
Modularity and Scalability in Calvin

Alexander Thomson
Google‡

agt@google.com

Daniel J. Abadi
Yale University

dna@cs.yale.edu

Abstract

Calvin is a transaction scheduling and replication management layer for distributed storage systems.
By first writing transaction requests to a durable, replicated log, and then using a concurrency control
mechanism that emulates a deterministic serial execution of the log’s transaction requests, Calvin sup-
ports strongly consistent replication and fully ACID distributed transactions while incurring significantly
lower inter-partition transaction coordination costs than traditional distributed database systems.

Furthermore, Calvin’s declarative specification of target concurrency-control behavior allows sys-
tem components to avoid interacting with actual transaction scheduling mechanisms—whereas in tradi-
tional DBMSs, the analogous components often have to explicitly observe concurrency control modules’
(highly nondeterministic) procedural behaviors in order to function correctly.

1 Introduction

The task of building parallel and distributed systems designed for embarrassingly parallel computational prob-
lems is relatively straightforward. Data-parallel tasks with reasonably sparse and coarse-grained dependencies
between computational tasks—such as many analytics applications—fall nicely into this category. In particular,
parallelizing a workload across many machines is easiest when the amount of real-time coordination required
between machines is lowest.

The general problem of online transaction processing, however, does not fall into this category. OLTP sys-
tems generally guarantee isolation between transactions using row-level locks, and any transaction that incurs
synchronous communication between multiple machines (e.g. by performing a remote read or running a dis-
tributed commit protocol) must hold its locks for the full duration of this communication. As more transactions
span multiple machines, lock contention becomes a bigger barrier to achieving high transactional throughput.

For systems that synchronously replicate transaction effects at commit time via Paxos [11] (e.g. Spanner,
Megastore, Spinnaker), the problem is further exacerbated, since transactions’ contention footprints1 extend for
the full Paxos replication latency [8, 1, 14].

Copyright 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗This material is supported by the National Science Foundation under Grant Number IIS-1249722.
‡Work done while the author was at Yale.
1The “contention footprint” of a transaction is the period of time during which it may limit concurrent execution of conflicting

transactions. For systems that use locking, this corresponds directly to the time spent holding locks. In optimistic systems like Megastore,
it is the time from when the transaction begins executing until the validation phase is complete, since other commits during this time
window may cause the transaction to abort.

48



One approach to overcoming this limitation is to reduce transactional support. For example, Microsoft’s SQL
Azure [4], Google’s Bigtable [6], and Oracle’s NoSQL Database [17] limit each transaction to accessing records
within a single small data partition. For certain “embarrassingly partitionable” OLTP applications, solutions
that provide limited transactional support are useful. For many applications, however, this approach is a poor
fit: if a transaction ever spans data on multiple partitions, the developer is forced to split it into multiple separate
transactions—and therefore inherits the burden of reasoning about data placement, atomicity, and isolation.

Calvin takes a different approach to ameliorating this scalability bottleneck: it reduces the amount of coor-
dination required while executing distributed transactions. Calvin rearranges the transaction execution pipeline
so that all distributed agreement that is not directly data-dependent (i.e. all inter-partition communication ex-
cept for serving remote reads) occurs in efficient batch operations before transactions begin acquiring locks and
executing.

Specifically, Calvin divides the transaction execution pipeline into three stages—logging, scheduling, and
execution. When a client submits a request to Calvin to execute a transaction, this transaction request (as op-
posed to ARIES-style physical actions) is immediately appended to a durable log, before any actual execution
begins. Calvin’s scheduling mechanism then processes this request log, deciding when each transaction should
be executed in a way that maintains an invariant slightly stronger than serializable isolation: transaction execu-
tion may be parallelized but must be equivalent to a serial execution (a) in the order that transaction requests
were logged and (b) that does not non-deterministically cause transactions to abort. Then, once a transaction
begins executing, it is disallowed from performing any non-deterministic behaviors2.

Calvin’s processing of a series of transaction requests is therefore equivalent to a deterministic serial exe-
cution in log-specified order. As a result, the log of transaction requests itself serves as an ultimate “source of
truth” about the state of a database. Even if all other information about a the database were discarded, its state
at any point in history could be recovered by deterministically replaying the operation log3.

This architecture provides several advantages over traditional (nondeterministic) database system designs:

• Near-linear scalability. Since all distributed agreement (both between replicas and between partitions within
a replica) needed to commit a transaction occurs before Calvin executes the transaction, no distributed com-
mit protocols are required, ameliorating the primary barrier to scaling ACID systems. We have demonstrated
this scalability with a Calvin deployment that executed half a million TPC-C transactions per second4 while
partitioning data across one hundred commodity EC2 machines [21].

• Strongly consistent replication. Multiple replicas of a Calvin deployment remain perfectly consistent as
long as they use the same operation request log to drive transaction execution. Once a transaction is writ-
ten to the log, no further inter-replica coordination is required to synchronize replicas’ states. This allows
strongly consistent replication—even across geographically separated data centers—at no cost to transaction
throughput [21].

• Highly modular system architecture. By explicitly describing the emulated serial execution in the form of
the operation request log, Calvin provides other system components with a declarative specification of the
concurrency control mechanisms’ behavior. Components that traditionally interact closely with the transac-
tion scheduling system in standard nondeterministic database systems (e.g. logging, replication, storage) are
thus completely decoupled from Calvin’s concurrency control implementation. Standard interfaces for each
Calvin component make it easy to swap in different implementations of each component to quickly prototype
systems with different properties.

• Main-memory OLTP performance over disk-resident data. When Calvin begins processing a transaction
request by adding it to the log, it may also perform a cursory analysis of the transaction request and send a

2Calls to functions such as GetTime() and Random() are intercepted by Calvin, and replaced by deterministic functions that use the
time at which the client submitted the transaction, rather than the local system time of the server executing the transaction.

3Calvin uses this property (along with frequent checkpointing) for durability and disaster recovery.
4Note that TPC-C New Order transactions frequently access records spanning multiple data partitions and incur high lock contention.

49



prefetch “hint” to each storage backend component that the transaction will access once it begins executing.
The storage engine can therefore begin bringing the transaction’s read- and write-sets into memory even
before the request is appended to the log, so that all relevant data will be memory-resident once the transaction
begins executing.

2 Calvin’s Modular Implementation

Database management systems are notoriously monolithic pieces of software, largely because they use com-
plex concurrency control mechanisms to orchestrate the simultaneous execution of many transactions [9]. Many
attempts have been made—with varying success—to build clean interfaces between various components, decou-
pling transaction coordination, buffer pool management, logging/recovery mechanisms, data storage structures,
replication coordination, query optimization, and other processes from one another [2, 5, 7, 13, 12, 16].

We believe that the fundamental difficulties in unbundling database components lies in the way concurrency
control protocols are traditionally described. Besides being highly non-deterministic, concurrency control algo-
rithms are usually framed (and specified and implemented) in a very procedural way. This means that system
components must often explicitly observe internal state of the concurrency control module to interact with it
correctly. These internal dependencies (particularly for logging and recovery) become extremely apparent in
modular systems that are otherwise successful at separating database system components [13, 16].

Whereas serializable isolation requires equivalence to some serial execution of transactions (but is agnostic as
to what particular order is emulated), Calvin’s determinism invariant restricts concurrency control mechanisms
to maintain equivalence to a specific, pre-determined order. This design decision was originally motivated by
the need to reduce coordination costs between participants in a transaction, but we found that establishing an a
priori transaction ordering is also useful as a declarative specification of concurrency control behavior.

In Calvin, database system components that traditionally interact closely with the concurrency control man-
ager can instead gain the same information simply by reading from the (immutable) transaction request log.

Thus, in addition to reducing coordination costs between instantiations of the same component on different
machines, Calvin’s log simplified the coordination between components. This section gives an overview of
the three independent parts of every Calvin deployment—the log, scheduler, and storage backend—and their
individual interfaces and subcomponents.

2.1 Log

A Calvin deployment appends new transaction requests to a global log, which is then readable by other system
components. Implementations of the log interface may vary from very simple to quite sophisticated:

• Local log. The simplest possible implementation of a log component appends new transaction requests to
a logfile on the local filesystem to which other components have read-only access. This implementation is
neither fault-tolerant nor scalable, but it works well for single-server storage system deployments.

• Sharded, Paxos-replicated log. At the opposite extreme from the local log is a scalable, fault-tolerant log
implementation that we designed for extremely high throughput and strongly consistent WAN replication.
Here, a group of front-end servers collect client requests into batches. Each batch is assigned a globally
unique ID and written to an independent, asynchronously replicated block storage service such as Voldemort
or Cassandra [19, 10]. Once a batch of transaction requests is durable on enough replicas, its GUID is
appended to a Paxos “MetaLog”. To achieve essentially unbounded throughput scalability, Paxos proposers
may also group many request batch GUIDs into each proposal. Readers can then reassemble the global
transaction request log by concatenating batches in the order that their GUIDs appear in the Paxos MetaLog.

50



2.1.1 Log-forwarding

Distributed log implementations may (a) forward the read- and write-sets of new (not-yet committed) transaction
requests to the storage backends that they will access (so that the data can be prefetched into memory before
transaction execution begins) and (b) analyze a committed transaction request and, if it can determine which
schedulers will need to process the request, actively forwards the request to those specific schedulers (otherwise
it forwards it to all schedulers). Our implementation provides a subcomponent that can be plugged into any
actual log implementation to automatically handle these forwarding tasks.

2.1.2 Recovery Manager

Recovery managers in database systems are notoriously cross-dependent with concurrency control managers
and data storage backends. Popular recovery protocols such as ARIES log every change to index data structures
(including, for example, the internal details of each B+ tree page split), which means that they must under-
stand what inconsistent states could arise in every index data structure update. Furthermore, recovery managers
commonly rely on direct knowledge of record and page identifiers in the storage layer in order to generate log
records, and may store their own data structures (e.g. LSNs) inside the data pages themselves.

Calvin leverages its deterministic execution invariant to replace physical logging with logical logging. Re-
covery is performed by loading database state from a recent checkpoint, then deterministically replaying all
transactions in the log after this point, which will bring the recovering machine to the same state as any non-
crashed replica. Calvin’s recovery manager is therefore very simple and entirely agnostic to implementation
details of the log, scheduler, and storage backend—so long as they respect Calvin’s determinism invariant.

2.2 Separating Transaction Scheduling from Data Storage

In traditional database systems, actively executing transactions request locks immediately before each read and
write operation. There are thus direct calls to the concurrency control code from within the access methods and
storage manager. Calvin’s concurrency control mechanisms diverge from this design: a Scheduler component
examines a transaction before it begins executing and decides when it is safe to execute the whole transac-
tion, then hands the transaction request off to the storage backend for execution with no additional oversight.
The storage backend therefore does not need to have any knowledge of the concurrency control mechanism or
implementation. Once a transaction begins running, the storage backend can be sure that it can process it to
completion without worrying about concurrent transactions accessing the same data.

Since the storage manager does not make any direct calls to the concurrency control manager, it becomes
straightforward to plug any data store implementation into Calvin, from simple key-value stores to more so-
phisticated NoSQL stores such as LevelDB, to full relational stores (Section 4 describes some of the storage
backends that we have implemented over the course of creating various Calvin configurations). However, each
storage backend must provide enough information prior to transactional execution in order for the scheduler to
make a well-informed decision about when each transaction can safely (from a concurrency control perspective)
execute. This is done by building a wrapper around every storage backend that implements two methods:

• RUN(action) receives a command in a language that the data store understands (e.g. get(k) or put(k,v)
for a key-value store, or a SQL command for a relational store) and executes it on the underlying data store.

• ANALYZE(action) takes the same command, but instead of executing it, returns its read- and write-
sets—collections of logical objects that will be read or created/updated when RUN is called on the command.
These objects can be individual entities (such as key-value pairs or relational tuples) or ranges of entities.
The scheduler leverages the ANALYZE method to determine which transactions can be run concurrently by
the storage backend. In some cases, the ANALYZE method can derive the read and write set of the command
using static analysis. In other cases, it may have to perform a ‘dry run’ of the command (at only one replica,

51



with no isolation) to see what data items it accesses. Then, when the same command is eventually RUN, the
storage backend must double-check that the initial observation of what would be read or written to was still
accurate. (Since the RUN method is called in deterministic execution mode, all replicas will perform this
same double-check step and arrive at the same result.)

This wrapper around the storage backend enables the clean separation of transaction scheduling from storage
management. This approach deviates significantly from previous attempts to separate database systems’ transac-
tional components from their data components [13, 12, 16] in that Calvin does not separate transaction execution
from the data component at all—it only separates transaction scheduling.

Just as the storage backend is pluggable in Calvin, so is the transaction scheduler. Our prototype currently
supports three different schedulers that use transactions’ read-/write-sets in different ways:

• Serial execution à la H-Store/VoltDB [18]. This scheduler simply ignores the read and write set information
about each transaction and never allows two transactions to be sent to the storage backend at the same time.
However, if data is partitioned across different storage backends, it allows different transactions to be sent to
different storage backends at the same time.

• Deterministic locking. This scheduler uses a standard lock manager to lock the logical entities that are
received from calling the ANALYZE method. If the lock manager determines that the logical entities of
two transactions do not conflict, they can by executed by the storage backend concurrently. In order to
avoid nondeterministic behavior, the ANALYZE method is called for each transaction in the order that the
transactions appear in the transaction log, and the lock manager locks entities in this order. This ensures
concurrent execution equivalent to the serial transaction order in the log, and also makes deadlock impossible
(and the associated nondeterministic transaction aborts) [20, 21].

• Very lightweight locking (VLL). VLL is similar to the deterministic locking scheduler described above, in
that it requests locks in the order of the transactional log, and is therefore deterministic and deadlock free.
However, it uses per-data-item semaphores instead of a hash table in order to implement the lock manager.
We originally proposed storing these semaphores alongside the data items that they control [15] for improved
cache locality. However, this violates our modular implementation goal, so Calvin supports two versions of
VLL—one which co-locates semaphores with data, and a more modular one in which the scheduler tracks
all semaphores in a separate data structure.

Despite major differences between the internals of these transaction scheduling protocols, each implements a
common interface and adheres to Calvin’s deterministic scheduling invariant, so switching between them is as
simple as changing a command line flag with which the Calvin binary is invoked. A single Calvin deployment
could even use different schedulers for different replicas or even partitions within the same replica.

3 Transactional Interface

Clients of a Calvin system deployment may invoke transactions using three distinct mechanisms:

• Built-in Stored Procedures. Any storage backend API call can be invoked as a stored procedure with
transactional semantics. For example, we implemented the TPC-C transactions that we benchmarked in
[21, 15] as built-in API calls to a TPC-C-specific storage backend implementation. This is the transaction
execution method that yields the best performance. However, while we made every effort to make it easy
to extend or re-implement Calvin’s storage backend components, it is by far the most development-intensive
way for an application to run complex multi-operation transactions.

• Lua Snippet Transactions. Alternatively Clients can submit transactions that bundle together multiple
storage API calls using client-specified logic as implemented in Lua code. The client simply constructs a
Lua code snippet and sends it as a string to Calvin, which performs some analysis to make sure the code is
well-behaved. Thereafter, it can be scheduled and executed as if it were a single stored procedure.

52



• Optimistic Client-side Transactions. Calvin also allows client-side transaction execution in which an OCC
validation phase is executed as a deterministic stored procedure at commit time. Here, a client application
starts a transaction session, performs any set of storage API calls (writes are buffered locally), and then
submits a commit request for the session. Upon receiving the commit request, Calvin checks version times-
tamps for each record read and written by the transaction. If all of them precede the timestamp at which the
client’s session started, then this validation phase succeeds and the buffered writes are applied—otherwise
the transaction “aborts”5 and the client must start it again using a new session.

We expect that most application developers will choose to mostly use optimistic client-side transactions while
building new applications. Specific performance-sensitive transactions can then be replaced with Lua snippets
or built-in stored procedures as needed.

4 Beyond Main-Memory OLTP

Although we originally developed Calvin as a transaction scheduling and replication layer explicitly for main-
memory OLTP database systems—and with specific log, scheduler, and storage implementations in mind—we
have found it very easy to create Calvin configurations with a broad array of characteristics simply by swapping
out implementations of various components.

4.1 CalvinDB

The distributed OLTP database system described in [21]—which we now refer to as CalvinDB—provided a
basic CRUD interface to a memory-resident key-value store. Our early prefetching experiments used a very
rudimentary disk-based backend that performed poorly. Newer versions are backed by a LevelDB-based store
and provide stronger prefetching support, so Calvin can reliably process transactional workloads that sometimes
access disk-resident data with main-memory-only throughput performance.

In addition, we have extended CalvinDB’s interface to support secondary indexes and a subset of SQL for
declarative data manipulation6. We found that Calvin’s deterministic semantics makes it surprisingly painless to
implement atomic database schema changes with no system or application downtime whatsoever—a challenge
that is frequently a source of headache for architects of distributed database systems.

4.2 CalvinFS

Scalable metadata management and WAN replication for distributed file systems are hot research topics in the
systems community due to the ever-increasing scalability and availability requirements of modern applications.

We therefore created CalvinFS, a distributed file system that supports strongly consistent WAN replication.
CalvinFS stores data blocks that make up file contents in an easy-to-scale, non-transactional block store, and
uses Calvin for transactional storage of file metadata. This turned out to be an extremely good fit for Calvin,
because real-time metadata updates for distributed file systems in many ways resembles a not-embarrassingly-
partitionable OLTP workload in two important ways:

• File systems traditionally support linearizable updates—which strongly resemble ACID transactions—and
recent snapshot reads.

• Although most operations involve updating metadata for a single file (e.g. reading, writing to, or appending
to a file), certain operations (such as creating and deleting files) involve atomically updating metadata entries

5Note that since this OCC validation phase is itself logged and executed as a standard built-in transaction, its outcome is entirely
deterministic and proceeds identically at every system replica.

6Specifically, Calvin currently requires SQL statements that perform updates to identify all updated rows by primary key, and queries’
WHERE clauses are restricted to predicates on columns on which a secondary index is maintained.

53



for both the file and its parent directory. Since these entries may not be stored on the same metadata server,
these represent distributed transaction of exactly the type that Calvin processes very efficiently.

We demonstrated that CalvinFS can scale to billions of files and process hundreds of thousands of updates and
millions of reads per second while maintaining consistently low read latencies. Like CalvinDB, it can survive
entire data center failures with only small performance hiccups and no loss of availability.

4.3 Calvin in Costume: Mimicking Hyder and H-Store

To further demonstrate the flexibility of Calvin’s modular implementation, we created configurations that du-
plicate the transaction execution protocols, logging mechanisms, and data storage structures of Hyder [3] and
H-Store [18]. Both configurations involved modifying or extending only a few of Calvin’s components; a sur-
prisingly small amount of additional code was required to reproduce these two distinct architectures.

4.3.1 Calyder

Hyder is a transaction processing system for shared flash storage. In Hyder, an executor server runs each
transaction based on a current snapshot view of the database, then adds an after-image of the transaction’s
updates (called an intention) to a distributed flash-resident log. Intentions are then applied to the database state
by a deterministic meld process that performs optimistic validation checks, applying any transaction whose
read-/write-sets have not been updated since the snapshot that the executor used to execute the transaction [3].

We created Calyder, a Calvin instantiation that uses a shared-flash log implementation based on Hyder’s,
and where a simple “executor” component at each Calvin server accepts transaction requests from clients and
executes them using our optimistic client-side transaction mechanism (in which the “executor” acts as the client).
Each scheduler then deterministically applies optimistic validation checks, exactly like Hyder’s meld procedure.

Although our flash log implementation was somewhat simpler and slower than Hyder’s, and our data storage
mechanism involved additional copying of inserted record values, we were able to recreate performance mea-
surements that resembled Hyder’s, but with slightly higher transaction abort rates due to our implementation’s
somewhat longer delays between the execution and meld (optimistic validation) phases.

4.3.2 H-Cal

H-Store is a main-memory OLTP database system that executes transactions serially using a single thread per
partition, eschewing all logging, locking, and latching and relying on in-memory replication for durability [18].

We created H-Cal, which uses a “fake” log component implementation in that doesn’t actually record any
durable state, but simply forwards transaction requests to the partitions at which they will execute, then executes
each partition’s transactions serially in a single thread using the H-Store scheduler discussed above.

Like H-Store, H-Cal achieves extremely high throughput for embarrassingly partitionable workloads, but its
performance degrades steeply when transactions may span multiple partitions7.

5 Conclusion

Four years of work on deterministic transaction scheduling in distributed storage systems have culminated in a
robust prototype with excellent scalability and replication characteristics. Its modular and extensible implemen-

7H-Cal’s performance actually degrades more gracefully than H-Store’s in the presence of distributed transactions, since H-Store does
not use a deterministic execution invariant to avoid distributed commit protocols. However, the current implementation of VoltDB, a
commercialization of the H-Store project, implements a logical logging mechanism and deterministic execution invariant nearly identical
to Calvin’s [22].

54



tation allows new ideas to be quickly integrated and instantly tested in deployments that partition data across
hundreds of machines and consistently replicate state across geographically disparate data centers.

We plan to release the Calvin codebase under an open-source license, with the hope that researchers and
system architects will find Calvin useful, both in our provided configurations and as a common substrate for
quickly prototyping new systems by swapping in novel implementations of individual components.

References
[1] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh.

Megastore: Providing scalable, highly available storage for interactive services. In CIDR, 2011.

[2] D. Batoory, J. Barnett, J. Garza, K. Smith, K. Tsukuda, B. Twichell, and T. Wise. Genesis: An extensible database
management system. IEEE Transactions on Software Engineering, 1988.

[3] P. A. Bernstein, C. W. Reid, and S. Das. Hyder - a transactional record manager for shared flash. In CIDR, 2011.

[4] D. G. Campbell, G. Kakivaya, and N. Ellis. Extreme scale with full sql language support in microsoft sql azure. In
SIGMOD, 2010.

[5] M. J. Carey, D. J. Dewitt, G. Graefe, D. M. Haight, J. E. Richardson, D. T. Schuh, E. J. Shekita, and S. L. V. The
exodus extensible dbms project: An overview. In Readings in Object-Oriented Database Systems, 1990.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.
Bigtable: A distributed storage system for structured data. TOCS, 2008.

[7] S. Chaudhuri and G. Weikum. Rethinking database system architecture: Towards a self-tuning risc-style database
system. In VLDB, 2000.

[8] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,
R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor, R. Wang, and D. Woodford. Spanner: Google’s globally-
distributed database. In OSDI, 2012.

[9] J. M. Hellerstein, M. Stonebraker, and J. Hamilton. Architecture of a Database System. 2007.

[10] A. Lakshman and P. Malik. Cassandra: a decentralized structured storage system. SIGOPS Oper. Syst. Rev., 2010.

[11] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 1998.

[12] D. Lomet and M. F. Mokbel. Locking key ranges with unbundled transaction services. VLDB, 2009.

[13] D. B. Lomet, A. Fekete, G. Weikum, and M. J. Zwilling. Unbundling transaction services in the cloud. In CIDR,
2009.

[14] J. Rao, E. J. Shekita, and S. Tata. Using paxos to build a scalable, consistent, and highly available datastore. CoRR,
2011.

[15] K. Ren, A. Thomson, and D. J. Abadi. Lightweight locking for main memory database systems. In Proceedings of
the 39th international conference on Very Large Data Bases, PVLDB’13, pages 145–156. VLDB Endowment, 2013.

[16] R. C. Sears. Stasis: Flexible Transactional Storage. PhD thesis, EECS Department, UC Berkeley, 2010.

[17] M. Seltzer. Oracle nosql database. In Oracle White Paper, 2011.

[18] M. Stonebraker, S. R. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P. Helland. The end of an architectural
era (it’s time for a complete rewrite). In VLDB, 2007.

[19] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and S. Shah. Serving large-scale batch computed data with
project voldemort. In FAST, 2012.

[20] A. Thomson and D. J. Abadi. The case for determinism in database systems. In VLDB, 2010.

[21] A. Thomson, T. Diamond, S. chun Weng, K. Ren, P. Shao, and D. J. Abadi. Calvin: Fast distributed transactions for
partitioned database systems. In SIGMOD, 2012.

[22] VoltDB. Website. voltdb.com.

55


