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Abstract

An important component in the fields of ecology and conservation biology is understanding the environ-
mental conditions and geographic areas that are suitable for a given species to inhabit. A common tool
in determining such areas is species distribution modeling which uses computer algorithms to determine
the spatial distribution of organisms. Most commonly the correlative relationships between the organ-
ism and environmental variables are the primary consideration. The data requirements for this type of
modeling consist of known presence and possibly absence locations of the species as well as the values
of environmental or climatic covariates thought to define the species habitat suitability at these loca-
tions. These covariate data are generally extracted from remotely sensed imagery, interpolated/gridded
historical climate data, or downscaled climate model output. Traditionally, ecologists and biologists
have constructed species distribution models using workflows and data that reside primarily on their
local workstations or networks. This workflow is becoming challenging as scientists increasingly try to
use these modeling techniques to inform management decisions under different climate change scenar-
ios. This challenge stems from the fact that remote sensing products, gridded historical climate, and
downscaled climate models are not only increasing in spatial and temporal resolution but proliferating
as well. Any rigorous assessment of uncertainty requires a computationally intensive sensitivity analysis
accounting for various sources of uncertainty. The scientists fitting these models generally do not have
the background in computer science required to take advantage of recent advances in web-service based
data acquisition, remote high-powered data processing, or scientific workflow systems. Ecologists in the
field of modeling are in need of a tractable platform that abstracts the inherent computational complex-
ity required to incorporate the burgeoning field of coupled climate and ecological response modeling.
In this paper we describe the computational challenges in species distribution modeling and solutions
using scientific workflow systems. We focus on the Software for Assisted Species Modeling (SAHM) a
package within VisTrails, an open-source scientific workflow system.

1 Introduction

The objective of this paper is to demonstrate the utility of scientific workflow tools in addressing the increas-
ingly complex data management issues associated with species distribution modeling (SDM). We start with a
brief overview of SDM and the currently available software options. We then explain two major factors that
are contributing to the increasing modeling complexity. First there is the growing array of SDM algorithms
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available, each having its own parameters, input file formats, and native software. Here the data complexity
resides in the metadata associated with the model runs, such as software version, parameter files, and input and
output that are not necessarily tracked in the SDM software. Second there is the complexity of data access;
which has become a particular challenge with the growing interest of projecting SDM results into the future by
using climate projections. We go on to explain how scientific workflow software, in particular VisTrails:SAHM
has helped ecological modelers deal with this complexity of the first factor and how we hope to use it to address
the second. The organizational capacity and provenance inherent to VisTrails:SAHM serve both to tie previ-
ously disparate tools together and maintain detailed records of the input used, output generated, and parameter
specifications and allows the modeling to take advantage of machine service architectures to construct models
using predictor layers stored on remote servers. We have found that organizing SDMs within the context of
scientific workflow simplify data and model complexities, thus allowing analysts more time to concentrate on
the ecological implications and useful application of their species distribution modeling activities.

2 Species Distribution Modeling: Overview and Challenges

Species distribution models (SDMs) are used to link species locations to spatially defined environmental vari-
ables. There are several algorithms available for fitting species distribution models which vary widely in their
origins and complexity from statistical algorithms such as classic generalized linear models (GLMs) [17] and
generalized additive models (GAMs) [13] to machine learning algorithms such as random forest [4] and boosted
regression trees [11] to network models such as artificial neural networks (ANNs) [19]. The primary focus of
the SDM literature and of the SAHM software is on observation-based determination of the correlative relation-
ships between an organism and its environment. Once quantified, these correlative relationships can be used to
gain insight into a variety of important ecological and evolutionary questions and model output can be projected
onto spatial layers to produce maps of the species’ ecological niche. Unfortunately, a large number of sources
contribute to uncertainty in the prediction of species distribution especially when projecting to new spatial or
temporal extents and when the input layers are often themselves output from other models. Approaches capable
of partially quantifying this uncertainty such as ensembles and maps or partitions of quantifiable uncertainty
have been recommended in the literature [8]. Proper model assessment often involve a sensitivity analysis on
several groups of factors including the models and the environmental data.

It has been argued that climate is often the most basic determinant of a species fundamental niche in that it
limits the species’ range at the broadest spatial scale [2]. There has been a rapidly growing interest in projecting
species distribution models onto future climate scenarios to inform management decisions under a changing
climate. In this arena, the quantification or exploration of uncertainty based on the various sources is criti-
cal and the most favorable approach involves producing species distribution maps for various combinations of
SDM models, emissions scenarios, and coupled Atmosphere-Ocean Generalized Circulate Models (AOGCMs),
downscaling methods, as well as any other known sources of uncertainty. This situation creates an explosion in
computation time and the data storage requirements for fitting SDMs. One recent paper, for example, generated
8400 projections to describe the uncertainty in fish assemblage projections [5]. The modules we are develop-
ing within SAHM are designed to remove the programming and data storage challenges that limit the use of
recommended practice for many ecologists.

The scientific data management challenges encountered in species distribution modeling stem from two main
factors. First is the number of disparate tools required for a typical SDM workflow. The second stems from the
difficulties encountered preparing and using the gridded environmental inputs. While neither of these factors is
unique in computational science, certain aspects of SDM make it a good candidate for implementing tools and
practices for robust scientific data management. First is the widespread acceptance and use of SDM methods
for many ecological research and management questions. The second is lack of experience and training among
many practitioners of SDM in the tools and techniques used for scientific data management. Additionally, with
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SDM modeling the results can be used to make controversial decisions with respect to endangered or invasive
species and proper documentation of the modeling workflow is helpful to review and defend results.

2.1 Integrating SDM Tools

Several tools are currently available for modeling species distribution. We were able to determine the most com-
monly utilized tools based on a recent survey of SDM software use by ecologists [15] and use this information to
review the available tools. Due to the complex and multidisciplinary workflows required for SDMs it is unlikely
that the entire workflow could be carried out in any single software package with the exception of possibly R,
but this would require significant programming skill. Also, due to the various components, it seems practical
that species distribution modeling requires expertise in climate models, remote sensing, GIS, the species being
considered, and statistics techniques. Further, if the model output is to be applied to natural resource man-
agement questions, expertise in that management domain is also required. All of the software packages with
GUI interfaces demonstrated limited flexibility in terms of either modeling for only one type of response, with
one modeling algorithm, not providing opportunities to explore the data, or not producing detailed graphics
for model evaluation. Most packages with GUI interfaces focused on the model fitting and evaluation com-
ponents of the workflow but require a separate set of tools and expertise to perform the preprocessing or data
layer preparation steps. These issues are only compounded for the ecologist hoping to understand the nuances
of how models differ or hoping to map patterns in uncertainty or determine when the spatial projections are
extrapolating beyond the environmental calibration space.

It is important to emphasize that the full SDM process with climate inputs will generally need to integrate
a variety of tools at different points in the process. For example, a scientist might use a web interface to select
and download the required climate inputs such as the USGS Geo Data Portal (GDP) [3]. She might then use a
custom script to process them into the format required for their model such as a toolbox in ArcMap. The model
is then run using a specific GUI tool such as Maxent. The steps to select the final model and analyze model
performance might be done with custom code, perhaps written in R. The modeling is also likely to involve
decisions and deliberations by the analyst(s); which may or may not be rigorously documented. The final model
output might then be reformatted and visualized in a final GIS program such as ArcMap. This type of workflow
often presents challenges with tractability, transportability, documentation of methodology, and repeatability.

2.2 Handling Input Data

A primary data need of species distribution modelers are the geospatially referenced gridded environmental data
often referred to as layers which are used as inputs to SDMs. These data can include traditionally mapped
GIS layers such as land cover, remotely sensed products such as those from Moderate Resolution Imaging
Spectroradiometer (MODIS)[1], and the subset that we will focus for the remainder of this paper on historic and
modeled climate products. These climate data can represent interpolations of historical readings such as PRISM
(Parameter-elevation Relationships on Independent Slopes Model [12]) or modeled hindcasts or projections of
future climate such as those produced under CMIP5 (Coupled Model Intercomparison Project Phase 5 [18]). The
native formats and schemas of these data generally fall into a limited number of standards including NetCDF
(network common data form) with CF (Climate and Forecast) metadata conventions and HDF5 (Hierarchical
Data Format, Version 5). Due to the large data volumes inherent to global and high resolution downscaled
regional climate models, the data often come tiled into discrete files either spatially or temporally. The size of
individual climate datasets is generally reasonable but cumulatively they can become quite large (100s of GBs
to 10s of TBs). Although these data generally adhere to common data schemas, scientists and analysts still often
run into novel formats or nuances that require ad hoc tools and workflows. The ability to utilize these non-
standard data formats is often beyond the capabilities of researchers without strong technical and programing
skills.
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These demands have led to the development of technologies aimed at facilitating data use by scientists
through distributed storage and remote web service based access. Examples of these technologies include
OPeNDAP, (Open-source Project for a Network Data Access Protocol) [22] , THREDDS (Thematic Realtime
Environmental Distributed Data Services) [24], and Open Geospatial Consortium (OGC) Web Coverage Service
(WCS)[14]. In general these technologies provide web service protocols for remote data access and discovery
and provide capabilities for spatial and temporal grid subsetting. These data delivery protocols can be further
extended by providing data processing services which leverage remote computational resources, for example,
The OGC Web Processing Service (WPS) Interface Standard [14] or the USGS Geo Data Portal [3].

There are currently a number of excellent tools available for researchers who need to consume scientific
data from these types of services. These include web-based interfaces, GUI tools, application specific toolkits,
and APIs for a variety of programing languages and libraries (Matlab, R, Python, GDAL, etc). While these
technologies have gained wide acceptance and use within the earth science community, their use is not currently
widespread among ecologists and biologists. This might be partly due to the lack of support for these tech-
nologies in many of the current widely-used ecological modeling tools, including those for SDM. Integrating
service-based climate data acquisition or processing currently involves either custom code to obtain the data or
a multi-tool workflow that can be cumbersome to run and document. By better integrating these technologies
with existing tools and workflows, the process could be streamlined and standardized while at the same time
realizing better computational efficiencies for species distribution modelers as well as increasing the integration
of climate science into ecology and natural resource management.

It is important to note that the temporal format, i.e., discrete daily or monthly time steps, of most climate data
must generally be summarized prior to its use in SDMs. This temporal summarization can involve one of several
common algorithms, for example, the 19 Bioclimatic (BioClim) variables which capture annual temperature and
precipitation patterns needed to model species distributions. Alternately modelers might need custom climate
temporal summary algorithms based on the life history of the species being modeled. The flexibility required
in generating these custom summaries precludes pre-calculating and caching the intermediate results. But at the
same time these summarizations result in data volume reduction by several orders of magnitude.

3 Scientific Workflows and Provenance for Species Distribution Modeling

Scientific workflow systems provide a context in which to specify computational processes which integrate ex-
isting applications according to a set of rules [6]. Within this context, scientific workflows allow researchers to
model complex analysis processes at various levels of detail and systematically capture the required information
necessary for reproducibility and sharing; collectively referred to as workflow ”provenance” [7, 21]. When ap-
plied to species distribution modeling, scientific workflow software provides an opportunity to integrate existing
SDM modeling routines seamlessly with software to ingest data, preprocess those data, and visualize model
results.

3.1 The VisTrails:SAHM System

One current implementation of SDM integrated with scientific workflow systems is the SAHM package which
runs within VisTrails [9, 10, 25]. VisTrails provide an approachable and extendable graphical user interface,
and also provides sophisticated tools for workflow provenance capture and visualization. VisTrails is written in
Python, a programing language which has many powerful and mature packages for scientific data processing
including SciPy, NumPy, and matplotlib. Additionally there are efforts underway to enable complex climate
data acquisition, processing, and visualization in VisTrails, namely the VisTrails Package UV-CDAT (Ultrascale
Visualization - Climate Data Analysis Tools) [20, 25].
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Figure 1: The VisTrails:SAHM User Interface. 1. preprocessing and data clean up, 2. merging input obser-
vational data with available covariates, 3. preliminary data exploration, 4. fitting correlative models, 5. model
evaluation, comparison, and selection. Item 0 in the figure represents the remote data access and climate data
summarization which is not currently implemented in VisTrails:SAHM

SAHM was developed as a VisTrails package to expedited the process and formalize the disparate tools
required to build complex SDM workflows. Developing our habitat modeling software within VisTrails offered
several advantages over previous tools. We are now able to develop template workflows that ecologist can
use as starting points in their own analysis. Modifications to workflows are accomplished by dragging and
dropping new modules onto the canvas and connecting these to the existing workflow components rather than by
modifying scripts. These modifications can be annotated and tracked through the history view and we can easily
compare differences between workflows. Within this framework much of the complexity of data management
and multiple tool workflow integration and are hidden from the user. By hiding this complexity we were able to
facilitate the use and coordination of fairly disparate technologies currently used in SDM. Fortunately, many of
the most commonly used tools for SDM are script-based (Matlab, R, Python), have a scripting API (ArcMap,
IDL), or can be run from the command line (Maxent and GDAL), which facilitates their incorporation into
scientific workflow software. Figure 1 shows an example SDM workflow in VisTrails:SAHM and will be used
here to highlight the complexities of 1) combining multiple analysis tools and 2) ingesting and handling a large
array of potential predictor layers. (Additional details on this example workflow and the VisTrails: SAHM
package are given in Talbert and Talbert [23]). The tools incorporated in SAHM can be broken loosely into five
components (see figure 1): 1. preprocessing and data clean up, 2. merging input observational data with available
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Figure 2: VisTrails:SAHM Output displays and compares continuous and binary maps as well as pertinent
evaluation metrics from several models

covariates, 3. preliminary data exploration, 4. fitting correlative models, 5. model evaluation, comparison, and
selection. Each module within the SAHM package allows the user to customize the step to meet their need and
many modules allow the user to visualize and explore the data allowing subsequent decisions to be informed by
previous modules in the workflow.

Another advantage to integrating current SDM tools in the VisTrails platform is the ability to incorporate co-
ordinated visualization of multiple model outputs from multiple model runs. Figure 2 show the VisTrails:SAHM
output from four model runs displayed in the built-in VisTrails spreadsheet. Output content is synced across mul-
tiple cells to facilitate model comparison. While many other SDM tools provide visualization options the ability
to easily organize and traverse numerous outputs is unique to this platform.

4 Future Work

VisTrails:SAHM is a first step towards helping ecologists use increasingly complex SDM workflows and tool
sets while also maintaining the crucial provenance and repeatability needed for defensible science. VisTrails also
has the potential to provide tractable solutions for the current and emerging input data access and computation
demands that SDM scientist encounter. The scope and context of each SDM research question can require
specific data management strategies to maximize data acquisition and processing efficiency. These strategies
are dependent on several factors including the spatial and temporal extent of the study, the number of different
species being modeled, how many iterations will be run, the downloading and processing capacity available
locally, and the technical expertise of the researcher. In this section we present four use cases which demonstrate
different strategies for handling data acquisition and processing. The first strategy presented, maintaining a local
copy of the input data, is the one most often used by species distribution modelers currently. It is presented here
as basis for comparison with the other three.
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4.1 Input Data Complexity

The traditional model for data management in SDM involves downloading or otherwise obtaining the required
gridded spatial inputs and then preprocessing and storing them on a local computer or network (see Figure
3). Once the store of local data has been created there is maximal flexibility in how the data are processed.
Given adequate computational resources locally, the processing of large areas, numerous SDMs, and multiple
iterations becomes feasible. One drawback of this strategy is that the effort to store and process the data locally
can be substantial and the disk space required to maintain local copies of the data can be limiting. Each time a
new set of climate models is released, this data management effort will need to be duplicated in full. Another
drawback is that the resulting workflow is not transferable to researchers at other locations unless they also
obtain an identical copy of the input datasets and directory structure. This can limit repeatability of individual
experiments. Using scientific workflow software to manage the initial input data acquisition and preprocessing
can solve issues related to transferability of the workflow but does not overcome limitations in data acquisition
bandwidth, storage, or processing limitations.

Figure 3: Traditional approaches to climate data management. (1) - user maintains a local copy of input data,
(2) - small subsets of data are accessed remotely as needed using OPeNDAP.

A second approach to data acquisition in SDM is to obtain just the spatial and temporal subset of the gridded
data needed for a given analysis. This is illustrated in Figure ??. Many climate and remote sensing data are
available in a tiled format which allows a user to download just the individual tiles needed. Identifying and
obtaining the appropriate tiles can be cumbersome depending on the distribution method and available tools.
One approach to facilitate getting a subset of the data is to use a service-based interface to specify the data
needed, for example, WCS or OPeNDAP. While these technologies might be unfamiliar to many ecologists their
implementation details can be hidden within user-friendly SDM applications. Implemented correctly, this tool
could automatically download and process the appropriate data based on the spatial and temporal extent of the
other SDM inputs. This type of solution works especially well for research questions on a local to regional scale.
By implementing this strategy in a scientific workflow-based tool, the inherent complexity of the current tools
can be hidden from researchers using SDM.

One concern with implementing a tool that automates service-based distribution of subsets of climate data
is that it can lead to inefficiencies and duplicated data downloads if caching is not handled appropriately. For
example, a single routine to produce a gridded climate summary might start with a call to a service to obtain the
required input data. Once the appropriate summary has been generated this routine might delete the downloaded
climate inputs to free up disk space. If there is only a single summary to produce, this strategy works fine, but
if there are numerous summaries that need to be produced they should not each be downloading the required
inputs redundantly. Within a single workflow, this level of optimization is relatively easy to set up nut across
workflows and tools this data management can be much harder to manage. Optimally a tool would implement a
persistent cache of previously downloaded inputs with a database that tracks multiple downloads of overlapping
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but non-coincident spatial extents, total cache size, and differences between the cache contents and the data
available from the data server [16].

Since SDMs generally require only a temporal summary grid of individual climate models, a third approach
to data acquisition is to use a web service to deliver only this summary grid. Given that climate models can have
hundreds to thousands of daily or monthly time steps, this strategy can represent several orders of magnitude
reduction in data volume that must be downloaded. Some climate summaries such as decadal Bioclimatic
Variables (Bioclim) are sufficiently general that they can be generated ahead of time and delivered using standard
web data services such as WCS and OPeNDAP. Unfortunately, many SDM research questions require novel
climate summaries which cannot be generated ahead of time. Using a Web Processing Service allows for these
summaries to be calculated as needed on a remote server. If sufficient computational resources are available
on the server hosting the remote processing, there is also the potential to realize a significant reduction in
computation time versus calculating these summaries locally. One example of this type of WPS is currently
being developed at the USGS Geo Data Portal (GDP) [3]. This WPS accepts custom parameters for the BioClim
algorithms. These parameters are used to generate a server side processing job which produces and returns
the desired custom summary grids. The ability of this strategy to scale to non-trivial problems given current
infrastructure has yet to be tested. But potentially it could extend the subset of SDM research problems handled
by the second option above to those covering a much larger spatial extent. If the processing was happening
locally to the data many of the issues of data caching would not be a problem.

Figure 4: OGC Web Processing Service delivering custom climate summaries (1) or complete SDM model
results (2)

A fourth approach to data management in SDM is to transfer even more of the processing workflow to a
remote server. Instead of delivering custom climate summaries it is possible to engineer a WPS which runs an
entire SDM workflow and returns the final model outputs. In this case, the species occurrence data becomes a
parameter that is transfered to the remote server hosting the WPS along with detailed processing instructions. An
advantage to having the full workflow details captured by a workflow management software such as VisTrails
is the ease by which a detailed complex workflow can be packaged and transported. In this case, all relevant
information about the workflow is stored in a compressed XML document. By scaling the data storage and
computation resources available to the WPS it is feasible to use this strategy to solve many SDM data access
issues. Implementing this solution has significant challenges though, including the trade off between compu-
tational flexibility and security on the remote server, managing large data hosted at multiple sites, and various
other implementation details, scientific workflow software can be useful in in resolving some of these issues and
hiding the unnecessary details from scientists.
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5 Conclusions

Within the field of SDM the use of service based data acquisition and processing technologies is currently un-
derutilized. This partly stems from the fact that the tools often require programing skills to be utilized effectively
and partly because the need to work with large and unwieldy climate data is still emerging in the field of SDM. As
more and more research questions require analysis of climate data the integration of these technologies will nec-
essarily become more widespread. Given that ecologists and biologists often do not have the strong background
in scripting required there is a developing need to extend current tools to take advantage of these technologies.
In order to gain widespread usage in the community any tools or workflows developed should be user-friendly,
transparent, and flexible. By building this next generation of SDM tools in a scientific workflow management
system we can achieve this goal while also adding provenance capture, repeatability, and transferability.

Our development efforts have so far focused mainly on porting and optimizing exiting SDM tools for the
VisTrails framework. This effort has been well received within the community. We are currently working to
extend this framework to take advantage of data provided via a web service as well web processing services.
The final phase of our work will extend this further to develop the four data acquisition approaches in which the
vast bulk of the data management and processing is hosted remotely on high performance systems.
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