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Letter from the Editor-in-Chief

Technical Committee on Data Engineering

Kyu-Young Whang, our new Chair of the Technical Committee on Data Engineering has now appointed a new
executive committee. Kyu-Young describes his appointments in his letter on page two. I have changed the inside
front cover of the Bulletin to reflect Kyu-Young’s appointments. These appointments reflect both continuity and
new initiatives. I would urge you to read Kyu-Young’s letter and become familiar with the new Executive
Committee.

The Current Issue

There is no question but that we live in the age of ”big data”. I believe this is the result not only of new business
models (online advertizing, etc.) but also of economics. The continuing decline in prices for storage and compute
cycles means that ever larger amounts of both can be utilized for economic gain, as business pursue profits in a
widening sphere of activity, both traditional and new. But it is not only of commercial interest. Science is now
exploiting data at scales undreamed of in the past, for dealing with everything from searching for Higgs bosons
to conducting vast environmental studies.

While distributed database systems have for a long time provided scalability, ”big data” stretches well be-
yond what these systems have historically been able to handle. The map-reduce framework was the first to
emerge to deal with the current vast flood of data. Not surprisingly, however, users always want more and better.

Map-reduce systems are now being augmented in fundamental ways. We are learning new ways (and some
old ways) to describe what we want to do with our big data. Hence the re-emergence of SQL. With SQL and
other high level ways of describing the way we wish to process big data, one needs a compelling story that
performance will not suffer when using these idioms. Once again, query optimization enters the picture in a
very important way.

The current issue of the bulletin addresses how the handling of big data has evolved. Sudarshan, as issue
editor, has collected a good representative sample of work going on in this area. This includes industrial as well
as university based approaches. The scale of data represents a technical challenge not faced in the past. But also
a great commercial and scientific opportunity. So you can expect to see work continue in this area for many
years to come.

I want to thank Sudarshan for the fine work he has done in assembling the issue. The issue should serve as
a partial snapshot of the state of ”big data” processing. But more, it could serve as a gateway to understanding
how the field is evolving. I think you will enjoy the issue and greatly appreciate the efforts both of authors and
of Sudarshan, the issue editor.

David Lomet
Microsoft Corporation

1



Letter from the TCDE Chair

Dear IEEE Technical Committee on Data Engineering (TCDE) members,

It is my pleasure to announce the organization of TCDE Executive Committee. I retained most of the previ-
ous members for their valuable experience, but assigning different roles, while adding new members to initiate
new activities. As a result, we have the following names and assigned roles:

Chair: Kyu-Young Whang, KAIST(kywhang@mozart.kaist.ac.kr)

Advisor: Paul Larson, Microsoft

Executive Vice Chair: Masaru Kitsuregawa (ICDE Steering Committee Chair), Tokyo University

Vice Chair for Conferences/TCDE Representative to ICDE Steering Committee: Malu Castallanous, HP Labs

Editor-in-Chief of Data Engineering Bulletin: David Lomet, Microsoft

Secretary/Treasurer/Web Management: Thomas Risse, L3S Research Center (risse@L3S.de)

Awards Program Coordinator: Amr El Abbadi, University of California Santa Babara

Membership Promotion: Xiaofang Zhou, The University of Queensland (zxf@itee.uq.edu.au)

Member: (open assignment)

• Erich Neuhold, University of Vienna

• Alan Fekete, University of Sydney

• Wookey Lee, Inha University

ACM SIGMOD Liaison: Christian Jensen, Aarhus University

Chair of Self Managing Database Systems Working Group: Shivnath Babu, Duke University

Co-Chair of Cloud Data Management Working Group: Hakan Hacigmus, NEC Lab America

Paul Larson and Erich Neuhold are previous TCDE chairs and have served TCDE for many years revitalizing
its activities. Their valuable experience will be greatly appreciated for promoting TCDE and for serving its
members. David Lomet, a previous TCDE chair, has been Chief Editor of Data Engineering Bulletin since
1992. It is his leadership that has been at the heart of the success of IEEE Data Engineering Bulletin and
will continue to be so. Masaru Kitsuregawa, Steering Committee Chair of ICDE, our flagship conference, has
contributed a lot to enhancing the quality of ICDE as the chair and member of the steering committee for many
years, and will continue to serve in this capacity. Malu Castallanous has been a very active member of TCDE
Executive Committee and will oversee the issues on holding and sponsoring TCDE related conferences. Thomas
Risse has been successively managing the TCDE and ICDE meetings and TCDE Web for many years, and will
continue to serve the TCDE in that capacity with added responsibility of TCDE Treasurer.

Amr El Abbadi is a new member and will oversee and create new programs regarding TCDE awards. Recog-
nition is a very important aspect of academic advancement, and we will expand the award program to encourage
our members to make bigger achievements and contributions. Xiaofang Zhou is a new member who will be
responsible for TCDE membership promotion. We will make every effort to enlarge the TCDE community,
encourage active participation, and provide benefits to our members. Xiaofang has been very active and success-
ful in academic activities and is committed to this new role. Alan Fekete has been an active member of TCDE
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Executive Committee, and will remain to be so with possible new roles in coming years. Wookey Lee is a new
member who is expected to help the TCDE operations with various roles to be needed in the future.

Christian Jensen, being ACM SIGMOD Vice Chair, has been serving the TCDE as SIGMOD Liaison, and
will continue to serve in this capacity. Shivanath Babu is a new member representing Self Managing Database
Systems Working Group that he is leading. Hakan Hacigmus is a new member representing Cloud Data Man-
agement Working Group that he is co-chairing. Working groups are an important part of TCDE activity, and we
will encourage their creative activities and try to create more working groups to cover timely research areas that
will be of interest to TCDE members.

We have a very strong team of competent Executive Committee Members who are committed to serve for
the benefit of the TCDE community. I am very grateful to them for accepting my invitation to join the committee
and their willingness to serve. We also invite all TCDE members to actively participate in TCDE activities, and
we will be there to help you.

One of the first events that we are planning for the benefit of TCDE members is the new TCDE reception to
be held in the evening of April 8th (Monday) at the coming ICDE in Brisbane. We invite all the TCDE members
or members to be (those who are willing to sign up for the membership) to this reception. Xiaofang Zhou, the
Exec member in charge of membership promotion, who is organizing this reception will give you more details
on time and place etc.

Besides, there will be a TCDE sponsored student travel award granted at this ICDE. TCDE also sponsors two
workshops at ICDE: Self Managing Database Systems (SMDB) and Data Management in the Cloud (DMC).
We hope many of you will be able to attend these workshops.

Kyu-Young Whang
KAIST
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Letter from the Special Issue Editor

SQL Strikes Back! (a.k.a. The SEQUEL to NO-SQL)

Extremely large amounts of data are generated routinely today, by a number of sources such as Web sites,
genome sequence and microarray data, network monitoring data, sensor data, and many other kinds of sources;
such data is commonly referred to as “Big Data”. The map-reduce paradigm has proven particularly successful
for processing such Big Data. The availability of open-source map-reduce implementations such as Hadoop has
lead to widespread use of the map-reduce paradigm.

However, many data processing needs that can be expressed very concisely in SQL, need an inordinate
amount of coding effort in a map-reduce system, since the programmer has to express the logic of the com-
putation imperatively, and further has to make choices about the implementation. The above problems with
processing of Big Data have been addressed using two complementary approaches, which are represented by
different papers in this special issue.

The first approach continues to use the map-reduce programming paradigm, but seeks to automate the task of
optimizing map-reduce programs. For example, the paper by Herodotou and Babu discusses how to automate the
choice of parameters for the map-reduce system, which has been shown to significantly improve performance.
The paper by Dittrich et al. shows how to exploit the redundancy already present in the HDFS (and other similar)
storage system to create and store different indices and different physical layouts in the different copies, which
can significantly speed up map-reduce jobs. The paper by Kwon et al. addresses the problem of execution skew
in Hadoop, showing how to reduce skew by more sophisticated initial partitioning, and by run-time adaptation
through dynamic repartitioning.

The second approach provides programmers a declarative means of specifying their requirements, allowing
the implementation to choose the best way of executing the declarative specification. Three systems that follow
this approach are represented in this special issue: Apache Pig, SCOPE from Microsoft, and Hyracks from UC
Irvine. The use of such declarative specifications has already overtaken low-level map-reduce specifications
for many applications; for example, it has been reported that a large fraction of the map-reduce applications at
Facebook have been replaced by queries in Hive, which supports an SQL-like declarative language.

The paper by Gates et al. from Hortonworks describes several optimizations that have been implemented
in the Pig system, as well as some that are being considered for implementation. The SCOPE system from
Microsoft allows programmers to integrate declarative specifications in an SQL-like language with imperative
code written using a generalized map-reduce-combine framework. The declarative specification enables cost-
based optimization, but a particular problem with optimization for many Big Data applications is the lack of
statistics as well as the lack of detailed cost models for user-defined operations. The paper by Bruno et al.
describes how information from earlier runs can be used to better estimate costs of alternative plans, and thus
speed up future runs of a job. Since many jobs are executed repeatedly, their approach is particularly useful for
such recurring jobs. Finally, the paper by Borkar and Carey describes a common algebraic framework which
can support multiple Big Data languages such as SQL, Pig, or HiveQL. The algebraic framework implemented
in the Alegbricks platform, gives users a choice of language appropriate for their needs, while allowing a single
underlying implementation layer. The algebraic nature of the Algebrics platform lends itself to cost-based
optimization (an area of future work for the Algebricks project).

With support for declarative querying, and query optimization, combined with transaction support in a new
generation of massively parallel data management systems such as Google’s Megastore and Spanner, it is clear
that database technologies are back in the Big Data world. The articles in this issue provide an excellent insight
into recent developments in query optimization for Big Data systems, and I’m sure you will find them as exciting
a read as I did.

S. Sudarshan
IIT Bombay
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A What-if Engine for Cost-based MapReduce Optimization

Herodotos Herodotou
Microsoft Research

Shivnath Babu
Duke University

Abstract

The Starfish project at Duke University aims to provide MapReduce users and applications with
good performance automatically, without any need on their part to understand and manipulate the nu-
merous tuning knobs in a MapReduce system. This paper describes the What-if Engine, an indispensable
component in Starfish, which serves a similar purpose as a costing engine used by the query optimizer
in a Database system. We discuss the problem and challenges addressed by the What-if Engine. We
also discuss the techniques used by the What-if Engine and the design decisions that led us to these
techniques.

1 Introduction

Modern organizations are collecting data (“big data”) at an unprecedented scale. MapReduce systems like
Hadoop have emerged to help these organizations store large datasets and run analytics on the data to generate
useful insights [15]. Getting good performance from a MapReduce system can be a nontrivial exercise due to
the large number of tuning knobs present in the system. Practitioners of big data analytics like business analysts,
computational scientists, and systems researchers usually lack the expertise to tune these knobs.

The Starfish project at Duke University aims to provide MapReduce users and applications with good perfor-
mance automatically, without any need on their part to understand and manipulate the numerous tuning knobs.
Starfish uses a “profile-predict-optimize” approach:

1. Profile: Starfish observes and records the actual run-time behavior of MapReduce workloads executing on
the system. This part is handled by the Profiler in Starfish.

2. Predict: Starfish analyzes and learns from these observations, and reasons about hypothetical tuning
choices. This part is handled by the What-if Engine in Starfish.

3. Optimize: Optimizers in Starfish choose appropriate settings for the various tuning knobs in order to
improve workload performance along one or more dimensions (e.g., completion time, resource utilization,
pay-as-you-go monetary costs on cloud platforms).

Optimizers have been developed or are being developed in Starfish for setting a number of tuning knobs in-
cluding: (i) choice of query execution plans for SQL-like queries run over MapReduce, (ii) degree of task-level
parallelism for MapReduce jobs, (iii) physical design choices such as partitioning, ordering, and compression,

Copyright 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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(iv) provisioning of resources on the cluster, (v) selection of the virtual machine type on cloud platforms like
Amazon Web Services, (vi) choice of job and task scheduling policies, and others.

The effectiveness of the Optimizers in finding close-to-optimal settings of the various tuning knobs depends
heavily on the accuracy of the What-if Engine in predicting performance for different settings of these knobs.
Thus, the What-if Engine is a critical component in a big data ecosystem. Unfortunately, the importance of the
What-if Engine is often underestimated and undervalued.

In this paper, we focus on the “predict” piece of the “profile-predict-optimize” approach and describe
Starfish’s What-if Engine. We will first describe the overall problem and challenges that the What-if Engine
addresses, and then outline the approach taken to solve them. We also report an experimental evaluation of the
What-if Engine.

2 Design of Starfish’s What-if Engine
2.1 Problem and Design Decisions
Consider a MapReduce job j = ⟨p,d,r,c⟩ that runs program p on input data d and cluster resources r using
configuration parameter settings c. Job j’s performance can be represented as:

perf = F1(p,d,r,c) (1)

Here:

• perf is some performance metric (e.g., execution time) of interest for jobs that is captured by the perfor-
mance model F1.

• The MapReduce program p is written directly in terms of map and reduce functions by a user or generated
from a higher-level query specified in languages like HiveQL and Pig Latin [15].

• The input dataset d is represented by information such as d’s size, the block layout of files that comprise
d in the distributed file-system used by MapReduce, and whether d is stored compressed.

• The cluster resources r are represented by information such as the number of nodes and node types in r,
the number of map and reduce task execution slots per node, and the maximum memory available per task
slot.

• The job configuration c includes parameters such as the number of map and reduce tasks, the partitioning
function, settings for memory-related parameters, the use of compression, and the use of the combine
function [15].

Tuning knobs to optimize the performance of the MapReduce job j = ⟨p,d,r,c⟩ are present in each one of p, d,
r, and c. For example, if p represents a join operation, then a map-side join or a reduce-side join can be done
[1]. The data layout can be tuned by using row-based or column-based layouts [8]. The cluster resources can
be tuned by choosing appropriate virtual machine types [6]. The job configuration can be tuned by adjusting the
number of reduce tasks [5].

If the function F1 from Equation 1 can be estimated accurately by the What-if Engine, then Starfish’s Opti-
mizers can be very effective at finding optimal settings for the above tuning knobs. However, accurate modeling
of F1 has to overcome many challenges that arise in distributed processing such as task parallelism, scheduling,
and interactions among the large number of tuning knobs involved.

Furthermore, MapReduce jobs usually run as part of a MapReduce workflow W , where W is a directed
acyclic graph (DAG) GW that represents a set of MapReduce jobs and their dataflow dependencies. Consider a
MapReduce workflow W that runs the programs {pi} from the corresponding jobs ji in GW on input base datasets

6



What-if Questions on MapReduce Job Execution
WIF1 How will the execution time of job j change if I increase the number of reduce

tasks from the current value of 20 to 40?
WIF2 What is the new estimated execution time of job j if 5 more nodes are added to

the cluster, bringing the total to 20 nodes?
WIF3 How will the execution time of job j change when I execute j on the production

cluster instead of the development cluster, and the input data size increases by
60%?

WIF4 What is the estimated execution time of job j if I execute j on a new cluster with
10 EC2 nodes of type m1.large rather than the current in-house cluster?

Table 1: Example questions the What-if Engine can answer.

{bi} and cluster resources r using configuration parameter settings {ci}. W ’s performance can be represented
as:

perf = F2({pi},{bi},r,{ci}) (2)

Building the performance model F2 to predict workflow performance brings in additional complications due to
concurrent execution of independent jobs in W on the cluster resources r.

It is quite clear that performance prediction is a very hard problem. At the same time, it is a problem that
needs a reasonable solution if we want to generate good settings for tuning knobs automatically. One of the
contributions we have made in Starfish is to identify an abstraction of the prediction problem that strikes a good
balance between being applicable and admitting to good solutions. This abstraction can be characterized by the
following three design decisions:

1. Address relative prediction problems instead of absolute prediction problems.

2. Develop profiles that capture the salient aspects of MapReduce execution. Use profiles consistently to rep-
resent the observed performance of actual MapReduce jobs that run as well as the predicted performance
of hypothetical MapReduce jobs.

3. Break the overall prediction problem into composable components and attack each component with the
best modeling technique available among analytical models, black-box models, and simulation models.

2.2 Relative What-if Questions

Starfish’s What-if Engine can answer any what-if question of the following general form:1

Given the profile of a job j = ⟨p,d1,r1,c1⟩ that runs a MapReduce program p over input data d1
and cluster resources r1 using configuration c1, what will the performance of program p be if p is
run over input data d2 and cluster resources r2 using configuration c2? That is, how will job j′ =
⟨p,d2,r2,c2⟩ perform?

Note the relative format in which the what-if question is specified. Being relative here means that the What-if
Engine is given complete information about the execution of the job j, and then asked about how a related, but
different, job j′ will perform. Intuitively, relative what-if questions are easier to answer than absolute questions.
In the relative case, only an estimate of the change in performance is needed; whereas the absolute case as
represented by Equation 1 needs a prediction starting from scratch with limited input information provided.

Table 1 lists several interesting what-if questions that users or applications can express directly to the Starfish
What-if Engine. For example, consider question WIF1 from Table 1. Here, the performance of a MapReduce

1For simplicity of presentation, this specification considers a single MapReduce job instead of a workflow.
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Algorithm for predicting MapReduce workflow performance
Input: Profile of jobs in workflow, Cluster resources, Base dataset properties, Configuration settings
Output: Prediction for the MapReduce workflow performance

For each (job profile in workflow in topological sort order) {
Estimate the virtual job profile for the hypothetical job (Sections 3.1, 3.2, and 3.3);
Simulate the job execution on the cluster resources (Section 3.4);
Estimate the data properties of the hypothetical derived dataset(s) and the overall job performance;

}

Figure 1: Overall process used by the What-if Engine to predict the performance of a MapReduce workflow.

job j = ⟨p,d,r,c⟩ is known when 20 reduce tasks are used to run j. The number of reduce tasks is one of the
job configuration parameters in c. WIF1 asks for an estimate of the execution time of a hypothetical job j′ =
⟨p,d,r,c′⟩ whose configuration c′ is the same as c except that c′ specifies using 40 reduce tasks. The MapReduce
program p, input data d, and cluster resources r remain unchanged in j′.

As indicated in Table 1, the What-if Engine can answer questions on real and hypothetical input data as well
as cluster resources. Furthermore, as we will describe in Section 3, the What-if Engine can answer what-if
questions for MapReduce workflows composed of multiple jobs that exhibit producer-consumer relationships or
are run concurrently.

2.3 Profiles

Note that a relative what-if question needs the profile of a MapReduce job as input. A profile consists of fields
that together form a concise summary of the job’s execution. These fields are partitioned into four categories:2

• Cost fields: These fields capture information about execution time at the level of tasks as well as phases
within the tasks for a MapReduce job execution. Some example fields are the execution time of the Collect
and Spill phases of a map task.

• Cost statistics fields: These fields capture statistical information about execution time for a MapReduce
job—e.g., the average time to read a record from the distributed file-system, or the average time to execute
the map function per input record—that is expected to remain unchanged across different executions of
the job unless the CPU and/or I/O resources available per node change.

• Dataflow fields: These fields capture information about the amount of data, both in terms of bytes as well
as records (key-value pairs), flowing through the different tasks and phases of a MapReduce job execution.
Some example fields are the number of map output records and the amount of bytes shuffled among the
map and reduce tasks.

• Dataflow statistics fields: These fields capture statistical information about the dataflow—e.g., the average
number of records output by map tasks per input record (the Map selectivity) or the compression ratio of
the map output—that is expected to remain unchanged across different executions of the MapReduce job
unless the data distribution in the input dataset changes significantly across these executions.

3 MapReduce Performance Prediction
Figure 1 shows the What-if Engine’s overall process for predicting the performance of a MapReduce workflow.
The DAG of job profiles in the workflow is traversed in topological sort order to ensure that the What-if Engine

2Due to space constraints, we refer the reader to [4] for the full listing and description of fields in all four categories.
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Figure 2: Overall process used by the What-if Engine to estimate a virtual job profile.

respects the dataflow dependencies among the jobs. For each job profile, a virtual job profile is estimated for
the new hypothetical job j′ based on the new configuration settings, the cluster resources, and the properties of
the data processed by j′ (Sections 3.1, 3.2, and 3.3). The virtual profile is then used to simulate the execution
of j′ on the (perhaps hypothetical) cluster (Section 3.4). Finally, the simulated execution is used to estimate the
data properties for the derived dataset(s) produced by j′ as well as the overall performance of j′. The overall
workflow performance is predicted by combining the performance predictions for each job in the workflow.

The process of virtual profile estimation forms the foundation on which Starfish’s ability to answer what-if
questions is based. Specifically, given the profile of a job j = ⟨p,d1,r1,c1⟩ and the properties of input data d2,
cluster resources r2, and configuration parameter settings c2 of a hypothetical job j′ = ⟨p,d2,r2,c2⟩, the virtual
profile of j′ has to be estimated. Our solution for virtual profile estimation is based on a mix of black-box
and white-box models. The overall estimation process has been broken down into smaller steps as shown in
Figure 2, and a suitable modeling technique was picked for each step. These smaller steps correspond to the
four categories of fields in a job profile. We use conventional cardinality (white-box) models from database
query optimization to estimate dataflow statistics fields (described in Section 3.1), relative black-box models
to estimate the cost statistics fields (described in Section 3.2), and new analytical (white-box) models that we
developed to estimate the dataflow fields, and in turn, the cost fields (described in Section 3.3).

3.1 Cardinality Models to Estimate Dataflow Statistics Fields
Database query optimizers keep fine-grained, data-level statistics such as histograms to estimate the dataflow in
execution plans for declarative queries. However, MapReduce frameworks lack the declarative query semantics
and structured data representations of Database systems. Thus, the common case in the What-if Engine is to not
have detailed statistical information about the input data d2 in the hypothetical job j′. By default, the What-if
Engine makes a dataflow proportionality assumption which says that the logical dataflow sizes through the job’s
phases are proportional to the input data size. It follows from this assumption that the dataflow statistics fields
in the virtual profile of j′ will be the same as those in the profile of job j given as input. When additional in-
formation is available, the What-if Engine allows the default assumption to be overridden by providing dataflow
statistics fields of the virtual profile directly as input.

3.2 Relative Black-box Models to Estimate Cost Statistics Fields
Clusters with identical resources will have the same CPU and I/O (local and remote) costs. Thus, if the cluster
resource properties of r1 are the same as those of r2 in the what-if question, then the cost statistics fields in the
virtual profile of the hypothetical job j′ can be copied directly from the profile of job j given as input. This
copying cannot be used when r1 ̸= r2, in particular, when job j′ will run on a target cluster containing nodes
with a different type from the source cluster where job j was run to collect the profile that was given as input.
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The technique we use when r1 ̸= r2 is based on a relative black-box model Msrc→tgt that can predict the
cost statistics fields CStgt in the virtual profile for the target cluster from the cost statistics fields CSsrc in the job
profile for the source cluster.

CStgt = Msrc→tgt(CSsrc) (3)

Generating training samples for the Msrc→tgt model: Let rsrc and rtgt denote the cluster resources respectively
for the source and target clusters. Suppose some MapReduce program p is run on input data d and configuration
parameter settings c on both the source and target clusters. That is, we run the two jobs jsrc = ⟨p,d,rsrc,c⟩ and
jtgt = ⟨p,d,rtgt ,c⟩. From these runs, we can generate the profiles for each individual task in these two jobs by
direct measurement. Therefore, from the ith task in these two jobs,3 we get a training sample ⟨CS(i)

src,CS(i)
tgt ,⟩ for

the Msrc→tgt model.
The above training samples were generated by running a related pair of jobs jsrc and jtgt that have the

same MapReduce program p, input data d, and configuration parameter settings c. We can generate a complete
set of training samples by using a training benchmark containing jobs with different ⟨p,d,c⟩ combinations.
Selecting an appropriate training benchmark is nontrivial because the two main requirements of effective black-
box modeling have to be satisfied. First, for accurate prediction, the training samples must have good coverage
of the prediction space. Second, for efficiency, the time to generate the complete set of training samples must
be small. Both actual and synthetic jobs can be used to generate the training samples. Different methods to
generate the training benchmark are described in [4].
Learning all the Msrc→tgt models needed: It is important to note that the training benchmark has to be run only
once (or with a few repetitions) per target cluster resource; giving only a linear number of benchmark runs, and
not quadratic as one might expect from the relative nature of the Msrc→tgt models. The training samples for each
source-to-target cluster pair are available from these runs. For example, to address question WIF3 from Table 1
(i.e., planning for workload transition from a development cluster to production), one run each of the training
benchmark on the development and the production cluster will suffice.

Once the training samples are generated, there are many supervised learning techniques available for gen-
erating the black-box model in Equation 3. Since cost statistics are real-valued, we selected the M5 Tree Model
[12]. An M5 Tree Model first builds a regression-tree using a typical decision-tree induction algorithm. Then,
the tree goes through pruning and smoothing phases to generate a linear regression model for each leaf of the
tree.

In summary, given the cost statistics fields CSsrc in the job profile for the source cluster rsrc, the relative
black-box model Msrc→tgt is used to predict the cost statistics fields CStgt in the virtual profile for the target
cluster rtgt when rsrc ̸= rtgt .

3.3 Analytical Models to Estimate Dataflow and Cost Fields
The What-if Engine uses a detailed set of analytical (white-box) models to calculate the dataflow fields in the
virtual profile given (i) the dataflow statistics fields estimated above, and (ii) the configuration parameter settings
c2 in the hypothetical job j′. These models give good accuracy by capturing the subtleties of MapReduce job
execution at the fine granularity of phases within map and reduce tasks. The current models were developed for
Hadoop, but the overall approach applies to any MapReduce implementation. A second set of analytical models
combines the estimated cost statistics and dataflow fields in order to estimate the cost fields in the virtual profile.
The full set of models is described in [4].

3Ensuring that the tasks have the same input data d and configuration parameter settings c ensures that there is a one-to-one corre-
spondence between the tasks in these two jobs.
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Figure 3: Map and reduce time breakdown for Word Co-occurrence jobs from (A) an actual run and (B) as
predicted by the What-if Engine.

3.4 Simulating the Execution of a MapReduce Workload
The virtual job profile contains detailed dataflow and cost information estimated at the task and phase level
for the hypothetical job j′. The What-if Engine uses a Task Scheduler Simulator, along with the job profiles
and information on the cluster resources, to simulate the scheduling and execution of map and reduce tasks
in j′ (recall Figure 1). The Task Scheduler Simulator is a pluggable component that takes into account the
dataflow and resource dependencies among the MapReduce jobs in a workflow. Our current implementation is
a lightweight discrete event simulation of Hadoop’s default FIFO scheduler.

The final output—after all jobs have been simulated—is a description of the complete (hypothetical) work-
flow execution in the cluster. The desired answer to the what-if question—e.g., predicted workflow running time,
amount of local I/O, or a visualization of the task execution timeline—can be computed from the workflow’s
simulated execution.

4 Accuracy of What-if Analysis
We report some empirical results on the accuracy of the What-if Engine in predicting the overall execution
time of different MapReduce workflows. In our evaluation, we used Hadoop clusters running on Amazon EC2
nodes of various sizes and node types. Figure 3 compares the actual MapReduce task and phase timings with
the corresponding predictions from the What-if Engine for a Word-Cooccurrence MapReduce program run over
10GB of real data obtained from Wikipedia. Note that even though the predicted timings are slightly different
from the actual ones, the relative percentage of time spent in each MapReduce phase is captured fairly accurately.

We also ran multiple MapReduce workflows under 40 different configuration settings. We then asked the
What-if Engine to predict the job execution time for each setting. Figures 4(a)-(c) show scatter plots of the
actual and predicted times for these 40 jobs. Observe the proportional correspondence between the actual and
predicted times, and the clear identification of settings with the top-k best and worst performance (indicated by
the green and red dotted circles respectively).

The fairly uniform gap between the actual and predicted timings in Figure 4 is due to inaccuracies in the
profiles given as input to the What-if Engine. These inaccuracies are caused by the overhead of the Java profiling
technology that Starfish uses currently. The gap is largest when the MapReduce program runs under CPU
contention—which was the case when the Word Co-occurrence job was profiled. Unlike the case of Word Co-
occurrence in Figure 4(a), the predicted values in Figures 4(b) and 4(c) are closer to the actual values; indicating
that the profiling overhead is reflected less in the costs captured in the job profile. We expect to close this gap
using commercial Java profiling technology.

Another common use case we considered in our evaluation is the presence of a development cluster, and
the need to stage jobs from the development cluster to the production cluster. In our evaluation, we used a
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Figure 4: Actual Vs. predicted running times for (a) Word Co-occurrence, (b) WordCount, and (c) TeraSort jobs
running with different configuration parameter settings.

Figure 5: Actual and predicted running times for MapReduce jobs when run on the production cluster. The
predictions used job profiles obtained from the development cluster.

10-node Hadoop cluster with m1.large EC2 nodes (4 EC2 units CPU4, 7.5 GB memory, 850 GB storage) as
the development cluster, and a 30-node Hadoop cluster with m1.xlarge EC2 nodes (8 EC2 units CPU, 15 GB
memory, 1690 GB storage) as the production one. We profiled a number of MapReduce programs on the
development cluster. We then executed the MapReduce programs on the production cluster using three times as
much data as used in the development cluster.

Figure 5 shows the actual and predicted running times for each job when run on the production cluster. The
What-if Engine used job profiles obtained from the development cluster for making the predictions. Apart from
the overall running time, the What-if Engine can also predict several other aspects of the job execution like
the amount of I/O and network traffic, the running time and scheduling of individual tasks, as well as data and
computational skew.

Overall, the What-if Engine is capable of capturing the performance trends when varying the configuration
parameter settings or the cluster resources.

5 Related Work
MapReduce is emerging rapidly as a viable competitor to existing systems for big data analytics, even though it
currently trails existing systems in peak query performance [11]. When users are asked to tune the performance
of their MapReduce workloads, they have to rely on their experience, knowledge of the data being processed, and
rules of thumb from human experts or tuning manuals to complete the task [15]. Automated approaches for such

4One EC2 Compute Unit provides the equivalent CPU capacity of a 1.0-1.2 GHz processor.
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performance tuning are based typically on white-box models, black-box models, or simulation. Our approach is
unique as it using a carefully-designed combination of all three aforementioned techniques to achieve the task.

White-box models are created by human experts who have detailed knowledge of how workload execution
is affected by the properties of cluster resources, input data, system configuration, and scheduling policies.
If the models are developed correctly, then the predictions from them will be accurate; as is the case in the
epiC system, which supports System-R-style join ordering in Hive using white-box modeling [16]. However,
white-box models can quickly become inaccurate if they have to capture the impact of evolving features such as
hardware properties [6].

There has been considerable interest recently in using black-box models like regression trees to build work-
load performance predictors [2]. These models can be trained automatically from samples of system behavior,
and retrained when major changes happen. However, these models are only as good as the predictive behavior
of the independent variables they use and how well the training samples cover the prediction space. Relative
(fitness) modeling is a black-box approach proposed recently for complex storage devices [9]. These models
drastically simplify the model-learning process as long as actual workload performance can be measured on the
devices. The What-if Engine borrows ideas from relative modeling and applies them to MapReduce clusters.

Simulation is often a valid alternative to modeling, but developing accurate simulators faces many of the
same challenges as analytical white-box models. Some discrete event simulators have been proposed for Hadoop
(e.g., Mumak [13] and MRPerf [14]), but none of them meet the needs of the What-if Engine. Mumak needs a
job execution trace as input, and cannot simulate job execution with a different cluster size, network topology,
or even different numbers of map or reduce tasks from what the execution trace contains. MRPerf is able to
simulate job execution at the task level like our What-if Engine. However, MRPerf uses an external network
simulator to simulate the data transfers and communication among the cluster nodes; which leads to a per-job
simulation time on the order of minutes. Such a high simulation overhead prohibits MRPerf’s use by a cost-
based optimizer that needs 100-1000s of what-if calls done over different configuration parameter settings.

A MapReduce program has semantics similar to a Select-Project-Aggregate (SPA) in SQL with User-defined
functions (UDFs) for the selection and projection (map) as well as the aggregation (reduce). HadoopToSQL and
Manimal perform static analysis of MapReduce programs in order to extract declarative constructs like filters
and projections, which are then used for database-style optimizations [3, 7]. Manimal does not perform profiling,
what-if analysis, or cost-based optimization; it uses rule-based optimization instead. MRShare performs multi-
query optimization by running multiple SPA programs in a single MapReduce job [10]. MRShare proposes
a (simplified) cost model for this application. Overall, previous work related to MapReduce job optimization
targets semantic optimizations for MapReduce programs and is either missing or lacks comprehensive profiling
and what-if analysis.

6 Summary
In this paper, we described the design and implementation of the Starfish What-if Engine. Such a What-if
Engine is an indispensable component of any optimizer for MapReduce systems, just like a costing engine is
for a query optimizer in a Database system. The uses of the What-if Engine go beyond optimization: it may
be used by physical design tools for deciding data layouts and partitioning schemes; it may be used as part of
a simulator that helps make critical design decisions during a Hadoop setup—like the size of the cluster, the
network topology, and the node compute capacity; or it may help make administrative decisions—like how to
allocate resources effectively or which scheduling algorithm to use.
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Efficient OR Hadoop: Why not both?

Jens Dittrich Stefan Richter Stefan Schuh Jorge-Arnulfo Quiané-Ruiz

Abstract

In this article1, we give an overview of research related to Big Data processing in Hadoop going on
at the Information Systems Group at Saarland University. We discuss how to make Hadoop efficient.
We briefly survey four of our projects in this context: Hadoop++, Trojan Layouts, HAIL, and LIAH. All
projects aim to provide efficient physical layouts in Hadoop including vertically partitioned data layouts,
clustered indexes, and adaptively created clustered indexes. Most of our techniques come (almost) for
free: they create little to no overhead in comparison to standard Hadoop.

1 Introduction

In the past years, the Hadoop ecosystem has become the de facto standard to handle so-called Big Data [3].
Hadoop’s main components are Hadoop Distributed File System (HDFS) and Hadoop MapReduce.

HDFS allows users to store petabytes of data on large clusters. HDFS provides high fault-tolerance capabil-
ities in an environment where failures of single disks or whole nodes are not the exception but the rule. Hadoop
MapReduce allows users to query the data with the simple yet expressive map()/reduce() paradigm without a
need for the user to care about parallelization, scheduling, or failover. In contrast to parallel DBMS, Hadoop
MapReduce scales easily to very large clusters of thousands of machines. In addition, the upfront investment for
using MapReduce is small: no need to use schemas, no integrity constraints, no data cleaning, no normalization,
and NoSQL [12]. Moreover, installing and configuring a MapReduce cluster is relatively easy compared to a
parallel DBMS: Almost any user with minimal knowledge of Java is able to write and run Hadoop jobs. All of
this explains the popularity of MapReduce among non-database people.

On the flip side, Hadoop MapReduce processes MapReduce jobs by default in a non-optimized, scan-
oriented fashion — in fact the entire system design is centered around the idea of executing long running jobs.
Furthermore, several classes of tasks cannot be expressed naturally with the map()/reduce() paradigm, e.g., joins,
iterative tasks, and updates. And finally, the performance of MapReduce is in many cases far from the one of an
optimized parallel DBMS.

One might conclude that there is a deep divide among the two classes of systems — parallel DBMS and
Hadoop MapReduce. And in fact: in 2009, the database community triggered a heated discussion with a paper
by Pavlo et.al. [14] which unfortunately widened that divide. However, given the recent popularity of Hadoop,
one might get the idea that there must be a reason for this popularity. If database systems are so great, why isn’t
everyone using them?

We believe that the key to this discussion is not about the ‘new kid on the block’ Hadoop solely learning from
mature database technology, but that it is key for databases to also learn from Hadoop. Our research question is:

Copyright 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1A short version of this article appeared in the German Database magazine ,,Datenbankspektrum“ in January 2013.
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is there a way to preserve the properties of Hadoop while fixing its performance issues AND without turning it
into yet another parallel DBMS? As a consequence, in 2009, we started a series of projects investigating this.
These projects are Hadoop++, Trojan Layouts, HAIL, and LIAH. We will briefly sketch these projects in the
following.

2 Hadoop++

The very first question we had in mind in 2009 was can we substantially improve the runtimes of MapReduce
jobs without touching the Hadoop source code?

We investigated this question in [4]. In that work, we analyzed the query processing pipeline of Hadoop. The
major observation was that Hadoop implements a hard-coded processing pipeline whose structure is very hard
to change. However, Hadoop’s processing pipeline also provides at least ten different user-defined functions
(UDFs) — map() and reduce() being just two of them. These different UDFs may be exploited to place
arbitrary code inside the Hadoop processing pipeline and turn Hadoop into a versatile distributed runtime. We
exploited this to inject indexing and co-partitioning algorithms into Hadoop. This idea is somehow similar to
injecting a trojan, however: this time for good. Hence, we coined the resulting index structure a trojan index.
For instance, we change the group() and shuffle() UDFs that control grouping and shuffling. This allows
us to create separate indexes for each HDFS block. We evaluated our indexes using the benchmark proposed
in [14]. We could show that the query runtimes of Hadoop++ are by up to a factor 20 faster than Hadoop2.
These performance improvements are possible, as we spend additional time creating indexes and copartitions
before executing any MapReduce job, i.e. we create appropriate indexes matching the expected workload and
we partition both tables on their join keys to be able to execute joins locally. The time spent for creating those
indexes may be considerable [4].

The idea of improving the performance of a closed-source system by injecting code afterwards may also
be applied to traditional database systems. In [11] we investigated how to change the data layout of a closed-
source row-store into using compressed column-oriented layouts yielding up to a factor of 20 performance
improvements.

3 Trojan Layouts

When working in the Hadoop++ project, we could observed that Hadoop MapReduce wastes a significant
amount of time reading unnecessary data from disk as it stores data in row layout. Obviously, one could sim-
ply store all data in a column layout and hope for similar speed-ups as known from traditional column stores.
However, in a distributed system there is a major issue with this approach: column data representing the same
rows should be stored physically close as to avoid expensive network I/O for tuple reconstruction. Therefore,
the question we had at that point in time was: How could we change the data layout in Hadoop to be better
suitable for analytical query processing?

We investigated this question in [9]. As a first step, we studied the three most popular data layouts in the
literature (namely Row Layout, Column Layout, and PAX Layout) and compared then with the optimal layout3.
Figure 1 shows results of a simulation of the access costs for different layouts in Hadoop. The horizontal axis
depicts the number of referenced attributes for a query. The vertical axis depicts the estimated data access costs.
For a Column Layout the costs for network transfer have to be factored in and ruin the overall performance.
For Row Layout, the number of referenced attributes does not have an effect. Therefore, a popular layout in
the context of MapReduce is the hybrid layout PAX [1]: in this approach, all data inside an HDFS block, i.e.,

2A companion paper explores the pitfalls when measuring distributed systems like MapReduce in a cloud environment [18]. Other
works look at the efficiency of the Hadoop failover algorithms [16, 15].

3Where the optimal layout denotes the data layout that has all attributes required by an incoming query in row format.
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Figure 1: Simulation of data access costs for different data layouts in Hadoop [9].

a horizontal partition of data of 64MB by default, is stored in column layout. This avoids the problems with
network I/O for tuple reconstruction and still gives column-like access. However, for some workloads, PAX is
not the best layout. The interesting space in Figure 1 is the red area. It depicts data layouts that are enabled
by Trojan Layouts and perform better than PAX. Some of those layouts are at the same time better than Row
Layout. The latter layouts are the ones we wanted to identify.

In [9] we follow the PAX philosophy in that we keep data belonging to a particular HDFS block on that
HDFS block i.e. there is no global reorganization of data across HDFS blocks. However, in contrast to PAX, we
introduce an important change: Hadoop’s Distibuted File Systems (HDFS) stores three copies of an HDFS block
for fault-tolerance anyway. All of these copies are byte-identical. We change this to allow the different copies
of a logical HDFS block to have different physicals layouts. As we do not remove any data from the different
copies, we fully preserve the fault-tolerance properties of HDFS. At the same time, we are able to optimize the
different copies for different types of queries. In [9], we explore this to compute different vertical partitionings
for each copy, i.e. we end up with three different vertical partitionings which in turn are then exploited at query
time. In summary, Trojan Layouts improves query runtimes both over row layouts and over PAX layouts by up
to a factor 5. Recently, in a follow-up work, we investigated the performance trade-offs of vertical partitioning
(aka column grouping) in more detail [8]. A major lesson of that study was that the performance of these layouts
depend heavily on the database buffer size. In particular, vertically partitioned layouts only pay off for very
small input buffers.

However, more interesting research questions remained: Would it be possible to also store different clustered
indexes for each replica rather than different layouts? And what happens if the query workload is not known at
data upload time? Is there a way to adaptively create those clustered indexes?

We will answer these questions in Sections 4 and 5.

4 HAIL

When we observed the big benefits of having different data representations per data block replica in the Trojan
Layouts project, we immediately felt the need of applying the same idea for creating a different clustered index
per data block replica. This triggered two interesting challenges:

How could we instrument the different copies of an HDFS block to use different clustered indexes? And how
could we teach Hadoop to create those indexes without paying a high price for expensive index creation jobs as
observed for Hadoop++?

For this we started the HAIL (Hadoop Aggressive Indexing Library) project with the goal of answering
these questions [5]. HAIL is an enhancement of HDFS and Hadoop MapReduce that keeps the existing physical
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replicas of an HDFS block in different sort orders and with different clustered indexes. Hence, for a default
replication factor of three, three different sort orders and indexes are available for MapReduce job processing.
Thus, the likelihood to find a suitable index increases and hence the runtime for a workload improves. In
fact, the HAIL upload pipeline is so effective when compared to HDFS that the additional overhead for sorting
and index creation is hardly noticeable in the overall process. Why don’t we have high costs at upload time?
We basically exploit the unused CPU ticks which are not used by standard HDFS. As the standard HDFS
upload pipeline is I/O-bound, the effort for our sorting and index creation in the HAIL upload pipeline is hardly
noticeable. In addition, as we already parse data to binary while uploading, we often benefit from a smaller
binary representation triggering less network and disk I/O.

Let’s assume we have a world population table stored in HDFS containing records of type [city, country,
population]. If we now want to analyze the population of China, Hadoop MapReduce has to scan the whole
world population table and filter for people living in China. While this might be relatively efficient for a country
like China, we would still waste our time with reading data that is not needed, and this becomes even more
wasteful for a small country such as Luxembourg. If we are now interested in data for a specific city, the
traditional Hadoop approach feels like finding a needle in a haystack. This is a typical situation that could be
solved with an index, e.g., like the trojan index from Hadoop++. However, creating Trojan indexes is a very
costly operation that needs many queries that select on the indexed attribute to amortize [4]. Additionally, the
Trojan index will only help when selecting one particular attribute. But what happens if our workload consists
of queries selecting on many different attributes like age or name?

Figure 2 shows the HAIL upload pipeline. When uploading a data file to HDFS using the HAIL client, we
first analyze the schema of the input (1) and convert the textual data into PAX layout (2). This allows us to
save bandwidth, because the binary format is often more space efficient than the textual representation. Like in
normal Hadoop, HAIL first asks the Namenode for the locations of all Datanodes that should store a replica of
the current block (3). Then, HAIL divides each block into packets (4) and sends them to the first Datanode (the
node that was chosen by the Namenode to store the first replica) (5) The first Datanode then reassembles the
blocks from the packets (6), sorts the tuples on the index attribute and creates the actual clustered index (7). In
parallel, the first Datanode immediately forwards each incoming packet to the next Datanode that stores replica
2. This procedure is repeated for all Datanodes that store a replica until the packets reach the last Datanode.
This allows us to create different indexes in parallel on all Datanodes. After reaching the last Datanode, all
packets are validated against their checksums (9) Finally, if the blocks could be verified, all Datanodes register
their created indexes with the Namenode (10 and 11). With this approach, HAIL even allows us to create more
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than three indexes at reasonable costs. Figure 3 shows a comparison of upload times for Hadoop, Hadoop++,
and HAIL on our ten-node cluster with a dataset of 130GB. This dataset resembles a typical scientific dataset.
A more detailed description of the experiments and the used datasets can be found in our HAIL paper [5].
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Figure 3: Upload times when (a) varying the number of created indexex, and (b) the number of data block
replicas [5]

In Figure 3(a), we vary the number of indexes from 0 to 3 for HAIL and for Hadoop++ from 0 to 1 (this is
because Hadoop++ cannot create more than one index). Notice that we only report numbers for 0 indexes for
standard Hadoop as it cannot create any indexes. For all measurements we use three replicas. We observe that
HAIL significantly outperforms Hadoop++ by a factor of 5.2 when creating no index and by a factor of 8.2 when
creating one index. We observe that HAIL also outperforms Hadoop by a factor of 1.6 even when creating three
indexes. This is because HAIL’s binary representation of the dataset has a reduced size which allows HAIL to
outperform Hadoop even when creating one, two or three indexes.

We now analyze how well HAIL performs when increasing the number of replicas. In particular, we aim at
finding out how many indexes HAIL can create for a given dataset in the same time standard Hadoop needs to
upload the same dataset with the default replication factor of three and creating no indexes. Those results are
presented in Figure 3(b). The dotted line marks the time Hadoop takes to upload with the default replication
factor of three. We see that HAIL significantly outperforms Hadoop for any replication factor by up to a factor
of 2.5. More interestingly, we observe that HAIL stores six replicas (and hence it creates six different clustered
indexes) in a little less than the same time Hadoop uploads the same dataset with only three replicas without
creating any index. Still, when increasing the replication factor even further for HAIL, we see that HAIL has
only a minor overhead over Hadoop with three replicas only.

A more detailed description of the HAIL upload pipeline that discusses some interesting implementation
challenges like adapting Hadoop’s packeting and checksumming, Namenode extension, index structure, and
fault tolerance can be found in our paper [5].

From these result, we can see a huge improvement for indexing overhead when compared to Hadoop++
and conclude that HAIL provides efficient indexing of many attributes with no or almost invisible overhead.
But how can we now use the HAIL indexes and what are the corresponding improvements in terms of query
performance? There are at least three options:

1. We can analyze the user-provided map()-function using static code analysis. Then we rewrite the map()-
function automatically against our indexes. This approach is fully user transparent. This type of code
analysis has already been successfully done in [2] and could be extended to exploit HAIL indexes as well.

2. We allow users to annotate the map-functions slightly. This approach is not fully user transparent yet
minimally invasive. A simple example would be to find the names of all people living in Luxembourg. If
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we assume that ‘name’ is the first attribute and ‘country’ is the second attribute in the world-population
dataset, we simply annotate the map function in Java with

@HailQuery(filter="@2=’Luxembourg’",
projection={@1}).

This has the effect that the dataset is pre-filtered and only the attribute name from tuples where country
equals to Luxembourg are passed to the map function.

3. The third approach is to modify the applications sitting on top of HDFS or Hadoop MapReduce. As HAIL
is a replacement for HDFS, user transparency may be achieved by modifying any software layer on top.
For instance, Hive [6] and Pig [13] output machine-generated MapReduce programs; Impala [7] operates
directly on flat HDFS files. For these systems, it would be straight-forward to change their MapReduce
program generation to exploit HAIL indexes — similar to changing a DB-optimizer to create physical
plans using index access paths.
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Figure 4: End-to-end job runtimes for two different workloads [5]

Figure 4 illustrates the query performance of HAIL compared to Hadoop and Hadoop++. We clearly observe
that HAIL significantly outperforms both Hadoop and Hadoop++. We see in Figure 4(a) that HAIL outperforms
Hadoop up to a factor of 68 and Hadoop++ up to a factor of 73 for a log analysis workload (Bob queries). For a
Synthetic workload (Figure 4(b)), we observe that HAIL outperforms Hadoop up to a factor of 26 and Hadoop++
up to a factor of 25. Overall, we observe in Figure 4(c) that using HAIL we can run all five queries 39x faster
than Hadoop and 36x faster than Hadoop++. We also observe that HAIL runs all six Synthetic queries 9x faster
than Hadoop and 8x faster than Hadoop++.
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When developing HAIL we learned that the high scheduling overhead of MapReduce tasks is a severe
problem when improving the performance of block accesses. All improvements can be eaten up by this overhead.
HAIL reduces this overhead significantly using a novel splitting policy at query time (HAIL scheduling). At
its core, HAIL scheduling assigns multiple index accesses to a single map task. Thus, we avoid the Hadoop
MapReduce overheads for scheduling multiple map waves (see [5] for details and also failover experiments).
Overall, using HAIL scheduling we achieve the performance seen in Figure 4.

5 LIAH

One of the disadvantages of HAIL is that the performance of an incoming MapReduce job can only be improved
if HAIL creates indexes on the “right” attributes during upload. The set of “right” indexes may be computed by
a what-if-analysis. However, what-if-analyzes requires the workload to be known before upload — this might
not always be the case. Therefore, another challenge remains: What happens if we do not know the workload
beforehand? How can we teach HAIL to adapt its indexes to the workload?

For this we propose LIAH (Lazy Indexing and Adaptivity in Hadoop) [17] to improve the total runtime of
those tasks dramatically.

LIAH effectively piggybacks adaptive index creation on the existing MapReduce job execution pipeline. In
particular, we show how to parallelise indexing with ongoing computations of map tasks and disk I/O. All this
without any additional data copy in main memory and minimal synchronisation. A particularity of LIAH is that
we always index a data block entirely, i.e. in a single pass. As a result, LIAH allows map tasks of future jobs to
perform index accessess. In addition, it also frees future map tasks from costly extra I/O-operations for refining
indexes. This is in contrast to existing work on adaptive indexing which requires a large number of queries in
order to fully refine the indexes. In addition, these works are not designed to preserve the failover properties of
HDFS. Hence we had to come up with new ways to enable adaptivity in a distributed system like Hadoop.

LIAH may be used either on top of an unmodifed Hadoop installation or on top of HAIL. This means, it does
not matter whether we already have indexes on the data. Similarly to existing adaptive indexing approaches, we
analyze the incoming map()-function for its access patterns — using the same analysis techniques used at query
time for HAIL and already explained above (code analysis, annotations or application information). Based on
these access patterns, we decide which indexes to create. As an ongoing map()-function not finding a suitable
index has to scan all data anyways, we simply piggy back on the I/O performed for this scan. However, we do
not create indexes for each block in the input, but rather index only one out of ρ blocks. Here, ρ is the offer rate
determining the fraction of blocks being indexed for a given MapReduce-job, e.g. for ρ = 1/3 we require three
MapReduce-jobs to adaptively create indexes on all blocks. Notice that ρ = 1/3 does not imply that the input
file is fully read three times. This is because as the first MapReduce-job indexes 1/3 as a side-effect, the second
MapReduce-job may already perform index access on the indexed blocks, i.e. for 1/3 of the blocks we perform
index accesses, for 2/3 we perform scans.

Many more indexing options exist including Eager Indexing, i.e. throttle the adaptive indexing effort to a
user-defined SLA; and Lazy Projection, i.e. create clustered indexes only for a subset of the attributes, then
recluster the missing attributes lazily on demand. We encourage the reader to see [17] for details.

Here we just want to briefly show some performance results of our techniques. Figure 5 shows the job
runtimes for Hadoop, HAIL (without precreated indexes) and LIAH (using different offer rates ρ). Overall, we
clearly see in both computing clusters that LIAH improves the performance of MapReduce jobs linearly with
the number of indexed data blocks.

Figure 5 shows the job runtimes for the UserVisit dataset for two different clusters. Overall, we clearly
see in both computing clusters that LIAH improves the performance of MapReduce jobs linearly with the number
of indexed data blocks. In particular, we observe that the higher the offer rate, the faster LIAH converges to a
complete index. However, the higher the offer rate, the higher the adaptive indexing overhead for the initial job
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(JobUV1). Thus, users are faced with a natural tradeoff between indexing overhead and the required number
of jobs to index all blocks. But, it is worth noting that users can use low offer rates (e.g. ρ = 0.1) and still
quickly converge to a complete index (e.g. after 10 job executions for ρ = 0.1). In particular, we observe that
after executing only a few jobs LIAH already outperforms Hadoop and HAIL (without appropriate indexes)
significantly. As soon as LIAH converges to a completely indexed dataset, LIAH significantly outperforms
HAIL by up to a factor of 24 and Hadoop by up to a factor of 32.

Figure 6 show the result for eager adaptive indexing. Here we adapt the offer rate ρ such that the execution
time of LIAH is less than or equal to that of standard HAIL. As expected, we observe that LIAH (eager) has
the same performance as LIAH (ρ = 0.1) for JobUV1. However, in contrast to LIAH (ρ = 0.1), LIAH (eager)
keeps its performance constant for JobUV2. This is because LIAH (eager) automatically increases ρ from 0.1
to 0.17 in order to exploit saved runtimes. For JobUV3, LIAH (eager) still keeps its performance constant
by increasing ρ from 0.17 to 0.33. Now, even though LIAH (eager) increases ρ from 0.33 to 1 for JobUV4,
LIAH (eager) now improves the job runtime as only 40% of the data blocks remain unindexed. As a result of
adapting its offer rate, LIAH (eager) converges to a complete index only after 4 jobs while incurring almost no
overhead over HAIL. From JobUV5, LIAH (eager) ensures the same performance as LIAH (ρ = 1) since all
data blocks are indexed, while LIAH (ρ = 0.1) takes 6 more jobs to converge to a complete index. See [17] for
more experimental results.

22



6 Lessons Learned and Conclusion

We learned that it is possible to introduce indexing in Hadoop without changing its source-code (Hadoop++).
We also saw that substantial performance improvements are possible when HDFS is changed to support multiple
physical layouts (Trojan Layouts). An interesting challenge was to instrument HDFS to provide efficient index
creation and query processing at the same time (HAIL). We also explored how to teach HAIL to create indexes
adaptivley (LIAH). Future work aims at generalizing the different projects into a common storage optimizer as
discussed in [10].

Yes, parallel DBMS and Hadoop MapReduce are very different systems — at first sight. In comparison,
Hadoop is a young system compared to parallel DBMS and can still be improved in many different ways. The
Hadoop ecosystem provides an opportunity for the database community to broaden the impact of our research.
It is also an opportunity to revisit design decisions taken in the past and take different routes than the ones we
took before. In this spirit, we believe that it will be important to teach efficiency to Hadoop without turning it
into yet another parallel DBMS.
Acknowledgments. Research partially supported by BMBF. We would like to thank all authors and team
members of the Hadoop++, Cloud Variance, RAFT, Trojan Layouts, HAIL, and LIAH projects for their support.
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Abstract

Challenges in Big Data analytics stem not only from volume, but also variety: extreme diversity in both
data types (e.g., text, images, and graphs) and in operations beyond relational algebra (e.g., machine
learning, natural language processing, image processing, and graph analysis). As a result, any com-
petitive Big Data system must support some form of parallel user-defined operations (UDOs) that can
capture complex data processing tasks over complex data types without changing the core of the parallel
data processing engine. Hadoop and other popular systems have been shown to provide a convenient
programming model for implementing parallel UDOs, but the “black-box” nature of UDOs compli-
cates the automatic load balancing required to achieve parallel scalability. In this paper, we present an
overview of some of our recent work that tackles the problem of load imbalance (a.k.a. skew) in parallel
UDO evaluation. We first discuss the prevalence of skew in today’s applications and clusters. We then
discuss our experience with static and dynamic methods for mitigating it.

1 Introduction

Users today are increasingly demanding support for complex Big Data analytics that go beyond traditional
relational algebra operations: they need to process unusual data types (e.g., text, arrays, and graphs), apply
sophisticated statistical models, and adapt specialized domain-specific techniques. These requirements translate
into an increased demand for parallel user-defined operations (UDOs). The MapReduce abstraction [4] and its
implementation in Hadoop [9] are well-known for their effective support of UDOs in the form of pairs of map
and reduce operations. As an example, the Mahout library [27] provides a set of popular machine learning
algorithms in Hadoop — tasks that are difficult to implement in conventional database systems.

Although Hadoop simplifies the expression of UDOs, adequate performance is by no means guaran-
teed (e.g., [18, 24]). UDOs complicate algebraic reasoning and other simplifying assumptions relied on by
the database community to optimize query execution. Instead Hadoop developers commonly rely on non-
generalizable “tricks” to achieve high performance: ordering properties of intermediate results, custom parti-
tioning functions, and assumptions about the number of partitions. For example, the Hadoop-based sort algo-
rithm that won the terasort benchmark in 2008 required a custom partition function to prescribe a global order
on the data, and relied on assumptions about key distribution that were part of the published benchmark [21].

One of the key challenges in the parallel execution of UDOs is, of course, load balancing across UDO par-
titions. While load balancing has extensively been studied for relational operators [5, 26], the problem has long

Copyright 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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Figure 1: Execution details of the CloudBurst application (a) Original execution (b) Execution with load rebal-
ancing is 38% faster. Red bars correspond to map tasks and blue ones to reduce tasks.

been under-studied for UDOs. In this paper, we summarize some of our recent work [14, 15, 16, 17, 24] that
tackles the challenge of effective UDO parallelization in a Hadoop cluster in face of load imbalances: We first
show a concrete example of load imbalance in an existing application and its impact on the execution time. We
then summarize results from a measurement study in three Hadoop clusters showing, more generally, the preva-
lence of load imbalance problems in Hadoop clusters. Third, we discuss two techniques that we have developed
for mitigating load imbalances in Hadoop applications either statically before execution or dynamically at run-
time. We discuss the lessons learned from these two approaches and also point readers to other recent work that
falls under each umbrella.

2 Prevalence of Skew

We first consider a concrete example of a user-defined operation that exhibits a significant load imbalance, also
referred to as skew.

CloudBurst [25] is a MapReduce implementation of the RMAP algorithm for short-read gene alignment.1

CloudBurst aligns a set of genome sequence reads with a reference sequence. This application is thus somewhat
similar to a similarity join: it takes two datasets as input (the reads and the reference sequence) and identifies
similar pairs drawing one item from each dataset. In the map phase, it extracts and partitions the reads and
reference on their n-grams. Pairs of substrings that share an n-gram are tested for approximate alignment in the
reducers. Frequent n-grams are handled similarly to frequent join keys in SkewedJoin [5]: frequent n-grams
from a reference sequence are replicated, and frequent n-grams from a read are distributed in a round-robin
fashion. Figure 1(a) shows the timing chart of an execution of the CloudBurst application.2 The total runtime
for the job is over 8 hours. The runtimes of the map tasks exhibit a bimodal distribution. We verified that the
two modes correspond to the two input datasets. Although there is no significant skew within each mode, the
MapReduce job is experiencing skew because the two modes coexist in a single job. The reduce phase also
exhibits skew. Even though the partition function distributes keys evenly across reducers (not shown in the
figure), some reducers are still assigned more data simply because the assigned key groups contain significantly
more values. As a result, the runtime of the reducers is also highly uneven. Figure 1(b) shows how much these
types of load imbalances affect the overall runtime of a job. In this application, re-balancing load to eliminate
skew, cuts the runtime by nearly 40%. The figure shows the runtime when using the SkewTune system [17] that
we discuss in Section 5.

The example illustrates how skew can arise in a UDO and how significantly it can affect the runtime. Our
case study paper [15] shows additional such examples. But how prevalent is this problem?

1http://rulai.cshl.edu/rmap/
2We ran the CloudBurst job on a biology dataset [11]. For each alignment, we allowed up to 4 mismatches including insertion and

deletion. We used 160 map tasks and 128 reduce tasks for the entire alignment. We used 64 reduce tasks to process low-complexity
fragments. The reduce phase processed 128 sequences at a time (first loading data from the reference dataset in memory, then processing
128 sequences from the query dataset in a batch).
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Cluster Duration Start Date End Date Successful/Failed/Killed Jobs Users
OPENCLOUD 20 months 2010 May 2011 Dec 51975/4614/1762 78

M45 9 months 2009 Jan 2009 Oct 42825/462/138 30
WEB MINING 5 months 2011 Nov 2012 Apr 822/196/211 5

Table 2: Summary of analyzed workloads

Stragglers Map Reduce Map ∧ Reduce Map ∨ Reduce
OPENCLOUD 2967 (58%) 1940 (38%) 1109 (22%) 3798 (74%)

M45 3643 (55%) 2659 (40%) 1310 (20%) 4992 (75%)
WEB MINING 140 (38%) 35 (9%) 18 (5%) 157 (43%)

Table 3: Number and fraction of jobs that have stragglers in map, in reduce, and both phases among jobs longer
than five minutes. More than 40% of jobs running longer than five minutes have at least one straggler.

To answer this question, we analyzed execution logs from three Hadoop MapReduce clusters used for re-
search: OPENCLOUD, M45, and WEB MINING. The three clusters have different hardware and software con-
figurations and range in size from nine nodes (WEB MINING), to 64 nodes (OPENCLOUD), to 400 nodes (M45).
The clusters are used primarily for scientific research in a wide variety of domains: computational astrophysics,
computational biology, computational neurolinguistics, information retrieval, text and web mining, image and
video analysis, security malware analysis, graphs and social networking analysis, cloud computing systems de-
velopment, and others. Table 2 summarizes the duration of each collected log and the number of Hadoop jobs
that it covers. The data in each log comes from the Hadoop job configuration files and job history files. More
details about the collected data (and its analysis) can be found in our technical report [24].

To assess the prevalence of the skew problem, we count the number of jobs with stragglers (i.e., long-running
tasks) considering only jobs with runtimes of at least 5 min (the penalty from skew is insignificant in a short job)
and at least two tasks (a straggler task is only defined relative to some other task).

Ananthanarayanan et al. [2] categorize a task as a straggler if the task takes at least 50% longer than the
median task in the same phase of the same job. Following this definition, Table 3 shows the number of jobs that
have stragglers in the map phase, the reduce phase, or both. Overall, more than 40% (and up to 75%) of jobs that
run longer than five minutes have at least one straggler. We also find that even the map phase, which is usually
regularized by assigning a fixed amount of bytes to each task, frequently experiences the straggler problem. This
finding confirms that the input data size alone is not a good indicator of task runtime in these three clusters. The
same finding was reported in the analysis of enterprise clusters [3].

Figure 2 shows the distribution of relative runtimes of straggler tasks with respect to the median task run-
time of the same phase in the job. In all three clusters, 75% of reduce-side stragglers complete within 2.5x
of the median runtime. Map stragglers have larger variations across clusters: 55% and 65% of map straggler
tasks complete within 2.5x of median runtime in M45 and OPENCLOUD respectively. As observed in Anan-
thanarayanan et al. [2], the distribution is heavy-tailed. We also show the values at the 99%, 99.9%, and 100%
percentiles in the table. Some straggler tasks run orders of magnitudes longer than the median runtime.

The straggler problem is thus prevalent in all clusters, and slow tasks frequently run more than 2.5x slower
and sometimes orders of magnitude slower than the median.

3 Causes of Skew

It is well-known that skew has many causes [2, 4, 30]. The original MapReduce paper [4] considered the problem
of skew caused by hardware malfunction or resource contention. To address this type of skew, MapReduce and
Hadoop include a mechanism where the last few tasks in a job are speculatively replicated on a different machine
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Figure 2: Cumulative fraction of the ratio of straggler runtime to median task runtime. N is the number of
straggler tasks per cluster, per phase. The table shows straggler runtime ratios at specific percentiles.
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Figure 3: Distribution of map task runtimes with respect to # of input records, grouped by application types.
N is the number of successful jobs that run map functions in each category. The labels indicate the category:
(U)BD(U)BT stands for (un)balanced input data, (un)balanced runtime.

and the job completes when the fastest replicas of these final tasks complete. More commonly, skew occurs when
data is not evenly partitioned across tasks. This type of skew, called data skew, typically affects reducers since
map tasks are normally assigned same-size chunks of input data. For reducers, the problem can occur either
when a reducer processes a larger number of keys or a larger number of values than other reducers. In our work,
we further find that a surprisingly large number of applications suffer from skew even when all UDO partitions
are assigned the same amount of data [15]. The map phase of CloudBurst is one such example.

We analyze the prevalence of skew caused by uneven data allocation or uneven processing times in the three
Hadoop cluster logs. For each phase of each job, we compute the ratio of the maximum task runtime in the phase
to the average task runtime in that phase. We classify phases where this ratio is greater than 0.5 (meaning that at
least one straggler took twice as long to process its data as the average) as unbalanced in time (UT). Otherwise,
the phase is said to be balanced in time (BT). We compute the same ratio for the input data and classify phases
as either balanced or unbalanced in their data (BD or UD).

Map Phase: Figure 3 shows the result for the map phases. We group the jobs by application type based on
the mappers package names,3 then break the results into four different types based on whether the input data
and/or the runtime are balanced or not (i.e., (U)BD(U)BT as defined in the previous paragraph).

As expected for the map phase, most jobs are balanced with respect to data allocated to tasks. However, a

3Hadoop corresponds to map functions that are part of the Hadoop MapReduce framework (e.g., IdentityMapper). Example repre-
sents map functions defined in example applications in Hadoop (e.g., WordCount). Pegasus is a graph mining system running on top of
Hadoop [12]. If we do not recognize the package name, we assume that the users wrote the functions, and label them as Custom.
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Figure 4: Distribution of reduce task runtimes with respect to # of reduce keys grouped by partition functions.
The labels indicate the category: (U)BD(U)BT stands for (un)balanced input data, (un)balanced runtime.

significant fraction of jobs, more than 20% for all but Mahout in the OPENCLOUD cluster, remain unbalanced
in runtime and are categorized as BDUT. These results agree with the result of the previous study in enter-
prise clusters [3]. Mahout is effective at reducing skew in the map phase, clearly demonstrating the advantage
of specialized implementations. Interestingly, Pig produces unbalanced map phases similar to users’ custom
implementations. Overall, allocating data to compute nodes simply based on data size alone is insufficient to
eliminate skew.

Reduce Phase: We perform a similar analysis for the reduce phase by using the number of reduce keys as
the input-size measure. Instead of application types, we group the jobs by the partition function employed. The
partition function is responsible for redistributing the reduce keys among the reduce tasks. We label the partition
functions by inspecting their package names.4 If the package name is not well-known (e.g., foo.bar), we
assume that it is customized by the user (labeled Custom). Figure 4 shows the results.5 Overall, hash parti-
tioning effectively redistributes reduce keys among reduce tasks for more than 92% of jobs in all clusters (i.e.,
BDBT+BDUT). Interestingly, we observe that as many as 5% of all jobs in all three clusters experienced the
empty reduce problem, where a job has reduce tasks that processed no data at all due to either a suboptimal
partition function or because there were more reduce tasks than reduce keys. For the jobs with a balanced data
distribution, the runtime is still unbalanced (i.e., BDUT jobs) for 22% and 38% of jobs in the OPENCLOUD and
M45 clusters, respectively. In both these clusters, custom data partitioning is more effective than the default
scheme in terms of balancing both the keys and the computation. Other partitioning schemes that come with the
Hadoop distribution do not outperform hash partitioning in terms of balancing data and runtime. A noticeable
portion of UDBT jobs (in which data are not balanced but runtime is balanced) use the total order partitioner,
which tries to balance the keys in terms of the number of values. Pig, which uses multiple partitioners, consis-
tently performs well in both M45 and WEB MINING clusters.

Overall, UDOs in Hadoop can thus suffer from skew when the data is unevenly distributed to UDO partitions
but also when the computation is uneven across the partitions.

4 Tackling Skew with Static Optimization

When the cause of skew is an uneven data distribution across UDO partitions or an uneven processing time
across partitions, MapReduce’s speculative execution mechanism is not helpful. This approach re-executes the
same task on the same input data but on a different machine. It would lead to the same, slow execution time.

Instead, an alternate approach is to use finer-grained partitions so as to minimize the size of serial units of
work. The problem with this approach is that finer-grained partitions increase overheads, especially in a system

4Hadoop represents all partition functions in the Hadoop distribution except the default hash partitioning (labeled Hash).
5In the M45 workload, the number of reduce keys was not recorded for the jobs that use the new MapReduce API due to a bug in the

Hadoop API. The affected jobs are not included in the figure.
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such as Hadoop, where the overhead of each new task is not negligible.
In SkewReduce [14], we developed instead a static optimizer that takes a UDO as input and outputs a data

partition plan that strives to balance load across processing nodes. SkewReduce does not simply balance the
amount of data assigned to each operator partition, but rather the expected processing time for the assigned data.

While a static optimizer could be applied to different types of UDOs, SkewReduce was designed for feature
extracting applications. In these applications, data items (events, particles, pixels) are embedded in a metric
space, and the task is to identify and extract emergent features (populations, galaxies) from the low-level data.
These applications are captured by two UDOs: one that extracts features from sub-spaces and another that
merges features that cross partition boundaries.

The key idea behind SkewReduce is to ask the user for extra information about their UDOs (the feature
extraction and merge functions). The user creates additional cost functions that characterize the UDOs runtimes.
A cost function takes as input a sample S of the input data, the sampling rate α that this sample corresponds to,
and B, the bounding hypercube where the sample was taken from. The function returns a real number, which
should represent an estimate of the processing time for the data. The sampling rate α allows the cost function to
properly scale up the estimate to the overall dataset. The ideal cost function returns values proportional to the
actual cost of processing the data partition delimited by the hypercube. The quality of the SkewReduce plans
depends on the quality of the cost functions. However, we found that even inaccurate cost functions could help
reduce runtimes compared to no optimization at all. For the domain experts such as scientists and statisticians,
we posit that writing a cost model is easier than debugging and optimizing distributed programs. The cost
models are specific to the implementation and can be reused across many data sets for the same UDOs.

Given the cost models, a sample of the input data, and the cluster configuration (e.g., the number of nodes
and the scheduling algorithm), SkewReduce searches a good partition plan for the input data by (a) applying
finer grained data partitioning if significant data skew is expected for some part of the input data, (b) keeping
coarse grained partitions when data skew is not anticipated, and (c) balancing the partition granularity in a way
that minimizes expected job completion time under the given cluster configuration.

More specifically, the algorithm proceeds as follows. Starting from a single partition that corresponds to
the entire hypercube bounding the input data I, and thus also the data sample, S, the optimizer greedily splits
the most expensive leaf partition in the current partition plan. The optimizer stops splitting partitions when
two conditions are met: (a) All partitions can be processed and merged without running out of memory; (b)
No further leaf-node split improves the runtime: i.e., further splitting a node increases the expected runtime
compared to the current plan. To verify the second condition, the SkewReduce optimizer first checks that the
original execution time of the partition is greater than the expected execution time of the two sub-partitions
running in parallel, followed by a newly added merge function to reconcile features found in individual sub-
partitions. If the condition is satisfied, SkewReduce further verifies that the resulting tasks can also be scheduled
in the cluster in a manner that reduces the runtime. It proceeds with the split only when both conditions are met.

To show the effectiveness of SkewReduce, we built a prototype running on top of Hadoop. Figure 5 shows
the relative runtimes when applying the Friends-of-Friends clustering algorithm, a popular feature-extraction
application used in astronomy, to two datasets, one from the astronomy domain and the other from oceanography.
As the figure shows, SkewReduce yields runtimes 6X to 8X lower than a default Hadoop configuration. It is at
least 2X faster than the optimal uniform data partition, whose choice depends on the dataset being processed.

Lessons learned: The key lesson learned from our SkewReduce work is that static optimization of the
input data partition can dramatically improve runtimes in the presence of significant skew, caused by uneven
processing times. The optimization time was short compared to the actual query execution time (i.e., minutes
vs hours or seconds vs minutes). Interestingly, runtimes improved even when the user-provided cost functions
were not perfectly accurate but were good enough to identify expensive regions in the data. The drawback of
this approach is two-fold: (1) it puts an extra burden on the user who must provide cost functions and (2) it
cannot handle any unexpected conditions at runtime. We refer readers to our full paper for details [14].
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(Opt). The table shows the actual completion times for each strategy (units are hours for Astro and minutes for
Seaflow). Manual plan is shown only for the Astro dataset.

5 Mitigating Skew Dynamically

To address the limitations of SkewReduce, we built SkewTune [17], a version of Hadoop extended with the abil-
ity to dynamically re-balance load across map or reduce tasks in a job. Because it re-balances load automatically,
SkewTune must make an assumption about Hadoop programs: that separate invocations of the user-defined map
and reduce functions are independent of each other. Load can thus be re-balanced at the granularity of records
for map tasks and key-groups for reduce tasks.

SkewTune is designed for MapReduce-type systems, where each operator reads data from disk and writes
data to disk and is thus decoupled from other operators in the data flow. SkewTune continuously monitors the
execution of a UDO and detects the current bottleneck task that dominates and delays the job completion. Once
such a task is identified, the task is stopped, and its unprocessed input data is repartitioned among idle nodes.
The repartition only occurs when there is an idle resource (i.e., the MapReduce scheduler runs out of other
tasks to schedule) or when new nodes are dynamically added to accelerate the job (e.g., using spot instances in
Amazon EC2). Thus, if there are no tasks experiencing significant data skew, SkewTune imposes no overhead.
If a node is idle and at least one task is expected to take a long time to complete, SkewTune stops the task
with the longest expected time-remaining. It repartitions and thus parallelizes the remaining input data for that
task taking into consideration to expected future availability of all nodes in the cluster. SkewTune continuously
detects and removes bottleneck tasks until the job completes.

When repartitioning a task, SkewTune takes into account the predicted availability of all nodes in the cluster
to minimize the job completion time. The availability is estimated from the progress of running tasks. The
remaining unprocessed input data of a task is repartitioned in a way that fully utilizes nodes that are available
immediately or are expected to become available in the near future. SkewTune also minimizes the side-effect of
repartitioning so that the original output can be reconstructed simply by concatenating the output of split tasks.

We implemented the SkewTune strategy in the Hadoop MapReduce engine. Experimental results show that
SkewTune can significantly improve completion time by up to factor of four without code changes. At the same
time, it imposes, negligible overheads in the absence of skew.

Lessons learned: The most important lesson learned from the SkewTune approach is that dynamic load re-
allocation is a workable solution for UDOs that follow a well-specified API, such as Hadoop, where the system
knows how to rebalance load without breaking the application. The overhead of load re-allocations is small
compared to the potential savings. At the same time, this approach is more flexible than static planning since it
can handle skew independent of its cause: cluster conditions, hardware malfunction, mis-configuration, unlucky
input data order, etc. We refer readers to our full paper for details on the SkewTune approach [17].
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Both SkewTune and SkewReduce are freely available at http://nuage.cs.washington.edu/

6 Related Approaches

Skew-resilient operators: One approach to handling skew is through the implementation of skew-resilient
operators. This approach has extensively been studied for the relational join operator (e.g., [5, 30]). Pig, a
declarative layer on top of Hadoop, implements an algorithm proposed in the parallel database literature [5] to
handle data skew in a join algorithm [6]. Pig also includes mechanisms to mitigate skew in ORDER BY and
GROUP BY operators [6]. Vernica et al. and Metwally et al. studied set-similarity joins in MapReduce [20, 29].
To handle skew, Vernica et al. first scans the input data to collect statistics on frequencies and load balances
according to the statistics. Metwally et al. analyze set similarity measures, extracts a common structure in
computing similarities, and design a series of MapReduce steps according to the structure. Metwally et al. also
analyze skew that may occur in each step, and describe skew-handling strategies. There also exist work on
handling skew in relational aggregate operators [26] including studies based on Hadoop [19].

Studies of skew: Qiu et al. implemented three applications for bioinformatics using cloud technologies
and reported their experience and measurement results [22]. Although they also found skew problems in two
applications, they discussed a potential solution rather than tackling the problem. For data and computation
imbalance problems, Ke et al. also found that these problems are prevalent in a variety of industrial applica-
tions [13]. Ananthanarayanan et al. studied the causes to outlier (i.e., straggler) tasks and ways of mitigating
outlier tasks caused by data imbalances or resource contention [2].

Speculative execution enhancements: Several approaches have improved the basic MapReduce speculative
execution. The LATE scheduler [31] speculatively runs the task with the longest estimated time remaining. It
also schedules these tasks only on fast nodes and it limits resources used for speculation. The Mantri system [2]
further only restarts a task when its runtime is inconsistent with its input data size and improves the network-
aware task placement.

Static optimizations: Related to SkewReduce, recent work also studied the possibility to leverage cost
models to improve load balance [7, 8, 23]. That work was specific to balancing load in the reduce phase of
a Hadoop job. Gufler et al. [7, 8] support non-linear cost models for reducers as functions of the number of
bytes and the number of records a reducer needs to process. Their algorithm splits the reduce input data into a
fixed number of small partitions, estimates their cost, and distributes the small partitions accordingly. A second
algorithm further splits partitions that grow too large. The LEEN approach [10] further tries to balance load (i.e.,
fairness) with data locality in the reduce phase of a job.

Dynamic methods: Related to SkewTune, other techniques have recently explored dynamic load allocation
in MapReduce [1, 28]. Vernica et al. propose an adaptive MapReduce system using situation-aware mappers
that continuously monitor the execution of all mappers and adaptively resplit the map input data [28]. With an
adaptive combiner and partitioner, the system further tries to balance the reduce input. However, the situation-
aware mappers can not handle computational skew at the reducers, where some key-groups take longer to process
than others.

7 Conclusion

The simple MapReduce API provides users great flexibility when implementing UDOs but it also makes users
responsible for handling various performance problems. Skew is one challenge that users frequently face today.
In this paper, we first reviewed the causes of skew in MapReduce applications and the prevalence of the problem
in three real-world Hadoop clusters. We then presented an overview of two systems SkewReduce and SkewTune
that mitigate skew statically and dynamically. With little or no user effort, the two systems can significantly
improve job completion times compared to the default Hadoop setup. Interesting future work includes but is
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not limited to further minimizing user efforts in skew mitigation through better programming interfaces and
execution models and static and dynamic analysis or optimizations in multi-tenant environments.
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Apache Pig’s Optimizer

Alan F. Gates, Jianyong Dai, Thejas Nair
Hortonworks

Abstract

Apache Pig allows users to describe dataflows to be executed in Apache Hadoop. The distributed nature
of Hadoop, as well as its execution paradigms, provide many execution opportunities as well as impose
constraints on the system. Given these opportunities and constraints Pig must make decisions about
how to optimize the execution of user scripts. This paper covers some of those optimization choices,
focussing one ones that are specific to the Hadoop ecosystem and Pig’s common use cases. It also
discusses optimizations that the Pig community has considered adding in the future.

1 Introduction

Apache Pig [10] provides an SQL-like dataflow language on top of Apache Hadoop [11] [7]. With Pig, users
write dataflow scripts in a language called Pig Latin. Pig then executes these dataflow scripts in Hadoop using
MapReduce. Providing users with a scripting language, rather than requiring them to write MapReduce pro-
grams in Java, drastically decreases their development time and enables non-Java developers to use Hadoop.
Pig also provides operators for most common data processing operations, such as join, sort, and aggregation. It
would otherwise require huge amounts of effort for a handcrafted Java MapReduce program to implement these
operators.

Many different types of data processing are done on Hadoop. Pig does not seek to be a general purpose
solution for all of them. Pig focusses on use cases where users have a DAG of transformations to be done on
their data, involving some combination of standard relational operations (join, aggregation, etc.) and custom
processing which can be included in Pig Latin via User Defined Functions, or UDFs, which can be written in
Java or a scripting language.1 Pig also focusses on situations where data may not yet be cleansed and normal-
ized. It gracefully handles situations where data schemas are unknown until runtime or are inconsistent. These
characteristics make Pig a good choice when doing data transformations in preparation for more traditional anal-
ysis (the “T” of ETL). It also makes Pig a good choice for operations such as building and maintaining large data
models in Hadoop and doing prototyping on raw data before building a full data pipeline. For a more complete
discussion of Pig, Pig Latin, and frequent Pig uses cases see [12].

In this paper, we will discuss some of the performance optimization techniques in Pig, focussing on opti-
mizations specific to working in Hadoop’s distributed computing environment, MapReduce.

This paper assumes a working knowledge of MapReduce, particularly Hadoop’s implementation. For more
information on Hadoop’s MapReduce see [13].

Copyright 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1As of Pig 0.10 the available scripting languages for UDFs are Python, Ruby, and JavaScript.
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1.1 What to Optimize

In designing and implementing Pig’s optimizer Pig developers sought to identify which characteristics of Pig
and MapReduce caused the most slow downs in the system. The following discusses the issues that were found
to cause the greatest slowdown in Pig’s execution.

1.1.1 Number of MapReduce Jobs

Most Pig Latin scripts get compiled into multiple MapReduce jobs. Each MapReduce job adds additional
overhead to the query. Hadoop’s MapReduce was built around large batch jobs as the primary use case. Little
effort has gone into minimizing overheads such as job start up time. As a rule of thumb, starting a MapReduce
job takes between 5 and 15 seconds, assuming there is capacity in the cluster to run the job immediately. Also,
in Hadoop 1.0 and previous versions there is no ability to declare multiple MapReduce jobs as related. In a busy
cluster this means that Pig may have to wait to secure resources for each of its MapReduce jobs, potentially
introducing lag time between each job.

Also, Pig moves data between MapReduce jobs by storing it in HDFS. This means that data is written to and
then read from disk (and written over the network for redundancy) at every MapReduce boundary.

Finally, a MapReduce job is a blocking operator. MapReduce job N+1 cannot start until all tasks from
MapReduce job N have completed. Since all reducers rarely finish together this has the effect of bottlenecking
the execution on slower tasks.

All these taken together mean that whenever the work of two or more MapReduce jobs can be consolidated
into one, Pig will execute the jobs significantly faster.

1.1.2 Key Skew

MapReduce divides its work between many nodes in the cluster, in both the map and reduce phases. In the map
phase the work is generally split by how the data is stored. In the most common case this means each map task
operates on one block from HDFS. Depending on the cluster these block sizes are generally between 64M and
512M. In the case of jobs with many smaller files that do not fill a block, a map task may operate on multiple
blocks in order to avoid spawning too many map tasks. This heuristic is provided to Pig by MapReduce and
gives a very even distribution of processing in the map phase.

In the reduce phase work is distributed based on a key chosen by the MapReduce user (in this case, Pig).
When the Pig user specifies a JOIN, GROUP BY, or ORDER BY operation the key of that operation will gener-
ally be the key that is used to partition data amongst reducers. In the case where the data is uniformly distributed
on this key this provides a good parallel distribution of the work. In our experience the vast majority of human
generated data is not uniformly distributed. In most cases it is power law distributed. This limits the ability to
parallelize the reduce phase by simply assigning different keys to different reducers. Whichever reducer gets
the key with the highest cardinality will receive a disproportionate amount of the work and cannot be sped up.
Since it will finish last it will define the time for the whole job. In addition, for any algorithms that require the
reducers’ data to be held in memory (e.g. the build table in a hash join) the accumulation of a significant percent
of the data in a single reducer may exceed the available memory in that reducer.

1.1.3 Amount of Data Shuffled

Between the map and reduce phases of MapReduce, data is hash distributed from the mappers to the reducers.
This phase is referred to as the shuffle. It is frequently the case that this phase takes longer than either the map
or the reduce. The size of the data to shuffle can be reduced by compression, and we have found this trade
off to often be worth it for compression algorithms that are not too CPU intensive (such as LZO or Google’s
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Snappy [1]). Whenever possible it is good to reduce the amount of data being passed from the mapper to the
reducer.

1.2 Optimizer Design Choices

Every optimizer only considers a subset of the total optimization space [9]. For Pig, the optimization space is
drastically shrunk by two facts: Pig’s choice to leave much of the control to the user, and the lack of a cost based
optimizer. Pig has chosen to implement different operators for different situations (e.g. hash join and sort join)
and let the user choose which to use in a given script. This leaves much control to the user, as well as putting a
significant burden on him. This is in line with one of the design goals of Pig: “Pig is a domestic animal”, i.e.,
Pig does whatever the user tells it to do [7].

Pig’s optimizer is rule based. In section 5.1, we will talk more about why Pig does not have a cost based
optimizer and how to move forward. With a rule based optimizer, exhaustive search in the optimization space is
converted to a precondition match for each optimization rule Pig has adopted.

There are two layers of the optimizer in Pig: logical layer and MapReduce layer. A Pig Latin script is first
converted into a logical plan by the parser. A logical plan is a DAG of all operators used in the Pig query. In
this grand graph, Pig applies optimization rules to split, merge, transform, and reorder operators. A logical plan
is then converted to a MapReduce plan2, which is a fragmented view of the Pig query with the MapReduce
job boundaries defined. Reordering operators in this graph is clearly more complex but with the information of
MapReduce job boundaries, we can do some further optimizations which are not possible in a grand graph.

Most of the logical layer optimization rules aim to reduce the amount of data in the shuffle phase or the
temporary files generated between consecutive MapReduce jobs. Here we list several notable rules in this
category:

• PushUpFilter: Applying selection earlier, reducing the number of records remaining in the pipeline. If
there are multiple conditions in the filter and the filter can be split, Pig splits the conditions and pushes up
each condition separately.3

• PushDownForEachFlatten: Applying FLATTEN, which produces a cross product between a complex type
such as a tuple or a bag and the other fields in the record, as late as possible in the plan. This keeps the
number of records low in the pipeline.

• ColumnPruner: Omitting columns that are never used or no longer needed, reducing the size of the record.
This can applied after each operator, so that fields can be pruned as aggressively as possible.

• MapKeyPruner: Omitting map keys that are never used, reducing the size of the record.

• LimitOptimizer: Applying the limit earlier, reducing the number of records. If the limit operator is imme-
diately after a load or sort operator, Pig converts the load or sort operator into a limit-sensitive implemen-
tation, which does not require processing the whole dataset.

On the other hand, most of the MapReduce layer optimization rules aim to optimize the MapReduce job
properties (e.g., number of MapReduce jobs, whether or not use the combiner, etc.). The MapReduce plan is
restructured to a more efficient plan according to the optimization rules. The optimizations discussed in sections
2.3 and 3 are both triggered in this optimizer.

2We omit the physical plan in this discussion since is not involved in the optimization. For further details please see [8]
3Database texts and papers usually discuss pushing filters down. In Pig we tend to think of load as the top of the graph and store as

the bottom, so filters are said to be pushed up rather than down.
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2 Handling Key Skew

As discussed earlier, key skew is a major bottleneck for Pig performance. In this section, we will discuss how
key skew is handled by the JOIN, ORDER BY, and GROUP BY operators. For a more general discussion of
handling skew in MapReduce applications see [19].

2.1 Handling Skew in JOIN

The default join implementation in Pig is hash join. Input relations are assigned to the reducers via a hash
function on the join key. The hash function is key skew agnostic so it assigns an unfairly large amount of work
to reducers with keys that have a large number of records. It is common to see a single reducer slow down the
whole MapReduce job due to a single large key.

The issue of skew in parallel implementations has been discussed in [15]. Based on this paper, Pig added a
new join operator, skewed join. The idea is to split keys with a high number of records and distribute them to
more than one reducer. To implement it the following problems needed solved.

Identifying which keys are large. Pig samples the input data to estimate the number of input records for each
key and the average size of each record. The criteria for a key with too many records is that the estimated size
of the all the records with that key exceeds a certain percentage of the memory on a reducer. The sampling job
is a separate MapReduce job. The added sampling MapReduce job is significantly smaller than the join job in
most cases, so the added overhead is tolerable.

How many reducers to use for a large key. To efficiently process the key, Pig assumes each reducer can only
take a certain amount of input data. This is related to the memory management model of Pig. If a reducer takes
more input data than the available amount of memory, Pig has to spill the input data onto the disk, which slows
the pipeline down. Pig is configured by default to allow the amount of input data to occupy 30% of the memory
allocated to the JVM. With the JVM configuration information of a node and the estimated number and size of
records for a given key, Pig can easily calculate the number of reducers to use for that particular key. Note that
if the calculated number of reducers is larger than the number of total reducers of the MapReduce job (usually
specified by the user in a PARALLEL clause in the Pig Latin script), Pig fails. The user needs to increase the
number of reducers and try again.

How to distribute the input data. Hadoop allows the user to specify the Partitioner class that is used
to distribute data between reducers [13]. A special partitioner is used to distribute a key with a large number of
records into the predetermined number of reducers in a round robin fashion. Only the left side relation is used
to identify and distribute large keys. Records from the right side relation with the chosen key are duplicated to
every reducer that received a section of the chosen key and crossed with the left side relation to produce the final
result. As discussed in section 1.2, whether or not to use skewed join is controlled by the user.

Achieving an even balance of work between reducers is not always feasible with skewed join. If the distri-
bution of join keys in the right side input is skewed, the work load of reducers will still be skewed. However, in
this algorithm no reducer will be overwhelmed and fail, as can happen in the standard join if the build relation
is too large and will not fit in memory. If the distribution of the join keys is even in the right side, then skew join
will achieve a balance of work between the reducers.

This algorithm does break the MapReduce rule of “one key, one reducer” and thus can produce outputs that
will confuse or surprise down stream users.

2.2 Handling Skew in ORDER BY

ORDER BY in Pig Latin indicates a global sort, meaning not only that the output of each reducer is sorted
but that all output of reducer N is guaranteed to be less than or equal to the output of reducer N+1. As we
know, a reducer sorts the data automatically before processing. Thus a global sort could be achieved by a single
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reducer easily, but at the price of poor performance. If multiple reducers are used, the output is sorted within
each reducer, however, the outputs of different reducers are independent and the global sort cannot be achieved
automatically. Pig uses the following steps to achieve a global sort:

1. A sampling algorithm is used to estimate the range of keys to be sorted and how many records exist for
each key.

2. Sort key boundaries for each reducer are determined by the number of reducers and number of records per
key. These boundaries are chosen such that it is estimated that the same number of records will be sent to
each reducer.

3. Input records are distributed to reducers based on these predetermined boundaries. The boundaries are
increasing (or decreasing, in a descending sort), i.e. the boundary for reducer #2 is greater than or equal to
the boundary for reducer #1, which means all outputs of reducer #2 are greater than or equal to any output
of reducer #1.

4. Each reducer sorts its own input data.

A dedicated sampling MapReduce job is added to process step 1 and 2. A second MapReduce job with a
special partitioner is used to process step 3 and 4.

Pig deals with key skew in step 2. When determining the key boundary for each reducer, Pig also balances
the workload of all reducers. This is achievable because the estimated size of each key is known in this phase.
Unlike skewed join, Pig balances the load of each reducer. As noted in step 3, the boundaries between reducers
may be set such that a record could go to more than one reducer (in the case where the upper boundary of
reducer #2 is equal to the upper boundary of reducer #1). In this case the partitioner will distribute records
in round robin fashion between those reducers. This allows Pig to split keys with large numbers of records
across multiple reducers, thus avoiding imbalance between reducers. Using this algorithm Pig is generally able
to balance a sort workload such that the longest running reducer finishes in 110% of the time of the average
reducer.

As with skew join in the previous section, this algorithm breaks the “one key, one reducer” rule that MapRe-
duce users are accustomed to.

2.3 Handling Skew in GROUP BY

By definition an aggregation operation requires that all records with the same key be collected together. This
makes the breaking of the “one key, one reducer” rule, which is done for JOIN and ORDER BY not feasible
for GROUP BY. However, some aggregate operations can be distributed across multiple phases. Consider for
example the COUNT function, which can count whatever records are present the first time it is invoked, and on
subsequent invocations can sum results of previous invocations. As discussed in [18], a function that can be
rewritten in this way is referred to as algebraic.

In Pig, a UDF can indicate that it is algebraic by giving Pig three separate implementations of itself, an
initial, intermediate, and final implementation. Pig in turn runs these in the map, combine, and reduce phases.
The contract is that the initial (map) implementation will be run once per record, the intermediate (combine)
implementation will be run zero or more times per key, and the final (reduce) implementation will be run once
per key. This contract is inherited directly from MapReduce’s contract of how the map, combine, and reduce
phases are run. As an example, consider the COUNT function. The initial implementation returns a 1. The
intermediate and final implementations sum the counts provided to them.

Use of these algebraic aggregation functions greatly reduces the effect of skew. In general, however many
records with a given key a mapper has in its input, the associated combiner will only produce one record for
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that key.4 This means that for each reducer the maximum number of records it will see for each key is bounded
by the number of mappers in the job. Also, as part of the map and reduce phases, if the number of combiner
outputs to be input to a given reducer exceeds a configurable threshold a merge phase will be invoked where the
combiner is again run. This is done to avoid inefficient merges with too many input streams during the reduce.
This further bounds the maximum number of records per key each reducer sees to MAX(number of mappers,
merge threshold). Given that the merge threshold is usually set at one hundred or lower this effectively prevents
significant skew for the reducers in cases where algebraic aggregation functions are used.

3 Aggregating on Multiple Key Sets in a Single MapReduce Job

One of Pig’s most common uses is in data processing pipelines. Data is loaded into Hadoop and then processed
by Pig to prepare it for analysis, use in front line serving systems, etc. Frequently in these use cases a few data
sets will serve as a basis for many derived data sets. Consider the example of an online retailer. The logs from
the web servers (click and view data) and the logs from the sales transactions will form the basis for much of the
downstream processing. Because of this, many Pig users load the same data set multiple times and aggregate it
by different keys. This spawns many MapReduce jobs, each of which load and de-serialize the same data set.

To address this common need the Pig community developed a way for Pig to perform aggregations on
multiple keys in a single MapReduce job. This optimization is referred to as multi-query.5 Consider the example
of an online retailer that collects records of sales transactions from its front end servers that record, amongst other
things, the user that visited its site, what he purchased, and how much the purchases cost. The retailer may want
to segment users along different dimensions in order to analyze how different types of users are interacting with
the site. For example, the retailer’s analysts may want to analyze average user purchases by geographic location,
by demographic group (e.g. age and gender), and by income level. A Pig Latin script to prepare this data would
look like:

txns = LOAD ’data/txns’ AS
(userid, timestamp, itempurchased, cost);

users = LOAD ’data/users’ AS
(userid, zip, age, gender, income);

joined = JOIN txns BY userid, users by userid;
bygeo = GROUP joined BY zip;
avgbygeo = FOREACH bygeo GENERATE

group AS zip, AVG(joined.cost);
STORE avgbygeo INTO ’data/avgbygeo’;
bydemo = GROUP joined BY (age, gender);
avgbydemo = FOREACH bydemo GENERATE

FLATTEN(group) AS (age, gender), AVG(joined.cost);
STORE avgbydemo INTO ’data/avgbydemo’;
byincome = GROUP joined BY income;
avgbyincome = FOREACH byincome GENERATE

group AS income, AVG(joined.cost);

4This is not quite true because a mapper writes data to the combiner’s buffer until that buffer is full and then the combiner runs. Each
of these combiner outputs becomes an input to the reducer. It is possible that the mapper has sufficient output to overflow the combiner’s
buffer, thus producing multiple inputs per reducer from that combiner. In a well tuned system the HDFS block size will be set such that
the mapper can store the entire contents of the block in memory. Since approximately a 4x expansion in data size from disk to memory
is usually observed, an HDFS block size of 256M would indicate 2G of memory per mapper. However overflows can still occur from
operators such as joins that grow the memory size of the mapper’s output.

5The initial implementation of this feature was discussed in [8]
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STORE avgbyincome INTO ’data/avgbyincome’;

Notice that each GROUP BY operator works on the same input, joined. At first glance it would be natural
to assume that this Pig Latin script would be translated to four MapReduce jobs, one for the JOIN and one
for each of the GROUP BYs. But Pig translates this to two MapReduce jobs, one for the JOIN and one for
all three GROUP BYs. In this example all three aggregations invoke the same function on the same column,
AVG(joined.cost). This is merely for simplicity in the example. There is no need for this. Different
functions can be invoked on different columns in some or all of the aggregations.

Pig accomplishes this combination of multiple aggregations into a single MapReduce job as follows. The
first MapReduce job is done in the normal manner. In the map phase of the second MapReduce job each record
is replicated three times. An additional column is added to the record and set to indicate which of the three
aggregates the record belongs to. We will refer to this as the pipeline indicator column. In the example above
the copy of the record for bygeo would have a pipeline indicator of 0, the copy for bydemo a 1, and the copy
for byincome a 2. The reduce key for this job is set to be a tuple. What is placed in that key varies for each
record though. In the record bound for bydemo (pipeline 0) the field zip is placed in the tuple along with the 0
pipeline indicator. The record for bygeo (pipeline 1) has age, gender, and the 1 pipeline indicator in the key
tuple. And the record for byincome (pipeline 2) has income and 2 for the pipeline indicator in its key tuple.
MapReduce’s default hashing mechanism now works as usual to hash the records across all of the reducers and
collect records for each aggregate in each pipeline together.

Example:
Row entering the map phase of the second MapReduce job:

{"cost": 19.49, "zip": "94303", "age": 50, "gender": "female",
"income": 200000}

Three rows exiting the map phase:

Row 1:
Key: {"pipeline":0, "zip": "94303"}
Value: {"cost": 19.49}

Row 2:
Key: {"pipeline":1, "age": 50, "gender": "female"}
Value: {"cost": 19.49}

Row 3:
Key: {"pipeline":2, "income": 200000}
Value: {"cost": 19.49}

Other fields will have been projected out of the row entering the second MapReduce job by Pig’s optimizer
as it realizes it no longer needs userid, and it never needed timestamp or itempurchased for this script.
Similarly, after duplicating the records for each pipeline Pig’s optimizer projects out fields it no longer requires
for each pipeline.

Each combiner and reducer instantiates separate pipelines, one for each of the aggregations. When it receives
a record it examines the pipeline indicator and places the record in the appropriate pipeline. Since the pipeline
indicator is a part of the key a combiner or reducer is guaranteed to see all keys for a given group for a given
pipeline together. This implies that the combiner or reducer need not cache records for different pipelines
simultaneously, thus limiting memory usage. The data is then processed in each pipeline as it normally would be.
Special handling is required when the data is written out of the reducer, as MapReduce expects a single output,
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an expectation that Pig is violating. Pig handles this by ignoring the MapReduce default output mechanism
and writing the output via the required OutputFormat itself separately for each pipeline. This also makes it
possible to combine aggregates that write out data using different file formats (for example one aggregate might
be stored using the default text format, one using SequenceFile (a binary format), and one written to Apache
HBase [14]).

The speed up provided by this optimization varies depending on how many MapReduce jobs are coalesced
together and how much data is being read and aggregated. The testing done by developers and initial users
indicated near linear speed ups when coalescing up to ten jobs. For example, in one particular use case, an 8x
speed up was observed with ten aggregations.

There are limits to the usefulness of this optimization. One is collecting together aggregations that do and
do not use the combiner.6 Passing non-combined data through the combiner, as is required in this case, is
prohibitively expensive because the data is being repeatedly read and written without being reduced in size.
When Pig is provided a script that would be a candidate for multi-query optimization that includes aggregations
that do and do not use the combiner, it coalesces all of the combiner eligible jobs together but leaves the non-
combiner eligible jobs to be run separately.

A second limit is that this optimization trades off the overhead of running additional MapReduce jobs and
the associated extra reads and de-serializations of the data against the cost of increasing the amount of data being
sent through the shuffle phase. In our experience, as the number of simultaneous aggregations grouped together
grows the efficiency of using multi-query over separate jobs lessens. The Pig community has not yet taken the
step of implementing a cost estimator for this feature that determines when MapReduce jobs should and should
not be coalesced. This means that the user must be aware of this limitation and write their Pig Latin scripts in
such a way to avoid over coalescing of aggregations.

4 Sort versus Hash Aggregation in the Hadoop Ecosystem

Section 2.3 describes how Pig does partial aggregation in the map phase. In addition to handling skew problems
in GROUP BY, it helps in improving performance by reducing the data that needs to be transferred between
mappers and reducers.

The hadoop MapReduce framework sorts the mapper’s output on the shuffle key before sending the results
to the reducers, and as a result the natural way for supporting partial aggregation in the mapper has been to use
sort-based aggregation through use of the combiner.

While the combiner makes it easy to optimize aggregation in MapReduce programs, there are significant
costs associated with it. Hadoop uses a memory buffer of fixed size (configurable for the MapReduce job),
to accumulate the mapper’s output before sorting it and running the results through the combiner. It serializes
the data while writing into this buffer7 and de-serializes it for use by the combiner. These serialization and
de-serialization costs are high. If there is not sufficient reduction in data size, this overhead cost can degrade
performance. For example, in an extreme case where there is no data size reduction (when each input record to
the mapper has a distinct key), a MapReduce query using the combiner takes 50% longer than one that does not
use the combiner [4].

To avoid this cost, support for hash-based aggregation within the map task has been introduced in Pig [5] [6].
A Java HashMap object with the set of GROUP BY keys as the key is used to accumulate the output of the
aggregate UDF’s initial function call (see section 2.3). When the estimated size of the HashMap exceeds a
configurable threshold, it calls the UDF’s intermediate function on the accumulated values for each HashMap
key to compute partial aggregates. The partial aggregates are accumulated in another HashMap. When further

6See section 2.3 above for a discussion of the combiner and how Pig uses it.
7This is done because it is difficult to precisely calculate the memory size of Java objects.
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memory thresholds are reached, the accumulated values are further aggregated and Pig starts writing the results
as output of the map task.

In our benchmarks, hash-based aggregation has been shown to reduce the runtime of the map phase (includ-
ing combiner) in jobs containing a GROUP BY by up to 50% [5].

If there is not sufficient reduction in output, the cost of performing hash based aggregation can again degrade
the performance. But thanks to this being an internal Pig operator (unlike combiner), Pig can automatically
disable the aggregation if the output size reduction is below a configurable threshold. This is done at run time.
After a number of records are hashed if a sufficient reduction in size is not seen the hash table is dumped as
output and Hadoop’s default sort based aggregation used.

5 Future Plans

In addition to the areas outlined above where work has been done or is ongoing, there are additional opti-
mizations that the Pig community has discussed. These involve using statistics to make decisions about query
optimization and taking advantage of changes to the underlying execution framework to provide a more efficient
environment in which Pig can operate.

5.1 On the Fly Replanning

As indicated earlier, in section 1.2, the Pig community chose initially to focus on building various implemen-
tations of operators so that Pig users could choose the best operator for their situation. For example, Pig has
five join operators from which users can choose when writing their Pig Latin scripts. While this allows users
a large degree of control it also pushes a significant burden onto them, as they must do exhaustive testing to
determine the best operator for their use case. It is also not adaptive in the face of change, since for any script
run on a regular basis different inputs may perform better with different execution choices. Wherever Pig can
make reasonable choices to select the correct operator it should do so, while still allowing the user to override
that choice.

Traditionally this is done in databases by using statistics and a cost based optimizer (CBO). The CBO uses
the statistics about data in the table to estimate the cost of choosing different implementations of operators.
There are, however, difficulties with this approach in Pig. First, statistics are often not available for Hadoop’s
data. Data in a database is generally cleansed and analyzed as part of the loading process. Data in Hadoop is
often raw and has not yet been analyzed and had statistics generated for it. This is particularly true of data that
Pig is operating on since Pig is often used for the cleansing and transforming process. It makes sense to use
statistics when available, but it does not make sense to assume their existence.

Additionally, the depth of operator trees generated by a Pig Latin script can greatly exceed those of an
average SQL query. Consider a common data analytics query with a join, an aggregate, and a sort of the results:

SELECT userid, storeid, SUM(cost) as total_purchases
FROM users, stores, purchases
WHERE users.userid = purchases.userid

AND stores.storeid = purchases.storeid
AND purchases.userid IS NOT NULL
AND purchases.storeid IS NOT NULL

GROUP BY userid, storeid
ORDER BY total_purchases descending;

Ignoring projections the maximum depth of the operator tree generated to execute this query should be six
(one for the scans, one for IS NOT NULL filters, one for each join, one for the aggregation, and one for the
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sort). This means that even if the initial statistics for the data accessed in this query have some errors (which
they will) the errors for the estimations for the operators at the top of the tree will usually be tolerable. However,
in a Pig Latin script it is not uncommon to have operator trees of much greater depth. ETL processes often
operate on data through tens or even hundreds of transformations before producing the final result. With this
many operators processing the data, no matter how accurate the initial statistics are, the errors for the estimates
for operators near the end of the pipeline will become intolerable.

The lack of statistics for existing data and the limited usability of statistics in longer Pig Latin scripts implies
that it makes sense for Pig to instead collect statistics at runtime and modify its execution plan accordingly. This
would work as follows. If statistics are available for some or all of the input data of the script, those would be
used to plan the initial phases of the execution of the script. If statistics are not available, a sampling pass could
be done to quickly generate statistics or a conservative plan could be chosen which would work reasonably well
regardless of the input data.8 As Pig processes the data it could then, at predetermined points, generate simple
statistics. These in turn could be used before the next MapReduce job is launched to re-optimize and re-plan
the remaining execution of the script. For example, a Pig execution plan that contains four MapReduce jobs
linked one after the other may be changed so that statistics are collected as part of generating output of the
second MapReduce job. Pig would then re-optimize and re-plan the remaining two MapReduce jobs, including
potentially consolidating the two jobs. This is similar to the approaches described in [17] and [16], but adapted
for the case where there are no initial statistics and with re-optimization points chosen statically up front rather
than dynamically.

This proposed “on the fly” replanning has areas that need investigation in order to determine the best design.

• What is the optimal frequency of replanning? There will be a cost to collecting statistics, so replanning at
every MapReduce job will introduce a noticeable drag. The inflection point between the cost of collecting
statistics and replanning and the excessive error introduced by the number of operators for which estimates
are done will need to be understood.

• What is the correct trade off between the cost of collecting statistics and the benefit of better planning
with those statistics? Estimating the number of records in a file and the cardinality of a few key fields
in those records can be done efficiently. Estimating the distribution of values in a field (e.g. building a
histogram) is more valuable from an optimization standpoint but more expensive. There is also value in
knowing statistics such as maximum and minimum values of a field, average length of a string field, etc.
Experimentation will be required to understand when the cost of collecting any particular statistic is worth
the planning benefit.

• How accurate do the statistics need to be to provide good planning? The more that statistics collection
can rely on fast sampling techniques the more efficient it can be. However, the more error is introduced in
collection the less accurate the resulting plans will be and the more often the planner will need to re-collect
and re-plan.

5.2 Taking Advantage of Hadoop 2.0

In Hadoop 1.0 the only job execution framework available is MapReduce. In Hadoop 2.0 the job execution
framework has been re-factored and generalized [3]. MapReduce is now one execution framework available

8Which of these would be better is not clear. A sampling pass that generates rough statistics is most likely more expensive than
choosing a conservative plan since it will involve adding an additional MapReduce job and an additional read of some of the data. But
in an environment where metadata can be stored (e.g. if the user is using Apache HCatalog [2]), it has the advantage that Pig can store
the generated statistics for future reads of the data. Since files are written once in Hadoop, these statistics will be valid for future reads
without the risk of them being invalidated by intervening updates. This trade off may need to be presented to users so that users or
administrators can make the correct choice for their situation.
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as part of the system. Hadoop 2.0 has opened up the interfaces so that users can write their own execution
frameworks. This is done by providing an application master that manages the users’ jobs, much as the Job
Tracker manages MapReduce jobs in Hadoop 1.0.

Pig was originally written to use MapReduce as its execution engine because that was the only option in
Hadoop. However, there are features of MapReduce which are not optimal from Pig’s viewpoint. The ability
to write an application master designed directly for Pig’s use case will allow Pig to more efficiently execute
its scripts. For brevity we will consider only one significant improvement Pig could make to the MapReduce
paradigm in its application master, removing the map phase from all but the first MapReduce job in a chain of
jobs.

When constructing an execution plan Pig uses a series of MapReduce jobs. However, after the map phase of
the first job, no additional map phases are required. That is, it would be more efficient to have the chain of phases
be map -> reduce -> reduce rather than map -> reduce -> map -> reduce. This is because
whatever processing is in the second map phase can always be done in the preceding reduce. The contract of
the map function is that it operates on one record at a time and it arbitrarily partitions its input data. The reduce
function can satisfy this contract by applying the mapper’s functionality to each output of operators placed in the
reducer. Removing this unnecessary map phase removes a read to and write from HDFS, thus lowering overall
disk and network operations. This approach is referred to as MRR or MR* to indicate the multiple reduce phases
in a single job.

Additionally, removing the MapReduce job boundary removes a synchronization point. When a MapReduce
job generates output it writes it to a temporary location and only moves it to the requested output location in an
atomic move after all reducers are finished. This avoids the data being read while it is still being written. A side
effect of this for a Pig Latin script with multiple MapReduce jobs is that the second job cannot start until the
first job is completely finished. In contrast, inside a MapReduce job data is shuffled between a mapper and the
reducers, and potentially merged, as soon as a mapper produces it. The reducer cannot start until all mappers
have completed, but much of the intermediate work can be done. The same would be true in the MR* case,
where data produced by the first set of reducers could be shuffled and merged in preparation for the second set
of reducers.

6 Acknowledgements

We would like to thank the Apache Pig community, both developers and users, who have built, maintained, used,
tested, written about, and continue to push forward Pig.

References

[1] http://code.google.com/p/snappy/

[2] http://incubator.apache.org/hcatalog/

[3] http://hadoop.apache.org/docs/r2.0.2-alpha/

[4] https://cwiki.apache.org/confluence/display/PIG/Pig+Performance
+Optimization#PigPerformanceOptimization-HashAggvs.Combiner

[5] https://issues.apache.org/jira/browse/PIG-2228

[6] https://issues.apache.org/jira/browse/PIG-2888

44



[7] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, Andrew Tomkins: Pig Latin: A
Not-So-Foreign Language for Data Processing. Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, June 09-12, 2008, Vancouver, Canada

[8] Alan F. Gates, et al.: Building a High-Level Dataflow System on top of Map-Reduce: the Pig Experience.
Proceedings of the VLDB Endowment, v.2 n.2, August 2009

[9] Matthias Jarke , Jurgen Koch: Query Optimization in Database Systems. ACM Computing Surveys
(CSUR), v.16 n.2, p.111-152, June 1984

[10] http://pig.apache.org/

[11] http://hadoop.apache.org/

[12] Alan Gates, Programming Pig, O’Reilly, 2011.

[13] http://hadoop.apache.org/docs/r1.1.1/mapred_tutorial.html

[14] http://hbase.apache.org/

[15] D. DeWitt, J. Naughton, D. Schneider, and S. S. Seshadri: Practical Skew Handling in Parallel Joins. In
Proc. of the 18th VLDB Conf., pages 2740, 1992.

[16] Volker Markl, Vijayshankar Raman, David E. Simmen, Guy M. Lohman, Hamid Pirahesh: Robust Query
Processing through Progressive Optimization. In Proc. of ACM SIGMOD 2004, pages 659-670.

[17] Navin Kabra and David J. DeWitt: Efficient Mid-Query ReOptimization of Sub-Optimal Query Execution
Plans. In Proc. of ACM SIGMOD 1998, pages 106-117.

[18] Jim Gray, et al.: Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and
Sub-Totals. In Data Mining and Knowledge Discovery 1(1): 29-53 (1997).

[19] YongChul Kwon, Kai Ren, Magdalena Balazinska, Bill Howe, and Jerome Rolia: Managing Skew in
Hadoop. IEEE Data Eng. Bull., Vol 36, No 1, March 2013

45



Recurring Job Optimization for Massively Distributed Query
Processing

Nicolas Bruno
nicolasb@microsoft.com

Microsoft Corp.

Sapna Jain
sapnakjain@gmail.com

IIT Bombay

Jingren Zhou
jrzhou@microsoft.com

Microsoft Corp.

Abstract

Companies providing cloud-scale data services have increasing needs to store and analyze massive data
sets. For cost and performance reasons, processing is typically done on large clusters of tens of thou-
sands of commodity machines. Developers use high-level scripting languages that simplify understand-
ing various system trade-offs, but introduce new challenges for query optimization. One key optimization
challenge is missing accurate data statistics, typically due to massive data volumes and their distributed
nature, complex computation logic, and frequent usage of user-defined functions. In this paper we de-
scribe a technique to optimize a class of jobs that are recurring over time in a cloud-scale computation
environment. By leveraging information gathered during previous executions we are able to obtain ac-
curate statistics for new instances of recurring jobs, resulting in better execution plans. Experiments on
a large-scale production system show that our techniques significantly improve cluster utilization.

1 Introduction

An increasing number of applications require distributed data storage and processing infrastructure over large
clusters of commodity hardware for critical business decisions. The MapReduce programming model [7] helps
programmers write distributed applications on large clusters, but requires dealing with complex implementation
details (e.g., reasoning with data distribution and overall system configuration). High level scripting languages
were recently proposed to address these limitations, such as Nephele/PACT [1], Jaql [2], Hyracks [3], Ten-
zing [5], Dremel [15], Pig [16], Hive [18], DryadLINQ [19], and SCOPE [20, 21]. These languages offer a
single machine programming abstraction and allow developers to focus on application logic, while providing
systematic optimizations for the underlying distributed computation. As in traditional database systems, such
optimization techniques rely on data statistics to choose the best execution plan in a cost-based manner [21, 13].

Consider the sample script shown in Figure 1(a), which first joins the result of user-defined aggregates and
performs a global sort on the join result before writing the final answer. Figure 1(b) shows a possible execution
plan for this script. The plan first partitions the input data sets on the group by columns (a and c, respectively)
and computes user defined aggregates in parallel. It then re-partitions the aggregate outputs on the join column
sb and evaluates the join. Finally, it range-partitions the join output on the global sort columns and locally sorts
each partition.

Copyright 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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Figure 1: Alternatives to Execute a Distributed Query

Now, suppose that the user-defined filter UDFilter(b,c) > 5 on s.txt is very selective and drastically
reduces the data size. In this case, it would be better to merge all data on a single machine to compute the user-
defined aggregate and use a broadcast join variant (which does not require re-partitioning on the join column) to
obtain the join result, as shown in Figure 1(c). This alternative also assumes that the user-defined aggregate on
r.txt and the join are selective, so it reduces the degree of parallelism from 250 to 100 and changes the post-join
range-partitioning with a serial alternative. Clearly, this alternative plan is better than the previous one for the
given cardinality assumptions, but it will perform really badly if those assumptions are not valid.

The previous examples illustrate that the choice of a plan heavily depends on properties of the input data
and user-defined functions. Several aspects of highly distributed systems make this problem more challenging
compared to traditional database systems. First, it is more difficult to obtain and maintain good quality statistics
due to the distributed nature of the data, its scale, and common design choices that do not even account for
accurate statistics over input unstructured data. Even if we can collect statistics for base tables, the nature
of user scripts, which typically rely on user-defined code, makes the problem of statistical inference beyond
selection and projection more difficult during optimization. Additionally, the cost of user defined code is another
important source of information for cost-based query optimization. Such information is crucial for the optimizer
to choose the optimal degree of parallelism for the final execution plan and when and where to execute the user
code. Finally, input scripts typically consist of hundreds of operators, which magnify the well-known problem
of propagation of statistical errors. This negatively impacts the quality of the resulting execution plans, with a
potential performance impact in the orders of magnitude.

At the same time, a large proportion of queries in such a cloud-scale distributed environments are parametric
and recurring over a time series of data. The input datasets usually come in regularly, say, hourly or daily, and
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Figure 2: Compiling and Executing in SCOPE

more importantly, they share similar data distribution and characteristics. The same business logic is thus applied
to incoming datasets that are similar. We denote those jobs as recurring. In this work we describe mechanisms to
capture data statistics concurrently with job execution, and automatically exploit them for optimizing recurring
jobs. We achieve this goal by instrumenting different job stages and piggybacking statistics collection with the
normal execution of a job. After collecting such statistics, we show how to feed them back to the query optimizer
so that future invocations of the same (or similar) jobs take advantage of accurate statistics.

The rest of the paper is structured as follows. In Section 2 we review necessary background on distributed
computation engines, using the SCOPE system for illustration. In Section 3 we describe our solution for recurring
job optimization. Section 4 reports an experimental evaluation of our approach on real-world data. Section 5
reviews related work and Section 6 concludes the paper.

2 Background

We now describe the main components of distributed computation engines, using the SCOPE system as an
example. The ideas and results in this paper, however, are applicable to other engines as well.

Language and Data Model. The SCOPE language is declarative and intentionally reminiscing SQL. The select
statement is retained along with joins variants, aggregation, and set operators. Like SQL, data is modeled
as sets of rows composed of typed columns, and every rowset has a well-defined schema. At the same
time, the language is highly extensible and is deeply integrated with the .NET framework. Users can
easily define their own functions and implement their own versions of relational operators: extractors
(parsing and constructing rows from a raw file), processors (row-wise processing), reducers (group-wise
processing), combiners (combining rows from two inputs), and outputters (formatting and outputting final
results). This flexibility allows users to solve problems that cannot be easily expressed in SQL, while at the
same time enables sophisticated reasoning of scripts. Figure 2(a) shows a simple SCOPE script that counts
the different 4-grams of a given single-column structured stream. In the figure, NGramProcessor is a C#
user-defined operator that outputs, for each input row, all its n-grams (4 in the example). Conceptually,
the intermediate output of the processor is a regular rowset that is processed by the main outer query (note
that intermediate results are not necessarily materialized between operators at runtime).

Compilation and Optimization. A SCOPE script goes through a series of transformations before it is executed
in the cluster. Initially, the SCOPE compiler parses the input script, unfolds views and macro directives,
performs syntax and type checking, and resolves names. The result of this step is an annotated abstract
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syntax tree, which is passed to the query optimizer. Figure 2(b) shows an input tree for the sample script.
The SCOPE optimizer is a cost-based transformation engine that generates efficient execution plans for
input trees. The optimizer returns an execution plan that specifies the steps that are required to efficiently
execute the script. Figure 2(c) shows the output from the optimizer, which defines specific implementa-
tions for each operation (e.g., stream-based aggregation), data partitioning operations (e.g., the partition
and merge operators), and additional implementation details (e.g., the initial sort after the processor, and
the unfolding of the aggregate into a local/global pair). The backend compiler then generates code for
each operator and combines a series of operators into an execution unit or stage, obtained by splitting the
output tree into components that would be processed by a single node. The output of the compilation of a
script thus consists of (i) a graph definition file that enumerates all stages and the data flow relationships
among them, and (ii) the assembly itself, which contains the generated code. This package is sent to the
cluster for execution. Figure 2(c) shows dotted lines for the two stages corresponding to the input script.

Job Scheduling and Runtime. The execution of a SCOPE script is coordinated by a Job Manager (or JM). The
JM is responsible for constructing the job graph and scheduling work across available resources in the
cluster. A SCOPE execution plan consists of a DAG of stages that can be scheduled and executed on
different machines independent of each other. A stage represents multiple instances, or vertices, which
operate over different partitions of the data (see Figure 2(d)). The JM maintains the job graph and keeps
track of the state and history of each vertex in the graph. When all inputs of a vertex become ready, the
JM considers the vertex runnable and places it in a scheduling queue. The actual vertex scheduling order
is based on vertex priority and resource availability. During execution, a vertex reads inputs either locally
or remotely. Operators within a vertex are processed in a pipelined fashion, in a way very similar to a
single-node database engine. Every vertex is given enough memory and processing power to satisfy its
requirements, which sometimes prevents a new vertex from being run immediately on a busy machine.
Similarly to traditional database systems, each machine uses admission control techniques and queues
outstanding vertices until the required resources are available. The final result of a vertex is written to
local disks (non-replicated for performance reasons), waiting for the next vertex to pull data.

3 Recurring Job Optimization

The architecture of our approach to process recurring jobs is shown in Figure 3. We next describe our technique
in detail by illustrating the steps a typical job follows through the system:

1. Initially, a script is submitted to the cluster for execution. The script might be recurring or new, and it is
assumed to be annotated with parametric information (e.g., usually the input datasets change every day
following a simple expression pattern).

2. The compiler parses the input script, performs syntax and type checking, and passes an annotated abstract
syntax tree to the query optimizer. The query optimizer explores many semantically equivalent rewritings,
estimates the cost of each alternative, and picks the most efficient one. While doing costing, the optimizer
relies on cardinality estimates and other statistics for each plan alternative (see Section 3.4).

3. We extend the query optimizer to generate signatures for plan subtrees (explained in Section 3.1). During
plan exploration we collect all the signatures that are associated with execution alternatives, and before
implementation and costing we probe the statistics repository for signature matches. The repository is a
new service that stores plan signatures and the corresponding runtime statistics gathered during execution
of previous jobs. The optimizer relies on such feedback to produce a more effective execution plan.
Signatures can be matched not only on the same recurring job, but also on similar jobs that share common
subexpressions. During optimization, the optimizer instruments the resulting execution plan to collect
additional statistics during execution: the resulting execution plan might contain sub-plans not yet seen by
the statistics repository, and also data properties might change over time, invalidating previous estimates.
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Figure 3: Architecture to collect and leverage statistics on recurring jobs.

4. The resulting execution plan is passed to the job scheduler in the form of a directed acyclic graph, where
each vertex is an execution unit which looks similar to a single-node relational query plan, and each edge
corresponds to data transfer due to repartitioning operators.

5. The scheduler manages the execution graph to achieve load-balancing, outlier detection and fault toler-
ance, among others.

6. The job manager transfers the vertex definition of new execution units to be run in cluster machines, and
monitors the health and progress of each instance.

7. The runtime, which can be seen as a single-instance database engine, executes the vertex definition and
concurrently collects statistics requested by the optimizer and instrumented during code generation (see
Section 3.2).

8. When the vertex finishes execution, as part of the last heartbeat to the job scheduler, it sends back the
aggregated statistical information, which is collected and further aggregated over all vertex instances.

9. Before finishing execution of the whole job graph, the job manager contacts the statistics repository and
inserts the new statistics, to be consumed by future jobs. In case of duplicate signatures, the repository rec-
onciles them using different policies (see Section 3.3). Periodically a background task discards statistics
in the repository that exceed a certain age.

We next describe some components in additional detail.

3.1 Plan Signatures

Plan signatures uniquely identify a logical query fragment during optimization. This is similar to the notion
of view matching technology in traditional database systems. View matching is a very flexible approach, but
very difficult to extend beyond select-project-join queries with aggregation. Traditional view matching is able to
perform partial matching on different queries and compensate differences using additional relational operators.
For scalability purposes, and because many jobs are naturally recurring in our environment, we take a slightly
different approach that can handle any operator tree including user-defined operators in SCOPE. This approach
has some advantages over traditional view matching for our scenarios. First, we can handle any logical operator
tree including used defined operators in SCOPE, which are not considered in traditional view matching. Sec-
ond, signatures are very compact and easy to manipulate inside the optimizer and across components. Finally,
querying and updating the statistics repository for signature matches is a very efficient lookup operation.

Specifically, for every operator subtree we traverse back the sequence of rules applied during optimization [9]
until we reach the initial semantically equivalent expression1. Since the optimizer is deterministic, this initial

1Every rule transforms one plan into another, and we tag each resulting plan with the rule it produced it and its source. That way, we
can always track the plan back to the original logical expression.
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expression can be used as the canonical representation for the operator tree. We then recursively serialize the
representation of the canonical expression and compute a 64-bit hash value for each subtree, which serves as the
plan signature2. All fragments producing the same result are grouped together and have the same plan signature.

Parametric signatures. We relax the construction of signatures to accept parametric scripts. The reason
is that recurring scripts are virtually identical, but differ on certain constants or input names (e.g., there are
predicates that filter the current day). In absence of parametric signatures, every script would result in different
signatures and there would not be any possibility of reusing statistical information. In our approach, customers
are required to specify that certain constants (including input names) are parameters. In that case, the signature
skips the actual value of the constant and replaces it with a canonical value, which allows the system to match
subexpressions that differ only on parameters.

3.2 Statistics instrumentation

The compiler instruments generated code to capture statistics during execution and thus enable recurring
job optimization. Statistics need to satisfy certain properties to be useful in our framework. First, statistics
collection needs to have low overhead and consume little additional memory, as it is always enabled during
normal execution. Second, statistics must be composable, because each vertex instance computes partial values
that are then sent to and aggregated by the JM. Finally, statistics must be actionable, as there is no point in
accurately gathering statistics unless the query optimizer is able to leverage them.

We model statistics as very lightweight user-defined aggregates whose execution is interleaved with normal
vertex processing. This design allows to easily add new statistics into the framework as needed. Every operator
in the runtime is augmented with a set of statistics to compute. On startup, the operator calls an initialize
method on the statistics object. On producing each output row, the operator invokes an increment method on
the statistics object passing the current row. Before closing, the operator invokes a finalize method on the
statistics object, which computes statistics final results. Each statistics object also implements a merge method
used by the JM to aggregate partial values across stages. Examples of implemented statistics include:

Cardinality and average row size. The object initializes cardinality and row size counters to zero, increments
the cardinality counter and adds the size of the current row to the size counter for each increment
function call, and returns the cardinality counter and the average row size upon finalization.

Inclusive user-defined operator cost. The object initializes a timer on creation, does nothing on each incre-
ment function call, and returns the elapsed time at finalization.

Some common statistics are optimized further by directly generating code that performs the initialization, incre-
ment, and finalization methods without requiring virtual function calls.

3.3 Statistics Management

The job manager maintains a statistics package data structure while the job is executing. A statistics package
is a transient collection of plan signatures and aggregated statistics returned by completed vertices. Every time
a vertex finishes execution, it sends the collected statistics to the job manager in the last heartbeat. The job
manager uses the merge operation on statistics to aggregate all partial statistics for each signature.

The statistics repository is implemented as a key-value service, where keys are signatures and values are
serializations of the corresponding statistics. Every time a job finishes, the job manager updates the statistics

2Modulo hash collisions, the signatures of two plan fragments match if and only if they produce semantically equivalent results. In
practice, hash collisions are so rare that we can hash values as signatures, but other mechanisms are possible (e.g., using the serialization
of the logical tree as the signature itself).
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repository with all the statistics it gathered during execution. For that purpose, it creates a new entry for each
signature (or merges statistics if the signature already exists in the repository). The specific merging behavior
is dictated by a policy. Simple alternatives include keeping the last instance, or performing a weighted average
with aging. Additionally, the job manager stores all statistics for the job under the signature that corresponds to
the root of the corresponding script, to enable the single-job optimization mode discussed in Section 3.5.

3.4 Optimizing Recurring Jobs

SCOPE uses a transformation-based optimizer based on the Cascades framework [9], which translates input
scripts into efficient execution plans. Transformation-based optimization can be viewed as divided into two
phases, namely, logical exploration and physical optimization. Logical exploration applies transformation rules
that generate new semantically equivalent logical expressions. All equivalent logical expressions are grouped
together in a data structured called memo. Examples of such rules include pushing down selection predicates, and
transforming associative reducers into a local/global pair. Implementation rules, in turn, convert logical operators
to physical operators, cost each alternative, and return the most efficient one. Examples include using sort- or
hash-based algorithms to implement an aggregate query, or deciding whether to perform a pairwise or broadcast
join variant. To enable recurring job optimization, we extended the optimizer to compute signatures of each
expression it processes, which is done with very little overhead. Additionally, the optimizer leverages statistical
information stored in the global repository. For that purpose, we modify the entry point to any derivation of
statistical properties in the optimizer to perform a lookup on the statistics package. For instance, deriving the
cardinality of an expression starts by checking whether the signature of the expression matches an instance in the
statistics repository. If so, cardinality estimation is bypassed and replaced with the value found in the repository.
Since all equivalent logical expressions have the same signature, this technique produces consistent results.

3.5 Optimization modes

There are two different ways to leverage statistics during optimization of recurring jobs, with different trade-offs
in both performance and accuracy. The first approach, denoted single-job mode, performs a single call to the
statistics repository with the signature corresponding to the root of the whole script, and obtains all signatures
associated to the given script in previous executions. The second approach, denoted any-job model, performs
one call to the statistics repository for each signature is about to process. The second approach is clearly more
expensive as it requires a single service call per expression, but can be used to optimize queries that share script
fragments with other (unrelated) previously executed jobs.

4 Experimental Evaluation

In this section, we report an experimental evaluation of an implementation of our approach on SCOPE using real
queries on a large production cluster consisting of tens of thousands of machines at Microsoft. Each machine in
the cluster has two six-core AMD Opteron processors running at 1.8GHz, 24GB of DRAM, and four 1T B SATA
disks. All machines run Windows Server 2008 R2 Enterprise X64 Edition. The cluster runs tens of thousands
of jobs daily, reading and writing petabytes of data, powering different online services. Due to confidential
data/business information, we report performance trends rather than actual numbers for all the experiments.
We present a case study on a single query in Section 4.1 and show how recurring job optimization improves
subsequent executions. In Section 4.2 we summarize a performance evaluation on real-world queries.
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4.1 Case Study

Consider the simple query in Figure 1(a). Without knowing the selectivity of the user-defined predicate, aggre-
gates and join operators, the optimizer generates the plan shown in Figure 1(b), which consists of eight stages and
five complete data repartition stages. Stage S1 reads r.txt, computes a local aggregate, and hash-partitions
the resulting data on column (a) into 250 partitions. Stage S4 reads s.txt, applies the user-defined predicate,
computes a local aggregate, and hash-partitions the data on column (c) into 250 partitions. Stages S2 and S5
aggregate the tuples that belong to the same partition across all vertices, compute the user-defined aggregate and
hash-partition the data on column (sb) into 250 partitions. Stages S4 and S6 aggregate the tuples that belong to
same partition across all vertices. Stage S7 performs a pairwise join, locally sorts the join output on columns
(a,c,sb) and range-partitions the data into 250 partitions. Finally, stage S8 aggregates the tuples that belong to
the same partition across all vertices maintaining the sort order. During execution, the runtime collects different
data statistics in all operators as described in Section 3.

When the recurring job is submitted the next day, the optimizer knows the selectivity of all operators and
other data statistics and chooses the plan shown in Figure 1(c), which consists of only six stages with reduced
degree of parallelism, only one complete data repartitioning and two partial data shuffles (moving data to a single
machine). Stage S1 reads r.txt, computes a local aggregate, and hash-partitions the data on column (a) into 100
partitions (instead of 250). Stage S2 aggregates the tuples that belong to same partition across all vertices and
computes the user-defined aggregate. Stage S3 reads s.txt, applies the user-defined predicate and computes a
local aggregate. Now, instead of partitioning data on the group by column to compute a parallel aggregate, the
optimizer leverages the knowledge that data volume is small, and stage S4 aggregates all the data on a single
machine computing the user-defined aggregate serially. Another data partitioning on the join columns is avoided
by using a broadcast join variant in stage S5, followed by a local sort of the join output on columns (a,c,sb).
Since the join is very selective and significantly reduces the data volume, the repartitioning operation required
by the global sort is replaced by a merge operation in stage S8.

By gathering and exploiting statistics, the resource consumption of the job is reduced 6.5x and latency is
reduced 3.2x. In this example, a significant fraction of the improvement comes from structural changes in
the plan (e.g., introducing broadcast join variants), and a better determination of the degree of parallelism of
repartitioning operators, which is overestimated due to complex filter predicates and user defined operators.

4.2 Performance Evaluation

In this section we report results of evaluating our approach on a real workload. We observed that roughly 40%
of all the jobs submitted to our production clusters in a month have a recurring patterns and potentially benefit
from recurring job optimization. We now summarize our findings on a representative workload that consists
of 6 queries used internally to administer the cluster 3, and 7 queries from different customers (which include
advertising and revenue, click information, and statistics about user searches). The queries in the workload
have large variability in resource usage, with latencies that range from minutes to several hours, and process
from gigabytes to many terabytes. We computed the resource consumption as total machine-hours used by
each query with and without recurring job optimization. Figure 4 summarizes our results, and we can see
that resource consumption is reduced from 10% to 80% by using recurring job optimization. Most of these
improvements come from better structural plans and changes in the required degree of parallelism, as illustrated
in the previous section. At the same time, we observed negligible overhead for collecting runtime statistics
during query execution.

3All operational data generated by the cluster is stored in the cluster itself as tables, so analysis and mining of interesting cluster
properties can be done in SCOPE itself.
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Figure 4: Performance evaluation of recurring job optimization.

5 Related work

The problem of accurate statistics estimation is not unique to cloud-scale data processing systems, as traditional
query optimizers also have similar issues. To deal with parameter markers in queries, early work [6, 10] proposes
generating multiple plans at compile time. When unknown quantities are discovered at runtime, a decision tree
mechanism decides which plan to execute. This approach suffers from a combinatorial explosion in the number
of plans that need to be generated and stored at compile time. Progressive query OPtimization [14] uses the
optimizer to generate a new plan when cardinality inconsistencies are detected. This work detects cardinality
estimation errors in mid-execution by comparing the estimated cardinality values against the actual runtime
counts. If the actual count is outside a pre-determined validity range for that part of the plan, a re-optimization
of the current plan is triggered. This approach has high overhead of plan switching and wasted work, which
need to be paid in every run of the job.

More closely related to our work is the DB2 LEarning Optimizer (LEO) [17], which waits until a plan has
finished executing to compare actual row counts to the optimizer’s estimates. It learns from mis-estimates by
adjusting the statistics to improve the quality of optimizations in future queries. LEO does not capture and detect
job recurrence over time series of data. It tries to compute adjustments to base table statistics and selectivity of
predicates from output data sizes of operators, which can still be inaccurate and prone to oscillations. Our work
can be seen as adapting techniques that exploit statistics on views during optimization [4, 8] to a distributed
environment with explicit recurring jobs. The main contributions of our work are the generic signatures used to
match plan fragments, the lightweight generated collectors for statistics, the automatic determination of which
statistics to collect and store, and the policies around the statistics repository.

Some recent work [11, 12] extends self-tuning techniques to distributed environments. Without user inter-
vention, these approaches can (i) fine tune system parameters based on workload utilization, and (ii) perform
some optimizations across jobs by improving interactions between the scheduler and the underlying file system.
In contrast to our work, these approaches cannot make structural decisions on how to optimize and execute indi-
vidual queries, as they are not integrated with a query optimizer. Our techniques complement such approaches
by additionally changing the structure of the execution plans (such as switching to broadcast join variants), and
further improving cluster utilization.

6 Conclusion

Massive data analysis in cloud-scale data centers plays a crucial role in making critical business decisions and
improving quality of service. High-level scripting languages free users from understanding various system trade-
offs and complexities, support a transparent abstraction of the underlying system, and provide the system great
opportunities and challenges for query optimization. One key optimization challenge, which is amplified in
cloud-based systems, is missing accurate data statistics. In this paper, we propose a solution for recurring job
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optimization for cloud-scale systems. The approach monitors query execution, collects actual runtime statis-
tics, and adapts future execution plans as the recurring job is subsequently submitted again. Experiments on
a large-scale production system show that the proposed techniques systematically address the challenges of
missing/inaccurate data statistics and improve overall resource consumption.

References
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1 Introduction

We are in the era of Big Data and cluster computing. Data sizes have been growing at an exponential rate. At
the same time, growth in computing power has been stagnating due to physical limits in processor technology.
The only cost effective way to keep up with the growing data trend has been to harness multiple commodity
computers in a shared-nothing configuration. Google, needing to manage extremely large amounts of web data,
developed the MapReduce [16] platform. The MapReduce system provides a simple way for developers to
express a data-oriented computation, by implementing two single-threaded functions (map and reduce), that
is then automatically parallelized to run on large clusters of commodity machines. Yahoo! soon created the
Hadoop [5] platform, based on the MapReduce specification, and made it available as open source software.
Hadoop has since become the de facto MapReduce implementation outside of Google.

Initially MapReduce (Hadoop) greatly empowered engineers to run parallel jobs on large clusters to crunch
virtually unlimited amounts of data while writing what appeared to be simple functions. However, over time
many developers found themselves writing similar, yet different, functions to implement new jobs. Having to
write MapReduce functions in an imperative language like Java proved to be time consuming and the prolifer-
ation of functions created a maintenance problem, prompting developers to explore the possibility of creating
declarative high-level languages to express computation. Sawzall [30] was created inside Google for processing
large corpora of text in parallel using MapReduce. Yahoo! developed the Pig [29] system along with its Pig
Latin [27] language to express data processing in a declarative language resembling the relational algebra [15].
Facebook created Hive [2], an implementation of a SQL-like language. IBM developed the Jaql [23] language
for processing large amounts of JSON data. Pig, Hive, and Jaql all compile queries in their respective languages
into MapReduce jobs to run on the Hadoop platform. Microsoft proposed SCOPE [13], a system to compile a se-
quence of SQL-like statements to run in parallel on their own Dryad [21] data-parallel platform. The Dremel [25]
system was created by Google for expressing analytical queries interactively in a subset of SQL using a custom
column-based runtime platform. At the University of California, Irvine, we developed the AQL language for
processing large amounts of semi-structured data, as part of the ASTERIX platform [9, 12, 7]. VXQuery [6] is
a project under incubation at the Apache Software Foundation that aims to run XQuery [4] queries over large
corpora of XML documents using a cluster of shared-nothing computers.

Declarative languages targeting various data-parallel platforms have seen dramatic growth in popularity in
the past few years. In 2010 Facebook told us that upwards of 95% of their Hadoop jobs were automatically
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generated by the Hive platform as a result of compiling HiveQL queries [32]. In around the same time frame
Yahoo! was seeing more than 65% of their Hadoop jobs being submitted through their Pig platform.

The current Big Data movement has unleashed a wave of efforts where researchers and practitioners are
creating new languages that better suit various target audiences without having to conform to established data
processing standards like SQL. The need to process non-relational data in the Big Data space has also contributed
to the invention of new languages. We conjecture that we will continue to witness the creation of new data
processing languages that target specific domains, just as we have seen a growth of domain-specific languages in
the Scala [26] world. This presents an important opportunity, as declarative languages for data processing share
a common set of requirements and properties which suggest a unified platform upon which future languages can
be built. Here we analyze four data processing languages (SQL, XQuery, HiveQL, and Pig Latin) with an aim to
compare and contrast language features in Section 2. In Section 3 we take a deeper look at the internals of two
open source systems that are popular for Big Data processing, Pig and Hive, to understand the commonalities
and differences of the two systems. Based on our observations, Section 4 enumerates requirements for a unified
platform and describes how one such platform, one that we are building (called Algebricks), is shaping up.
Finally, we conclude in Section 5.

2 Languages and Models for Data Processing

In this section, we look at four known declarative languages that have been used successfully for large-scale data
processing tasks, namely SQL, XQuery, HiveQL, and Pig Latin.

2.1 SQL: Structured Query Language

SQL emerged long ago as the de facto winner for processing relational data stored in relational database man-
agement systems. The relational model [15] that forms the basis of the logical model for data representation in
RDBMSs is based on set-theory, and the SQL language is based on first-order logic. Data stored in relational
databases is logically modeled as a collection of tables (relations) containing records (tuples) comprised of fields
(attributes). Every stored table has a well-defined schema that describes the names and data types of the fields
that are contained in the records contained in that table. Every record in a table must have all the fields men-
tioned in the schema (although fields are allowed to have unknown or missing values in the form of NULLs).
Another characteristic of the relational model is that fields of a record in a table must be of a scalar type; a
field value cannot itself be a table. In other words, the relational model allows for a strict two-level hierarchical
structure, where the outer level is a table and the inner level contains scalar fields. It is important to note that
while the logical model in RDBMSs is based on flat tables, an actual implementation is free to store the data
using any physical format as long as the logical information is captured completely. For example, relational
databases frequently store tables in the form of B+Trees using the unique value in a record (its primary key) as
the indexing key. Columnar storage [31] is another example of a different physical storage format, one where
tabular information is stored a column at a time. In a parallel database, where data is stored by partitioning the
data, more choices with respect to partitioning strategies are available to the implementation.

The SQL language is based on relational algebra, which in turn is based on first-order logic. A SQL query
describes what is expected in the result and does not specify how the result is to be computed, making the lan-
guage “declarative”. In contrast, most programming languages such as C, C++, or Java tend to be “imperative”;
the programs expressed in those languages actually describe the exact steps to be performed. Declarative lan-
guages leave the language implementation free to explore a range of choices with regards to how to actually
compute the final result. An implementation can choose the best way to evaluate a query based on the phys-
ical storage strategy used to store the tables participating in the query. This property of SQL (and declarative
languages, more generally) has made query optimization a flourishing area of research for the last few decades.
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2.2 XQuery

Although SQL and relational databases were widely successful for storing and managing enterprise data, the
rigid nature of most implementations with respect to schema management made way for XML as a way of
representing data that was more semi-structured. As XML started to become more popular for managing semi-
structured data, multiple languages were proposed. XML-QL [17] and Quilt [14] were initially proposed as
possible languages for querying XML data. Eventually XQuery [4] was developed, including concepts from
XML-QL and Quilt, and it was standardized by the W3C for querying XML data.

An abstract data model called the XQuery Data Model (XDM) [19] is the logical model used to describe the
semantics of the XQuery language. XDM is more general and subsumes XML for representing data. XQuery
allows data to be typed using the XML Schema standard [10], but does not require it, making XQuery well
suited for data whose types are not known upfront. The fundamental concept of representing data for processing
with XQuery is the “sequence of items”. Every query expression in XQuery operates on a sequence of items to
produce a sequence of items. The order of items within a sequence is important and the semantics of XQuery
specify the exact order of items that every expression must produce.

The FLWOR expression, along with Path Expressions, forms the core of the XQuery language. The FLWOR
construct (For-Let-Where-Orderby-Return) is similar to the Select block (Select-From-Where-Orderby) found
in SQL. Path Expressions in XQuery can be translated into FLWOR expressions using the Path Step Expression
as a primitive building block, as shown in [18]. Researchers have proposed various algebras based on relational
algebra and extensions to express XQuery semantics [22, 28], showing that slight extensions to relational algebra
are sufficient to capture the meaning of XQuery queries and to provide a basis for optimizing those queries.

2.3 HiveQL

Facebook created the Hive system to be able to process large amounts of data using the Hadoop platform. Hive
was created with the express goal of making large-data processing accessible to data analysts who were already
familiar with SQL. HiveQL has thus been developed to be a subset of SQL with some extensions to the supported
data model and query syntax.

On the data model front, Hive provides support for tables containing standard primitive data types like in
SQL. In addition, Hive adds support for nested data through Array, Map, and Struct data types. Fields in tables
can be declared to be of these types and can be used to nest data to arbitrary levels.

HiveQL supports most of the standard SQL syntax. HiveQL limits joins to only equality joins. Non-equality
joins or cross products are not directly supported by the syntax. Although non-equality joins can be simulated
through the use of a “1 = 1” join predicate and a Where clause to capture the non-equality predicate, such queries
are not optimized by the HiveQL optimizer. In order to access nested data in the form of Arrays, Structs, and Map
types, HiveQL provides functions to navigate values of these types. In addition to scalar values, HiveQL also
includes tuple-functions that can be used to explode nested data into tuples for performing standard relational
processing. The current release of HiveQL does not allow the construction of a Map-valued field by grouping
multiple records. However, third-party packages such as [3] can be used to add this functionality to Hive.

2.4 Pig Latin

PigLatin, the language exposed by the Pig system from Yahoo!, allows users to express queries in the form of
steps. Each step in PigLatin converts its input data (a collection of records) into an output collection of records.
At each step, the user can use Load, Filter, Group, Cogroup, ForEach, Join, Order, Distinct, Cross, Union, or
Split operators to transform data. Most of the resulting steps (except Cogroup and Split) can be directly mapped
to relational algebra operators. The Cogroup operation can be expressed as a Group operation followed by a
Join operation and hence can be expressed as a combination of relational algebra operators. The Split operation
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in PigLatin can be transformed into multiple Filter (Select) operations when translating PigLatin into relational
algebra operators.

Records in Pig can contain scalar valued fields or nested data in the form of tuples, bags and maps.

2.5 Wrap-up

Table 4 summarizes the similarities and differences between these four query processing languages.

Feature SQL XQuery HiveQL PigLatin
Declarative Yes Yes Yes Yes
Collection data model Bag Sequence Bag Bag
Instance data model Tuples of scalar values XQuery data model

item
Tuples of scalar and
complex values

Tuples of scalar and
complex values

Support for nested data No Yes Yes (Limited) Yes (Limited)

Table 4: Query language similarities and differences

3 Data Processing Systems: Pig and Hive

In this section we look at two popular Big Data query processing systems that were built independently, Pig and
Hive, with an eye for their system architectures and the steps followed in accepting user queries and translating
them into executable artifacts to produce results.

3.1 Apache Pig

The Apache Pig platform first parses the textual representation of a user query into a logical plan representing
the query. The logical plan is comprised of a DAG structure where nodes represent operators such as Load,
Filter, Group, etc. The resulting logical plan is transformed using rules to create an equivalent, more efficient
plan. Currently, the rules implemented in the Pig compiler perform the following rewritings (rules meant to
purely aid in the rewriting process by normalizing plans are not listed):

1. Push Filters to eliminate records early
2. Push “flatten” style operators that increase tuple cardinality to later in the plan
3. Merge multiple chained ForEach operators when possible
4. Optimize placement of Limit operators to reduce the number of tuples early
After the optimization process, Pig translates the final logical plan into a sequence of one or more MapRe-

duce jobs to be executed using the Hadoop MapReduce platform. More details regarding Pig’s optimizer can be
found in [20].

3.2 Apache Hive

The architecture of Apache Hive looks very similar to that of Pig. Hive first parses queries in HiveQL into a
logical parse tree representation. A Semantic Analyzer consults metadata information in the system catalog to
check the existence of the tables named in the query. The semantic analyzer also makes sure that the query is
well-formed with respect to the fields of tables accessed in the query and flags any operations that are incorrect
with respect to data types. The parse tree is then translated into a logical plan by the Logical Plan Generator. The
logical plan is a tree of operators where some of the operators are relational algebra operators while others are
specific to Hive to ease the construction of MapReduce jobs. The logical plan is optimized using a rule-based
optimizer (just as in Pig). The Hive rules perform logically similar tasks as those performed by the Pig optimizer,
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but they have been implemented to process plans represented using the logical operators implemented in Hive.
Hive has additional optimizations as compared to Pig, including:

1. Convert a series of joins into a multi-way join
2. Perform map-side partial aggregation for aggregate queries
3. Preserve and exploit interesting orders in subplans when possible
4. Use sampling to better plan queries
After the optimization process, as in Pig, the logical plan is converted into a series of MapReduce jobs to be

evaluated on Hadoop [2, 33].

4 An Approach to Unification: Algebricks

Observing the amount of overlap in functionality in Pig and Hive (and query processors for XQuery, SQL, and
AQL that the authors have implemented before) and the similarities in algebras used to express their semantics,
we have embarked on creating a unified framework to help future implementors of parallel query processors
to quickly build new language implementations to be evaluated over Big Data using a data-parallel platform.
AQUA [24] was a similar effort undertaken back in the object database era to create a framework where bulk
types (collections) and their operations were separated from OO data model details so as to develop one algebra
capable of expressing the query semantics for a variety of OO languages.

Our platform, Algebricks [1], is a model-agnostic, algebraic layer for parallel query processing and opti-
mization.

The Algebricks toolkit consists of the following parts:
1. A set of logical operators: Algebricks includes about fifteen logical operators that language implementors

can use to construct query plans. In addition to the standard relational operators (Select, Project, etc),
Algebricks contains operators for representing nested query plans.

2. A set of physical operators: While most logical operators have one corresponding physical operator, some
operators provide alternate physical choices. In Algebricks, the Select operator has a single physical
operator while the Join operator provides multiple choices such as Nested-Loop Join, Hybrid-Hash Join,
Grace-Hash Join etc.

3. A rewrite rule framework: Algebricks currently includes a rule-based query transformation framework that
provides interfaces for users to implement rewrite rules and a rule engine to execute rules to transform
queries.

4. A set of generally applicable rewrite rules: Algebricks includes query transformation rules that usually
show promise in most scenarios. For example, pushing Select operators to filter data early in a query is
usually considered to help with query efficiency. Algebricks includes a rewrite rule to push Select oper-
ators lower in the query plans. Another example of a generally applicable rewrite rule for parallel query
processing is one that converts an aggregation query into a two-step aggregation query (when the aggre-
gate function lends itself to partial computation). Since aggregation functions are language dependent and
implemented by the language author, their properties (such as the ability to be split into two-level aggrega-
tion functions) have to be indicated to the Algebricks framework for the parallel aggregation optimization
rule to trigger.

5. A metadata provider API that exposes metadata (catalog) information to Algebricks: The metadata API
serves as the window through which Algebricks looks at the host language’s ecosystem. It is through
the metadata API that Algebricks is able to learn about physical data properties of sources (for example),
that is then used by the compiler to reason about interesting orders and interesting partitions during query
optimization.

6. A mapping of physical operators to the runtime operators in Hyracks [11] (a data-parallel platform built
from the ground up at UCI): Currently, Algebricks provides a translation of queries to a single runtime
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layer, viz. Hyracks. While this is an artifact of the current implementation of Algebricks, in principle, it
should be possible to extend Algebricks to generate runtime plans for other data-parallel platforms.

4.1 Data Model Agnostic Bulk Operators

An important principle that underlies the design of Algebricks, as mentioned earlier, is a data model agnostic
design of bulk operators. To be useful for implementing arbitrary parallel data-intensive languages, Algebricks
takes a two-level approach to represent operations on data. “Bulk Operators” are used to manipulate collections
(sets, bags, lists, etc.) of tuples. Tuples serve as abstract containers that hold scalar data values whose types
are defined by the language being implemented using Algebricks. While Algebricks provides bulk operators,
language specific scalar data operations have to be implemented by the author of the language. Bulk operators
in Algebricks are parametrized with “accessor” functions that expose to them data model properties necessary
to perform their task. For example, the Select operator used to restrict the items in a collection based on a
boolean predicate only needs a “function” that, when applied to an item, indicates if the item is to be preserved
in the result or is to be discarded. By encapsulating data model specific operations in the function, the Select
Operator itself remains agnostic to the specifics of data types needed to support a high-level language using
Algebricks. Although this principle has been adopted by several data-parallel execution engines [5, 8, 11]
to build extensible runtime systems, we use this principle in Algebricks to implement a data model agnostic
compiler framework. Every piece of functionality usually present in a parallel query compiler, such as the query
transformation framework used to manipulate query plans, the data property computation logic used to reason
about interesting orders and interesting partitioning properties of data, and finally the logic necessary to generate
runtime artifacts, is implemented in Algebricks following the same two-level approach described earlier. Query
transformation rules that depend entirely on the semantics of bulk operators are made available out-of-the-box
with Algebricks and can be re-used by every language implemented using the compiler framework. Similarly,
runtime plan generation (a process usually referred to as “code generation”) of bulk operations is provided by
Algebricks requiring the author of the higher-level language to only provide code generation logic for data model
specific functions.

4.2 The Anatomy of an Algebricks-based Compiler

Figure 1 shows the typical sequence of steps followed by a query compiler built using Algebricks. An incoming
query string is first lexically analyzed and parsed to construct an abstract syntax tree (AST). The resulting AST is
then checked for semantic and type errors before transforming it into an Algebricks logical plan. The Algebricks
logical plan is composed of logical operators (described next) and serves as an intermediate language for query
compilation. The initial logical plan is handed to the logical optimizer to be transformed into an equivalent, but
more efficient, logical plan. The resulting optimized logical plan is then translated to an Algebricks physical
plan by selecting physical operators for every logical operation in the plan; this is done by the physical optimizer.
Both optimizers in Algebricks are rule-based and are configured by selecting the set of rules to execute during
the optimization phases. Finally, the resulting physical plan is processed by the Hyracks job generator to produce
a Hyracks job that is then parallelized and evaluated by the Hyracks runtime platform.

The query parser and the translator (the first two stages in Figure 1) are query language specific and have
to be implemented by the developer of a new language’s compiler. The next three stages (the two optimizers
and the Hyracks job generator) are provided by the Algebricks library to be used by developers. Algebricks
also includes a library of language independent rewrite rules that can be reused by the compiler developer.
Additional language-specific rules are usually required in the optimization process and can be implemented by
the developer by extending well-defined interfaces in the Algebricks library.

As shown in Figure 1, the various phases of the query compilation process need access to information
about the environment in which the query is being compiled (usually described as catalog metadata). The
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Figure 1: Flowchart of a typical Algebricks-based compiler

catalog contains metadata about the data sources that are accessible in a query. The catalog serves as the
authoritative source of information about the logical properties of sources (such as schemas, integrity constraints,
key information, etc.) and about their physical properties (access methods, physical locations, etc.). Algebricks
provides a metadata interface that must be implemented by the compiler developer so that the various parts of
the Algebricks compiler can access the relevant metadata information.

The Hyracks job generator maps the physical operators selected by the physical optimizer into Hyracks
runtime operators. In the process of this translation, the Hyracks operators need to be injected with certain data
model specific operations. The exact nature of the operations depend on the Hyracks operator being used. For
example, the Sort operator in Hyracks must be provided with a comparator to compare two data model instances
so that the input records can be sorted. Similarly, the Hash-Join operator needs a hash-function and a comparator
to compute its result. When using Algebricks, the compiler developer must provide a family of operations that
might be needed for Hyracks job construction.

5 Conclusion and Status

In this paper, we briefly looked at four declarative languages (SQL, XQuery, HiveQL, and PigLatin) used for
large-scale query processing. We saw that an abstraction that extends relational algebra, allows the modeling
of various types of collections (sets, bags, and lists), and is capable of providing support for nested data and
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queries could be used to capture the semantics of queries expressed in the four languages we have seen here.
The overlap in functionality in the Pig and Hive compilers shows that a framework that provides commonly
required functionality in query compilers would help reduce the amount of code a developer has to write to
implement a new language compiler.

To these ends we have developed Algebricks, a model-agnostic query compiler framework that meets the
properties listed above. At UCI, we are implementing our own query language to process semi-structured data,
called the ASTERIX Query Language (AQL). AQL is being built using Algebricks as the underlying compiler
framework. As another proof of concept, we have already ported the HiveQL compiler to use Algebricks to
compile HiveQL queries to run on the Hyracks data-parallel platform. We have seen a performance improvement
of up to 9x and an average performance improvement of about 4x, at scale, compared to Hive on Hadoop.
VXQuery is a project currently being incubated at the Apache Software Foundation that aims to provide a
standards compliant XQuery 1.0 query processor that runs on large amounts of XML data using the Hyracks
data-parallel platform. VXQuery also uses Algebricks as its compiler framework. Currently, VXQuery reuses
Hyracks (90 KLOC) and Algebricks (36 KLOC) and provides a complete parallel XQuery processor for an
additional 45 KLOC. More Algebricks implementation and performance details will be available in [1].
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