
The Hekaton Memory-Optimized OLTP Engine

Per-Ake Larson
palarson@microsoft.com

Mike Zwilling
mikezw@microsoft.com

Kevin Farlee
kfarlee@microsoft.com

Abstract

Hekaton is a new OLTP engine optimized for memory resident data and fully integrated into SQL Server;
a database can contain both regular disk-based tables and in-memory tables. In-memory (a.k.a.Hekaton)
tables are fully durable and accessed using standard T-SQL. A query can reference both Hekaton tables
and regular tables and a transaction can update data in both types of tables. T-SQL stored procedures
that reference only Hekaton tables are compiled into machine code for further performance improve-
ments. To allow for high concurrency the engine uses latch-free data structures and optimistic, multi-
version concurrency control. This paper gives an overview of the design of the Hekaton engine and
reports some initial results.

1 Introduction

SQL Server, like other major database management systems, was designed assuming that main memory is
expensive and data resides on disk. This is no longer the case; today a server with 32 cores and 1TB of memory
costs as little as $50K. The majority of OLTP databases fit entirely in 1TB and even the largest OLTP databases
can keep the active working set in memory. Recognizing this trend SQL Server several years ago began building
a database engine optimized for large main memories and many-core CPUs. The new engine, code named
Hekaton, is targeted for OLTP workloads.

Hekaton has a number of features that sets it apart from other main-memory database engines. Most impor-
tantly, the Hekaton engine is integrated into SQL Server; it is not a separate product. A database can contain
both Hekaton in-memory tables and regular disk-based tables. This approach offers customers major benefits
compared with a separate system. First, customers avoid the hassle and expense of another DBMS. Second, only
the most performance-critical tables need to be in main memory; other tables can remain regular SQL Server
tables. Third, conversion can be done gradually, one table and one stored procedure at a time.

Memory optimized tables are managed by Hekaton and stored entirely in main memory. A Hekaton table can
have several indexes which can be hash indexes or range indexes. Hekaton tables are durable and transactional,
though non-durable tables are also supported. Hekaton tables are queried and updated using T-SQL in the
same way as regular SQL Server tables. A query can reference both Hekaton tables and regular tables and a
transaction can update both types of tables. Furthermore, a T-SQL stored procedure that references only Hekaton
tables can be compiled into native machine code for further performance gains. This is by far the fastest way
to query and modify data in Hekaton tables. Hekaton is designed for high levels of concurrency but does not
rely on partitioning to achieve this. Any thread can access any row in a table without acquiring latches or locks.

Copyright 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

34



The engine uses latch-free (lock-free) data structures to avoid physical interference among threads and a new
optimistic, multi-version concurrency control technique to reduce interference among transactions.

2 Design Overview

This section provides a brief overview of the design of the Hekaton engine and the guiding principles behind the
design decisions. The interested reader can find more details in [2].

2.1 No partitioning

HyPer [5], Dora [8], H-store [18], and VoltDB [22] are recent systems designed for OLTP workloads and mem-
ory resident data. They partition the database by core and give one core exclusive access to a partition. Par-
titioning works great but only if the workload is also partitionable. If the workload partitions poorly so that
transactions on average touch several partitions, performance deteriorates considerably.

Hekaton does not partition the database and any thread can access any part of the database. We proto-
typed and carefully evaluated a partitioned engine but came to the conclusion that a partitioned approach is not
sufficiently robust to handle the wide variety of workloads customers expect SQL Server to handle.

2.2 Tables and indexes optimized for main memory

Database systems traditionally use disk-oriented storage structures where records are stored on disk pages that
are brought into memory as needed. This requires a complex buffer pool where a page must be protected by
latching before it can be accessed. The resulting overhead is high: a simple key lookup in a B-tree index may
require thousands of instructions even when all pages are in memory.

Hekaton indexes and other data structures are designed and optimized for memory-resident data and the
on-disk representation is completely different than their in-memory representation and in fact indexes are not
materialized on external storage. Records are referenced directly by physical pointers, not indirectly by a logical
pointer such as a page/row ID. Record pointers are stable; a record is never moved after it has been created. A
table can have multiple indexes, any combination of hash indexes and range indexes. A hash index is simply an
array where each entry is the head of a linked list through records. Range indexes are implemented as Bw-trees
[7] which is novel version of B-trees optimized for main-memory and high concurrency.

2.3 Latch-free data structures

Machines with large numbers of CPU cores are increasingly common and core counts are expected to continue
increasing. Achieving good scaling on many-core machines is critical for high throughput. Scalability suffers
when the systems has shared memory locations that are updated at high rate such as latches and spinlocks and
highly contended resources such as the lock manager, the tail of the transaction log, or the last page of a B-tree
index.

All Hekaton’s internal data structures, for example, memory allocators, hash and range indexes, and the
transaction map, are entirely latch-free (lock-free) [3]. There are no latches or spinlocks on any performance-
critical paths in the system.

2.4 Multi-versioning

Database systems traditionally maintain only a single version of a record and all updates are applied in place
with transaction locks used to synchronize access which can limit scalability. A writer prevents all accesses to
the record until the transaction commits while readers prevent the record from being updated. Because readers

35



block writers, even a few long read-only transactions (to prepare a report, for example) can drastically reduce
update throughput.

To avoid readers competing with writers, Hekaton. like many other database systems, uses multi-versioning
where an update creates a completely new version of a record. Once created, the user payload of a version is
never modified. The lifetime of a version is defined by two timestamps, a begin timestamp and an end timestamp
and different versions of the same record have non-overlapping lifetimes. A transaction specifies a logical read
time for all reads, typically the transaction’s begin time, and only versions whose lifetime overlaps the read time
are visible to the transaction. Consequently, the transaction will read at most one version of a record.

Multi-versioning improves scalability because readers no longer block writers. (Writers may still conflict
with writers though.) Read-only transactions have little effect on update activity; they simply read older versions
of records as needed. In particular, long read-only transactions no longer reduce update transaction throughput.
Furthermore, once a reader has a memory pointer to a record version that is visible to them, it can trust that the
version will never change or move.

However, multi-version is not without cost. Updating a record in place is faster than creating a new version
and obsolete versions no longer needed must be cleaned out. Hekaton’s algorithms for cleaning out obsolete
versions and reclaiming memory is described in more detail in [2].

2.5 Concurrency control

Hekaton uses a new optimistic multi-version concurrency control algorithm to provide transaction isolation;
there are no locks and no lock table. The algorithm is described in detail in [6] but we provide a brief summary
here.

A transaction optimistically assumes that it is running isolated (versioning makes it appear so), but before a
transaction can commit it must validate that it indeed has not been interfered with by another transaction. This
validation begins once a transaction has completed its normal processing and wants to commit. Any number
of transactions can perform validation in parallel. The extent of validation required depends on the trans-
action’s isolation level. Read-only transactions (regardless of isolation level) and transactions running under
read-committed or snapshot isolation require no validation at all. Write-write conflicts are detected immediately
when a transaction attempts to update a version and result in the transaction rolling back.

Transactions running under repeatable read or serializable isolation require validation before commit. Dur-
ing validation a transaction T checks whether the following two properties hold.

1. Read stability. If T read some version V1 during its processing, we must ensure that V1 is still the
version visible to T as of the end of the transaction. This is implemented by validating that V1 has not
been updated before T commits. Any update will have modified V1’s end timestamp so all that is required
is to check V1’s timestamps. To enable this, T retains a pointer to every version that it has read.

2. Phantom avoidance. For serializable transactions we must also ensure that the transaction’s scans would
not return additional new versions. This is implemented by rescanning to check for new versions before
commit. To enable this, a serializable transaction keeps tracks of all its index scans and retains enough
information to be able to repeat each scan.

To avoid blocking during normal processing, Hekaton allows a limited form of speculative reads: a transaction
T1 can read a version created by another transaction T2 that is still in validation. T1 cannot commit or return
results to the user until T2 has committed. To enforce this, T1 takes a commit dependency on T2 which is
released by T2 as soon as it has committed. If T2 aborts, it instructs T1 to abort.

The combination of multi-versioning, optimistic concurrency control with speculative reads, and latch-free
data structures results in a system where a thread never blocks or stall during normal processing of a transaction.

36



2.6 Durability

Transaction durability is ensured by logging and checkpointing records to external storage; index operations are
not logged. During recovery Hekaton tables and their indexes are rebuilt entirely from the latest checkpoint and
logs.

A transaction that successfully passes validation is ready to commit. At this point it writes to the log all
new versions that it has created and keys of all versions it has deleted. This is done in a single write and if
the write succeeds, the transaction is irrevocably committed. Hekaton puts much less pressure on the log than
regular SQL Server because nothing is written to the log until commit. Aborted transactions are not logged so
aborting a transaction is cheap. Hekaton can spread the log over multiple log devices because commit ordering
in Hekaton is determined by transactions’ end timestamps, not by log ordering.

Checkpoints are computed by processing the log, not by scanning tables. The checkpoint algorithms use only
sequential reads and writes to avoid the high overhead and latency of random IO. More details about logging
and checkpointing can be found in [2].

2.7 Compilation to native code

SQL Server uses interpreter based execution mechanisms in the same ways as most traditional DBMSs. This
provides great flexibility but at a high cost: even a simple transaction performing a few lookups may require sev-
eral hundred thousand instructions. Hekaton maximizes run time performance by converting stored procedures
written in T-SQL into customized, highly efficient machine code. The generated code contains exactly what is
needed to execute the request, nothing more. As many decisions as possible are made at compile time to reduce
runtime overhead. For example, all data types are known at compile time allowing the generation of efficient
code. Hekaton’s compilation process is described in [2].

3 High-Level Architecture

SQL Components Hekaton

Storage 

engine

Compiler

Runtime

SQL Components

Security

Metadata

Query optimizer

Query processor

Storage

Query interop

Storage, log

High availability

Transactions

Query optim.

Metadata

SQL Server

Figure 1: Hekaton components and integration
with SQL Server

As illustrated in Figure 1, Hekaton consists of three major com-
ponents.

• The Hekaton storage engine manages user data and in-
dexes. It provides transactional operations on tables of
records, hash and range indexes on the tables, and base
mechanisms for storage, checkpointing, recovery and
high-availability.

• The Hekaton compiler takes an abstract tree representa-
tion of a T-SQL stored procedure, including the queries
within it, plus table and index metadata and compiles the
procedure into native code designed to execute against
tables and indexes man-aged by the Hekaton storage en-
gine.

• The Hekaton runtime system provides integration with
SQL Server resources and serves as a common library of additional functionality needed by compiled
stored procedures.

Hekaton leverages a number of services already available in SQL Server. The main integration points are
illustrated in Figure 1.

37



• Metadata: Metadata about Hekaton tables, indexes, etc. is stored in the regular SQL Server catalog.
Users view and manage them using exactly the same tools as regular tables and indexes.

• Query optimization: Queries embedded in compiled stored procedures are optimized using the regular
SQL Server optimizer. The Hekaton compiler compiles the query plan into native code.

• Query interop: Hekaton provides query operators for accessing data in Hekaton tables that can be used in
interpreted SQL Server query plans. There is also an operator for inserting, deleting, and updating data in
Hekaton tables.

• Transactions: A regular SQL Server transaction can access and update data both in regular tables and
Hekaton tables. Commits and aborts are fully coordinated across the two engines.

• High availability: Hekaton is integrated with AlwaysOn, SQL Server’s high availability feature. Hekaton
tables in a database fail over in the same way as other tables.

• Storage, log: Hekaton logs its updates to the regular SQL Server transaction log. It uses SQL Server file
streams for storing checkpoints. Hekaton tables are automatically recovered in parallel while the rest of
the database is recovered.

4 Performance Illustration

Figure 2: Improved throughput and scalability offered by Hekaton

We now report results from an experiment
that illustrates the performance and scal-
ability improvements offered by Hekaton
compared with regular SQL Server. The
experiment emulates an order entry sys-
tem for, say, a large online retailer. The
load on the system is highly variable and
during peak periods throughput is limited
by lock and latch contention. The system
is simply not able to take advantage of
additional processor cores so throughput
levels off or even decreases. When SQL
Server customers experience scalability
limitations, the root cause is frequently
lock or latch contention. Hekaton is de-
signed to eliminate lock and latch con-
tention, allowing it to continue to scale
with the number of processor cores.

The main activity is on a table SalesOrderDetails that stores data about each item ordered. The table has
a unique index on the primary key which is a clustered B-tree index if the table is a regular SQL Server table
and a hash index if it is Hekaton table. The workload in the experiment consists of 60 input streams, each a
mix of 50% update transactions and 50% read-only transactions. Each update transaction acquires a unique
sequence number, which is used as the order number, and then inserts 100 rows in the SalesOrderDetails table.
A read-only transaction retrieves the order details for the latest order.

The experiment was run on a machine with 2 sockets, 12 cores (Xeon X5650, 2.67GHz), 144GB of memory,
and Gigabit Ethernet network cards. External storage consisted of four 64GB Intel SSDs for data and three

38



80GB Fusion-IO SSDs for logs. There was sufficient memory to hold the entire database using either regular or
Hekaton tables.

Figure 2 shows the throughput as the number of cores used varies. The regular SQL Server engine shows
limited scalability as we increase the number of cores used. Going from 2 cores to 12 cores throughput increases
from 984 to 2,312 transactions per second, only 2.3X. Latch contention limits the CPU utilization to only 40%
for more than 6 cores.

Converting the table to a Hekaton table and accessing it through interop already improves throughput to
7,709 transactions per second for 12 cores, a 3.3X increase over plain SQL Server. Accessing the table through
compiled stored procedures improves throughput further to 36,375 transactions per second at 12 cores which is
15.7X improvement over regular SQL Server.

The Hekaton engine shows excellent scaling. Going from 2 to 12 cores, throughput improves by 5.1X for
the interop case (1,518 to 7,709 transactions per second). If the stored procedures are compiled, throughput also
improves by 5.1X (7,078 to 36,375 transactions per second).

We also investigated the performance of the regular SQL Server engine when there was no contention. We
partitioned the database and rewrote the stored procedure so that different transactions did not interfere with
each other. The results are shown in the row labeled ”SQL with no contention”. Removing contention increased
maximum throughput to 5,834 transaction/sec which is still lower than the throughput achieved through in-
terop. Without contention scaling improved to 5.1X going from 2 cores to 12 cores, compared with 2.3X with
contention.

5 Initial Customer Experiences

Bwin is the largest regulated online gaming company in the world, and their success depends on positive cus-
tomer experiences. They use SQL Server extensively and were keen to try out an early preview of Hekaton. Prior
to using Hekaton, their online gaming systems were handling about 15,000 requests per second, a huge number
for most companies. However, Bwin needed to be agile and stay at ahead of the competition so they wanted
access to the latest technology speed. Using Hekaton Bwin were hoping they could at least double the number
of transactions. They were pretty amazed to see that the fastest tests so far have scaled to 250,000 requests per
second.

Edgenet is a leading provider of product data management, product listings, and retail selling solutions, ag-
gregating and curating product information from various suppliers, and correlating it to availability and inventory
information from the stores of many retailers to present end users with a comprehensive shopping experience.
The project prototyped was an inventory tracking system, which receives batch updates from each retailer with
updates for all products in each of their stores. The baseline SQL measurement hit maximum performance with
2 threads, at 7,450 rows/second. Hekaton scaled smoothly up to 50 threads, yielding 126,665 rows per second.

SBI Liquidity Market(SBILM), located in Japan, provides financial trading infrastructure for tenant com-
panies. SBILM’s current volume of trading is $1.75 Trillion, around twice that of the Japanese government’s
budget. They are investing in their next-generation foreign exchange trading platform. The system explored
aggregate trading data to calculate prices for currency pairs. The timeliness of this data is critical to profitability.
When trading greatly increases, their current system yields 4 second aggregation time. Their goal is less than
one second, which equates to 4000 TPS. In lab tests, they achieved a maximum of 2812 TPS with traditional
SQL tables, and 5313 with Hekaton, significantly exceeding their goals.

6 Conclusion

Hekaton is a new main-memory engine under development a Microsoft. Hekaton is fully integrated into SQL
Server, which allows customers to gradually convert their most performance-critical tables and applications to

39



take advantage of the performance improvements offered by Hekaton. Hekaton achieves high performance and
scalability by using very efficient latch-free data structures, multi-versioning, optimistic concurrency control,
and by compiling T-SQL stored procedure into efficient machine code. Transaction durability is ensured by
logging and checkpointing to external storage. High availability and transparent failover is provided by integra-
tion with SQL Server’s AlwaysOn feature. The Hekaton engine is capable of delivering more than an order of
magnitude improvement in efficiency and scalability with minimal and incremental changes to user applications
or tools.

7 Acknowledgements

This project owes its success to the hard work and dedication of many people – too many to name everyone
here. Notably, a strong collaboration between people in the Microsoft Research Database Group, the Microsoft
Jim Gray Systems Lab, and the Microsoft SQL Server Development team has powered this project since its
inception.

References

[1] VoltDB. http://voltdb.com.

[2] C. Diaconu, C. Freedman, E. Ismert, P.-Å. Larson, P. Mittal, R. Stonecipher, N. Verma, and M. Zwilling.
Hekaton: SQL Server’s memory-optimized OLTP engine. In Sigmod, page (to appear), 2013.

[3] K. Fraser and T. L. Harris. Concurrent programming without locks. ACM Trans. Comput. Syst., 25(2), 2007.

[4] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. B. Zdonik, E. P. C. Jones, S. Madden, M. Stone-
braker, Y. Zhang, J. Hugg, and D. J. Abadi. H-store: a high-performance, distributed main memory transac-
tion processing system. PVLDB, 1(2):1496–1499, 2008.

[5] A. Kemper and T. Neumann. HyPer: A hybrid OLTP&OLAP main memory database system based on
virtual memory snapshots. In ICDE, pages 195–206, 2011.

[6] P.-Å. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel, and M. Zwilling. High-performance concur-
rency control mechanisms for main-memory databases. PVLDB, 5(4):298–309, 2011.

[7] J. Levandoski, D. B. Lomet, and S. Sengupta. The Bw-tree: A B-tree for new hardware platforms. In ICDE,
pages 3012–313, 2013.

[8] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki. Data-oriented transaction execution. PVLDB,
3(1):928–939, 2010.

40


