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Abstract

Companies providing cloud-scale data services have increasing needs to store and analyze massive data
sets. For cost and performance reasons, processing is typically done on large clusters of tens of thou-
sands of commodity machines. Developers use high-level scripting languages that simplify understand-
ing various system trade-offs, but introduce new challenges for query optimization. One key optimization
challenge is missing accurate data statistics, typically due to massive data volumes and their distributed
nature, complex computation logic, and frequent usage of user-defined functions. In this paper we de-
scribe a technique to optimize a class of jobs that are recurring over time in a cloud-scale computation
environment. By leveraging information gathered during previous executions we are able to obtain ac-
curate statistics for new instances of recurring jobs, resulting in better execution plans. Experiments on
a large-scale production system show that our techniques significantly improve cluster utilization.

1 Introduction

An increasing number of applications require distributed data storage and processing infrastructure over large
clusters of commodity hardware for critical business decisions. The MapReduce programming model [7] helps
programmers write distributed applications on large clusters, but requires dealing with complex implementation
details (e.g., reasoning with data distribution and overall system configuration). High level scripting languages
were recently proposed to address these limitations, such as Nephele/PACT [1], Jaql [2], Hyracks [3], Ten-
zing [5], Dremel [15], Pig [16], Hive [18], DryadLINQ [19], and SCOPE [20, 21]. These languages offer a
single machine programming abstraction and allow developers to focus on application logic, while providing
systematic optimizations for the underlying distributed computation. As in traditional database systems, such
optimization techniques rely on data statistics to choose the best execution plan in a cost-based manner [21, 13].

Consider the sample script shown in Figure 1(a), which first joins the result of user-defined aggregates and
performs a global sort on the join result before writing the final answer. Figure 1(b) shows a possible execution
plan for this script. The plan first partitions the input data sets on the group by columns (a and c, respectively)
and computes user defined aggregates in parallel. It then re-partitions the aggregate outputs on the join column
sb and evaluates the join. Finally, it range-partitions the join output on the global sort columns and locally sorts
each partition.
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Figure 1: Alternatives to Execute a Distributed Query

Now, suppose that the user-defined filter UDFilter(b,c) > 5 on s.txt is very selective and drastically
reduces the data size. In this case, it would be better to merge all data on a single machine to compute the user-
defined aggregate and use a broadcast join variant (which does not require re-partitioning on the join column) to
obtain the join result, as shown in Figure 1(c). This alternative also assumes that the user-defined aggregate on
r.txt and the join are selective, so it reduces the degree of parallelism from 250 to 100 and changes the post-join
range-partitioning with a serial alternative. Clearly, this alternative plan is better than the previous one for the
given cardinality assumptions, but it will perform really badly if those assumptions are not valid.

The previous examples illustrate that the choice of a plan heavily depends on properties of the input data
and user-defined functions. Several aspects of highly distributed systems make this problem more challenging
compared to traditional database systems. First, it is more difficult to obtain and maintain good quality statistics
due to the distributed nature of the data, its scale, and common design choices that do not even account for
accurate statistics over input unstructured data. Even if we can collect statistics for base tables, the nature
of user scripts, which typically rely on user-defined code, makes the problem of statistical inference beyond
selection and projection more difficult during optimization. Additionally, the cost of user defined code is another
important source of information for cost-based query optimization. Such information is crucial for the optimizer
to choose the optimal degree of parallelism for the final execution plan and when and where to execute the user
code. Finally, input scripts typically consist of hundreds of operators, which magnify the well-known problem
of propagation of statistical errors. This negatively impacts the quality of the resulting execution plans, with a
potential performance impact in the orders of magnitude.

At the same time, a large proportion of queries in such a cloud-scale distributed environments are parametric
and recurring over a time series of data. The input datasets usually come in regularly, say, hourly or daily, and
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Figure 2: Compiling and Executing in SCOPE

more importantly, they share similar data distribution and characteristics. The same business logic is thus applied
to incoming datasets that are similar. We denote those jobs as recurring. In this work we describe mechanisms to
capture data statistics concurrently with job execution, and automatically exploit them for optimizing recurring
jobs. We achieve this goal by instrumenting different job stages and piggybacking statistics collection with the
normal execution of a job. After collecting such statistics, we show how to feed them back to the query optimizer
so that future invocations of the same (or similar) jobs take advantage of accurate statistics.

The rest of the paper is structured as follows. In Section 2 we review necessary background on distributed
computation engines, using the SCOPE system for illustration. In Section 3 we describe our solution for recurring
job optimization. Section 4 reports an experimental evaluation of our approach on real-world data. Section 5
reviews related work and Section 6 concludes the paper.

2 Background

We now describe the main components of distributed computation engines, using the SCOPE system as an
example. The ideas and results in this paper, however, are applicable to other engines as well.

Language and Data Model. The SCOPE language is declarative and intentionally reminiscing SQL. The select
statement is retained along with joins variants, aggregation, and set operators. Like SQL, data is modeled
as sets of rows composed of typed columns, and every rowset has a well-defined schema. At the same
time, the language is highly extensible and is deeply integrated with the .NET framework. Users can
easily define their own functions and implement their own versions of relational operators: extractors
(parsing and constructing rows from a raw file), processors (row-wise processing), reducers (group-wise
processing), combiners (combining rows from two inputs), and outputters (formatting and outputting final
results). This flexibility allows users to solve problems that cannot be easily expressed in SQL, while at the
same time enables sophisticated reasoning of scripts. Figure 2(a) shows a simple SCOPE script that counts
the different 4-grams of a given single-column structured stream. In the figure, NGramProcessor is a C#
user-defined operator that outputs, for each input row, all its n-grams (4 in the example). Conceptually,
the intermediate output of the processor is a regular rowset that is processed by the main outer query (note
that intermediate results are not necessarily materialized between operators at runtime).

Compilation and Optimization. A SCOPE script goes through a series of transformations before it is executed
in the cluster. Initially, the SCOPE compiler parses the input script, unfolds views and macro directives,
performs syntax and type checking, and resolves names. The result of this step is an annotated abstract
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syntax tree, which is passed to the query optimizer. Figure 2(b) shows an input tree for the sample script.
The SCOPE optimizer is a cost-based transformation engine that generates efficient execution plans for
input trees. The optimizer returns an execution plan that specifies the steps that are required to efficiently
execute the script. Figure 2(c) shows the output from the optimizer, which defines specific implementa-
tions for each operation (e.g., stream-based aggregation), data partitioning operations (e.g., the partition
and merge operators), and additional implementation details (e.g., the initial sort after the processor, and
the unfolding of the aggregate into a local/global pair). The backend compiler then generates code for
each operator and combines a series of operators into an execution unit or stage, obtained by splitting the
output tree into components that would be processed by a single node. The output of the compilation of a
script thus consists of (i) a graph definition file that enumerates all stages and the data flow relationships
among them, and (ii) the assembly itself, which contains the generated code. This package is sent to the
cluster for execution. Figure 2(c) shows dotted lines for the two stages corresponding to the input script.

Job Scheduling and Runtime. The execution of a SCOPE script is coordinated by a Job Manager (or JM). The
JM is responsible for constructing the job graph and scheduling work across available resources in the
cluster. A SCOPE execution plan consists of a DAG of stages that can be scheduled and executed on
different machines independent of each other. A stage represents multiple instances, or vertices, which
operate over different partitions of the data (see Figure 2(d)). The JM maintains the job graph and keeps
track of the state and history of each vertex in the graph. When all inputs of a vertex become ready, the
JM considers the vertex runnable and places it in a scheduling queue. The actual vertex scheduling order
is based on vertex priority and resource availability. During execution, a vertex reads inputs either locally
or remotely. Operators within a vertex are processed in a pipelined fashion, in a way very similar to a
single-node database engine. Every vertex is given enough memory and processing power to satisfy its
requirements, which sometimes prevents a new vertex from being run immediately on a busy machine.
Similarly to traditional database systems, each machine uses admission control techniques and queues
outstanding vertices until the required resources are available. The final result of a vertex is written to
local disks (non-replicated for performance reasons), waiting for the next vertex to pull data.

3 Recurring Job Optimization

The architecture of our approach to process recurring jobs is shown in Figure 3. We next describe our technique
in detail by illustrating the steps a typical job follows through the system:

1. Initially, a script is submitted to the cluster for execution. The script might be recurring or new, and it is
assumed to be annotated with parametric information (e.g., usually the input datasets change every day
following a simple expression pattern).

2. The compiler parses the input script, performs syntax and type checking, and passes an annotated abstract
syntax tree to the query optimizer. The query optimizer explores many semantically equivalent rewritings,
estimates the cost of each alternative, and picks the most efficient one. While doing costing, the optimizer
relies on cardinality estimates and other statistics for each plan alternative (see Section 3.4).

3. We extend the query optimizer to generate signatures for plan subtrees (explained in Section 3.1). During
plan exploration we collect all the signatures that are associated with execution alternatives, and before
implementation and costing we probe the statistics repository for signature matches. The repository is a
new service that stores plan signatures and the corresponding runtime statistics gathered during execution
of previous jobs. The optimizer relies on such feedback to produce a more effective execution plan.
Signatures can be matched not only on the same recurring job, but also on similar jobs that share common
subexpressions. During optimization, the optimizer instruments the resulting execution plan to collect
additional statistics during execution: the resulting execution plan might contain sub-plans not yet seen by
the statistics repository, and also data properties might change over time, invalidating previous estimates.
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Figure 3: Architecture to collect and leverage statistics on recurring jobs.

4. The resulting execution plan is passed to the job scheduler in the form of a directed acyclic graph, where
each vertex is an execution unit which looks similar to a single-node relational query plan, and each edge
corresponds to data transfer due to repartitioning operators.

5. The scheduler manages the execution graph to achieve load-balancing, outlier detection and fault toler-
ance, among others.

6. The job manager transfers the vertex definition of new execution units to be run in cluster machines, and
monitors the health and progress of each instance.

7. The runtime, which can be seen as a single-instance database engine, executes the vertex definition and
concurrently collects statistics requested by the optimizer and instrumented during code generation (see
Section 3.2).

8. When the vertex finishes execution, as part of the last heartbeat to the job scheduler, it sends back the
aggregated statistical information, which is collected and further aggregated over all vertex instances.

9. Before finishing execution of the whole job graph, the job manager contacts the statistics repository and
inserts the new statistics, to be consumed by future jobs. In case of duplicate signatures, the repository rec-
onciles them using different policies (see Section 3.3). Periodically a background task discards statistics
in the repository that exceed a certain age.

We next describe some components in additional detail.

3.1 Plan Signatures

Plan signatures uniquely identify a logical query fragment during optimization. This is similar to the notion
of view matching technology in traditional database systems. View matching is a very flexible approach, but
very difficult to extend beyond select-project-join queries with aggregation. Traditional view matching is able to
perform partial matching on different queries and compensate differences using additional relational operators.
For scalability purposes, and because many jobs are naturally recurring in our environment, we take a slightly
different approach that can handle any operator tree including user-defined operators in SCOPE. This approach
has some advantages over traditional view matching for our scenarios. First, we can handle any logical operator
tree including used defined operators in SCOPE, which are not considered in traditional view matching. Sec-
ond, signatures are very compact and easy to manipulate inside the optimizer and across components. Finally,
querying and updating the statistics repository for signature matches is a very efficient lookup operation.

Specifically, for every operator subtree we traverse back the sequence of rules applied during optimization [9]
until we reach the initial semantically equivalent expression1. Since the optimizer is deterministic, this initial

1Every rule transforms one plan into another, and we tag each resulting plan with the rule it produced it and its source. That way, we
can always track the plan back to the original logical expression.
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expression can be used as the canonical representation for the operator tree. We then recursively serialize the
representation of the canonical expression and compute a 64-bit hash value for each subtree, which serves as the
plan signature2. All fragments producing the same result are grouped together and have the same plan signature.

Parametric signatures. We relax the construction of signatures to accept parametric scripts. The reason
is that recurring scripts are virtually identical, but differ on certain constants or input names (e.g., there are
predicates that filter the current day). In absence of parametric signatures, every script would result in different
signatures and there would not be any possibility of reusing statistical information. In our approach, customers
are required to specify that certain constants (including input names) are parameters. In that case, the signature
skips the actual value of the constant and replaces it with a canonical value, which allows the system to match
subexpressions that differ only on parameters.

3.2 Statistics instrumentation

The compiler instruments generated code to capture statistics during execution and thus enable recurring
job optimization. Statistics need to satisfy certain properties to be useful in our framework. First, statistics
collection needs to have low overhead and consume little additional memory, as it is always enabled during
normal execution. Second, statistics must be composable, because each vertex instance computes partial values
that are then sent to and aggregated by the JM. Finally, statistics must be actionable, as there is no point in
accurately gathering statistics unless the query optimizer is able to leverage them.

We model statistics as very lightweight user-defined aggregates whose execution is interleaved with normal
vertex processing. This design allows to easily add new statistics into the framework as needed. Every operator
in the runtime is augmented with a set of statistics to compute. On startup, the operator calls an initialize
method on the statistics object. On producing each output row, the operator invokes an increment method on
the statistics object passing the current row. Before closing, the operator invokes a finalize method on the
statistics object, which computes statistics final results. Each statistics object also implements a merge method
used by the JM to aggregate partial values across stages. Examples of implemented statistics include:

Cardinality and average row size. The object initializes cardinality and row size counters to zero, increments
the cardinality counter and adds the size of the current row to the size counter for each increment
function call, and returns the cardinality counter and the average row size upon finalization.

Inclusive user-defined operator cost. The object initializes a timer on creation, does nothing on each incre-
ment function call, and returns the elapsed time at finalization.

Some common statistics are optimized further by directly generating code that performs the initialization, incre-
ment, and finalization methods without requiring virtual function calls.

3.3 Statistics Management

The job manager maintains a statistics package data structure while the job is executing. A statistics package
is a transient collection of plan signatures and aggregated statistics returned by completed vertices. Every time
a vertex finishes execution, it sends the collected statistics to the job manager in the last heartbeat. The job
manager uses the merge operation on statistics to aggregate all partial statistics for each signature.

The statistics repository is implemented as a key-value service, where keys are signatures and values are
serializations of the corresponding statistics. Every time a job finishes, the job manager updates the statistics

2Modulo hash collisions, the signatures of two plan fragments match if and only if they produce semantically equivalent results. In
practice, hash collisions are so rare that we can hash values as signatures, but other mechanisms are possible (e.g., using the serialization
of the logical tree as the signature itself).
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repository with all the statistics it gathered during execution. For that purpose, it creates a new entry for each
signature (or merges statistics if the signature already exists in the repository). The specific merging behavior
is dictated by a policy. Simple alternatives include keeping the last instance, or performing a weighted average
with aging. Additionally, the job manager stores all statistics for the job under the signature that corresponds to
the root of the corresponding script, to enable the single-job optimization mode discussed in Section 3.5.

3.4 Optimizing Recurring Jobs

SCOPE uses a transformation-based optimizer based on the Cascades framework [9], which translates input
scripts into efficient execution plans. Transformation-based optimization can be viewed as divided into two
phases, namely, logical exploration and physical optimization. Logical exploration applies transformation rules
that generate new semantically equivalent logical expressions. All equivalent logical expressions are grouped
together in a data structured called memo. Examples of such rules include pushing down selection predicates, and
transforming associative reducers into a local/global pair. Implementation rules, in turn, convert logical operators
to physical operators, cost each alternative, and return the most efficient one. Examples include using sort- or
hash-based algorithms to implement an aggregate query, or deciding whether to perform a pairwise or broadcast
join variant. To enable recurring job optimization, we extended the optimizer to compute signatures of each
expression it processes, which is done with very little overhead. Additionally, the optimizer leverages statistical
information stored in the global repository. For that purpose, we modify the entry point to any derivation of
statistical properties in the optimizer to perform a lookup on the statistics package. For instance, deriving the
cardinality of an expression starts by checking whether the signature of the expression matches an instance in the
statistics repository. If so, cardinality estimation is bypassed and replaced with the value found in the repository.
Since all equivalent logical expressions have the same signature, this technique produces consistent results.

3.5 Optimization modes

There are two different ways to leverage statistics during optimization of recurring jobs, with different trade-offs
in both performance and accuracy. The first approach, denoted single-job mode, performs a single call to the
statistics repository with the signature corresponding to the root of the whole script, and obtains all signatures
associated to the given script in previous executions. The second approach, denoted any-job model, performs
one call to the statistics repository for each signature is about to process. The second approach is clearly more
expensive as it requires a single service call per expression, but can be used to optimize queries that share script
fragments with other (unrelated) previously executed jobs.

4 Experimental Evaluation

In this section, we report an experimental evaluation of an implementation of our approach on SCOPE using real
queries on a large production cluster consisting of tens of thousands of machines at Microsoft. Each machine in
the cluster has two six-core AMD Opteron processors running at 1.8GHz, 24GB of DRAM, and four 1T B SATA
disks. All machines run Windows Server 2008 R2 Enterprise X64 Edition. The cluster runs tens of thousands
of jobs daily, reading and writing petabytes of data, powering different online services. Due to confidential
data/business information, we report performance trends rather than actual numbers for all the experiments.
We present a case study on a single query in Section 4.1 and show how recurring job optimization improves
subsequent executions. In Section 4.2 we summarize a performance evaluation on real-world queries.
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4.1 Case Study

Consider the simple query in Figure 1(a). Without knowing the selectivity of the user-defined predicate, aggre-
gates and join operators, the optimizer generates the plan shown in Figure 1(b), which consists of eight stages and
five complete data repartition stages. Stage S1 reads r.txt, computes a local aggregate, and hash-partitions
the resulting data on column (a) into 250 partitions. Stage S4 reads s.txt, applies the user-defined predicate,
computes a local aggregate, and hash-partitions the data on column (c) into 250 partitions. Stages S2 and S5
aggregate the tuples that belong to the same partition across all vertices, compute the user-defined aggregate and
hash-partition the data on column (sb) into 250 partitions. Stages S4 and S6 aggregate the tuples that belong to
same partition across all vertices. Stage S7 performs a pairwise join, locally sorts the join output on columns
(a,c,sb) and range-partitions the data into 250 partitions. Finally, stage S8 aggregates the tuples that belong to
the same partition across all vertices maintaining the sort order. During execution, the runtime collects different
data statistics in all operators as described in Section 3.

When the recurring job is submitted the next day, the optimizer knows the selectivity of all operators and
other data statistics and chooses the plan shown in Figure 1(c), which consists of only six stages with reduced
degree of parallelism, only one complete data repartitioning and two partial data shuffles (moving data to a single
machine). Stage S1 reads r.txt, computes a local aggregate, and hash-partitions the data on column (a) into 100
partitions (instead of 250). Stage S2 aggregates the tuples that belong to same partition across all vertices and
computes the user-defined aggregate. Stage S3 reads s.txt, applies the user-defined predicate and computes a
local aggregate. Now, instead of partitioning data on the group by column to compute a parallel aggregate, the
optimizer leverages the knowledge that data volume is small, and stage S4 aggregates all the data on a single
machine computing the user-defined aggregate serially. Another data partitioning on the join columns is avoided
by using a broadcast join variant in stage S5, followed by a local sort of the join output on columns (a,c,sb).
Since the join is very selective and significantly reduces the data volume, the repartitioning operation required
by the global sort is replaced by a merge operation in stage S8.

By gathering and exploiting statistics, the resource consumption of the job is reduced 6.5x and latency is
reduced 3.2x. In this example, a significant fraction of the improvement comes from structural changes in
the plan (e.g., introducing broadcast join variants), and a better determination of the degree of parallelism of
repartitioning operators, which is overestimated due to complex filter predicates and user defined operators.

4.2 Performance Evaluation

In this section we report results of evaluating our approach on a real workload. We observed that roughly 40%
of all the jobs submitted to our production clusters in a month have a recurring patterns and potentially benefit
from recurring job optimization. We now summarize our findings on a representative workload that consists
of 6 queries used internally to administer the cluster 3, and 7 queries from different customers (which include
advertising and revenue, click information, and statistics about user searches). The queries in the workload
have large variability in resource usage, with latencies that range from minutes to several hours, and process
from gigabytes to many terabytes. We computed the resource consumption as total machine-hours used by
each query with and without recurring job optimization. Figure 4 summarizes our results, and we can see
that resource consumption is reduced from 10% to 80% by using recurring job optimization. Most of these
improvements come from better structural plans and changes in the required degree of parallelism, as illustrated
in the previous section. At the same time, we observed negligible overhead for collecting runtime statistics
during query execution.

3All operational data generated by the cluster is stored in the cluster itself as tables, so analysis and mining of interesting cluster
properties can be done in SCOPE itself.
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Figure 4: Performance evaluation of recurring job optimization.

5 Related work

The problem of accurate statistics estimation is not unique to cloud-scale data processing systems, as traditional
query optimizers also have similar issues. To deal with parameter markers in queries, early work [6, 10] proposes
generating multiple plans at compile time. When unknown quantities are discovered at runtime, a decision tree
mechanism decides which plan to execute. This approach suffers from a combinatorial explosion in the number
of plans that need to be generated and stored at compile time. Progressive query OPtimization [14] uses the
optimizer to generate a new plan when cardinality inconsistencies are detected. This work detects cardinality
estimation errors in mid-execution by comparing the estimated cardinality values against the actual runtime
counts. If the actual count is outside a pre-determined validity range for that part of the plan, a re-optimization
of the current plan is triggered. This approach has high overhead of plan switching and wasted work, which
need to be paid in every run of the job.

More closely related to our work is the DB2 LEarning Optimizer (LEO) [17], which waits until a plan has
finished executing to compare actual row counts to the optimizer’s estimates. It learns from mis-estimates by
adjusting the statistics to improve the quality of optimizations in future queries. LEO does not capture and detect
job recurrence over time series of data. It tries to compute adjustments to base table statistics and selectivity of
predicates from output data sizes of operators, which can still be inaccurate and prone to oscillations. Our work
can be seen as adapting techniques that exploit statistics on views during optimization [4, 8] to a distributed
environment with explicit recurring jobs. The main contributions of our work are the generic signatures used to
match plan fragments, the lightweight generated collectors for statistics, the automatic determination of which
statistics to collect and store, and the policies around the statistics repository.

Some recent work [11, 12] extends self-tuning techniques to distributed environments. Without user inter-
vention, these approaches can (i) fine tune system parameters based on workload utilization, and (ii) perform
some optimizations across jobs by improving interactions between the scheduler and the underlying file system.
In contrast to our work, these approaches cannot make structural decisions on how to optimize and execute indi-
vidual queries, as they are not integrated with a query optimizer. Our techniques complement such approaches
by additionally changing the structure of the execution plans (such as switching to broadcast join variants), and
further improving cluster utilization.

6 Conclusion

Massive data analysis in cloud-scale data centers plays a crucial role in making critical business decisions and
improving quality of service. High-level scripting languages free users from understanding various system trade-
offs and complexities, support a transparent abstraction of the underlying system, and provide the system great
opportunities and challenges for query optimization. One key optimization challenge, which is amplified in
cloud-based systems, is missing accurate data statistics. In this paper, we propose a solution for recurring job

54



optimization for cloud-scale systems. The approach monitors query execution, collects actual runtime statis-
tics, and adapts future execution plans as the recurring job is subsequently submitted again. Experiments on
a large-scale production system show that the proposed techniques systematically address the challenges of
missing/inaccurate data statistics and improve overall resource consumption.
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