsed Query Part technique, which uses the parsed query part of
URL feature, performs worse than the Parsed URL technique, which uses the parsed URL feature, because
most of the URLs in this corpus do not actually have a query part.

5 Conclusions
Social media captures our shared experiences with increasing comprehensiveness. Social media thus serves
as an important record of our culture and our society. Moreover, by making new types of information
easily accessible on an unprecedented scale, social media has triggered an information revolution perhaps
only comparable with the advent of the Web itself in the early 1990s. Still, the methods to retrieve and
organize social media content are in their infancy. In our work, we have focused on an important slice
of social media content, namely, the content that is associated with real-world events. Specifically, in this
article we discussed the event identification task under two substantially different scenarios, known- and
unknown-event identification. We showed how we can exploit rich features of the social media documents,
as well as revealing temporal patterns of the relevant content, to identify event content effectively. Many
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open challenges remain for the problems of detection of events in social media and identification of event
content, as well as for the presentation and organization of this information for a growing variety of tasks
and stakeholders. Beyond events, we hope that our research will help understand, organize, and retrieve
social media content around topics, people, places, and more from these new shared records.
Acknowledgments: This material is based on work supported by NSF Grants IIS-0811038, IIS-1017845, and IIS-1017389,
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Abstract

Microblogging platforms, such as Twitter, Tumblr etc., have been established as key components
in the contemporary Web ecosystem. Users constantly post snippets of information regarding their
actions, interests or perception of their surroundings, which is why they have been attributed the
term Live Web. Nevertheless, research on such platforms has been quite limited when it comes to
identifying events, but is rapidly gaining ground. Event identification is a key step to news reporting,
proactive or reactive crisis management at multiple scales, efficient resource allocation, etc. In
this paper, we focus on the problem of automatically identifying events as they occur, in such a
user-driven, fast paced and voluminous setting. We propose a novel and natural way to address the
issue using notions from emotional theories, combined with spatiotemporal information and employ
online event detection mechanisms to solve it at large scale in a distributed fashion. We present a
modular framework that incorporates these ideas and allows monitoring of the Twitter stream in
real time.

1 Introduction
The web ecosystem has changed dramatically over the last decade, with the users becoming its driving force.
A major shift has been that users are no longer passive observers but actively engage in online activities
and experiences. Social media sites, such as Facebook, Twitter, Flickr, etc, have been at the forefront of
this change, providing the necessary platforms for users to share aspects of their everyday lives online. For
instance, Twitter now counts more than 200 million active users, with an approximate 400 million “tweets”
on a daily basis 1. Users can post short messages, up to 140 characters, mimicking a web-based version of
the cell-phone SMS technology. The result is a constant flow of user generated content, arriving at varying
rates depending on various factors, and is usually referred to as the Twitter stream.

Social media are complementary to online blogs (web logs), where the former contain snippets of more
up-to-date information, while the latter are used for expressing ones thoughts, ideas, beliefs and are the
result of a more thought-through process. The speedy nature of social media sites has earned them the
name “Live web” or “Now web”. In that respect, these platforms may serve as real-time news reporting
and / or crisis-management services, as exemplified with the recent political termoil in the Middle East,
with Japanese earthquakes [1], or the 2007 Southern California wildfires [2]. Given their prominent role in

Copyright 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse
any copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1https://business.twitter.com/audiences-twitter, access Aug 2013
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Figure 1: A timeseries of daily emotions from Twitter, between March 15 and May 24 2012

disseminating information today, it comes as no surprise that social media sites and their properties have
come under considerable attention by both the academia and the industry.

One of the basic applications for analysing social media, is the problem of identifying real-life events as
they happen or short after from their impact in social media. Generally we take event to mean an important
phenomenon with a local extend and a temporal dimension in the physical world. Despite the obvious
advantages in being able to do so, automatically identifying real-life events from social media data is not
easy. Some of the challenges are: i) The large adoption means that we must process in real time voluminous
amounts of data. ii) The content is usually short, noisy, and diverse in terms of location, languages and
topics. Finally, iii) user location is also a scarce commodity leading to several techniques for location
extraction [1, 3–5].

Taking into account these impediments, it is no surprise that most existing works that deal with event
detection in Twitter simplify the problem by focusing on detecting events of specific event type, monitoring
the stream for specific terms, or #hashtags (i.e., user generated topic labels). Clearly such approaches are
useful but limited to work only when the event can be described by a small set of terms, e.g., âĂIJ[..] now
shaking [..]âĂİ for earthquakes. Detecting new events by such means is difficult as the descriptive terms
have to be known a priori.

Motivated by these shortcomings of existing work, we address the problem of detecting events in a
stream of short-form messages, focusing on Twitter. The main goal is to devise techniques that work regard-
less of the category the events belong to. We take a novel approach and employ techniques grounded on
influential theories of emotions, such as Cognitive and Affective [6]. According to these theories, users feel
a need to express themselves as a result of an event.

Our goal is to use the Twitter stream to access such reactions. Moreover, we argue that such tweets will
not be a flat description of the event, but will also convey the user’s emotional state, partially disclosing
how it affected them. An event can then be modeled as a time- and place- related phenomenon, which
triggered a significant change in the emotional state of a (potentially large) group of people and our goal is
to automatically capture such sudden changes. Figure 1 validates our claim: We plot the relative occurrence
of the 4 most prominent emotions, from a sample of the Twitter stream, between May and March 2012. We
ommit neutral tweets, which we assert to be non-informative. Surges in anger in early April are related with
the Syrian uprising, whereas the high values of joy towards the end are due to the Champions League final,
and the Eurovision song contest.

The rest of the paper is organized as follows: Section 3.1 discusses our event detection model and algo-
rithmic approach, followed by Section 3 which describes the system that realises our approach. Section 2
presents related work on the event detection problem. Section 4 concludes our work and presents future
directions.
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2 Event Modeling And Detection
We begin by formalising the event detection problem. Following [7], An event e is a real-world phenomenon,
that occurred at some specific time t and is usually tied to a location l. However, using social media data,
we can mainly monitor the aftermath of the event, i.e., its effects on actual people and how these are reflected
in people’s reactions in social media. According to influential theories of emotions [6], events will impact
the users that experienced it, who will be urged to externalize their reactions, e.g., tweet about it. We expect
such spontaneous reactions to convey a user’s emotional state, i.e., how the event affected them. Making
this motivation more concrete, we state our problem as follows:

Problem Statement 1: [Event Detection] Given a time ordered stream of tweets as input, identify those
messages which i) alter significantly and abruptly the emotional state of a (potentially) large group of users,
and ii) can be traced back to event e.

This definition fits well with an outlier detection formalisation, whereby we observe a sudden and signif-
icant change in the emotions of users, with respect to the recent history, as a result of an event taking place.
However, in our definition we do not monitor individual users, using aggregate counts instead. Monitoring
the reactions of individual users is very inefficient in terms of resources; however more a important problem
is the ethical questions raised regarding a user’s privacy as well.

To address these limitations, we use aggregate information from large, geographically associated groups
user. Users are clustered together according to their geographical location, which we extract from available
information. We then monitor the emotional state of each geographically distributed group, independently
of the others and report an event when the group’s cumulative emotional state changes suddenly. Note that
this approach covers inherently the part of the definition that wants the event to affect large groups of users.

Instead of putting all users to a single group, which has no local coherency, we decompose G into
smaller groups Gi and organize them hierarchically. We denote Gj

i as group i at level j, assuming leaf
nodes at j = 0. The hierarchy can be administrative (e.g., country, state, etc.), or constructed algorithmically,
e.g., via hierarhical clustering. For a fixed level j in the hierarchy, it holds that ∪Gj

i = G and ∩Gj
i = ∅,

and Gj
i = ∪Gj−1

k . This decomposition offers a trade-off of high-level granularity versus a higher need in
resources.

Each group G0
i is then monitored by a virtual sensor si. Each si processes all of the tweets from that

group. Upon arrival, each tweet is classified to one of 7 emotions: the 6 basic emotions suggested by Paul
Ekman [8]: anger, fear, disgust, happiness, sadness, surprise, plus a none state. Tweets of the none state are
not considered further, on the grounds that they are uninteresting, e.g., they reflect a mundane task. Sensors
aggregate the rest of the incoming tweets along the temporal dimension, for each emotion separately. Using
an aggregation interval a (e.g., a=1min), each si produces a single value for each emotion, which is the
respective count of tweets for that emotion during a. The aggregation interval acts as a discretization unit,
to cope with the streaming nature of the medium. The sensor operates over the w most recent points with a
sliding window. The combination of a and w define the history that the sensor keeps track of.

Example: Assume, for instance, a sensor si, with a = 5 minutes and w = 12. The sensor maintains a
history of the past 5 × 12 = 60 minutes. Every 5 minutes, si will process a single value for each emotion,
extracted from the tweets received during that interval from the group of users that it monitors. The oldest
point will be discarded and the new one will take its place.

2.1 Approximating the Emotional State Distribution
Given that a user’s emotional state is a result of several factors, it would be unfounded to assume that it will
follow a predefined distribution, much less a static one. To approximate it efficiently in an online fashion we
estimate the Probability Density Function (PDF) of the emotional distribution of each group Gi, and we do
that through kernel estimators. According to kernel estimation, each point distributes its weight in around it,
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and the kernel function k(x) describes how this is done. The distribution we want to approximate is given
by f(x)

f(x) =
1

|T |
∑
r∈R

k(r − x)

Here, T is the actual set of values that we want to approximate, R is a data sample maintained online by
each si, and k(x) is the kernel function. We opt for the Epanechnikov kernel function, which has a closed
form integral, and can thus be computed very efficiently, given by:

k(x) =


(34)

d 1
B1B2..Bd

∏
1≤i≤d(1− ( xi

Bi
)2)

if ∀i, 1 ≤ i ≤ d, | xi
Bi
| < 1

0, otherwise

where Bi is the kernel’s bandwidth, computed with Scott’s rule [9], Bi =
√
5σi|R|−

1
d+4 , and σi is the

standard deviation for the i-th dimension (i.e., emotion). For simplicity, we ignore the interplay of emotions,
and set d = 1. Although values need to be normalized in the [0, 1]d space, we do not find this really restrictive:
A straightforward solution is to normalize with the maximum value allowed by the system’s architecture
(e.g., 232 − 1 for int). Alternatively, system specification requirements can indicate the load it must sustain,
which will also be an upper bound (within constant factor) on the values it can process.

To approximate the data distribution, we need i) a random sample over the data that fall within the
window w, and ii) the standard deviation σ of the values in w, both of which can be easily maintained
online. We use “chain sampling” [10] to produce the random sample. Chain sampling selects a point s from
the sample to evict and replaces it with the new point p, regardless of s being expired or not. Sampling
and smoothing using a kernel function can be seen as an indirect way for filtering out spurious bursts while
improving the scalability of the system.

2.2 Event Detection
We can now use the kernel density estimator to identify changes in the data distribution. The rationale is
to identify events on the basis that the most recent aggregate emotional state observed by sensor si was not
“as expected”, according to si’s history. Therefore, if a sudden change was observed, this could be caused
by an external phenomenon. To characterize a new point p as a significant deviation, we first compute its
probability mass over the sample R, by evaluating the quantity

P (p, r) =
1

|R|

∫
[p−r,p+r]

∑
ti∈R

k(x− ti)dx

The value r defines a neighborhood range, within which to search for points from R. From the definition
of the Epanechnikov kernel, the values need to be in the (pi − r − Bi, pi + r + Bi) range, to contribute to
the integral. If P (p, r) is below a certain threshold, we say that p is an outlier, i.e. a significant change was
detected in the emotional state of the observed population. Since this could be the result of an occurring
event, we should trigger additional mechanisms to describe it. Therefore, event detection is decoupled from
event description.

3 The TwInsight System
From the description of an event e and our event detection mechanism, it should be clear by now that we
need the following information: a location l, the time of occurrence t, a set of keywords to describe it, and
the emotions that were elicited as a result of the event. Figure 2 shows a schematic view of the components
required to extract that information and their interaction2.

2Storage image by Barry Mieny, under CC BY-NC-SA license.
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Figure 2: Schematic interaction of our system’s components

The Twitter stream is our system’s input, feeding two components, namely the emotions classifier and
the location extraction subsystem. Locations are extracted through a custom built component [5], whereby
each incoming tweet is mapped to a location. Tweets are then forwarded to the virtual sensor si responsible
for the location it was mapped to.

Meanwhile, the tweet has been classified to one of the 7 emotions that we use. Neutral tweets are not
considered for further processing, but are stored nonetheless. It is worth noting that this approach allows
for an elegant integration with spam detection mechanisms: spam tweets can be cast to the neutral class,
thereby preventing them from any subsequent processing.

When a sensor receives a tweet for further processing, we know its location and which of the 6 basic
emotions it has been cast to. For each emotion, separately from the rest, the sensor counts how many tweets
it has received during the last aggregation interval a. Each count is the input to a separate instance of
our event detection mechanism, one for each emotion. Therefore, on each sensor, there are 6 instances of
event detection mechanisms, executing simultaneously. Each event detection module updates its values and
identifies whether a surge, i.e., an event, in any emotional state has occurred.

If an emotional surge was identified (i.e., an event), we report the end time of the aggregation interval
as the event’s time of occurrence t. Additionally, the tweet ids that caused the peak for that emotion are
passed to the event extraction mechanism, which is responsible for summarizing the event. This step will
provide the descriptive keywords of the event, and its operation is subject to the detection of an event. Since
event detection and description are decoupled, several techniques can be used to describe the event: term
frequency or TF-IDF score, summaries, etc. In any case, the user will be presented all of the necessary
information: location, timestamp, emotion and description.

Table 7: Average Component Processing Time (ms)

Location Extraction Classification Event Detection Total
TIME: 3.36 0.35 0.001 3.72

Table 7 illustrates the efficiency of our system, TwInsight [11], where we show the average time taken
by each component to apply its functionality on a newly received tuple. Table 8 provides some examples
of events extracted by applying our method to a stream of tweets obtained between April and May 2012. A
contextual user interface can also facilitate the presentation of this information, as described in [12].

Event 1 is related to the goal by Bayern’s football player, Thomas Müller, in the Champions League
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Table 8: Sample Summary of 15 Prominent Events Identified By TwInsight

ID Emotion Where When (GMT) Description

1 Joy Germany 19/05, 20:23 thomas bayern championsleague cfc mueller muller müller
2 Joy UK 19/05, 20:29 didier drogba f... beauty enjoying fair gal gaz goal great
3 Sadness Canada 20/05, 22:42 died b... breaking mio robin singer @rodneyedwards

gib gibb opa
4 Anger Canada 20/5, 15:19 @ctvcalgary aime ambition chacun earthquake

femme frais http://t.co/0hJEez9Q italy kills
5 Anger US 20/5, 11:23 @Mou2amara alive assad onus prove regime

shawkat showusshaukat syria

(CL) 2012 final, that took place on May 19. The goal was scored in the 83rd minute of the match, i.e. on
22:23 CEST (20:23 GMT). This places our finding the event the moment that it actually occurred and was
posted. We identify similar tweets in Canada and Spain, at the exact same timestamp. Clearly, the event is
related with Joy.

Event 2 is about the equilizer goal by Didier Drogba in the CL finals. The goal was scored in the 88th
minute, i.e. on 22:28 CEST (20:28 GMT), and we identify several joyous tweets on 20:29, right after the
goal.

Event 3 is about the death of Bee Gee’s singer Robin Gibb. He was pronounced dead at 23:30 BST
(22:30 GMT) on May 20th 3, and a surge in sad tweets is seen at 22:42, only 10’ after his death.

Event 4 is about the earthquake in Italy, on May 20, that resulted in the death of six people.
Event 5 refers to Assef Shawkat, deputy Minister of Defense of Syria. On May 20, 2012, there was

a claim he had been murdered 4, and tweets requesting proof were posted. We have also found tweets on
26th and 27th of May regarding the Houla Massacre of the Syrian civic war which occurred on May 25. We
ommit such tweets, as they contain URLs to pictures of immense brutality.

From the list of events presented above, there are two things we would like to point out:

• Our approach is able to identify events of various types. We see events related to sports, earthquakes,
popular personalities, and politics.

• We are able to identify such events promptly, as indicated by the first three events. This means
that such a method is not only useful as a news reporting tool, but could be crucial in dealing with
emergency and disaster management situations.

4 Related Work
Event identification from Twitter is gaining attention. Early works focus on events of specific types, e.g.
earthquakes [1] or news [13]. The idea is to whitelist specific keywords and phrases, but such approaches
are destined to fail when the event type is not known in advance. The technique we present here was
introduced in [14].

A closely related concept is trending topics, i.e., terms which gain in popularity over a period of time.
However, trends are not necessarily indicative of events; rather the contrary, since they are always present.

3http://www.bbc.co.uk/news/entertainment-arts-18140862
4http://newsfromsyria.com/2012/05/20/asef-shawkat-assassinated/
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They are also prone to topical groups, e.g., a big fan base, and could be the result of recurring phenomena,
such as TV shows, or memes, e.g., the “Follow Friday” (#FF) hashtag.

Type-independent techniques typically employ online clustering methods. Though such methods may be
appropriate for some slow-paced settings [15], the data volume makes them unfit for microblogs [16], They
are also sensitive to popular terms or large groups of users with similar interests, and can be easily gamed
by spammers [17]. Finally, as shown in [11], these techniques require extremely careful data cleaning and
preprocessing to be able to work in practice.

Taking into account these impediments, early techniques simplified the problem by focusing on a specific
event type [1,18,19]. They then monitor online data for specific terms that can be used to describe the event.
However, this can only work when the event can be described by a handful of terms, e.g., “[..] now shaking
[..]” for earthquakes. Clearly such approaches cannot detect new events for which the descriptive terms are
unknown a priori. Recent approaches also correlate information coming from other sources with data from
the twitter stream to understand events [20].

Online clustering solutions [15,16,21] are used to identify events and trends in Twitter. Such approaches
generally suffer from scalability issues [16, 22], and coping with the increasing volume of the data is a
research issue itself.

5 Conclusion
In this paper, we focused on the problem of automatically identifying events from the Live Web as they
occur. We combined notions from emotional theories with spatiotemporal information, and tackled the
problem using online event detection techniques. We integrated our ideas in a modular framework and
experimentally demonstrated the validity and scalability of the method.

In future work we will work to develop the system along several thrusts: i) improve the performance
of location extraction method, by applying online location clustering, using GPS signals, and by using
information about the Twitter graph to estimate the location of a tweet from the location of related Twitter
users, ii) improve the event description by incorporating novel summarization techniques, iii) improve the
classification accuracy to filter uninformative points.
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Abstract

Tensor decompositions are increasingly gaining popularity in data science applications. Albeit ex-
tremely powerful tools, scalability to truly large datasets for such decomposition algorithms is still
a challenging problem. In this paper, we provide an overview of recent algorithmic developments
towards the direction of scaling tensor decompositions to big data. We present an exact Map/Reduce
based algorithm, as well as an approximate, fully parallelizable algorithm that is sparsity promoting.
In both cases, careful design and implementation is key, so that we achieve scalability and efficiency.
We showcase the effectiveness of our methods, by providing a variety of real world applications -
whose volume previously rendered their analysis very hard, if not impossible- where our algorithms
were able to discover interesting patterns and anomalies.

1 Introduction
Tensors and tensor decompositions are powerful tools, and are increasingly gaining popularity in data analyt-
ics and mining. Despite their power and popularity, tensor decompositions prove very challenging when it
comes to scalability towards big data. Tensors are, essentially, multidimensional generalizations of matrices;
for instance, a two dimensional tensor is a plain matrix, and a three dimensional tensor is a cubic structure.

As an example, consider a knowledge base, such as the "Read the Web" project [1] at Carnegie Mellon
University, which consists of (noun phrase, context, noun phrase) triplets, such as ("Obama", "is the presi-
dent of", "USA"). Figure 1 demonstrates how we can formulate this data as a three mode tensor and how
we may analyze it in latent concepts, each one representing an entire cluster of noun phrases and contexts.

Alternatively, consider a social network, such as Facebook, where users interact with each other, and
post on each others’ "Walls". Given this posting activity over time, we can formulate a tensor of who
interacted with whom and when; subsequently, by decomposing the tensor into concepts, as in Fig. 1, we
are able to identify cliques of friends, as well as anomalies.

In this paper, we present a brief overview of tensor decompositions and their applications in the social
media context, geared towards scalability.

Copyright 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse
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Figure 1: PARAFAC decomposition of three-way tensor as sum of F outer products (rank-one tensors),
reminiscent of the rank-F Singular Value Decomposition of a matrix.

1.1 A note on notation
Tensors are denoted as X. Matrices are denoted as X. Vectors are denoted as x. We use Matlab notation for
matrix indexing, e.g. A(1, 2) refers to the (1,2) element of A, and A(:, 1), refers to the entire first column
of A. The rest of the symbols used are defined throughout the text.

1.2 Tensors and the PARAFAC decomposition
Tensors are multidimensional matrices; in tensor terminology, each dimension is called a ’mode’. The
most popular tensors are three mode ones, however, there exist applications that analyze tensors of higher
dimensions. There is a rich literature on tensor decompositions; we refer the interested reader to [12] for a
comprehensive overview thereof. This work focuses on the PARAFAC decomposition [8] (which is the one
shown in Fig. 1).

The PARAFAC decomposition can be seen as a generalization of matrix factorizations, such as the
Singular Value Decomposition, in higher dimensions, or as they are referred to in tensor literature, modes.

The PARAFAC [7, 8] (also known as CANDECOMP/PARAFAC or Canonical Polyadic Decomposi-

tion) tensor decomposition of X in F components is X ≈
F∑

f=1

af ◦ bf ◦ cf , where [a ◦ b ◦ c](i, j, k) =

a(i)b(j)c(k) and denotes the three mode outer product.
Often, we represent the PARAFAC decomposition as a triplet of matrices A,B, and C, i.e. the f -th

column of which contains af ,bf and cf , respectively.

Definition 1 (Tensor Matricization): We may matricize a tensor X ∈ RI×J×K in the following three
ways: X(1) of size (I × JK), X(2) of size (J × IK) and X(3) of size (K × IJ). We refer the interested
reader to [10] for details.

Definition 2 (Kronecker product): The Kronecker product of A and B is:

A⊗B :=

BA(1, 1) · · · BA(1, J1)
...

. . .
...

BA(I1, 1) · · · BA(I1, J1)


If A is of size I1 × J1 and B of size I2 × J2, then A⊗B is of size I1I2 × J1J2.

Definition 3 (Khatri-Rao product): The Khatri-Rao product (or column-wise Kronecker product) (A⊙B),
where A,B have the same number of columns, say F , is defined as:

A⊙B =
[
A(:, 1)⊗B(:, 1) · · ·A(:, F )⊗B(:, F )

]
If A is of size I × F and B is of size J × F then (A⊙B) is of size IJ × F .
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The Alternating Least Squares Algorithm for PARAFAC. The most popular algorithm for fitting the
PARAFAC decomposition is the Alternating Least Squares (ALS). The ALS algorithm consists of three
steps, each one being a conditional update of one of the three factor matrices, given the other two. Without
delving into details, the update of, e.g., the factor matrix A, keeping B,C fixed, involves the computation
and pseudoinversion of (C⊙B) (and accordingly for the updates of B,C). For a detailed overview of the
ALS algorithm, see [7, 8, 12].

2 Related Work
2.1 Applications
In [11], the authors incorporate contextual information to the traditional HITS algorithm, formulating it as
a tensor decomposition. In [5] the authors analyze the ENRON email social network, formulating it as a
tensor. In [2] the authors introduce a tensor-based framework in order to identify epileptic seizures. In [17],
the authors use tensors in order to incorporate user click information and improve web search. The list
continues, including applications such as [13], [16], and [2].

2.2 State of the art
The standard framework for working with tensors is Matlab; there exist two well known toolboxes, both
of very high quality: The Tensor Toolbox for Matlab [4, 6] (specializing in sparse tensors) and the N-Way
Toolbox for Matlab [3] (specializing in dense tensors).

In [15], the authors propose a partition-and-merge scheme for the PARAFAC decomposition which, how-
ever, does not offer factor sparsity. In terms of parallel algorithms, [19] introduces parallelization strategies
for speeding up each factor matrix update step in the context of alternating optimization. Finally, [16, 18]
propose randomized, sampling based tensor decompositions (however, the focus is on a different tensor
model, the so called Tucker3).

The latest developments on scalable tensor decompositions are the works summarized in this paper:
in [9], a massively distributed Map/Reduce version of PARAFAC is proposed, where, after careful design,
issues fatal to scalability are effectively alleviated. In [14], a sampling based, parallel and sparsity promoting,
approximate PARAFAC decomposition is proposed.

3 Scaling Tensor Decompositions Up
3.1 Main Challenge
Previously, when describing the ALS algorithm, we mentioned that the update of A involves manipulation
of (C⊙B). This is the very weakness of the traditional ALS algorithm, a naive implementation thereof will
have to materialize matrices (C⊙B) , (C⊙A) , and (B⊙A), for the respective updates of A,B, and C.

Problem 1 (Intermediate Data Explosion): The problem of having to materialize (C⊙B) , (C⊙A),
and (B⊙A) is defined as the intermediate data explosion.

In order to give an idea of how devastating this intermediate data explosion problem is, consider the knowl-
edge base dataset, such as the one referenced in the Introduction. The version of the data that we analyzed,
consists of about 26 · 106 noun-phrases. Consequently, a naive implementation of ALS would generate and
store a matrix of ≈ 7 · 1014. As an indication of how devastating this choice is, we would probably need a
data center’s worth of storage, just to store this matrix, let alone manipulate it.

In [4], Bader et al. introduce a way to alleviate the above problem, when the tensor is stored in Matlab
sparse format. However, this implementation is bound by Matlab’s memory limitations.

In the following subsections we provide an overview of our two recent works, which both achieve
scalability, pursuing two different directions.
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(a) (b)

Figure 2: Subfigure (a): The intermediate data explosion problem in computing X(1)(C⊙B). Although
X(1) is sparse, the matrix C⊙B is very dense and long. Materializing C⊙B requires too much storage:
e.g., for J = K ≈ 26 million as the main dataset of [9], C⊙B explodes to 676 trillion rows. Subfigure
(b): Our solution to avoid the intermediate data explosion. The main idea is to decouple the two terms in
the Khatri-Rao product, and perform algebraic operations using X(1) and C, and then X(1) with B, and
combine the result. The symbols ◦,⊗, ∗, and · represents the outer, Kronecker, Hadamard (element-wise),
and the standard product, respectively. Shaded matrices are dense, and empty matrices with several circles
are sparse. The clouds surrounding matrices represent that the matrices are not materialized. Note that the
matrix C⊙B is never constructed, and the largest dense matrix is either the B or the C matrix. Both figures
are taken from [9].

3.2 GigaTensor
GigaTensor, which was introduced in [9], is a highly scalable, distributed implementation of the PARAFAC
decomposition. Scalability was achieved through a crucial simplification of the algorithm, a series of careful
design choices and optimizations. Here, we provide an overview of our most important contributions in [9].

We observed that X(1)(C⊙B) can be computed without explicitly constructing C⊙B. The theorem
below solidifies our observation:
Theorem

Computing X(1)(C⊙B) is equivalent to computing (N1 ∗N2) · 1JK , where N1 = X(1) ∗ (1I ◦
(C(:, f)T ⊗ 1TJ )), N2 = bin(X(1)) ∗ (1I ◦ (1TK ⊗B(:, f)T )), and 1JK is an all-1 vector of size JK, and
f = 1 · · ·F .

The bin() function converts any nonzero value into 1. As a result, we can simplify every step of the ALS
algorithm without sacrificing accuracy, since the above theorem states that both operations are equivalent.
Computing X(1)(C⊙B) naively would require a total of JKF + 2nnz(X)F flops, and JKF + nnz(X)
intermediate data size, where nnz(X) denotes the number of non-zeros in X. On the other hand, the method
GigaTensor requires 5nnz(X)F flops, and max(J + nnz(X),K + nnz(X)) intermediate data size. Figure
2(b) illustrates our approach.

Other contributions in [9] include:

Order of computations: By leveraging associativity properties of the algebraic operations of ALS,
we chose the ordering of operations that yields the smallest number of flops. As an indication of how
crucial this optimization is, for the knowledge base dataset that we analyze in [9], a naive ordering
would incur 2.5× 1017 flops, whereas the ordering that we select results in 8× 109 flops.

Parallel Outer Products: Throughout the algorithm, we need to compute products of the form ATA.
We leverage row-wise matrix partitioning; we store each row of a matrix separately in HDFS, thus
enabling efficient matrix self join. Using column-wise storage would render this prohibitively expen-
sive.
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Distributed Cache Multiplication: We broadcast small matrices to all reducers, thus eliminating
unnecessary loading steps. This improves both the latency, as well as the size of the intermediate
results produced and stored by the algorithm.

3.3 PARCUBE

On a different note, in [14], we introduce PARCUBE, an approximate, parallelizable algorithm for PARAFAC;
on top of parallelizability, PARCUBE is sparsity promoting: starting from a sparse tensor, the algorithm op-
erates, through its entire lifetime, on sparse data, and it finally produces a sparse output. In this way, we both
alleviate the intermediate data explosion problem, as well as producing sparse factors, an attribute which is
vital for interpretation purposes.

The algorithm, roughly, consists of the following steps:

Biased sampling: We use biased sampling to select indices from all three modes of the tensor, creating
a significantly smaller tensor. The sample bias is proportional to the marginal sum for each of the three
modes. We may draw multiple such samples, and indeed, we show in [14] that this improves accuracy.

Parallel decomposition on the samples: The second step includes fitting of the PARAFAC decom-
position to the sample tensors, obtained from the previous step. This step can be performed entirely
in parallel, offering great speedup gains.

Merging of partial results: The final step is merging the intermediate decomposition results into a
full sized set of decomposition factors. In [14], we introduce the FACTORMERGE, which is pictori-
ally represented in Fig. 3(b). The original paper contains theoretical justification of the algorithm’s
correctness.

Figure 3 contains a pictorial description of PARCUBE.

3.4 Results & Discoveries
Comparison against the state of the art

At the time when [9] and [14] were written, Tensor Toolbox [6] was the state of the art (and excluding
the work we showcase here, still is the state of the art), hence we chose it as our baseline. Comparison of
GigaTensor against the Tensor Toolbox was made, merely, to show that it was able to handle data at least
two orders of magnitude larger than what the state of the art was able to.

Figure 4 illustrates the comparison of both methods with the state of the art, in terms of scalability, as
well as output sparsity (for PARCUBE). Detailed comparisons can be found in the respective original papers.
Contextual Synonym Detection.

In [9], we analyzed a knowledge base dataset, coming from the Read the Web project [1]; this dataset
recorded (noun-phrase, noun-phrase, context) relationships (such as the example of Figure 1); the size of
the tensor was 26M × 26M × 48M , which made it prohibitive to analyze, for any existing tool. After
obtaining the PARAFAC decomposition, we were able to perform contextual synonym detection, i.e. detect
noun-phrases that may be used in similar contexts. Using cosine similarity, we took the low dimensional
representation of each noun-phrase, as expressed by matrix A, and we calculated the similarity of each
noun-phrase to the rest. In this way, we were able to obtain noun-phrases that are contextually similar, albeit
not synonyms in the traditional sense. Figure 5 contains the most notable ones.
Facebook Wall posts

In [14], we analyze a Facebook wall posts dataset 1. More specifically, the dataset we analyzed consists
of triplets of the form (Wall owner, Poster, day), where the Poster created a post on the Wall owner’s Wall on
the specified timestamp, resulting in a 63891×63890×1847 tensor. After running PARCUBE, we stumbled

1Download the Facebook dataset from http://socialnetworks.mpi-sws.org/data-wosn2009.html
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Algorithm 4: FactorMerge
Input: Factor matrices Ai of size I ⇥ F each, where i = 1 · · · r, and r is the number

of repetitions, Ip: set of common indices.
Output: Factor matrix A of size I ⇥ F .
1: Set A = A1

2: for i = 2 · · · r do
3: for f1 = 1 · · ·F do
4: for f2 = 1 · · ·F do
5: Compute similarity v(f2) = (A(Ip, f2))

T (Ai(Ip, f1)))
6: end for
7: c = argmaxc0 v(c

�)
8: Update only the zero entries of A(:, c) using vector Ai(:, f1).
9: end for
10: end for

Proposition 1. Let (A,B,C) be the Parafac decomposition of X, and assume
that A(Ip, :) (A restricted to the common I-mode reference rows) is such that any
two of its columns are linearly independent; and likewise for B(Jp, :) and C(Kp, :
). Note that if A(Ip, :) has as few as 2 rows (|Ip| ⇥ 2) and is drawn from a jointly
continuous distribution, this requirement on A(Ip, :) is satisfied with probability
1. Further assume that each of the sub-sampled models is identifiable, and the
true underlying rank-one (punctured) factors are recovered, up to permutation
and scaling, from each sub-sampled dataset. Then Algorithm 4 is able to merge
the factors coming from the di�erent samples of the tensor correctly, i.e., is able
to find the correct correspondence between the columns of the factor matrices
Ai,Bi,Ci.

Proof sketch 1 Consider the common part of the A-mode loadings recovered
from the di�erent sub-sampled versions of X: under the foregoing assumptions,
the Ai(Ip, :) will be permuted and column-scaled versions of A(Ip, :). After scal-
ing the common part of each column to unit norm, Algorithm 4 seeks to match
the permutations by maximizing correlation between pairs of columns drawn from
Ai(Ip, :) and Aj(Ip, :). From the Cauchy-Schwartz inequality, correlation be-
tween any two unit-norm columns is � 1, and equality is achieved only when
the correct columns are matched, because any two distinct columns of the under-
lying A(Ip, :) are linearly independent. Furthermore, by normalizing the scales
of the matched columns to equalize the norm of the common reference part, the
insertions that follow include the correct scaling too. This shows that Algorithm
4 works correctly in this case.⌅

The above proposition serves as a sanity check for correctness. In reality, there
will be noise and other imperfections that come into play, implying that the
punctured factor estimates will at best be approximate. This implies that a
larger common sample size (|Ip| ⇥ 2, |Jp| ⇥ 2, |Kp| ⇥ 2) will generally help
Algorithm 4 to correctly merge the pieces coming from the di�erent samples.

(b)

Figure 3: Subfigure (a): From the original tensor, draw r different samples, by sampling indices from
each mode. It is crucial for this step, that a small subset of the drawn indices is common across different
samples. Without delving into the details, this plays a major role in the third step of the algorithm, which
merges partial results. For each sample tensor, compute its PARAFAC decomposition and merge the partial
results. Here, for simplicity, we show a simple, rank one, case. This figure comes from our recent paper
[14]. Subfigure (b): Here, we describe the merging procedure, where the rank is larger than one. From
each sample tensor, we obtain a set of vectors for each mode. Let each one of the small matrices on
the top represent the "sample" factor matrices. Our goal is to merge all partial components into a full-
sized component, as shown at the bottom. Each color corresponds to a distinct latent component, and
the upper part is marked as common across samples; notice that there are component permutations across
matrices which need to be resolved in order to merge the components correctly. In [14] we provide the
FACTORMERGE algorithm, as well as theoretical analysis of correctness.
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Figure 4: Subfigures (a), (b): The scalability of GigaTensor compared to the Tensor Toolbox [6], for syn-
thetic tensors of size I × I×, for two different scenarios. (a) Increasing mode dimensions, and number of
nonzeros fixed and set to 104. (b) For a tensor of size I × I × I , increasing both the mode dimensions, and
the number of nonzeros, which is set to I/50. In both cases, GigaTensor solves at least 100× larger problem
than the Tensor Toolbox which runs out of memory, for tensors of sizes beyond 107. We should note that
in cases where the tensor fits in main memory, Tensor Toolbox is faster than GigatTensor, since it does not
need to load anything from the disk (like MapReduce does). However, GigaTensor’s strength is prominent
when the tensor does not fit in memory, where the state of the art is unable to operate. These two subfigures
are taken from our recent paper [9]. Subfigure (c): PARCUBE outputs sparse factors: Relative Output size
(PARCUBE/ ALS-PARAFAC) vs Relative cost (PARCUBE PARAFAC objective function / ALS PARAFAC
objective function). We see that the results of PARCUBE are more than 90% sparser than the ones from
Tensor Toolbox [6], while maintaining the same approximation error. Parameters s and r are the sampling
factor and the number of sampling repetitions for PARCUBE. This figure is taken from our paper [14].
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(Given) (Discovered)
Noun Phrase Potential Synonyms

pollutants dioxin, sulfur dioxide,

greenhouse gases,

particulates, nitrogen oxide,

air pollutants, cholesterol

vodafone verizon, comcast

Christian history European history,

American history,

Islamic history, history

disbelief dismay, disgust, astonishment

Figure 5: By decomposing a tensor of text corpus statistics, which con-

sists of noun-phrase, context, noun-phrase triplets, we are able to identify

near-synonyms of given noun-phrases. We propose to scale up this process,

to form the basis for automatic discovery of new semantic categories and

relations in the "Read the Web" project. This table comes from our recent

paper [9].
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Figure 6: Facebook "anomaly": One Wall, many posters and only one

day. This possibly indicates the birthday of the Wall owner. This figure is

taken from our recent paper [14].

the specified timestamp, resulting in a 63891 × 63890 × 1847 tensor. After running PARCUBE, we stumbled

upon a series of surprising findings, an example of which we demonstrate in Figure 6: this Figure shows what

appears to be the Wall owner’s birthday, since many posters posted on a single day on this person’s Wall; this

event constitutes an "anomaly", since it deviates from normal behaviour, both intuitively, and by inspecting

the majority of the decomposition components, which model the "normal" behaviour. If it hadn’t been for

PARCUBE’s sparsity, we wouldn’t be able to spot this type of anomaly without post-processing the results.

4 Insights and Conclusions

In this paper, we provided an overview of two different, successful means of scaling up tensor decompositions

to big data:

GigaTensor: Scalability is achieved through simplifications of the most costly operations involved in

the PARAFAC decomposition. In particular, we show how a prohibitively expensive operation can be

alleviated, without sacrificing accuracy. Furthermore, we introduce a series of optimizations, which,

in combination with the Map/Reduce environment, lead to a highly scalable PARAFAC decomposition

algorithm.

PARCUBE : Scalability is achieved through sketching of the tensor, using biased sampling, parallelization

of the decomposition on a number of sketches, and careful merging of the intermediate results, which,

provably, produces correct PARAFAC components. Sketching might be a familiar concept in databases

and data stream processing, however, in the context of large scale tensor decompositions, it has been fairly

under-utilized, thus offering ample room for improvement.

The aforementioned approaches constitute, by no means, an exhaustive list of approaches one may envision

in order to scale tensor decompositions up, however, we hope that they will be able to spark new research

challenges and ideas, towards faster and more scalable tensor decompositions.
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Abstract

The firehose of data generated by users on social networking and microblogging sites such as Face-
book and Twitter is enormous. The data can be classified into two categories: the textual content
written by the users and the topological structure of the connections among users. Real-time analyt-
ics on such data is challenging with most current efforts largely focusing on the efficient querying
and retrieval of data produced recently. In this article, we present a dynamic pattern driven ap-
proach to summarize social network content and topology. The resulting family of algorithms relies
on the common principles of summarization via pattern utilities and ranking (SPUR). SPUR and its
dynamic variant (D-SPUR) relies on an in-memory summary while retaining sufficient information
to facilitate a range of user-specific and topic-specific temporal analytics. We then follow up by de-
scribing variants that take the implicit graph of connections into account to realize the Graph-based
SPUR variant (G-SPUR). Finally we describe scalable algorithms for implementing these ideas on
a commercial GPU-based systems. We examine the effectiveness of the summarization approaches
along the axes of storage cost, query accuracy, and efficiency using real data from Twitter.

1 Introduction
Social networking and microblogging sites are ubiquitous nowadays, and an increasing number of organi-
zations and agencies are turning to extract and analyze useful nuggets of information from such services to
aid in various functions. However, a fundamental challenge for effectively analyzing social network data is
its sheer scale. Twitter, for instance, has over 200 million users and several hundred million tweets per day.
Supporting interactive querying and analytics requires novel approaches for summarizing and storing such
data.

The data generated by social networking services can be classified into two categories: the textual
content written by the users (e.g. tweets in Twitter) and the link structure of user connections (e.g. follower
– followee relationship in Twitter). The textual content carries the information that people want to share with
their friends. It is large-scale and streaming in nature. The link structure captures how the textual content
will spread through the social network of users. While user connections are relatively stable compared with
the high speed content stream, it is also large-scale because of the enormous size of user base.

Copyright 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse
any copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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We recently proposed the SPUR (Summarization via Pattern Utility and Ranking) family of algorithms
to build a queryable summary of social network content stream [10]. Here we briefly overview some of the
main features of SPUR and its variant Dynamic-SPUR (D-SPUR) and show how the summarization created
by these algorithms can fit in a limited memory budget, and can help answer complex queries. In this work
we describe extensions to SPUR wherein effective compression and efficient querying on the link structure
of social network can also be supported called Graph-based SPUR (or G-SPUR). Furthermore, with the
advent of general-purpose computing using Graphical Processing Units (GPUs) , we discuss strategies for
leveraging such technology in the context of the SPUR family of algorithms.

We begin by briefly describing SPUR and D-SPUR as preliminaries in Section 2. Then we present G-
SPUR (including GPU speed-up) in Section 3. In Section 4, we discuss how D-SPUR is adapted to work
with G-SPUR for supporting content and time aware network queries Two particular query tasks, PageRank
and clustering, will be described. Finally, we present experiment results in Section 5 and conclude.

2 SPUR: Summarization via Pattern Utility and Ranking
In our previous work [10], we described a method of summarizing the user generated content from a social
network. The network content is in the form of a high speed message stream fluxing into the data pro-
cessing system. We propose a novel stream processing framework to summarize the input stream with effi-
cient, incremental summary construction and budgeted memory footprint. Given the input message stream
with proper word stemming and stop-word removal performed, we divide it into approximately equal-sized
batches, e.g. one hour per batch (the first arrow in Figure 1).

Message 

Stream
1 hr 1 hr ... ... 1 hr M M ... ... M

Compress

Summary Stream

Figure 1: Division and compression of message stream

To compress each batch of messages into a summary object which can fit in a constant memory budget M
(the second arrow in Figure 1), we replace individual words with frequently used phrases that can cover the
original content of incoming messages (Figure 2(a)). Our approach represents each message as a transaction
of words and a batch as a set of transactions. Therefore the challenge of finding frequent phrases becomes
a frequent itemset mining problem. The utility of each pattern is represented by the reduction of storage
cost if it would have been used. We also take into account the impact of using one pattern on other patterns,
and perform dynamic ranking adjustment to reflect such changes. Patterns are selected in a greedy fashion,
based on their utility values, until the size after compression satisfies the memory budget.

To guarantee the summary size grows logarithmically with time instead of linearly, we enhance and
modify the pyramidal time window suggested by Aggarwal et al. [1] for clustering in data streams. The key
operations of the system, D(ynamic)-SPUR, are merging two time windows, and managing time information.
When merging time windows, patterns from both time windows are ranked together by their utility values,
and ones with lower values are dropped until the merged summary can fit in the memory budget. The purpose
of maintaining time information for the transactions in a summary is to be able to effectively answer a query
about an arbitrary time interval. To this end, we store distinct transactions in the summary and associate a
count with each transaction to indicate how many times a transaction appeared in a batch. When merging
two time windows, if two transactions contain the same set of patterns, they must be from two different
batches, because within a batch, we only keep distinct transactions. Instead of summing the count of these
two transactions, we could concatenate their counts in time order and form a time series with two points.
As D-SPUR combines more summaries, we concatenate more points to each transaction. A time series that
spans batches (i.e. the red dashed line in Figure 2(b)) is therefore formed for each transaction, enabling
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(b) An example of the time series of a transaction

Figure 2: Illustration of message compression and time information management

reconstruction of the exact count in any time interval.

3 Compression of Network Topology with G-SPUR
While SPUR and D-SPUR algorithms are designed to compress social content streams, we are also interested
in compressing the link structure of social networks themselves. We assume that the network topology is
relative stable, and can therefore take snapshots of it at different times. The complete topological information
of a social network snapshot can be modeled as a directed graph G = (V,E), where each node v ∈ V
represents a user and a directed edge (v, u) ∈ E indicates user u is a follower of v in the social network (i.e.
the direction reflects the information flow). The storage space of such a graph is proportional to the number
of edges, and can easily become overwhelming for large networks. To serve real-time queries related to user
link structures, it is desirable to have an in-memory compact summary of them.

Our solution to this problem is to represent the adjacency list of a user as a transaction of items, where
each item is a follower of this user. Then the entire social graph G can be seen as a batch of user-follower
transactions. We would like to apply our SPUR algorithm to a batch of such transactions and compress its
storage space. However, the SPUR algorithm is not directly applicable to the graph summarization problem
for two reasons. First, SPUR produces a lossy compression by dropping infrequent items (that are, edges in
the graph data), which can possibly disconnect a graph and introduce errors to various mining algorithms.
Second, the frequent itemset mining stage of SPUR would not be scalable to graphs with hundreds of
millions of nodes and billions of edges, if the whole graph would to be processed at once.

To address those issues, we propose the G-SPUR algorithm with two modifications of SPUR to enable
lossless and fast summarization of large-scale graph data. A graph G is represented by a database of transac-
tions, where each transaction is the adjacency list of a vertex and items in the transaction are the neighbors
connected to the vertex. G-SPUR drop nodes whose numbers of adjacent edges are below a support thresh-
old σ, and use a separate graph Ginfreq to preserve those infrequent edges. The frequent edges will be stored
in another graph Gfreq for further processing. If G, Ginfreq and Gfreq are represented as adjacency matri-
ces, we can see the above process decomposes G as the sum of Ginfreq and Gfreq (Equation 2). Because
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Ginfreq only contains the edges connected to vertex with in-degree below the support threshold, we directly
store it as a sparse matrix.

G = Ginfreq +Gfreq (2)

= Ginfreq + T × P (3)

After the above separation of infrequent and frequent edges, we run SPUR on Gfreq without loss of
information because all edges in Gfreq are frequent. The SPUR algorithm will compress Gfreq to a pattern
set P and a transaction set T . Each pattern p ∈ P contains a set of vertices from Gfreq. Each transaction
t ∈ T contains a set of patterns from P , corresponding to the compressed representation for the original
adjacency list. To reconstruct the adjacency list of a vertex from Gfreq, we can take the union of patterns
in a transaction. In a binary sparse matrices representation of the pattern set P and transaction set T , the
SPUR algorithm essentially decomposes the frequent graph Gfreq to the product of transaction set T and
pattern set P (shown in Equation 3). By using Ginfreq, T and P , we are able to store the original graph G
with smaller storage size and reconstruct G without information loss.

Note that Gfreq contains most of the edges in the original graph G. Therefore, the input to the SPUR
algorithm will be as large as hundreds millions of transactions and billions of items. To maintain a scalable
solution, we use minwise independent hashing [3] to partition the data into small samples. The SPUR
algorithm will operate on each partition independently and produce a summary for each partition. We
can generate the final solution by merging the pattern sets and transaction sets from the partitions. This
method has been used by Buehrer et al. [4] to improve the scalability of large-scale web graph compression
problems.

3.1 Speeding up PageRank with G-SPUR
The PageRank algorithm models the link structure of web graphs by the random walk behavior of a random
surfer [2,6]. The web graph can be represented by a directed graph G = (V,E), and its adjacency matrix A
is defined as A(u, v) = 1 if edge (u, v) ∈ E; otherwise, A(u, v) = 0. Matrix W denotes the row normalized
matrix of A. The PageRank vector p is computed iteratively using the following equation until convergence:

p(k+1) = cW T p(k) + (1− c)p(0) (4)

where c is a damping factor (set to 0.85 in our experiment), and p(0) is initialized as a n by 1 vector with
all elements set to 1/n. The major computational cost of Equation 4 is to compute the product of sparse
matrix W T and vector p(k). Previous work [5] shows that graph mining algorithms such as PageRank and
SALSA can be directly computed from compressed graphs and the performance can be improved because
the total number of computations can be reduced due to compression. From Equation 4, we can see that the
PageRank algorithm can be implemented by iteratively calling the sparse matrix and vector multiplication
(SPMV) kernel on a graph G. Since G-SPUR decomposes a graph G into Ginfreq, T , and P , all of which
can be stored as sparse matrices, we can directly implement the PageRank algorithm as iterative SPMV on
Ginfreq + T × P .

4 Content and Time Aware Network Topology Queries
In the previous sections, we introduce methods to create summarization of social network content stream and
link structure. Besides those topics, another important analytical task is to investigate the network topology
of the users who have written or read messages about a topic. Given a topic or keyword, example queries can
be as simple as finding users who wrote or read this topic. More insights into the network topology can be
obtained if we can find the social connections among these users. Furthermore, with these user connections,
we can find which users are influential writers about this topic, whether there is any community structures
among the users.
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We can use the compact storage of the network content (SPUR, D-SPUR) and topology (G-SPUR) to
answer the above queries in two major steps. In the first step, given a query keyword and time interval, we
extract a subgraph of the entire network topology which contains all the users who either wrote or read a
message about this keyword during the query time interval. In the second step, we run various graph mining
algorithms on the extracted subgraphs to find influential users, and community structures in the network
topology.

4.1 Content and Time Aware Subgraph Construction
First, we present our method of constructing a user subgraph given a query keyword and time interval. We
achieve this by querying on the summaries built by the D-SPUR and G-SPUR algorithms.
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Figure 3: Construction of Content and Time Aware Subgraph

4.1.1 Incorporate Author Information into D-SPUR

Given a content keyword, we first find the list of users who have written messages about this keyword during
the query time interval. We can slightly modify our D-SPUR algorithm to fulfill this query requirement
as follow. First, we query the summary objects within the query time interval from the pyramidal time
window; Second, in each summary object, we retrieve the patterns that contain the query keyword, and the
transactions that include these patterns. These transactions represent all the messages containing the query
keyword in the query time interval. Third, we need to find the writers of these messages. These users
are who have written messages about the query keyword during the query time interval. Here we need to
slightly change the D-SPUR algorithm to retrieve these users. In the original D-SPUR algorithm, IDs of
users in each transaction is dropped. To preserve user information, we modify it by adding the list of user
IDs at each point in the time series. Figure 3(a) illustrates this modification. Therefore, at a given time and
a specific transaction, we can know which users wrote the transaction. With the above steps, we can extract
the complete list of the writers of messages with a query keyword during a query time interval.

4.1.2 Extract Subgraph from Compressed Social Network

With the list of users U who have written messages about a query keyword during the query time interval,
we then find their social connections by extracting a subgraph of them and their followers from the network
topology. We will use the compressed network topology built by G-SPUR to find these social connections.
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Suppose a graph G represents the original network topology which contains the social connections
among all users. Equations 2 and 3 in Section 3 show that our G-SPUR algorithm decomposes the adjacency
matrix of G into the adjacency matrix of a graph Ginfreq and the product of a transaction-pattern matrix T
and a pattern-item matrix P . In the original graph G, this subgraph of users U corresponds to a subset of
the rows G(U, :) in the adjacency matrix of G, where each row represents the followers of a user in U . For
example, the three highlighted rows in the matrix G in Figure 3(b) contains the social connections of three
users and their followers. Because of the G-SPUR decomposition G = Ginfreq + T × P , we can extract a
subset of the rows G(U, :) as G(U, :) = Ginfreq(U, :) + T (U, :) × P . This means we can get the rows of
users in U from matrices Ginfreq and T first, then use the rows from T to multiply with the pattern matrix P
and then add to the rows from Ginfreq. For instance, to get the three highlighted rows from G in Figure 3(b),
we first get three rows from Ginfreq and T respectively, then multiply the three rows from T with P , and
then add the result to the three rows from Ginfreq, the final results will be equivalent to the three highlighted
rows in the original G. Therefore, we can efficiently extract a subgraph of the network topology from the
D-SPUR and G-SPUR summaries by querying a content keyword and a time interval.

4.2 Mining Algorithms on Subgraphs of Network Topology
With a subgraph of a network topology conditioned on a query keyword in a query time interval, we can
perform static analysis such as finding relevant users or communities of users on a topic during the query
time interval. Here, we introduce two example mining queries to perform these tasks under our proposed
framework.

4.2.1 Content and Time Aware PageRank

To rank users’ importance regarding a topic keyword w during a time interval t, we can extract the subgraph
G(w, t) from G. This directed subgraph captures the social connections among all users who wrote mes-
sages about w during t. We then iteratively run PageRank (Equation 4) on the adjacency matrix of G(w, t).
The computation can be accelerated by the GPU based high performance computing platform introduced in
Section 3.1.

4.2.2 Clustering

Given a subgraph G(w, t) of the entire network topology G, we would like to find communities in such
subgraphs to capture the topological relationships among the users who write or read the content keyword
w in time interval t. This is meaningful because users have different interests in different topics and form
different community structures. In this section, we introduce a new type of complex query to find such
communities. Given a content keyword w and a time interval t, the query will return a clustering result C
of the active users who write or read messages about the keyword w during time interval t in the social
network. The general idea of answering such query is to first extract the subgraph G(w, t), then apply graph
clustering algorithms on the subgraph to find user communities. However, there are several challenges to
execute the above process:

• Scalability: The scale of the subgraph G(w, t) varies, and can become very large if a popular keyword,
a long query time interval or a high-degree user is involved. A scalable clustering algorithm is thus
needed to answer large number of queries efficiently.

• Noise: Previous work [9] has shown that there are two types of users in modern social network such
as Twitter: a small fraction of influential users (e.g. celebrities, organizations), and a large number
of auxiliary users (mostly followers of the influential ones). While community kernels [9] formed
by influential users are more related to the network content, auxiliary users also form clusters and
create noise in finding community kernels. The presence of auxiliary users also slow down the graph
clustering algorithms.
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• Connectivity: The influential users usually have a lot of followers but they rarely follow back. The
connections among the influential users are weak as they rarely follow back, and it becomes hard to
find dense communities if not including the auxiliary users. The auxiliary users who follow different
influential users are essential to improve the connectivity of our subgraph G(w, t).

• Directionality: The follower relationships among users are directed, so is the subgraph G(w, t). Sat-
uluri et al [8] show that it is non-trivial to cluster directed graphs by using graph clustering algorithms
designed for undirected graphs.

To overcome the above challenges, we use a simple but effective preprocessing approach to symmetrize
the directed graph G(w, t) and adjust the edge weight to improve connectivity among influential users and
reduce the noise from auxiliary users.

1. Symmetrization: We use the bibliometric symmetrization [8] method to transform our asymmet-
ric subgraph G(w, t) to a symmetric graph SG(w, t). Given the adjacency matrix A(w, t) of G(w, t),
bibliometric symmetrization essentially calculates the adjacency matrix of SG(w, t) as A(w, t)A(w, t)T +
A(w, t)TA(w, t). This transformation not only removes the directionality of edges in G(w, t) but also adds
edges to vertices sharing similar set of in- or out- links. In SG(w, t), edges can exist between two influential
users who are not directly connected, but share common followers. This improves the connectivity among
influential users.

2. Edge Re-weight: Edge weights in SG(w, t) are only based on the topological information. We
would like to incorporate the network content information to down-weigh the connections among auxiliary
users who rarely contribute content to the network, and to reduce the noise. Given the keyword w and a
node i, we calculate the weight W (i) for node i by counting the number of times user i mentioned the
keyword w in the time interval t. Suppose we have an edge from node i to node j, and the edge weight
in the symmetrized graph SG(w, t) is SGw,t[i][j]. We adjust the weight of edge < i, j > by multiplying
SGw,t[i][j] with the sum of W (i) and W (j). In this way, we can construct a new weighted symmetric graph
WSG(w, t) with edge weight WSGw,t[i][j] = SGw,t[i][j] × (W (i) + W (j)). The intuition of this edge
re-weight method is that the node weight W (i) captures how much interest user i has on the keyword w.
Therefore, we want to boost up the weight of edges connected to nodes with strong interest on the query
keyword w, especially for the edges that both the follower and the followee express strong interests.

After the above preprocessing on our subgraph G(w, t), we have a weighted undirected graph WSG(w, t)
where the nodes of similar influential users are connected together and the links to noisy auxiliary nodes are
down-weighted. We then run scalable graph clustering algorithms such as MLR-MCL [7] to efficiently find
dense communities of influential users.

5 Experimental Results
In this section, we present results for an extensive set of experiments we conducted to evaluate the G-SPUR
algorithm. We discuss the compression performance of several large web graphs and the follower-followee
graph of twitter. To show the benefits of graph compression in speeding up graph mining kernels, we also
implement the PageRank algorithm using the summarized graph with CPUs and GPUs.

We gathered 2100 hours of Twitter message streams from June to September in 2010 1, and crawled the
follower lists of all the users in the above message stream 2. We construct the follower-followee graph of
Twitter from this dataset. There are about 131 million vertices and 3.8 billion directed edges. We also use
four other web graphs, shown in Table 9. All algorithms were implemented in C++.

1As provided by Twitter, it is a 15% random sample of all messages.
2Some of the users’ follower information is not available because of their privacy settings
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Graph Nodes Edges Edges/Node Density Power-law?
it-2004 41,291,594 1,150,725,436 27.9 6.75×10−7 Yes
sk-2005 50,636,154 1,949,412,601 38.5 7.60×10−7 Yes
uk-union 133,633,040 5,507,679,822 41.2 3.08×10−7 Yes
web-2001 118,142,155 1,019,903,190 8.6 7.31×10−8 Yes

Table 9: Web Graph Datasets

5.1 Graph Compression with G-SPUR
We use min-wise hashing to cluster the graph into partitions with partition size less than 1000 and we ran
G-SPUR algorithm on each partition with absolute support value at 5. Figure 4(a) shows the compression
ratio of the G-SPUR algorithm on these graphs. We can see that the G-SPUR algorithm can compress the
storage size of large-scale web graphs to as low as 4 times smaller than the original graphs. In the Twitter
follower-followee graph, our G-SPUR algorithm can still reduce the storage size by half.

5.2 Graph Mining Speed-up on CPU and GPU
Next, we present some experimental results of speeding up the PageRank algorithm with G-SPUR. On
CPU, we store the three sparse matrices Ginfreq, T and P in CSR format and perform matrix and vector
multiplication. Figure 4(b) plots the speed-up numbers of compressed graph over uncompressed on the four
large web graphs and the twitter social graph. We can achieve from 1.4x to 2.6x speed-ups on these dataset.
On GPU, we store the three sparse matrices in our optimized composite storage format. To compare with
the performance of our multi-GPU SPMV kernel, we distribute matrices Ginfreq and T to multiple GPUs,
and each GPU will keep a copy of P because it is needed by all nodes of the GPU cluster. Figure 4(c)
plots the speed-up numbers of the five datasets on GPUs. The PageRank algorithm can achieve from 1.1x
to 2.2x speed-ups on the compressed graph over the original graphs. The major computational cost of the
PageRank algorithm is the iterative SPMV kernel whose running time is proportional to the storage size of
the graph. Our G-SPUR algorithm can effectively compress the size of the graph by decomposing it into
three smaller matrices. Therefore, we can conclude that the speed-ups of the PageRank algorithm come
from the compression of the graphs by the G-SPUR algorithm.

(a) Compression ratio of graphs (b) CPU speed-up of PageRank

(c) GPU speed-up of PageRank

Figure 4: Compression ratio and speed-up of G-SPUR
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Rank Screen Name Truncated Account Profile Description
1 Lonely Planet Tweeting (& retweeting) the best in travel
2 GWPStudio Photography, Socialmedia & sharing ... Love to travel & connect with people
3 American Airlines The official channel of American Airlines
4 Sean Gardner Digital Media Consultant
5 Gary Arndt Traveler, blogger and photographer. A one man National Geographic. Been to over 100 countries . . .
6 Tavelzoo Travelzoo deal experts research and evaluate thousands of deals each week, selecting only the best . . .
7 SmarterTravel SmarterTravel.com is the largest online travel resource for unbiased travel news, deals, and timely . . .
8 WhereIveBeen Travel industry’s leading social networking travel platform
9 TravelDeals Use Twitter to save on travel in popular locations. Get a customized feed of travel deals near you
10 USATodayTravel USA TODAY Travel offers the latest travel news, deals and consumer features about flights, hotels, . . .
11 Andreas Susana A guy from Austria, who writes about his trips and his website concerning books, castles, . . .
12 Melvin Love to travel, to discover the world, to travel free & untroubled & still be informed like an insider! . . .
13 JD Andrews World Traveler, Dad, 3xEmmy winner, Video, Adventure, Photographer, love dogs, Sharing & Caring . . .
14 British Airways Official British Airways global account
15 Get a Travel Deal I find the best travel deals so you don’t have to. Life’s Short Travel Often!
16 Eagles Nest Wine San Diego’s Medal winning-ist Boutique Winery! Share an Authentic Wine Lifestyle with us! . . .
17 Chicago Events Real-time local buzz for live music, parties, shows and more local events happening right now in Chicago!
18 travelblggr TV Host. Writer. Videographer. Travelista.
19 TravelGreen Tips for sustainable travel and green living. Exploring the world, trying new foods & being green.
20 Tourism Malaysia The official Tourism Malaysia Twitter account.

Table 10: Top 20 ranked users about the keyword “travel”

5.3 PageRank on Subgraph
Next, we show experimental results of content aware PageRank queries on the Twitter social network data
we crawled from June 2010 to September 2010. We extracted the subgraph of users who mentioned the
Twitter hashtag “#travel”. We run the PageRank algorithm on this subgraph and rank accounts by their
PageRank value from high to low. Table 10 lists the top 20 accounts, which can be classified into the
following categories:

• Free information sources that people follow to find and share travel information, such as #1 Lonely
Planet, #8 WhereIveBeen, #10 USATodayTravel and #19 TravelGreen.

• Travel deal websites, including #6 Travelzoo, #7 SmarterTravel, #9 TravelDeals and #15 Get a Travel
Deal. These results are from a subgraph queried during the time of summer 2010. We know that peo-
ple often have their vacation trips in summer and they want to reduce their travel expenses. Therefore,
it is expected that those travel deal websites are active and popular on Twitter during the summer.

• Airline companies such as #3 American Airlines and #14 British Airways, because information of air
transportation is a huge factor for travelers to plan their itinerary.

• Interesting travel destinations including #16 Eagles Nest Winery, #17 Chicago Events and #20 Tourism
Malaysia to promote their travel packages. Since our dataset is only a random sample from all tweets,
we did not find any tweets written by accounts representing famous places of interest in our dataset.

• Famous individual bloggers to share their experiences. This category includes #2 GWPStudio, #4
Sean Gardner, #5 Gary Arndt, #11 Andreas Susana, #12 Melvin and #13 JD Andrews. Some com-
monalities among these accounts are that they have large number of followers, they almost always
follow back to their followers, they also write a lot of tweets and post photos to share their own
traveling experiences.

From the above example, we can see that by running the PageRank algorithm on the subgraphs of a social
network, we can find popular and influential account representing organizations, companies or individuals
related to a content keyword in a time interval.
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Cluster 1 Cluster 2
PrizeDrawsUK PiggyCodeUK coupons2grab CouponsInfo SavvyPCDeals internetshopper

Deals4UK CodesUK slickwallet CouponNet Spaffin_ebay CouponCodeFeed
TopUKDeals CouponSpy Deals_Vista DirectCoupons redtagdeals

Table 11: Clustering results for the keyword “coupons”

5.4 Clustering on Subgraph
Here, we present experimental results on graph clustering queries. Table 11 shows the influential users
from two clusters we obtained when querying the subgraph for the keyword “coupons” in the time interval
from July 1st, 2010 to July 31st 2010. We can see from the screen names of these users that they are all
related to coupons and deals in online shopping. Furthermore, we can see that the user names listed in
cluster 1 are the Twitter accounts for online shopping websites in UK whereas the user names in cluster 2
are mostly in US with some global online shopping websites. Both cluster 1 and cluster 2 can be considered
as community kernels because the user accounts have a lot of followers who are their customers. Also
this cluster arrangement is reasonable because the accounts in different clusters have different follower
populations. The followers of cluster 1 are mostly customers from UK whereas the followers of cluster 2 are
mostly in US. Such clustering analysis is useful for online marketing with a targeted customer population.
6 Conclusions
We proposed G-SPUR, a novel algorithm to compress social network topology with low compression ratio,
high quality and fast running time. The compressed link structures require less storage space, and can be
directly used to speed up a series of graph mining kernels. It can also be used together with compressed
social content stream to answer content and time aware network queries.
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Abstract

Social media have enjoyed a rapidly increasing adoption among users in recent years. Millions of
users execute billions of actions (in form of tweets, messages, replies, likes, etc.) every day. The mas-
sive amount of social interactions online has contributed to the proliferation of social advertising.

Alongside the interest in online and social advertising, Twitter has introduced several advertising
opportunities to aid advertisers to promote their products/services to the “right" audiences. This in-
cludes providing advertisers with (1) different advertising options of “Promoted Tweets", “Promoted
Accounts", and “Promoted Trends", and (2) different user targeting options based on keywords, in-
terests, location, etc. In this paper, first we briefly discuss the Twitter advertising platform, and then
we introduce some research problems in this domain.

1 Introduction
Social media is used daily by millions of people (including but not limited to, journalists, celebrities, busi-
ness owners, charities, etc.). Services such as Twitter, Facebook, LinkedIn, and Pinterest allow millions of
users worldwide to interact with each other, share and consume content.

Micro-blogging platforms such as Twitter have experienced significant growth in user acquisition and
participation in recent years. Twitter enjoys worldwide adoption with 500M registered users who generate
over 400M tweets and 1.6B search queries every day. Social connections are established by “following"
users. When a user u follows a user v, u sees all tweets posted by v in its timeline. The timeline of a user
(say u) is the set of tweets generated by any user that u follows.

Given the wide user success Twitter enjoys, the focus on monetization for the platform has been on
advertising and marketing. Users utilize Twitter as a marketing tool to broadcast messages to their followers.
Companies, organizations, celebrities, etc. take advantage of this opportunity to target their followers for
different purposes (e.g., brand/product awareness, sales leads, or general information dissemination, etc.)
by broadcasting messages that will appear in followers’ timelines.

Several companies including Google enjoy wide success based on a keyword based advertising model.
Users utilize the search engine for search and business bid on the search keywords, taking the opportunity
to showcase ads in suitable places of the screen along with the search results. In a social setting however,
as is the case of Twitter, keyword search is only one functionality aspect. Twitter users follow other users
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advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse
any copyrighted component of this work in other works must be obtained from the IEEE.
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consuming content. The opportunity to mix content consumption and advertising is unique in a social setting.
Typically the content consumed by an individual is highly specific; understanding the type of content each
user consumes offer great opportunities for highly tailored advertising.

Recently Twitter introduced several advertising models ranging from the typical keyword search model
(that is very common in many online advertising platforms such as Google AdWords) to advertising models
based on interest targeting. In Section 2, we take a quick look into the different advertising models intro-
duced by Twitter. Considering the interest-based targeting models, there exists a clear need to identify the
interests and expertise of users in a social platform. Section 3 details how we can locate different topics of
expertise and interests for each user utilizing the Peckalytics system [1], followed by Section 4 introducing
research problems in this domain.

2 The Twitter Advertising Platform
Twitter recently introduced advertising models aiming to fulfill diverse marketing and advertising functions
on the platform. These models can be categorized into two main groups: (1) Models that facilitate adver-
tisers to better promote their products/services, (2) Models that aid advertisers target specific users more
effectively.

Advertisers typically promote three types of products: tweets, accounts, and trends. With the “promoted
tweets" option, a tweet is provided by the advertiser and it is inserted in the timelines or search results of
all users who are targeted. The “promoted accounts" option enables advertisers to acquire more followers
and build a larger community of advocates. The promoted account (provided by advertisers) is shown in
the search results and in the “Who to follow" section of targeted users’ profiles. “Who to follow" is a
section inserted next to any user u’s timeline suggesting what users u is likely to be interested in following.
The results in the “Who to follow" section are generated by Twitter’s recommendation engine [4]. Finally,
advertisers may sponsor trends utilizing the “promoted trends" Twitter advertising option. Trends are hot
topics of the day and are placed next to the timeline of each user. Trends can be promoted globally or
regionally. Consequently promoted trends offer wide exposure.

Twitter also introduced several advertising options to target users. Besides the keyword targeting model
that is popular in search engine advertising (e.g., in Google AdWords), Twitter introduced a new advertising
model that allows advertisers to target users by their interests, geography, and gender. Moreover, followers
of a set of Twitter accounts can be targeted as well as Twitter users who are similar (have similar interests)
to these followers (or to any specified set of users) [6].

When targeting users based on interests, an advertiser is able to provide a promoted tweet or a promoted
account and target it to a set of users who have specific interests. Interests are explicitly chosen by the
advertiser. In particular, an advertiser chooses a topic (or set of topics) t and provides a promoted tweet or a
promoted account. Based on proprietary algorithms, the Twitter advertising platform identifies all the users
who are interested in the topic t; the promoted tweet is inserted in the timeline or search results of these
users (explicitly identifying it as a promoted tweet); or suggests these users to follow the promoted account.
For example, one can conduct an advertising campaign on a wine festival providing a tweet and selecting
topics such as “wine", “tourism", etc. The provided tweet will be inserted in the timelines and search results
of users who are interested in “wine" and/or “tourism".

Users can also be targeted by geography. A promoted tweet or account is promoted to a group of people
who live in a specific location (country or metropolitan area). These options aid advertisers to target regional
audiences. Naturally regional targeting is preferable when the event or product is of regional interest only.

Advertisers also have the option (a) to provide Twitter accounts and target a promoted tweet to the
followers of these accounts and (b) to target users who are similar to the followers of some accounts. Assume
one aims to advertise a new independent movie. Naturally it makes sense to target those Twitter users that
are interested in independent movies. Notice that those interested in independent movies may or may not
tweet about such movies. Primarily they will be consuming content from Twitter users that are experts in
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independent movies and produce content primarily about such movies. Utilizing option (a), one can identify
the “experts" on “ independent movies" and target the followers of these experts. By following accounts
who have expertise on a topic such as independent movies, these users show interest on the topic; hence,
they are good targets for promoting a tweet on the new movie. Utilizing option (b), we look for users who
are similar to (have similar interests) the followers of experts on independent movies. These include all
users interested in independent movies.

Central to these approaches is the ability to identify “expert" users on particular topics on Twitter. In
Section 3, we explain some approaches including that of Peckalytics that utilizes crowd-sourced information
and social connections to identify the expertise and interest of users.

3 Identifying Expertise and Interests
It is expected that users generate content on topics they know well or care about. The expertise area of user
v is the set of topics that v knows well, or is known for in the community. For example, a company shares
tweets related to its products whereas a soccer player post tweets about the team, the upcoming events, some
personal life information, etc. Technically, by sharing information that is related to one’s expertise area, one
aims to become more popular to users who are interested in that field. This leads to gain more followers,
attention, and observability. On the other hand, one can understand what a user is interested in, by examining
who they follow. When user u follows user v, u expresses interest in the content v generates.

Let U = {u1, u2, · · · , un} be the set of users and T = {t1, t2, · · · , tm} be the set of topics. For a user
u, let Tu be the set of topics associated with u. It is feasible to obtain the set of topics mostly associated
with a Twitter account. These are usually the topics of expertise for the account holder. Several approaches
could be applied to assign an account to a list of topics declaring its expertise. Machine learning technology
is mature enough to classify the tweets one generates based on topics. Alternatively, the approach taken by
the Peckalytics project [1] provides results taking a crowd sourcing approach.

Definition 1: A user u ∈ U is an expert on topic t ∈ T , iff t ∈ Tu. This means that (for our specific way of
extracting topics) other Twitter users recognize u as an expert on topic t. We call topic t, a topic of expertise
for u.

Assume C = {c1, c2, · · · , cr} is the set of contents generated by users in U . In the Twitter setting,
a content can be a tweet, a shared video, a posted link, etc. Moreover, assume there exist a mapping
M : C → 2T that maps each content in C to a subset of topics T (topics that are associated with this
content). For example, M(c1) = {t1, t3, t5} translates to “content c1 is associated with topics t1, t3, and t5"
where content c1 can be the following tweet “The first lady Michelle Obama makes surprises by reading the
best picture in Oscars 2013" and topics t1, t3, and t5 can be Politics, Hollywood, and Art.

Definition 2: A user u ∈ U is interested in topic t ∈ T iff the probability that u follows (reads) any content
c that is associated with topic t (t ∈ M(c)) is higher than a given threshold θ ∈ [0, 1].

The approach taken by the Peckalytics project is to utilize Twitter lists to extract expertise and interests
for Twitter users. Twitter introduced the concept of Twitter lists. A Twitter list is a collection of Twitter
accounts (users). Typically, users create lists annotated with a descriptive name and place their favorite
accounts who are perceived by the creator of the list to be experts on a particular topic (typically the list
name) into the list. For example, a user may create a list with the name “politics” that includes Twitter
accounts @BarakObama, @AngelaMerkel, @HillaryClinton, @JohnKerry, and @DavidCameron. Lists
facilitate content filtering by topic. In other words, by creating a list on “politics”, a user can filter the tweets
in the timeline to see just the tweets generated by accounts in that list. Creating lists on different topics by
different users is a typical experience in Twitter. A user can create multiple lists and a Twitter account can
belong to any number of lists.
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Recent works have utilized Twitter lists to address some problems such as identifying users’ topics
of expertise [1, 2, 5], separating elite users (e.g., celebrities) from ordinary users [7], and sampling user-
generated data in social networks utilizing an expert based method [3].

Peckalytics utilizes the Twitter lists to identify topics of expertise and interest for different users. It
crawls the lists and utilizes Apache Lucene to store and index the lists and the users in the lists. This process
is executed constantly as new lists are regularly added and existing lists are dynamically modified by the
creators. Peckalytics associates with each Twitter account, a set of topics extracted from the names of the
lists containing that account. The process of extraction includes tokenization of the name, common word
(stop word) and spam filtering, entity extraction, and related word grouping via Wikipedia and WordNet.
An index mapping each Twitter account to the set of topics associated with the account is constructed and
managed by Lucene. Thus, for each Twitter account u, a set of topics that best describe the topics associated
(by other Twitter users) with u is identified. We refer to this set of topics as the expertise vector of user u.

The Lucene index supports all kinds of typical search query syntax including regular match (match in any
order, e.g., social media), phrase match (e.g., “social media"), boolean expressions (e.g., social AND media),
negative match (e.g., -social media), etc. These matching types are also supported by Twitter advertising
platform.

To identify the set of interested users for any topic t, Peckalytics utilizes the experts and the social
connections between Twitter users. Peckalytics reports the set of followers of experts on topic t as the set of
users who are interested in t. This is due to the assumption that a user u follows another user v provided that
u has an interest on the contents v generates. Therefore for each user u, we can identify the set of topics,
u has an interest (referred to as the interest vector of u) as the union of the expertise vectors of the users u
follows.

Peckalytics provides the following main functionality:

1. Identifies the expert Twitter users for any topic t. This functionality is helpful when an advertiser aims
to provide a set of Twitter accounts and promote a tweet to the set of followers of these accounts. The
experts on t are the most relevant accounts to provide while initiating an advertising campaign on t.

2. It offers analytical functions on the set of experts for any topic t. These functions include the identifi-
cation of other topics of expertise for a user, their conversations (e.g., the frequent keywords, keyword
pairs, and hashtags in their tweets), and the most popular sites they share content from. These analyt-
ics aid to assist the selection of topics or keywords an advertiser could choose for campaigns.

4 Some Research Problems
The Twitter advertising platform offers new research problems that could be of interest to business and
advertisers. This section introduces three research problems in this domain.

Alternative topics: When targeting a specific set of users, it is natural to ask how can we target them
with the lowest cost possible. In particular, assume one aims to advertise on topic t. Clearly, different topics
have different costs based on the popularity of the topic, number of advertisers that target the topic, etc.
The question is whether we can target the same or approximately the same set of users by advertising on a
cheaper topic t′ instead of t. We call t′ an alternative topic.

For example, suppose we want to conduct an advertising campaign on wine. Let’s say, we understand
that most of the users who are interested in wine are also interested in tourism. Moreover, suppose that
the cost of advertising on wine is higher than tourism. Instead of advertising on wine, we can advertise on
tourism, pay less, and still target a similar audience. In this example, tourism is an alternative topic for wine.
Identifying the alternative topics, therefore, is the first problem of interest. Moreover being able to quantify
precisely the similarity between the audiences of two alternative topics is of interest as well. It creates an
interesting optimization trade-off between similarity of audiences and cost for alternative topics.
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This problem can be studied in two scenarios: (1) The set of audiences for each topic is unknown,
or (2) The audience sets are given or can be computed based on the existing information. In both, the
problem requires solutions that (approximately) measure the similarity of different topics (based on given
or calculated audience sets) for a specific input topic and identify topics with lowest cost.

Combining interests: A second problem is to identify the different interests of a set of users. A set of
users interested in topic t (It), can be more useful for advertising purposes if we are able to understand other
topics users in Iu are interested in. For example, while conducting an advertising campaign on topic social
media, if we know that users who are interested in social media are also interested in seo (search engine
optimization), we can design a campaign that combines social media and seo (for example promoting the
benefits of social media for SEO campaigns). This could serve us better and attract more attention as the
campaign combines different interests of the audience.

One issue in this approach is the cardinality of It; potentially the set interests can be large. Conducting
campaigns that cover all the topics of interest is clearly impossible. For example assume that users interested
in movies are also interested in food, soccer, hockey. We aim to organize these topics into high-level cate-
gories (e.g., by merging hockey and soccer into a bigger category sports) and partition the users in It based
on these categories. Executing this organization, we can target users in Imovies (users who are interested in
movies) who are interested in food with a campaign combining movies and food; and target users in Imovies

who are interested in hockey and/or soccer with a campaign combining movies and sports.
The goal of the second problem is, therefore, to create a set of users in It as input, organize their other

interests into high-level categories (e.g., sports), and partition the users in It based on these categories. Thus
algorithms to partition interests and create high-level categories are required.

Expert refinement: Experts on a topic t may have expertise on other topics too. One problem of
interest would be to categorize the experts based on their different topics of expertise. For example, starting
with the experts on cloud computing we may be able to categorize them into a partition representing the
experts on cloud computing and virtualization and another partition representing cloud computing and data
centers. This organization aids us to have a clearer understanding of different experts. Why is this important?
One goal in advertising campaigns is to engage experts into promoting products. Consequently the followers
of these experts become aware and possibly adopt the product; subsequently this effect propagates in the
network. This behavior is a result of word of mouth in social media. One crucial step to instigate a word of
mouth activity is to identify the “right” initial experts to convince (the seeders). Identifying the right initial
experts is a challenging task as experts may vary in the presence of different objectives. For example, the set
of experts on the partition cloud computing and virtualization and those in the partition cloud computing and
data centers may each be more suitable while conducting different campaigns. The objective will dictate
which one is more suitable in each case.

Computationally, partitioning the experts based on the different topics of their expertise can be a hard
task as the “right" number of partitions is not clear. Moreover, it is not clear how topics and experts should
be grouped together. This points to the need for soft clustering approaches that optimize criteria specific to
the campaign under consideration.

5 Conclusion
The growth in the penetration of social networks in everyday life, opened new opportunities in advertising.
Deeper understanding of users based on their actions and disclosed information in social networks, offer
opportunities to target users based on their specific interests. In this paper, motivated by the Twitter adver-
tising platform we detailed techniques to identify expert users and users with specific interests on Twitter.
Subsequently we presented an initial set of problems that could be of interest to solve in the social (micro-
blog) advertising context. Social advertising is still in its infancy and research in this area could result in
real impact.
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Abstract

The cyber-physical systems (CPS) are envisioned as a class of real-time systems integrating the
computing, communication, and storage facilities with monitoring and control of the physical world.
With the proliferation of social media contents in the Web, a novel type of CPS applications allow
users to link interesting objects in the physical world to the corresponding social media contents
in the virtual world. Such new CPS applications require novel techniques to find the semantic
relationships between the two worlds, and provide efficient search tools in the integrated cyber-
physical world. In this paper, we propose a general framework for supporting social media search in
the cyber-physical Web, or CPSS. This framework addresses the key problems identified on different
schematic levels of CPSS. We report our studies on these problems and present our solutions to
four different categories of searches/recommendations in CPSS, namely the model-based search, the
non-model-based search, the real-time media search, and the geo-social analytics.

1 Overview
The cyber-physical systems (CPS) are envisioned as a class of real-time systems integrating the computing,
communication, and storage facilities with monitoring and control of the physical world. One interesting
CPS application in the mobile Internet is to provide the social media search “on the spot” with regard to
the physical world that a user sees, or literally WYRIWYS (What-You-Retrieve-Is-What-You-See). For
instance, a user viewing the Statue of Liberty through her smartphone camera can search for either the latest
tweets about the statue or its history from Wikipedia.

Social media search in CPS, or Cyber-Physical Social-media Search (CPSS), poses new technical chal-
lenges against the database and information retrieval community. First, various social media data, in the form
of textual documents, tweets, images, videos etc., have to be captured and organized by a unified framework,
which enables efficient access by CPSS applications. As an example, in [1] [6], new retrieval models are pro-
posed to extract structured data, such as names and addresses from the social archives, to rebuild the social
relationship and support efficient search. Second, some key techniques are required to support WYRIWYS,
such as retrieving objects by visibility [10] [7], searching with spatial information [15] [12], and linking
objects to their semantic tags etc. Third, different applications adopt different search philosophy. Thus, the
ranking and recommendation algorithms should be redesigned as well [2] [8] [13].

Copyright 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse
any copyrighted component of this work in other works must be obtained from the IEEE.
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Figure 1: The S4 document browser showing an object and a tweet box

Some people consider CPSS as Search with Augmented Reality (AR) interface. However, this opinion is
only partly right, as CPSS is much more than Augmented Reality Search. We believe that CPSS is uniquely
identified by the following properties:

• CPSS is tightly coupled with physical attributes of objects.

• CPSS requires real-time search over multi-media data.

• CPSS is highly relevant to social networks.

In this paper, we introduce a unified framework called S4 (literally for Sensor-enhanced Social me-
dia Search System) for supporting CPSS. This framework eases the development of various applications
using a generic hyper-media markup language which we call Cyber-Physical Markup Language (CPML).
Users can navigate in the physical world, which is integrated with documents written in CPML, using an
Augmented-Reality browser. S4 has an infrastructure supporting the basic navigation and interaction with
CPML documents which are bound to physical locations or objects. Figure 1 illustrates the mobile browser
screen of document “Library” containing a place-of-interest (POI) and a real-time tweet box.

As a part of the framework, we have implemented in S4 some of the key modules to support WYRIWYS,
such as searching by visibility and real-time tweet searching/summarization [5] [9] [11] [3]. Applications in
our framework can leverage these modules to enhance their own functionalities. We will report our design
philosophy and techniques used in developing these modules. We will also give our vision and suggestions
on some relevant research problems.

2 Overview of the S4 Framework
Cyber-Physical Social-media Search (CPSS) differs from conventional search in many aspects. In what
follows, we discuss these differences at several schematic levels.

(1) At the Query level, traditional search accepts keywords or images as the query input, while CPSS is
required to support more complex query types with novel search semantics. For instance, one distinguishing
feature of CPSS applications is the need for Augmented Reality (AR) user interface as an attempt to support
WYRIWYS.

(2) At the Data Access/Processing level, CPSS searches virtual “documents” which combine the con-
tents of the static HTML documents, the data attributes collected from physical objects, and the social media
associated with the corresponding objects. This requirement poses technical challenges in data access and
processing.

(3) Infrastructure level Apart from the internet, CPSS also requires certain infrastructure support, such
as indoor-space localization and sensor network communication.

In the remainder of this section, we propose a general framework called S4, literally for (Sensor-
enhanced Social media Search System) as our solution to CPSS. We shall focus on the first two levels
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Figure 2: Schematic View of S4 Framework

and report our recent studies on these topics. The third level is necessary for the implementation of the S4
framework. However, detailed discussion of CPSS infrastructure is out of the scope of this paper. Apart
from the mentioned work, we believe there are still countless open questions to be answered and problems
to be solved.

Figure 2 shows a schematic view of the S4 search engine. To help understand the functionalities of pro-
prietary components in S4, we shall introduce these components in different vertical (application) categories,
depicted in four columns in the diagram.

Category 1 (Model-Based Search) One prominent requirement in CPSS is the user’s ability to search
for documents associated with the physical objects that are captured by the phone’s camera. To support such
query, namelyWYRIWYS, we need a special index structure which can retrieve objects not only by textual
relevancy but also by user’s physical visibility to these objects.

Category 2 (Non-Model-Based Search) S4 provides multi-modal POI recognition functionality at the
query level. This functionality relies on the support from both spatial indexing and object matching with
computer vision techniques. The latter is built on top of a High-Dimensional Image Index.

Category 3 (Real-Time Media Search And Analysis) The social media generated from mobile devices
can be linked to the physical objects, due to the availability of various device sensors. Compared to the
conventional Web search, social media search poses new challenges as we need to merge the results from
the physical world and the virtual world in real-time.

Category 4 (Geo-Social Analytics) Search and recommendation in CPSS should consider the users’
social relationship and geo-locations. S4 includes a number of modules supporting geo-social analysis.
The Geo-Social Influence module computes at scale the Geo-Social Influence of historical events or places
recorded in large geo-social networks. Specifically, the module can tell which events (or places) are of
global attraction, while the others are more suitable only for the local people.

3 Modules of S4
3.1 Model-Based Search
Model-based search assumes that the physical objects have their virtual geometric models stored in the
database of the CPSS engine. S4 implements the spatial-visual keyword (SVK) query for processing model-
based search [14]. Specifically, given a collection C of spatial keyword objects and a query q, a SVK query
returns a list of k objects in C with the highest scores, where the score of each object is computed by combin-
ing its physical visibility and semantic relevancy with respect to q. The SVK query is different from simply
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imposing visible judgment on distance-based spatial keyword queries, since the visual conspicuousness of
objects should be quantitatively measured, based on human visual perception. For this purpose, we used a
novel visibility metric, which measures the visible parts of an object in a cumulative way.

The SVK query is processed using a Complete Occlusion-Map Retrieval (COR) method. This method
employs a hybrid index of spatial keyword objects called IR-tree [4] and works in a two-step manner.

• In the first step, a dynamic structure called Complete Occlusion-Map (COM) is built. This structure
partitions the surrounding space of the query point into a number of angular ranges and maintains the
visibility information for each range.

• In the second step, COR computes the concrete visibility for objects, as well as the tightest visibility
upper bounds for IR-tree nodes. Owing to the best-first search paradigm, the search space can be
effectively reduced and the top-k relevant objects are returned in an incremental manner.

The SVK query can be used to provide reality-augmented Web search for mobile users. The work
presented in [14] is a preliminary study which considers the simplest form of textual relevancy and the so-
called 2.5 dimensional visibility. It can be extended to more complicated metrics such as semantic relevancy
and 3D space visibility.

3.2 Non-Model-Based Search
Non-model-based search refers to the case when the geometric model of objects is not available and that the
sensor errors (as for location, orientation, viewing angles etc.) are fully considered for those stored in the
database. One essential problem for non-model-based search is to recognize a POI being captured from a
mobile phone camera.

The POI recognition module of S4 employs a two-phase approach to recognize the place of interest
from a large, impure set of images downloaded from online photo sharing services [10]. (1) During the
spatial phase, we use a probabilistic field-of-view(pFOV) model which captures the uncertainty in camera
sensor data. Based on this model, all POIs relevant to the FOV are given a likelihood of being captured by
the camera. (2) During the visual phase, we put forward the SC-similarity relying on the Sparse Coding, a
technique originated from the signal processing domain. The final ranking combines an uncertain geometric
relevance with the visual similarity. The most distinguishing feature of our approach is its ability to perform
well in contaminated, real-world online image database. Besides, our approach is highly scalable as its
implementation does not require any complex data structure.

Given the current camera parameters, the pFOV culling algorithm can quickly determine the candidate
POIs which may possibly appear in the image. As a result, the cost of subsequent evaluation of geo-relevance
and SC-similarity can be reduced significantly.

To compute the visual similarity, each candidate image is represented as a bag-of-visual-words column
vector. Let D be the matrix where each column is the vector for a candidate image. Then the problem
can be described as: Given a query image x, can we represent it as a linear combination of other candidate
images(columns in D)? This is a typical problem of sparse coding, where we try to find an optimal weight
vector aiming at reproducing the query image from the candiates. The output of the solution to this problem
(the weight values) are defined as our SC-similarity.

Finally, for each candidate POI, we compute a voting score as a linear combination of the geo-relevance
and SC-similarity of each candidate POI. The POI with the top ranking score is taken as the final result.
Experiments on densely populated areas report recognition accuracy of up to 92%.

3.3 Real-Time Media Search
The need for real-time media search comes from the explosive growth of user generated contents on the Web.
In S4, we provide the real-time search and summarization modules for tweets (short texts in microblogs).
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Figure 3: The Tweet Stream Summarization Module of S4

3.3.1 Real-Time Tweet Indexing and Search

In order to provide real-time search on fast arriving tweets, S4 employs the TI, an efficient indexing scheme
which relies on inverted index [2]. For each inserted microblog, it is identified either as an important blog
or a noise. Important blogs are indexed in real-time, while noisy blogs are indexed in a batch manner. To
help rank the microblogs, some statistics are maintained in memory.

TI adopts the bag-of-words model, which splits each microblog into a set of keywords. The inverted
index of the keywords are maintained in TI’s database. For a keyword, its index entry consists of a set of
microblog IDs, which are sorted by their timestamps (the time when a tweet is inserted into the system). We
maintain some social information in the index to support complex ranking functions.

1. In TI, the users of microblog are ranked based on their proprietary PageRank values in the user graph
of microblog system. The PageRank value of the publisher is appended to the records of the corre-
sponding microblog.

2. TI organizes the microblogs as a topic tree based on the reply/comment relationship. So we can rank
a microblog based on the popularity of the whole topic. The tree ID is then maintained by the index
as well.

3. Finally, we maintain the TF (Term Frequency) value for the keywords of each microblog as well. The
basic TF/IDF ranking function can be applied.

4. The ranking function in TI combines the timestamps, the TF/IDF value, the PageRank and the topic
popularity. Based on the above information, we can quickly classify a microblog as an important or
noisy microblog and adopt different indexing scheme accordingly.

3.3.2 Real-Time Tweet Summarization

To support real-time summarization of fast arriving tweet streams, S4 employs a scheme called continuous
tweet summarization [11]. The advantage of the scheme is that, given a topic-related tweet stream, one can
(i) continuously monitor the stream and produce a continuous timeline which grows by time. (ii) A range
timeline can also be provided to illustrate the big picture of topic evolution during some period. (iii) Users
can ask for summaries of arbitrary time durations (like drill-down or roll-up summary). Such functionalities
would not only facilitate easy navigation in topic-relevant tweets, but also support a range of data analysis
tasks such as instant reports or historical survey.

The structure of the tweet stream timeline module is depicted in Figure 3. The module consists of two
main components, namely a Tweet Stream Clustering component and a High-level Summarization compo-
nent. In the Tweet Stream Clustering component, we design an efficient tweet stream clustering algorithm,
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an online algorithm allowing for effective clustering of tweets with only one pass over the data. This algo-
rithm uses two data structures to keep important tweet information in clusters. One is a compressed structure
called Tweet Cluster Vector (TCV). TCVs are considered as potential sub-topic delegates and maintained dy-
namically in memory during stream processing. The other is a Pyramidal Time Frame (PTF), which is used
to store and organize cluster snapshots at different moments. The PTF allows historical tweet data to be
retrieved by any arbitrary time durations.

In High-level Summarization, we generate two kinds of summaries: online summaries and historical
ones. The summarization module also contains a topic evolving detection algorithm, which consumes on-
line/historical summaries to produce continuous/range timelines.

3.4 Geo-Social Analytics
The S4 engine also provides functionalities for geo-social analytics. We present the techniques used in two
modules for geo-social analytics in S4. One is for analyzing the geo-social influence of users and events.
The other is for recommending items in SoLoMo application.

3.4.1 Geo-Social Influence

This module conducts an in-depth analysis on the geographical and social correlations among SoLoMo users
for different events. Assuming that each user in the geo-social network is associated with a number of events,
the basic queries to be answered are:

• User Influence In a geo-social network, how can we measure the geo-social influence of one user
to the others?

• Influential Events Discovery Given a set of events in the network, which ones are the influential
events?

In our solution, we provide a unified user influence metric which combines social proximity and geo-
graphical mobility features of geo-social network users [15]. On the social side, we use a modified version
of the hitting time measure, named penalized hitting time (PHT), to quantify the social proximity between
LBSN users. Hitting time is a random-walk-based graph proximity measure which has been shown to be
effective for link prediction, query suggestion, graph clustering, and so on. However, it is sensitive to long
paths and tends to benefit popular entities. Our PHT measure intrinsically avoids this drawback. On the ge-
ographical side, we model the geographical influence with regard to distance by the power law distribution.

For efficient computation of PHT, our solution uses two approximate algorithms, namely the global
iteration (GI) and the dynamic neighborhood expansion (DNE) algorithms. Both algorithms work efficiently
when computing PHT, and meanwhile ensure tight theoretical error bounds. In particular, the DNE algorithm
can compute PHT in a constant time regardless of the network size.

Relying on the user influence metric, the influence of an event can be measured by aggregating the
influences of different users, with two specific aggregate functions, namely MAX and AVERAGE. We employ
the sampling technique to avoid computing geo-social influence for each user when estimating event score,
and adopt the threshold algorithm to efficiently retrieve the top-K influential events.

3.4.2 SoLoMo Recommendation

In S4, to measure the similarity between users, we use a new metric called co-space distance which considers
both the user distances in the real world (physical distance) and the virtual world (social distance). The
challenge of introducing such a hybrid distance is two-fold:

First, computing the social distance between all pairs of users is costly, even in an offline manner. In
our module, we use an efficient social distance computation algorithm based on the parallel processing
framework of MapReduce. The results of the MapReduce jobs are indices for the social distances between
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users (social index), which are inserted into a key-value store, such as Hbase1. To reduce the index lookup
overhead, top social distances are kept in the adaptive cache.

Second, if user u0 issues a friend recommendation query, the query engine needs to look up two indices,
the location index (e.g., the R-tree index) and the social index. Because the users update their geo-locations
continuously, we have to dynamically compute the co-space distances between u0 and other users at query
time. Such query processing incurs high I/O access costs. Therefore, we adopt two techniques, a progres-
sive query processing approach and an adaptive caching approach, to optimize the kNN recommendation
algorithm.

The recommendation process involves the following steps: Given a query from the mobile user, the
query engine exploits the R-tree index and the social index to retrieve the distances between users. Before
the two types of distances are returned to the query engine, they are merged into the co-space distances by
SVM model, which is trained from the human workers in the Amazon Mechanical Turk 2. The engine will
rank the users by their co-space distances and generate the top-K users as the query result.

4 Conclusions
In summary, we presented in this paper a general CPSS framework called S4. We focused our discussions
on the design and implementation of the key modules which support four different categories of queries and
recommendations in CPSS, namely model-based search, non-model-based search, real-time media search,
and geo-social analytics. There certainly remain vast amount of space to be explored in the mission to build
up a CPSS system. We briefly discuss the challenges and open questions to face when developing CPSS
applications, and our views of possible research directions.

(1) For model-based search, an essential problem is the sensor inaccuracy. For outdoor-space objects,
the geometric models acquired from sensors or other sources are almost always error-prone. As for indoor-
space objects, the localization of objects could be a major problem which is still being heavily studied. We
do expect disruptive technology on the infrastructure-level to address this problem.

(2) The non-model-based search produces poor performance when the visual database contains impure
images which include noises irrelevant to the POI being recognized. The proposed sparse-coding technique
only provides a limited solution to this issue. Therefore, we expect stronger computer vision techniques to
play an important role in this regard. For example, due to the large number of images available for each POI,
it is possible to detect for each image the salient object of interest. As a result, the object recognition can
expectedly achieve higher accuracy.

(3) For real-time media search/recommendation, the run-time performance is still a major challenge as
the “big-fast data” grows further in both scale and speed. The recent developments in big data processing
on new software and hardware platforms (such as GPU clusters) may shed some lights on this issue.

Apart from the above challenges, there are also needs for novel queries and recommendation algorithms
from new CPSS applications. We hope this paper would solicit attention from the research community to
CPSS which we envision as a future paradigm for mobile Web search.
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Abstract

The availability of enormous volumes of heterogeneous Cyber-Physical-Social (CPS) data streams
allow design and implementation of networks to connect people with essential life resources. We call
these networks Social Life Networks (SLNs). We are developing concepts, technology, and infrastruc-
ture to design and build these networks. SLNs will be helpful in addressing several essential societal
problems in everyday life as well as during abnormal situations. A person needs to be connected
to appropriate resources under the given situations and her own persona and context. Situations
should be detected by using heterogeneous data streams. We are building a software framework for
situation recognition and determining persona and personal context to connect people to resources
efficiently, effectively, and promptly. We present our research in situation recognition, EventShop,
persona building, and making connections using a few example scenarios.

1 Introduction
Like most other technologies, computing was developed and used for meeting human needs. It has been one
of the most effective and pervasive technologies to help in diverse human needs. In the last few years its
scope has exploded due to the tremendous growth in sensing, mobile, storage, processing, and communica-
tion technologies. In the form of mobile phones, armed with various sensors and actuators, computing can
now reach more than 80% humans even in the remotest and most underdeveloped parts of the world [12].
In a very practical sense, we are living through one of the most pervasive social transformations being fa-
cilitated by computing related technologies. Abraham Maslow developed the famous hierarchy of needs in
1943 [10]. His theory identifies five levels in basic human needs that start from the most basic needs for
survival to highest intellectual and sociological drive resulting from unique accomplishments. After physio-
logical demands the needs at the next level are about various forms of security ranging from bodily safety,
to economic security through employment, and emotional security through family. The human aspect of
serving and being served by social presence starts at this level, and hence basic social norms are part of this
level. When these two basic needs are satisfied, a person can live as a part of the social system. The next
stage expands the social needs from mere existence to belongingness, and thus creating a personal social
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structure that satisfies emotional needs and creates a sense of collective good. At the top of the needs hier-
archy is the need for humans to seek recognition from self, and this recognition comes from the feeling that
they are doing really well by contributing to the betterment of the society.

Maslow’s hierarchy helps us in understanding currently popular social computing and social media.
Starting from early days of civilization, new technology has always served the needs of the society. In a
very real sense, most of the issues in nature are the results of needs and resources. For meeting every need,
a resource is required. Therefore, it is not surprising that much of human knowledge addresses issues that
ultimately lead to either creation of resources or proper distribution of resources so that they can be used to
connect to proper needs. A very fundamental issue addressed by different fields of studies is how to connect
people to resources effectively, efficiently, and promptly based on their need in specific situations.

In the last few years, there is growing interest in social media, crowd-sourcing, participatory sensing and
social networks. Social networks are basically an infrastructure developed for connecting people to other
people. Like the last few years, social networks will keep evolving to increasingly meet needs of society.
Current social networks focus mainly on the third and fourth level of Maslowian hierarchy. We believe that
the computing infrastructure is now ready to meet the needs at the first two levels of the hierarchy also. We
call such an infrastructure Social Life Networks (SLNs) [1, 2]. Here we discuss an approach for building
SLN.

It is essential that SLN bridge across what is commonly called cyber, physical, and social systems.
Increasingly, emerging systems have sensors to provide data about physical world, and humans provide data
about the social world. All this data is assimilated and processed in cyber world of computers. This has
serious implications for data engineers for designing systems to solve new challenging problems. In the
following, we first discuss the changing nature of data and computing and then present our approach to
building SLN.

2 Recreating Dynamic Real World
A very important aspect of the real world is that it is dynamic. It is always evolving. Most of the new data is
collected to capture the dynamic nature of the world. The dynamic data about the past is important because
one can model the world using that data and use those models to understand the world, and more importantly,
predict future events. Until a few years ago, information systems limited collection and processing of data to
very limited aspects of the world. Moreover, many systems were designed assuming that updates were less
frequent than retrieval of data. A good example is the popularity of enterprise data warehouses towards the
end of the last century. These systems collected data related to limited aspects of operations of an enterprise
and tried to gain insights and understanding to create business intelligence. Around the same time one saw
beginnings of stream processing starting from streams of stock market data to the so called complex event
processing that dealt with limited number of data streams in an organization. Just in less than two decades,
the situation has changed dramatically. Collectively, now we are creating a global data warehouse that
involves massive number of heterogeneous data streams that must be analyzed in real time for predicting
evolving situations and managing them. Some fundamental differences between the data about two decades
ago and now are obvious. These differences are essential to building systems that will span cyber, physical,
and social aspects of computing. We believe that some important differences are:

1. Most of the data used to be structured and usually human mediated. Now most of the data comes from
disparate sensors as data streams.

2. Data used to be related to well-defined operations and expected events. Now the number of operations
and events is vast and one needs to deal with the unexpected all the time. Unexpected is the new
expected.

3. Data was either unrelated to geo-location or had only a few geo-spatial streams. Now the world is
being covered by sensors producing dense data streams. Soon almost every point will be covered by
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multiple sensors. Also, the granularity at which data is being collected is becoming finer and finer
every day. Location of data has become a fundamental attribute.

4. Most decisions were required for planning the operations of an enterprise. Increasingly, most deci-
sions are communicated to actuators for action. In many cases similar to human-sensing (in Twitter),
human actuation (as in flash mobs) may be used in situations like disaster management. Suggestions
and actuation are becoming more common than planning.

An obvious fact is that physical world events and situations take place in physical space. Situations are
the result of interactions among several related events. Events are the results of some happenings that are
due to significant state changes. State changes can be observed by measuring some physical attributes using
a sensor. Usually a sensor measures only a specific attribute, which is one of many different independent
or correlated attributes required to detect the state change. Norbert Wiener [11] showed that cybernetics is
the theory of control and communication in humans as well as machines. His work may be considered first
work in building CPS. Systems theory was strongly influenced by his research. Inspired by his approach,
we say that the state at a point in space at a given time can be characterized by N attributes. Thus,

S = [a1, a2, ..., aN ]T

Where S is the state of a point (x, y, z) and ai is an attribute at the point as measured by a sensor at time
t. For brevity we are dropping (x, y, z) and t from each variable and will be assuming until specifically
mentioned that all discussion is related to measurements and sensors at location (x, y, z) at time t.

It must be mentioned here that in CPS, many different types of sensors are used. The values obtained
directly from sensors may range from measured facts to expressed opinions. This is a challenge for CPS
systems to appropriately deal with these values from disparate sensors to reconstruct the state.

The information obtained from sensors varies in many respects. Methods to convert data to information
and the reliability of information could be entirely different for different sensors. Humans used as sensors,
as in participatory sensing, provide opinions, not measurements. The goal of many research projects with
Twitter data is to develop techniques to convert these opinions to one or more attributes above. Physical
sensors provide either direct measurements (as in a thermometer) or indirect measurements that are a result
of many-to-one mapping. To convert measurements to attributes at a point in space, complex approaches
involving inverse mapping are used. Cameras are the best example of such sensors. Thus, one can say that

ai = fi(mi)

where ai is the attribute derived from a measurement mi using the function fi for this attribute. The function
used to convert the measurement to an attribute could be very simple or it could be extremely complex.
Good examples of complex functions required for such processing are computer vision systems and tweet
analysis systems. As is well known, in a computer vision system, the intensity at a pixel is the result of a
3-dimensional to 2-dimensional projection as well as the light ray’s behavior in the environment. Computer
vision systems have been so challenging because of this complex many-to-one mapping that should be
inverted to find what the pixel really represents. The data value at a pixel is only suggestive and in itself not
much important. When analyzed in concert with other values and context, it becomes valuable and useful.

In the last few years, many computer science researchers have been fascinated by analysis and use of
Twitter data [3, 4]. We believe that this is because a Tweet is text and computing community finds it easy to
deal with. Automatic tweet analysis faces formidable challenges. A tweet is the result of a person expressing
her opinion on a topic. Though a tweet may have location and time associated with it, the topic of the tweet
may be unrelated to its origin. Another challenge is that different people have different language, style, and
motivations. To make this more complex, people need to package their thoughts in less than 140 characters
so they need to invent suggestive language. All these factors make tweets a weakly related, uncertain,
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suggestive source of information. One needs to consider this nature of tweets in using it as a source of
measurement coming from human sources.

The above analysis of these two different sources shows that one needs to seriously consider the nature
of data sources. In data engineering research, until recently the source and nature of data was usually
direct symbolic input in structured form. With emerging systems, this is just not doable for most emerging
applications. CPS systems present a formidable challenge in "integrating" uncertain heterogeneous data
streams with minimal latency. Given that the problems that could be solved using these systems are so
important and rewarding; these challenges should not be ignored.

3 General Architecture of the SLN System
In building SLN, we adopt a perspective that there are sensors, databases, and social networks that are
observing, storing, and reporting what is happening in the world. A subset of all these information sources
is used to characterize the status of available physical or human resources. Similarly, another special subset
is used to characterize needs. Thus, we consider all data sources in three classes: Observers, Resources, and
Needs. There is overlap and change of roles among these classes. Since the world is dynamic, we consider
these classes only in the context of a specific application.

Situation recognition is a central component of the SLN. Situations are the result of interactions among
several related events. Events are the results of some happenings that are due to significant state changes.
Based on the situation at a place, the system Identifies needs and available resources to satisfy those needs.
Situation recognition is always based on the context of a specific application and so are all other operations.
The data sources used by the system are also those publicly available or specifically made available in
the context of the application. The system closes the loop by sending actuation or action information to
appropriate needs and resources as a result of the matching.

An SLN system, as shown in Figure 1, then essentially implements the following loop:

1. Observe multiple real-time data sources

2. Determine interesting atomic events

3. Combine events using complex event definitions

4. Identify situations from these complex events based on personal, social and global context

5. Determine needs using the situations and a set of needs definitions

6. Monitor known resources based on their capabilities, availability, reachability and cost of access

7. Find maximally matching resource for each need detected

8. Communicate decisions and perform actions commensurate with needs by feeding the information
back to the social network

Here, not only people, but other objects like mobile applications (e.g. body activity monitors if allowed
by the owner), databases, and the Internet of Things (e.g., traffic sensors) also observe, store and report
information about the state of entities in the world. In this setting, we conceive of a world where (a) a signif-
icant body of information today comes from sensors, (b) the number of sensors is huge and the number of
events generated by them is even larger, (c) a large fragment of data, both human and device generated, have
associated locational information, (d) most situation and needs assessment decisions are for controlling and
managing real time and evolving situations, and (e) keeping pace with the real-time nature of our problem
space, planning and decision processes need to be viewed like a real-time control system that interoperates
with the publish- subscribe and update-propagation model of standard social networks.

A user update in a social network is analyzed to create a microevent (or a personal event), which is
then fed to the situation recognizer. The situation recognizer evaluates this microevent with respect to other
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events from different sources and creates an action (e.g., a message, a recommendation, an alert) that goes
back to the sender or a potential resource that can service the needs of the original message sender.

Figure 1: A Social Life Network connects people to resources
based on their need in specific situations. Here we show a high
level architecture of a SLN system that identifies needs and avail-
able resources in a specific situation and then connects needs to
resources.

In the next section we describe
two prototypes of situation recogni-
tion modules that take two different
approaches to detect situations. The
first, called EventShop [7, 8], is de-
signed to detect situations that are
global and spatio-temporal from sen-
sor streams that observe some portion
of a real-world phenomenon. The sec-
ond, called Personal EventShop, is de-
signed to detect situations about a per-
son’s private world. It can serve as
a personal agent that recognizes and
handles a situation "locally" when pos-
sible, or creates a micro-event.

4 Recognizing Situations
4.1 EventShop: The Prototype

of a Global Situation Recog-
nizer

Inspired by programming models for distributed systems, we have developed an open source situation model-
ing and recognition platform called EventShop (ES). The ES framework hides the complex implementation
in the background allowing users to simply create massive distributed systems for situation recognition as
well as allowing users to focus solely on their application logic and the semantics of their systems. The ES
framework has a) a programming model that allows for complex event streaming applications to be created
without distributed systems expertise, and b) a prototype implementation of the ES framework that proves its
capability to handle wide variety of heterogeneous data streams observing real world events on the internet
scale in real-time.

Unlike other CEP systems, ES uses a spatial grid stream as its data model because it is naturally suitable
for representing various geo-spatial data; each cell of the grid stores value of certain measure taken from
the corresponding geo-location. We adopt the grid structure, and call it E-mage (an event data based analog
of image) [6]. We believe that this generic data model can be used to integrate heterogeneous data coming
from spatio-temporally distributed web streams. For handling data streams, a special attention needs to be
paid to the semantics of aggregated data. Since the data streams are unbounded, combining such data to find
simple aggregated value such as summation and average is unclear. This problem is normally resolved by
introducing windows which transform an unlimited sequence of data streams into windows of data. In this
work, we use tumbling [5] window that splits data streams into non-overlapped contiguous windows.

There are four main components in the ES framework which are data ingestor, stream processing, in-
ternal storage, and situation output. In the data ingestor component, original raw spatio-temporal data,
either real-time or near real-time streams from the Web are translated into unified STT (Space-Time-Theme)
format along with their numeric values using an appropriate data wrapper. A data wrapper for a sensor
converts a measurement in a semantic attribute as shown in equation 2 above. Based on users’ defined
spatio-temporal resolutions mapper, the system aggregates each STT stream to form an E-mage stream.
This E-mage stream is then pulled by the stream processing and/or transferred to internal storage. Based on
the situation recognition model determined by the domain expert using something akin to equation 1 above,
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Figure 2: Asthma Relief Application (from left to right): Data Sources E-mages, ES Web UI, and Situation
Action Rule.

appropriate operators are applied on the E-mage streams to detect situation. In most of the cases, the final
step is a segmentation operation that uses domain knowledge to assign appropriate class to each pixel on
the E-mage. This classification results in a segmentation of an E-mage into areas characterized by the situ-
ation there. Once we know the situation, appropriate actions can be taken depending on application action
control rules in the situation output component. From the application developers’ point of view, a workflow
of moving from heterogeneous raw data streams to actionable situations consists of three simple steps: 1)
register or select appropriate data stream sources, 2) register complex event model by combining a rich set
of built-in operators and 3) define event condition action rules to send personalized alerts to relevant people.

The operators of EventShop are used to detect interesting E-mages based on value-patterns on the spatial
grid stream. We analyzed situation recognition models across multiple domains and defined the initial set
of operators, which are generic enough to capture most of the common requirements. These operators are:
selection, segmentation, aggregation, spatial characterization, spatial pattern matching, temporal character-
ization, and temporal pattern matching. We developed the EventShop system so that a situation modeler
can define an algebraic plan using the operators above to specify a situation. The output of such a situation
detection plan is an E-mage that can subsequently be transformed to a convenient form and sent directly to
a client, to a social network system, or to an end application used by the client.

4.2 Use Case: Asthma Relief Application
For the past couple of years, several applications have been designed and developed using the EventShop
framework to recognize real world situations. for example, hurricane detection and migration, demand hot-
spots of business products identification, flu outbreak, wildfires detection, flood migration, and allergy risk
and recommendation [7, 8]. Here, we demonstrate asthma relief application, the most motivating one. The
goal is to suggest safer areas to people who are in asthma risk zones. From asthma study, the severeness
of an environment to an asthma patient is related to the pollen count and air quality in that area. From
crowd sourcing aspect, if many people from a specific area discuss about asthma, it usually suggests that
the situation in that area is not very friendly to asthma patients. We combine data from these three data
sources, and then segment the aggregated data over entire US into three danger zones based on the values in
aggregated E-mages as shown in Figure 2. Then, a situation action rule is created to broadcast a safe area to
an individual. Although, these messages is partially personalized based on end-userâĂŹs location, we could
provide more specific and useful recommendations if more detailed information about end-user’s context
was available.
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4.3 Personal EventShop
To close the loop in a SLN, the system should send personalized action instructions/requests to users. This
requires knowing persona and personal context. We realized that the persona can be computed by using
several data streams related to a person. For this task many processing operations are similar in concepts
to EventShop. We are building Personal EventShop (PES) for meeting this need. PES is designed with the
assumption that the states, events and situations recognized by it come from observing personal information
streams. It uses an individual’s life events from sensors and mobile devices that capture fitness data, personal
events, eating habits, sleep patterns, and every day activities.These information comes from more structured
information sources like personal calendars, as well as less structured information such as activities on her
social networks. All these data sources represent data streams related to the person’s life. The persona is
built by collecting and analyzing these streams in a long term data warehouse for the person. For converting
different data streams to related event and situation streams, mathematical and computational operators
similar to those used in EventShop are required. The event data from Personal EventShop will be stored in
a personal data warehouse where all data and important results of intermediate computations will be stored.
Key aggregates and results required to build persona may also be saved for rapid computations of requested
information and insights when needed.

The major difference between the EventShop and PES is that PES deals with an individual related
stream so is basically one dimensional stream, while ES deals with physical space so is either 2-dimensional
or 3-dimensional grid. All activities of a person in her persona should be related to her life events.

5 Research Challenges
We believe that there are several challenges in building a SLN platform that will address many emerging
applications. We consider the following as particularly interesting and important research challenges.

1. Massive Heterogeneous Geo-spatial Stream Processing: Traditional data processing techniques con-
sidered data streams as a sequence of data items. Increasingly geo-spatial heterogeneous data streams
at different granularity must be combined to detect emerging situations. This requires a different
perspective on processing and managing data.

2. Situation Recognition: Complex Event Processing was satisfactory when we had a few data streams
and the result of CEP was of interest to an organization. Evolving situations affect large number of
people and resources and must be determined using complex spatio-temporal semantics of streams.
This is a new research area.

3. Persona and Personal Context: Most search engines create very narrow persona for users to serve
them advertisements or for recommending them products. Emerging applications have large number
of personal data streams that could be used to build more sophisticated persona that could be used in
diverse applications considering more specific user context.

4. Chronicle Analytics and Visualization: Enterprise data warehouses started making analytics and visu-
alization of data popular. Big data has created significant interest, some say hype, around analytics
and visualization. Now one should consider chronicles at different level and in different situations
and develop techniques for analysis, prediction, and visualization with as little latency as possible.

5. Dynamic Need-Resource Optimization: Now that we are developing techniques for situation depen-
dent need identification as well as resource availability, we need to extend techniques for optimal
satisfaction of needs in given situations with as little cost as possible. This becomes a challenging
task.
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6 Conclusion
We are living in a very exciting time. In the last few years data storage, processing, and communication
technologies have transformed the nature and volume of data that will be routinely used in emerging ap-
plications. The new data is massive number of geo-spatial heterogeneous data streams. This forces us to
rethink not only about the data, but also about the processing, communication, storage, analysis, and visu-
alization. This also opens up unprecedented opportunities for addressing serious societal problems that we
could not consider earlier. Very challenging, exciting, and rewarding time is ahead for people interested in
data.

References
[1] A. Gupta and R. Jain. Social life networks: A multimedia problem? In Proc. of ACM Conf. on

Multimedia (SIGMM’13), 2013.
[2] R. Jain and D. Sonnen. Social life networks. IT Professional, 13(5):8–11, 2011.
[3] H. Purohita, A. Hamptonb, V. L. Shalinb, A. P. Shetha, J. Flachb, S. Bhatta. What kind of con-

versation is Twitter? Mining psycholinguistic cues for emergency coordination. Computers in Human
Behavior, 29(6):2438Ð-2447, 2013.

[4] C. H. Lee. Unsupervised and supervised learning to evaluate event relatedness based on content mining
from social-media streams. Expert Systems with Applications, 39(18):13338Ð-13356, 2012.

[5] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. No pane, no gain: efficient evaluation of
sliding-window aggregates over data streams. ACM SIGMOD Record, 34(1):39–44, 2005.

[6] V. K. Singh, M. Gao, and R. Jain. Social pixels: genesis and evaluation. In Proc. of the ACM Int. Conf.
on Multimedia (MM’10), pages 481–490, 2010.

[7] M. Gao, V. K. Singh, Singh, and R. Jain. EventShop: From heterogeneous web streams to personalized
situation detection an control. In Proc. of the 3rd Annual ACM Web Science Conf. (WebSci’12), pages
105–108, 2012.

[8] S. Pongpaichet, V.K. Singh, M. Gao, and R. Jain. EventShop: Recognizing situations in web data
streams. In Proc. of the 1st WWW workshop on Web Oservatories (WOW’13), 2013.

[9] L. Jalali, and R. Jain. Building health persona from personal data streams. In Proc. of the 1st ACM
Workshop on Personal Data Meets Distributed Multimedia (PDM’13) , 2013.

[10] A.H. Maslow, A theory of human motivation. Psychological Review, 50(4), 370Ð96, 1943.
[11] N. Wiener. Cybernetics or the control and communication in the animal and the machine. Second

Edition, MIT Press, 1948.
[12] R. Scoble, S. Israel. Age of context: mobile, sensors, data and future privacy. First Edition, CreateS-

pace Independent Publishing Platform, September 5, 2013.

98



 

 

 

TCDE 
tab.computer.org/tcde/ 

Join TCDE via Online or Fax 

TCDE Mailing List 
TCDE will occasionally email 

announcements, and other 

opportunities available for 

members. This mailing list will 

be used only for this purpose. 

Membership Questions? 
Xiaofang Zhou 
School of Information Technology and 

Electrical Engineering 

The University of Queensland 

Brisbane, QLD 4072, Australia 

zxf@uq.edu.au 

 

The Technical Committee on Data Engineering (TCDE) of the IEEE Computer Society is concerned with the role of 
data in the design, development, management and utilization of information systems. 

· Data Management Systems and Modern Hardware/Software Platforms 

· Data Models, Data Integration, Semantics and Data Quality 

· Spatial, Temporal, Graph, Scientific, Statistical and Multimedia Databases 

· Data Mining, Data Warehousing, and OLAP  

· Big Data, Streams and Clouds 

· Information Management, Distribution, Mobility, and the WWW 

· Data Security, Privacy and Trust 

· Performance, Experiments, and Analysis of Data Systems 

The TCDE sponsors the International Conference on Data Engineering (ICDE). It publishes a quarterly newsletter, the 

Data Engineering Bulletin. If you are a member of the IEEE Computer Society, you may join the TCDE and receive 
copies of the Data Engineering Bulletin without cost. There are approximately 1000 members of the TCDE. 

It’s FREE to join! 

 

ONLINE: Follow the instructions 

on this page: 
www.computer.org/portal/web/tandc/joinatc 

 

TCDE Chair 
Kyu-Young Whang 
KAIST 

371-1 Koo-Sung Dong, Yoo-Sung Ku 

Daejeon 305-701, Korea 

kywhang@cs.kaist.ac.kr 

FAX: Complete your details and 

fax this form to  +61-7-3365 3248  

 

 

Name  

IEEE Member # 

Mailing Address 

 

Country 

Email 

Phone 

 

Member #

Country



IEEE Computer Society
1730 Massachusetts Ave, NW
Washington, D.C. 20036-1903

Non-profit Org.
U.S. Postage

PAID
Silver Spring, MD

Permit 1398


