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3Courant Institute of Mathematical Sciences, New York University

{fchirigati,juliana}@nyu.edu, troyer@phys.ethz.ch, shasha@courant.nyu.edu

Abstract

Creating and testing reproducible computational experiments is hard. Researchers must derive a com-
pendium that encapsulates all the components needed to reproduce a result. Reviewers must unpack
the encapsulated components, run them in an environment that could be different from the source en-
vironment, and verify the results. Although many tools support some aspect of reproducibility, there is
no common benchmark against which single or multiple tools can be tested. This paper describes a
benchmark that can be used to categorize and better understand existing systems. The benchmark will
also serve as the basis for a competition whereby tool builders will demonstrate if and how their systems
support end-to-end reproducibility.

1 Motivation
Ever since Francis Bacon, a hallmark of the scientific method has been that experiments should be described
in enough detail so that they can be repeated and perhaps generalized. When Newton said that he could see
farther because he stood on the shoulders of giants, he depended on the truth of his predecessors’ observations
and the correctness of their calculations. In computational terms, this implies the possibility of (i) repeating (or
replicating) results on nominally equal configurations, and (ii) generalizing the results by replaying them on new
data sets, verifying how they vary with different parameters, and re-using and extending the experiment.

In principle, reproducibility should be easier for computational experiments than for natural science experi-
ments, because not only can computational processes be automated, but also computational systems do not suffer
from the “biological variation” problem that plagues the life sciences. Unfortunately, the state of the art belies
this apparent ease. Most computational experiments are specified only informally in papers, where experimental
results are briefly described in figure captions; the code that produced the results is seldom available and may be
tied to specific configurations; and configuration parameters change results in unforeseen ways.

The lack of reproducibility has serious implications and has led to a credibility crisis in computational sci-
ence [5]. In the absence of reproducibility, it has become difficult and sometimes impossible to verify scientific
results, sometimes leading to major mistakes that are corrected only long after they are published, if ever. Fur-
thermore, scientific discoveries do not happen in isolation. Important advances are often the result of sequences
of smaller steps. If results are not fully documented, reproducible, and generalizable, it becomes hard to re-use
and extend them.
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Recently, there has been great interest on reproducibility and in the publication of reproducible results [2, 6,
7, 11, 14, 15, 16, 19, 23]. A number of conferences and journals instituted a reproducibility review process [1,
13, 21, 24], and while some have started to encourage authors to submit the experiments together with their
papers, others have this as a requirement [17, 20]. However, these efforts have had limited success. A major
roadblock to the more widespread adoption of this practice is the fact that it is hard to derive a compendium that
encapsulates all the components (e.g., data, code, parameter settings) needed to reproduce the results, publish
and verify them. Indeed, many scientists do not make their data and experiment reproducible [22], because
authors complain that the process is too laborious [3].

While there are tools that support reproducibility, these have often been developed in isolation and target
specific communities. There is also confusion about what the end-to-end process to attain reproducibility entails.
As a result, tools lack important features and cannot be easily integrated with other systems that support these
features. Researchers in search of a reproducibility solution are thus left in a quandary, since it is both hard to
identify the tools they need and understand the functionality they support.

As a starting point to address this problem, this paper makes two contributions. First, we characterize the key
tasks involved in the lifecycle of reproducible results, as well as different modes for attaining reproducibility.
We then propose a benchmark that exercises these tasks in one mode that we call spontaneous. We have selected
scenarios that are common in a variety of scientific domains. We also describe set of criteria to evaluate the
benchmark results. Besides serving as a tool to categorize and better understand reproducibility systems, this
benchmark will be used in an upcoming competition, where tool builders will implement end-to-end solutions
for reproducibility and these will be tested by judges. We hope that through this benchmark and competition,
insights will be obtained as to how to build comprehensive and general solutions.

2 Creating and Reviewing Reproducible Papers
In reproducible papers, the results reported, including data, plots and visualizations are linked to the experiments
and inputs. Having access to these, reviewers and readers can examine the results, then repeat or modify an
execution. Figure 1 shows one reproducible paper. In this paper, all plots have deep captions consisting of
the workflow used to derive the plot, the underlying libraries invoked by the workflow, and the input data. This
information allows the plots to be reproduced. In what follows, we describe tasks required to create reproducible
experiments which can be published and shared.

Reproducibility Tasks. The first task is to (i) create a description of the experiment. A reproducible experiment
must contain the description of the data used, the specification of the experiment – the steps followed, the un-
derlying code needed to execute the specification, and the description of the environment where the experiment
was executed. With this description, it should be possible for the author of the experiment to reproduce the
experiment at a later time. However, to publish or share the experiment, the author must also (ii) package all
the components of the experiment so that it can be executed by others in different computational environments.
Finally, when creating a reproducible paper, the author needs to (iii) connect the published results to the experi-
ments. Once a reproducible paper is submitted (or published), a reviewer should be able to unpack and run the
experiments so that she can (iv) reproduce and validate the results.
Axes of Reproducibility. We have identified three distinct criteria to characterize experiments with respect to the
level of reproducibility [9]: transparency, portability, and coverage. The transparency indicates whether partial
or complete data and code are available. There are many possibilities for each step of an experiment pipeline,
including: (a) partial data, e.g., a set of figures presented in a manuscript; (b) all data; (c) all data data plus the
executable scripts; (d) the software system as a white box (source, configuration files, build environment) or
black box (executable) on which the pipeline step is performed.

A second criterion is portability. An experiment can potentially be reproduced (a) on the original environ-
ment (basically, the author of the experiment can replay it on his or her machine); (b) on a similar environment
(i.e., same OS but different machine), or (c) on a different environment (i.e., on a different OS and machine).
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Galois conjugation relates unitary conformal field theories (CFTs) and topological quantum field theories

(TQFTs) to their non-unitary counterparts. Here we investigate Galois conjugates of quantum double models,

such as the Levin-Wen model. While these Galois conjugated Hamiltonians are typically non-Hermitian, we find

that their ground state wave functions still obey a generalized version of the usual code property (local operators

do not act on the ground state manifold) and hence enjoy a generalized topological protection. The key question

addressed in this paper is whether such non-unitary topological phases can also appear as the ground states of

Hermitian Hamiltonians. Specific attempts at constructing Hermitian Hamiltonians with these ground states

lead to a loss of the code property and topological protection of the degenerate ground states. Beyond this we

rigorously prove that no local change of basis (IV.5) can transform the ground states of the Galois conjugated

doubled Fibonacci theory into the ground states of a topological model whose Hermitian Hamiltonian satisfies

Lieb-Robinson bounds. These include all gapped local or quasi-local Hamiltonians. A similar statement holds

for many other non-unitary TQFTs. One consequence is that the “Gaffnian” wave function cannot be the ground

state of a gapped fractional quantum Hall state.

PACS numbers: 05.30.Pr, 73.43.-f

I. INTRODUCTION

Galois conjugation, by definition, replaces a root of a poly-

nomial by another one with identical algebraic properties. For

example, i and −i are Galois conjugate (consider z2 +1 = 0)

as are φ = 1+
√

5

2
and − 1

φ
= 1−

√

5

2
(consider z2− z− 1 = 0),

as well as
3
√

2,
3
√

2e2πi/3, and
3
√

2e−2πi/3 (consider z3 − 2 =
0). In physics Galois conjugation can be used to convert non-

unitary conformal field theories (CFTs) to unitary ones, and

vice versa. One famous example is the non-unitary Yang-Lee

CFT, which is Galois conjugate to the Fibonacci CFT (G2)1,

the even (or integer-spin) subset of su(2)3.

In statistical mechanics non-unitary conformal field theo-

ries have a venerable history.1,2 However, it has remained less

clear if there exist physical situations in which non-unitary

models can provide a useful description of the low energy

physics of a quantum mechanical system – after all, Galois

conjugation typically destroys the Hermitian property of the

Hamiltonian. Some non-Hermitian Hamiltonians, which sur-

prisingly have totally real spectrum, have been found to arise

in the study of PT -invariant one-particle systems3 and in

some Galois conjugate many-body systems4 and might be

seen to open the door a crack to the physical use of such

models. Another situation, which has recently attracted some

interest, is the question whether non-unitary models can de-

scribe 1D edge states of certain 2D bulk states (the edge holo-

graphic for the bulk). In particular, there is currently a discus-

sion on whether or not the “Gaffnian” wave function could be

the ground state for a gapped fractional quantum Hall (FQH)

state albeit with a non-unitary “Yang-Lee” CFT describing its

edge.5–7 We conclude that this is not possible, further restrict-

ing the possible scope of non-unitary models in quantum me-

chanics.

We reach this conclusion quite indirectly. Our main thrust

is the investigation of Galois conjugation in the simplest non-

Abelian Levin-Wen model.8 This model, which is also called

“DFib”, is a topological quantum field theory (TQFT) whose

states are string-nets on a surface labeled by either a triv-

ial or “Fibonacci” anyon. From this starting point, we give

a rigorous argument that the “Gaffnian” ground state cannot

be locally conjugated to the ground state of any topological

phase, within a Hermitian model satisfying Lieb-Robinson

(LR) bounds9 (which includes but is not limited to gapped

local and quasi-local Hamiltonians).

Lieb-Robinson bounds are a technical tool for local lattice

models. In relativistically invariant field theories, the speed of

light is a strict upper bound to the velocity of propagation. In

lattice theories, the LR bounds provide a similar upper bound

by a velocity called the LR velocity, but in contrast to the rel-

ativistic case there can be some exponentially small “leakage”

outside the light-cone in the lattice case. The Lieb-Robinson

bounds are a way of bounding the leakage outside the light-

cone. The LR velocity is set by microscopic details of the

Hamiltonian, such as the interaction strength and range. Com-

bining the LR bounds with the spectral gap enables us to prove

locality of various correlation and response functions. We will

call a Hamiltonian a Lieb-Robinson Hamiltonian if it satisfies

LR bounds.

We work primarily with a single example, but it should be

clear that the concept of Galois conjugation can be widely ap-

plied to TQFTs. The essential idea is to retain the particle

types and fusion rules of a unitary theory but when one comes

to writing down the algebraic form of the F -matrices (also

called 6j symbols), the entries are now Galois conjugated. A

slight complication, which is actually an asset, is that writing

an F -matrix requires a gauge choice and the most convenient

choice may differ before and after Galois conjugation.

Our method is not restricted to Galois conjugated DFibG

and its factors FibG and FibG , but can be generalized to in-

finitely many non-unitary TQFTs, showing that they will not

arise as low energy models for a gapped 2D quantum mechan-
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FIG. 4. (color online) Scaling of the finite-size gap ∆(L) (in units

of Jp) with linear system size for the Hermitian projector model

H
herm on two different lattice geometries: the honeycomb lattice

with L×W plaquettes (top panel) and 2-leg ladder systems of length

L (bottom panel).
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FIG. 5. Edge labeling for a plaquette of the ladder lattice.

The quasi-one dimensional geometry allows to numerically

diagonalize systems up to linear system size L = 13. The

finite-size gap of the Hermitian model Hherm is again found

to vanish in the thermodynamic limit, showing a linear de-

pendence on the inverse system size as shown in Fig. 4b). To

further demonstrate the fragility of these gapless ground states

against local perturbations we add a string tension18

Hpert = Jr
∑

rungs r

δl(r),τ (13)

favoring the trivial label l(r) = 1 on each rung of the ladder.

We parameterize the couplings of the competing plaquette and

rung terms as

Jr = sin θ and Jp = cos θ ,

where θ = 0 corresponds to the unperturbed Hamiltonian.

The phase diagrams as a function of θ have been mapped out

for both the DFib model18 and the DYL model,4 respectively.

Directly probing the topological order in the DYL model

and its Hermitian counterpart we show the lifting of their re-

spective ground-state degeneracies in Figs. 6 and 7 when in-

cluding a string tension. We find a striking qualitative dif-

ference between these two models: For the DYL model the

lifting of the ground-state degeneracy is exponentially sup-

pressed with increasing system size – characteristic of a topo-

logical phase. For the Hermitian model, on the other hand, we

find a splitting of the ground-state degeneracy proportional to

JrL. The linear increase with both system size and coupling

can be easily understood by the different matrix elements of

the string tension term on a single rung for the two degener-

ate ground-states of the unperturbed model. Plotting the low-

energy spectrum in Fig. 7 clearly shows that the two-fold de-

generacy of the unperturbed Hermitian model arises from a

(fine-tuned) level crossing. Similar behavior is found in the

honeycomb lattice model (not shown).

Considering the model in a wider range of couplings, as

shown in Fig. 8, further striking differences between the non-

Hermitian DYL model and its Hermitian counterpart are re-

vealed: The DYL model exhibits two extended topological

phases around θ = 0 and θ = π/2 (with two and four de-

generate ground states, respectively), which are separated by

a conformal critical point at precisely θc = π/4 as discussed

extensively in Refs. 4 and 18. In contrast, the Hermitian model

Hherm exhibits no topological phase anywhere, and the inter-

mediate coupling θ = π/4 does not stand out.
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FIG. 6. (color online) Ground-state degeneracy splitting of the non-

Hermitian doubled Yang-Lee model when perturbed by a string ten-

sion (θ  = 0).
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Figure 1: A reproducible paper. This paper by Freedman et al. [8] contains provenance-rich figures that have
been created using the VisTrails system. Clicking on a figure downloads the workflow instance and associated
provenance needed to derive the figure. This information can be examined and executed in VisTrails, reproduc-
ing the plot shown in the figure.

Finally, coverage indicates how much of the experiment pipeline is provided: (a) partial pipeline, i.e., only
a subset of the experimental pipeline from raw data to final figures can be reproduced, or (b) full pipeline, i.e.,
the entire pipeline, from raw data all the way up to document, can be reproduced. As an example, experiments
that rely on data derived by third-party Web services, special hardware, or lab experiments may not be fully
reproduced, because repeating all the steps may be impossible. At that point, coverage would be reduced to
intermediate data alone. Note that transparency indicates whether for a step of the pipeline data and/or code are
available, whereas coverage has to do with how many steps of the pipeline are available.

Reproducibility Methodology. There are two main modes of creating reproducible experiments: (i) one can
plan for reproducibility while doing research, or (ii) one can make the experiments reproducible after the fact,
i.e., after they have been developed on a source machine. For the former, there are both best practices (e.g.,
the use of version control systems) as well as specialized tools that systematically capture provenance as the
experiments are carried out. One advantage of this mode is that not only it ensures that the derived results
are reproducible, but also this provenance captures the different trails followed, and can serve as a guide to
researchers who want to understand the different choices that were examined [10], e.g., data input and parameter
value combinations, or different algorithms used. However, when appropriate tools are not available, or they are
simply not adopted, it should still be possible to make experiments reproducible, which is the goal of the second
mode, called unplanned, or spontaneous. For a given set of results, this entails the creation of an executable
description of how the results were derived.
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3 The Reproducibility Benchmark

Desiderata. We had a number of goals while designing this benchmark. Besides verifying the ability of tools to
perform the different reproducibility tasks, we would also like to understand how well these are supported and
under which conditions. Thus, to serve as the basis of the benchmark, it is critical to use an experiment that is
representative and covers many of the steps that are common in scientific exploration. Furthermore, the exper-
iment must be expandable, in the sense that it should be possible to tweak it to match different reproducibility
methodologies, scenarios (e.g., single and multiple machines), and levels of reproducibility. Last, but not least,
to be inclusive, the experiment should also run on different multiple OS platforms.

The Experiment. We selected a computational experiment that includes both the execution of a simulation and
the analysis of its results: Monte Carlo simulation of the Ising model, described in detail in [18]. The experiment
pipeline consists of three main steps:

1. Simulation Phase. First, large-scale simulations are prepared and executed, resulting in the raw simulation
output. This phase is commonly time-consuming and not easily reproducible by a reader of the paper.
Thus, the output is often archived, as well as all steps to reproduce this data.

2. Evaluation Phase. Next, the data is analyzed and evaluated. As an example, the data is plotted in figures
that allows readers to judge the quality of the derived results.

3. Publishing Phase. Finally, both the figures and other results are included in a manuscript.

Such workflows are common in many scientific domains and exercise important requirements for the differ-
ent reproducibility tasks. The experiment can run on Windows, Linux and OS X, and it can also be tuned to use
different computational environments (e.g., single machine and cluster).

Reproducibility Modes and Evaluation Criteria. To consider the two reproducibility methodologies and the
tools that handle them, the benchmark has two categories: unplanned, which tests solutions for making an
existing experiment reproducible, even though the experiment was never designed with reproducibility in mind;
and planned, which simulates the creation of an explicitly reproducible experiment from scratch. In both cases,
the goal is to evaluate the completeness of the tool with respect to the reproducibility tasks, as well as the
transparency of the derived experiment. Additional features that are tested include usability, the ability to run on
multiple platforms and on a remote cluster, and the inclusion and automatic update of results in the paper. For
the planned mode, the benchmark includes binary and source code, and a textual description of the experiment.
Users will utilize this information to simulate the creation of the experiment from scratch. The spontaneous
benchmark provides binary code which runs on a particular linux environment. Tools will need to wrap these
binaries after one execution of this binary code in the source environment. The wrapped package must then be
able to run in a target environment and create an executable paper. Here, we focus on the spontaneous mode.

There will be two kinds of users who deal with this benchmark. Authors will create a reproducible exper-
iment using tools, and reviewers/judges will unpack the experiment and look at results for different parameter
combinations and input files.
1. Author role. The author will make the experiment reproducible by wrapping to run on various platforms,
after running it on a source platform (or a virtual machine or set of virtual machines representing the source
platform). Multiple variations of the experiment are provided. One of them requires execution on a cluster of
computers. The experiment can also be tuned to generate different numbers of results, allowing the scalability
of the systems to be assessed.
2. Reviewer role. Judges/reviewers will determine usability: the tool-produced package should be easy to
unpack, run the experiments, and explore parameter variations. In addition, since reviewers may have to copy
the experiments, it is important to consider (and measure) the size of the package. For example, while virtual
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machines provide great portability, they can be very large – much larger than packages derived from tools
that include only the required dependencies [4, 12]. More important perhaps, virtual machines might capture
information the code authors do not wish to reveal.

4 The Spontaneous Reproducibility Challenge

For the spontaneous challenge, there will be a training and a real experiment (binaries and data). The training
set will be used by tool developers while preparing their tools for the challenge. The real set will be sent well in
advance but encrypted. The decryption key will be sent the day the competition begins. Also, for each challenge,
there will be both a tool-building portion and a blinded judgement portion. To create reproducible documents,
there will have to be some integration with typesetting packages such as LATEX or text editors such as Microsoft
Word. Since there is no general tool that supports all the reproducibility tasks, we envision that tool builders will
form alliances in order to win the benchmark competition.

Besides the evaluation criteria outlined in Section 3, another criterion for the tool-builder part is a timing
test: how long does it take for the team to wrap the code and data for each target system? Scoring works as
follows assuming N participants: the fastest team for a given target system receives N points, the second fastest
receives N-1, ... Any team that does not succeed in wrapping the code for a particular target system receives
zero points for that target.

The wrapped code will be uploaded to a judge site where it will be blinded by the chair of the competition.
Each wrapped code will then be judged by three judges on the following criteria:

1. Given a configuration file in text format (using the same format for training and test), run through every
combination of parameters and calculate the mean and the variance of some parameter (e.g., critical tem-
perature in the case of the Ising model). In the configuration file the possible values of each parameters
will be provided. If this works, then the team receives N/2 points. Otherwise zero points.

2. The size of the package that runs on the target machine. The smallest package of those that run receives
N points, the second smallest N-1, etc. If the software does not run, then the team receives zero points.

3. How long does it take the judges to run the tool in wall clock time with new parameter settings, generate
all the graphs and numerical values, and embed these into a new version of the paper? The fastest team
receives N points, the second fastest receives N-1, ... If it doesn’t work, then 0 points.

4. Can the judges interact with the paper and change parameters and/or input data and have the figures update
without further special action? Any team that can do this receives N points. Otherwise 0.

5. The judges subjective score on a scale of easy (3) to difficult (0). The three judges’ scores are summed
and then the team with the highest score receives N points, the second highest N-1, ...

The team with the highest score will receive a monetary prize. If more than one team ties for the most points,
the prize will be divided equally. All participants will have the option to write an article about their effort in the
journal Information Systems.
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