
SciDB DBMS Research at M.I.T.

Michael Stonebraker1, Jennie Duggan1, Leilani Battle1, Olga Papaemmanouil2
1 Computer Science and Artificial Intelligence Laboratory, MIT

2 Department of Computer Science, Brandeis University
{stonebraker, jennie, leilani}@csail.mit.edu, olga@cs.brandeis.edu

Abstract

This paper presents a snapshot of some of our scientific DBMS research at M.I.T. as part of the Intel
Science and Technology Center on Big Data. We focus our efforts primarily on SciDB, although some
of our work can be used for any backend DBMS. We summarize our work on making SciDB elastic,
providing skew-aware join strategies, and producing scalable visualizations of scientific data.

1 Introduction

In [19] we presented a description of SciDB, an array-based parallel DBMS oriented toward science applications.
In that paper we described the tenets on which the system is constructed, the early use cases where it has found
acceptance, and the state of the software at the time of publication. In this paper, we consider a collection of
research topics that we are investigating at M.I.T. as part of the Intel Science and Technology Center on Big
Data [20]. We begin in Section 2 with the salient characteristics of science data that guide our explorations. We
then consider algorithms for making a science DBMS elastic, a topic we cover in Section 3. Then, we turn in
Section 4 to query processing algorithms appropriate for science DBMS applications. Lastly, in Section 5 we
discuss our work on producing a scalable visualization system for science applications.

2 Characteristics of Science DBMS Applications

In this section we detail some of the characteristics of science applications that guide our explorations, specifi-
cally an array data model, variable density of data, skew, and the need for visualization.

Array Data Model Science data often does not fit easily into a relational model of data. For example, Earth
Science data [18] often comes from satellite imagery and is fundamentally array-oriented. Astronomy telescopes
are effectively large digital cameras producing pixel arrays. Downstream, the data is processed into a 2-D or
3-D coordinate system, which is usually best modeled as an array. Moreover, it is often important to keep track
of time, as objects are recorded over days or weeks of observations; time is simply another dimension in an
array-based system, but must be glued on to a relational model of data.

Copyright 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

21

Field observations are invariably spatially-oriented and queried in a 3-D space (e.g., latitude, longitude, and
time). Often additional dimensions are present (e.g., elevation). Searching in a high dimensional space is natural
and fast in a multi-dimensional array data model, but often slow and awkward in a relational data model.

Lastly, much of the analytics that scientists run are specified on arrays, for example k-nearest neighbors,
spatial smoothing, fourier transforms, and eigenvectors. These are naturally executed in an array DBMS, but
require relational data to be cast into arrays for execution. For these reasons, we believe that array DBMSs are
a natural fit for science data, and our research has focused in this area.

Sparse or Dense Array Some arrays have a value for every cell in an array structure. For example, it is
common practice to “cook” satellite imagery into a dense array, where each cell represents a tile on the earth
surface and the cell value is some interpolation over a time period of the actual collected imagery data. For
example, one common interpolation is to select the cell value from the possible ones, which has the least cloud
cover. This interpolation produces a very large, dense array. On the other hand, the raw satellite imagery
is recorded in a three-dimensional space, for example (latitude, longitude, time), or a four-dimensional space
(latitude, longitude, altitude, time). Sometimes spherical coordinates are used. In any case, the recorded data is
very sparse. Our experience is that an array DBMS must be prepared to cope with data that ranges from very
sparse to very dense.

Skewed Data If we imagine a database consisting of the position of each resident of the United States, then
the density of points in Manhattan is 105 greater than the density in Montana. This sort of skew, whereby some
regions of array space have substantially more data than others, is very common in science applications. In
astronomy, there are regions of the sky that are more interesting than others, and the telescope is pointed there
more often. In a database of ship positions, the vessels congregate in and around major ports waiting to load or
unload. In general, our experience is that moderate to high skew is present in most science applications.

Visualization Focus In business data processing, a form-based interface is exceedingly popular. For example,
to look up pending airline reservations, one inputs one’s frequent flyer number into a form. To find the balance
in one’s checking account, one enters the account number, and so forth. Scientists rarely want this sort of
form-based user interface. Instead, they usually want a visualization system through which they can browse
and inspect substantial amounts of data of interest. For example, one Earth Science group is interested in snow
cover in the Sierra Nevada mountains. Hence, they want to “fly over” the study area, browsing satellite imagery
and then zoom into areas of interest. Therefore, the front end issuing queries to a science database is often a
visualization system.

3 Elasticity

Given that scientists never want to discard data, this leads to a “grow only” data store. Also, the amount of
data that they want to process often increases with time, as they collect more data from experiments or sensors.
Hence, a science DBMS should support both data elasticity and processing elasticity. Of course, elasticity
should be accomplished without extensive down time; in the best of all worlds, it is accomplished in background
without incurring any downtime. Often science data is loaded an experiment-at-a-time or a day-at-a-time, i.e.,
periodically. In between load events, it is queried by scientists.

We have constructed a model of this desired elasticity behavior. It consists of three phases, a loading phase
where additional data in ingested, followed by a possible reorganization phase, followed by a query phase
whereby users study the data. These phases repeat indefinitely, and the job of an elasticity system is three fold:

22

• predict when resources will be exhausted

• take corrective action to add another quanta of storage and processing

• reorganize the database onto the extra node(s) to optimize future processing of the query load

Our model specifies a cost function for these three activities that minimizes a combination of provisioned
resources and time elapsed in querying, data insertion, and incremental reorganization. We use this model to
study the impact of several data partitioners on array database performance in terms of workload latency. Our
elastic partitioners are designed to efficiently balance storage load, while minimizing reorganization time during
cluster expansion operations.

We have implemented this model for SciDB, and the details can be found in [14]. In addition, we have
studied the behavior of the model on two different use cases. First, we have explored a MODIS satellite imagery
database [1], with appropriate queries primarily from [18]. This data set is large, sparse and uniform, as the
satellite covers each portion of the earth’s surface at the same rate. In addition, we have explored a U.S. Coast
Guard database of ship positions, AIS [7], which are highly skewed as noted above.

The query phase of our workload is derived from real use cases, and each has a mix of select-project-join
(SPJ) and domain-specific science queries, many of which are spatial. The SPJ benchmarks have three compo-
nents: selection, a distributed sort, and an equi-join, and these queries capture simple relational transformations
on the data. Our science benchmarks are customized to each use case. AIS executes a k-nearest neighbor
query, studying ship density patterns, a ship collision detector, and a regridding from detailed lat/long space to
an aggregated n-dimensional projection. Our MODIS evaluation includes a k-means clustering, used to model
rainforest deforestation, a windowed aggregate to generate a smoothed image of the satellite’s recordings, and a
rolling average of measurements for environmental monitoring. We detail our benchmark queries in [1].

3.1 Elastic Array Partitioning

Well-designed data placement is essential for efficiently managing an elastic, scientific database cluster. A good
partitioner balances the storage load evenly among its nodes, while minimizing the cost of redistributing chunks
as the cluster expands. In this section, we visit several algorithms to manage the distribution of a growing
collection of data on a shared nothing cluster. In each case we assume an array is divided into storage “chunks”,
specified by a “stride” in a subset of the array dimensions. Moreover, every array is assumed to have a time
dimension, where the insertion time of values is recorded. Obviously, this dimension increases monotonically.

Elastic array partitioners are designed to incrementally reorganize an array’s storage, moving only the data
necessary to rebalance storage load. This is in contrast to global approaches, such as hash partitioning. The
classic hash partitioner applies a function to each chunk, producing an integer, and this hash value, modulus the
number of cluster nodes, assigns chunks to nodes. Using this technique will move most or all of the data at each
redistribution, a high cost for regularly expanding databases.

Elastic and global partitioners expose an interesting trade off between locally and globally optimal partition-
ing plans. Most global partitioners guarantee that an equal number of chunks will be assigned to each node,
however they do so with a high reorganization cost, since they shift data among most or all of the cluster nodes.
In addition, this class of approaches are not skew-aware; they only reason about logical chunks, rather than phys-
ical storage size. Elastic data placement dynamically revises how chunks are assigned to nodes in an expanding
cluster, and also makes efficient use of network bandwidth, because data moves between a small subset of nodes
in the cluster. Note that skewed data will have significant variance in the stored chunk sizes. Hence, when a
reorganization is required, elastic partitioners identify the most heavily loaded nodes and split them, passing on
approximately half of their contents to new cluster additions. This rebalancing is skew resistant, as it evaluates
where to split the data’s partitioning tables based on the storage footprint on each host.

23

In this work, we evaluate a variety of range and hash partitioners. Range partitioning stores arrays clustered
in dimension space, which expedites group-by aggregate queries, and ones that access data contiguously, as is
common in linear algebra. Also, many science workloads query data spatially, and benefit greatly from pre-
serving the spatial ordering of their inputs. Hash partitioning is well-suited for fine-grained storage partitioning,
because it places chunks one at a time, rather than having to subdivide planes in array space. Hence, equi-joins
and most “embarrassingly parallel” operations are best served by hash partitioning.

3.2 Hash Partitioning

In this section, we discuss two elastic hash partitioners. The first, Extendible Hash, is optimized for skewed
data, and the alternative, Consistent Hash, targets arrays with chunks of uniform size. Both algorithms assign
chunks to nodes one at a time. Each chunk is numbered 1...k based on its position within the source array, and
the engine hashes the chunk number to find its location.

Extendible Hash [15] is designed for distributing skewed data. The algorithm begins with a set of hash
buckets, one per node. When the cluster increases in size, the partitioner splits the hash bucket of the most
heavily loaded hosts, partially redistributing their contents to the new nodes. For data that is evenly distributed
throughout an array, Consistent Hash [16] is a beneficial partitioning strategy. Think of the hash map distributed
around the circumference of a circle, where both nodes and chunks are hashed to an integer, which designates
their position on the circle’s edge. The partitioner finds a chunk’s destination node by tracing the circle’s edge
from the hashed position of the chunk in the clockwise direction, assigning it to the first node that it finds.
When a new node is inserted, it accepts chunks from several pre-existing nodes, producing a partitioning layout
with an approximately equal number of chunks per node. This algorithm assigns the logical chunks evenly
over the cluster, however, it does not, address storage skew, because the chunk-to-node assignments are made
independent of individual chunk sizes.

3.3 Range Partitioning

N0# N1#

N0#

N1#

N2#

X#<#5#

5# 5# 5#3#

2# 2#

X#<#5#

Y#<#2#

N0#

N1#

X#<#5#

Y#<#2#

X#<#3#

N2# N3#

(0,0)#

(10,10)#

X#

Y#

Figure 1: An example of K-d Tree array partitioning.

Range partitioning has the best performance for
queries that have clustered data access, such as group-
ing by a dimension or finding the k-nearest neighbors
for a cell. In this section, we examine three strategies
for clustered data partitioning, n-dimensional (K-d
Tree and Uniform Range), and time-based (Append).

A K-d Tree [12] is an efficient strategy for range
partitioning skewed, multidimensional data. The K-d
Tree stores its partitioning table as a binary tree. Each
node is represented by a leaf, and all non-leaf nodes
are partitioning points in the array’s space. To locate
a chunk, the algorithm traverses the tree, beginning at
the root node. If the root is a non-leaf node, the partitioner compares the chunk’s first logical coordinate to the
node’s split point, progressing to the child node on the chunk’s side of the divide. The lookup continues until it
reaches a leaf node, completing this operation in logarithmic time.

In this scheme, each host is responsible for an n-dimensional subarray, and partitioning points are defined as
planes in array space. When a new cluster node is added, the algorithm first identifies the most heavily loaded
host. If this is the first time that the host’s range has been subdivided, the partitioner traverses the array’s first
dimension until it finds the point where there exists an equal number of cells on either side of it, the dimension’s
median. The splitter cuts the hot host’s range at this point, reassigning half of its contents to the new addition. On

24

subsequent splits, the partitioner cycles through the array’s dimensions, such that each is cut an approximately
equal number of times.

Figure 1 demonstrates a K-d Tree that begins by partitioning an array over two nodes; it is divided on the
x-axis at the dimension’s midway point, 5. The left hand side accumulates cells at a faster rate than the right,
prompting the partitioner to cut its y-axis for the second split, where this dimension equals 2. Next, the K-d Tree
returns to cutting vertically as the third node joins the cluster.

A second variation, Uniform Range, optimizes for unskewed arrays. In this approach the array assigns
an equal number of chunks to each node, and it executes a complicated global reorganization at every cluster
expansion to maintain this balance. This algorithm starts by constructing a tall, balanced binary tree to describe
the array’s dimension space. If the partitioner has a height of h, then it has l = 2h leaf nodes, where l is much
greater than the anticipated cluster size. Each non-leaf node in the tree specifies a split point, where a dimension
is divided in half, and the tree rotates through all dimensions, subdividing each with an equal frequency. For
a cluster comprised of n hosts, Uniform Range assigns its l leaf nodes in groups of size l

n , where the leaves
are sorted by their traversal order in the tree. When the cluster scales out, this tree is rebalanced by calculating
a new l

n slice for each host; hence the partitioner maintains multidimensional clustered array storage, without
compromising load balancing. This approach has a high reorganization cost compared to K-d Tree, because
such operations move most or all of the array at each rebalancing.

A third variant of range partitioning is an Append strategy. Append subdivides the no-overwrite array on
its time dimension alone, by sending each newly inserted chunk to the first node that is not at capacity. A
coordinator maintains a count of the storage allocated at each node, spilling over to the next one when the
current one is full. This partitioner works equally well for skewed and uniform data distributions, as it adjusts
its layout based on storage size, rather than logical chunk count. Append partitioning is attractive because it has
minimal overhead for data reorganizations. When a node is added, it stores new chunks when its predecessor
becomes full, making it an efficient option for a frequently expanding cluster. On the other hand, this partitioner
has poor performance if the cluster adds many nodes at once, since it will use only one new node at a time.

To recap, we have studied a collection of elastic partitioning algorithms. All, except Append, are designed
for either a skewed or uniform data distribution. The schemes (excluding Uniform Range) are all incremental;
hence they move a subset of the chunks during a scale out operation, writing only to new nodes. In the next
section we compare these schemes with a baseline strategy of Round Robin allocation. Round Robin assigns
nodes to chunks circularly based on chunk number. Hence, if chunk n is being assigned to a cluster of k nodes,
this approach will send it to node n modulus k. The baseline evenly distributes the logical chunk numbers over
all nodes, however when the cluster expands, all hosts usually shift their data to add one or more hosts to the
partitioning rotation.

3.4 Elastic Partitioner Results
We studied elastic partitioning on a cluster starting with two nodes, which expands in increments of two nodes.
Our MODIS case study consists of adding 630 GB to an empty database over 14 days in 1 day increments. In
addition, we experimented with adding 400 GB of AIS ship data spanning 3 years, inserted in 36 batches, each
covering one month. In both cases, this is the rate at which we receive data from its source.

Figure 2(a) demonstrates the performance of the various partitioning schemes on our two benchmarks during
the ingest and reorganization phases. For both of our use cases, the insert time is nearly constant cost because
all of the schemes load the data and then spread it over the cluster according to the partitioning scheme under
evaluation. The cost of redistribution during the three expansions is less uniform. Append is a clear winner in
this space, as it does not rebalance the data; it only shifts future additions to the newly provisioned nodes. K-d
Tree and hash partitioning both perform well, as they incrementally reorganize the data by writing only to the
newly provisioned nodes. Round Robin and Uniform Range globally redistribute the data, and hence have a
higher time requirement.

25

Append& Consistent&
Hash&

Extendible&
Hash&

K4d&Tree& Round&
Robin&

Uniform&
Range&

0&

50&

100&

150&

200&

250&

300&

350&

400&

Par$$oning)Scheme)

El
ap

se
d)
Ti
m
e)
(M

in
s)
)

Reorg&MODIS&

Insert&MODIS&

Reorg&AIS&

Insert&AIS&

58%&

21%& 19%&
4%&56%&

132%&

51%&

11%&
12%& 15%&

14%& 6%&

(a)

Append& Consistent&
Hash&

Extendible&
Hash&

K4d&Tree& Round&
Robin&

Uniform&
Range&

0&

50&

100&

150&

200&

250&

300&

350&

400&

450&

500&

Par$$oning)Scheme)

El
ap

se
d)
Ti
m
e)
(M

in
s)
)

Science&MODIS&

SPJ&MODIS&

Science&AIS&

SPJ&AIS&

(b)

Figure 2: (a) Elastic partitioner performance for data ingest and reorganization. Percentages denote relative
standard deviation of storage distribution. (b) Benchmark performance of elastic partitioning schemes.

We assess the evenness of a scheme’s storage distribution by the relative standard deviation (RSD) of each
host’s load, and the percentages are shown in Figure 2(a). After each insert, this metric analyzes the database
size on each node, taking the standard deviation and dividing by the mean. We average these measurements over
all inserts to indicate the storage variation among nodes as a percent of the average host load, and a lower value
indicates a more balanced partitioning.

The randomized allocations, Consistent Hash, Extendible Hash, and Round Robin do best because they sub-
divide the data at its finest granularity, by its chunks. Append exhibits poor load balancing overall; this scheme
only writes to one node at a time, no matter how many are added. Skew strongly influences the performance of
our range partitioners. AIS has significant hotspots near major shipping ports, hence it has a very imbalanced
storage partitioning for Uniform Range, although this scheme is the best for our uniformly distributed MODIS
data. K-d Tree also has difficulty handling skew because it can only subdivide one dimension for each node
addition. A more comprehensive approach (i.e., quad-trees) may work better and will be studied as future work.

Figure 2(b) shows the query performance of the two use cases on the benchmark queries in between each
load cycle. Our benchmarks demonstrate that for SPJ queries, the partitioners perform proportionally to the
evenness of their storage distribution. The science benchmarks show that clustered data access is important for
array-centric workloads. K-d Tree has the best performance for both workloads, as it facilitates clustered reads,
and is moderately skew resistant. Append performed poorly in the science benchmarks for two reasons. First, it
balances query execution poorly because this strategy partitions the data by time; therefore when a pair of new
nodes are added, one of the hosts will not be used immediately. Second, new data is “hotter” in our benchmarks,
as some of the queries “cook” the new measurements into results, and compare them with prior findings.

In summary, we found that K-d Tree was the most effective partitioner for our array workloads, as it breaks
up hotspots, and caters effectively to spatial querying. For data loading and reorganization, the append approach
is fastest, but this speed comes at a cost when the database executes queries over imbalanced storage. When
we consider end-to-end performance, summing up the findings in Figures 2(a) and 2(b), K-d Tree is the fastest
solution for MODIS, whereas Append and the skewed range partitioner are on par for AIS.

4 Query Processing

At first blush, one could simply use a traditional cost-based relational optimizer, and then repurpose it for
the operators found in an array DBMS. There are two reasons why this is not likely to succeed. First, the
commutative join and filtering operations from relational systems are not prevalent in scientific workloads.

26

Instead, there are many more non-commutative operations that cannot be pushed up or down the query plan
tree. Earth science [17], genomics [21], and radio astronomy [22] all exhibit this recipe of few joins paired with
complex analytics.

Hence, the opportunities for rearranging the query execution plan are more limited. Second, it is not obvious
that the relational join tactics (hash join, merge sort, iterative substitution) are the best choices for array data.

In the common case where skew is present, we have invented a novel n-way shuffle join, which is effective
at both balancing the query load across nodes as well as minimizing network traffic to accomplish the join. In
short, the algorithm entails locating sparse and dense areas of the arrays, and then sending sparse areas to the
corresponding dense ones to perform the join. Hence, it minimizes the amount of network traffic to accomplish a
distributed join. We have shown that this algorithm can be added to the merge-sort and iterative substitution join
algorithms in SciDB and never results in significantly worse performance than non-shuffle approaches. When
dense areas in one array line up with sparse areas of a second array, dramatic performance improvements result.
We also propose a second approach, which we call a load balancing shuffle join. This approach assigns chunks
to nodes such that each node executes the join on the same number of cells. Our implementation uses integer
programming to find a chunk allocation that minimizes data movement subject to achieving an even distribution
of join work across our cluster nodes.

Figure 3: Join duration with varying skew and data shuf-
fling strategies.

In Figure 3, we evaluated merge join for a pair
of 2D 100 GB synthetic arrays that share dimensions
and logical chunk sizes. We varied the degree of skew
for our input data; for the uniform case all of our
chunks are of the same size. For each other case,
the per-node partitioning follows a Zipfian distribu-
tion, where the parameter denotes the skewness of
the input, and higher values denote greater imbalance
in the data’s distribution. As a baseline, we use the
traditional move-small strategy of sending the smaller
array to the nodes of the larger one for merge joins.
Figure 3 shows the time used for data alignment (DA)
and join execution (JE).

For the uniform case, all of the algorithms per-
form comparably. When we have slight skew (α =
1), the load balancer transfers about the same amount
of data as the n-way shuffle, but it has better paral-
lelism in the join execution, producing a slight win. As the skew increases, the n-way shuffle significantly
outperforms the other techniques, moving less and less data. For α ≥ 3, we consistently have a speedup of
3X. We are in the process of finishing a SciDB implementation for our algorithms, obtaining more complete
performance numbers, and writing a paper for publication on this work. We then expect to continue this work
by developing a complete optimizer that integrates this join processing with the other SciDB operators, and
addresses the ordering of cascading joins.

5 Visualization

Modern DBMSs are designed to efficiently store, manage, and perform computations on massive amounts of
data. As a result, more analytics systems are relying on databases for the management of big data. For example,
many popular data analysis systems, such as Tableau [9], Spotfire [10], R and Matlab, are actively used in con-
junction with database management systems. Furthermore, in [23] they show that distributed data management
and analysis systems like Hadoop [3] have the potential to power scalable data visualization systems.

27

(a) Baseline heatmap visualization of NDSI data (b) Aggregating NDSI data at 10,000 points resolution

(c) Aggregating NDSI data at 100,000 points resolution (d) Aggregating NDSI data at 1,000,000 points resolution

Figure 4: Heatmap visualizations produced by ScalaR, using aggregation to reduce the NDSI dataset stored in
ndsi array. Dark areas represent high amounts of snow cover

Unfortunately, many information visualization systems do not scale seamlessly from small data sets to mas-
sive ones. A given visualization may work well on a small data set with a modest number of points, but will
paint the screen black when presented with an order of magnitude more data. Having the individual visualiza-
tion system deal with this scalability issue has two major flaws. First, code must be included in perhaps many
individual modules to accomplish this task, an obvious duplication of effort. Second, visualizations run on the
client side of a client-server interface, for which large amounts of data may have to be passed back and forth and
computing resources are more limited than on the server side of the boundary. Obviously, a shared server-side
system, running close to the DBMS, should prove attractive.

To address these issues, we have developed a flexible, three-tiered scalable interactive visualization system
named ScalaR [11] that leverages the computational power of modern DBMSs for back-end analytics and ex-
ecution. ScalaR decouples the visualization task from the analysis and management of the data by inserting a
middle layer of software to mediate between the front-end visualizer and the back-end DBMS. ScalaR has been
implemented for SciDB, but is back-end agnostic in design, as its only requirements are that the back-end must
support a query API and provide access to metadata in the form of query plans. ScalaR relies on query plan es-
timates computed by the DBMS to perform resolution reduction, i.e., to summarize massive query result sets on
the fly. ScalaR’s resolution reduction model can be applied to a wide variety of domains, as the only requirement
for using ScalaR is that the data is stored in a DBMS. For example, it has been used with SciDB to visualize
NASA MODIS satellite imagery data [1], LSST astronomy data [4], and worldwide earthquake records [8].

We have run several experiments with ScalaR, assessing the runtime performance and resulting visual quality
of various reduction queries over two SciDB arrays containing NASA MODIS satellite imagery data. Specifi-
cally, we visualized normalized difference snow index (NDSI) calculations over the entire world at various out-
put sizes (data resolutions). The NDSI measures the amount of snow located at a particular latitude-longitude
cell on the earth. As a baseline, we also ran the query on the raw data, with no resolution reduction.

28

Figure 4(a) shows a visualization of the baseline for one of these arrays, which we will refer to as ndsi array.
The baseline query completed in 5.68 seconds. The ndsi array is a dense SciDB array, containing roughly 6
million data points. To perform aggregation reductions, we used SciDB’s regrid operation, which divides an
array into equal-sized sub-arrays, and returns summaries over these sub-arrays by averaging the array values.
Figures 4(b) through 4(d) are the visualized results of these four reduction queries. The smallest reduction
to 10 thousand data points was the fastest with 1.35 seconds. The other reductions were comparable to the
baseline. Thus we can see that ScalaR produces small aggregate summaries of the NDSI data very quickly, but
the resulting image is blurred due to the low number of data points in the result. However, at a resolution of
100,000 data points we produce a visualization that is is a very close approximation of the original with an order
of magnitude fewer data points.

Our current focus is twofold. First we are conducting a substantial user study of ScalaR at UCSB on MODIS
data and at the University of Washington on astronomy data. In each case scientists have agreed to test the
system on real world problems. Besides obtaining feature and ease-of-use feedback, we will obtain traces of
user activity. These traces will be used to train our middle tier prefetching system, whereby we plan to use
all available server resources to predict (and prefetch) future user data. Our system contains two experts, one
is a path expert, which predicts the direction and speed on user browsing and fetches forward along this path.
Our second expert looks for patterns in the recent user activity and then looks for similar patterns further afield.
Depending on their success, experts are given more or less space in the cache and more or less machine resources
to prefetch items. Our prefetching system is nearly operational and we hope to test it in the near future.

We also plan to extend ScalaR’s front-end visualizer, which currently requires users to specify all compo-
nents of the final visualization, including what resolution reduction technique to use, the data limit to impose
on the back- end, the x- and y-axes, the scaling factor, and coloring. Lack of experience with visualizing the
underlying data can make it difficult for users to make these specific visualization choices in advance, and can
result in many iterations of trial and error as users search for a suitable way to visualize the data.

To help users quickly make better visualization choices, we are designing a predictive model for identifying
the most relevant visualization types for a given data set. We will use the model to produce sample visualizations
in advance, reducing the number of choices a user must make and simplifying his visualization task.

To train our predictive model, we are creating a corpus of visualizations from the web. For each visualization
we have access to the data set that was used to create it. We will use this underlying data to learn what features
potentially correspond to specific visualization types. The visualizations are collected from a wide variety of
web sources, including the Many Eyes website [5], various ggplot2 examples [2], and the D3 image gallery [13].

6 Conclusions

This paper has presented the flavor of on-going array DBMS research. It presented our research directions in the
areas of elasticity, query processing and visualization. Other work in this area has been omitted because of space
limitations including provenance [24, 25] and on using the DBMS for the MODIS processing pipeline [18].

References

[1] Benchmarks for Elastic Scientific Databases.
http://people.csail.mit.edu/jennie/elasticity_benchmarks.html.

[2] ggplot2. ggplot2.org.

[3] Hadoop. http://hadoop.apache.org/.

[4] Large Synoptic Survey Telescope. http://www.lsst.org/lsst/.

29

[5] Many Eyes. http://www-958.ibm.com/software/data/cognos/manyeyes/.

[6] NASA MODIS. http://modis.gsfc.nasa.gov/.

[7] U.S. Coast Guard AIS Ship Tracking Dataset. http://marinecadastre.gov/AIS/default.aspx.

[8] U.S. Geological Survey Earthquake Hazards Program. http://earthquake.usgs.gov/.

[9] Tableau Software. http://www.tableausoftware.com/, 2013.

[10] TIBCO Spotfire. http://spotfire.tibco.com/, 2013.

[11] L. Battle, M. Stonebraker, and R. Chang. Dynamic Reduction of Query Result Sets for Interactive Visual-
ization. In IEEE BigDataVis Workshop, 2013.

[12] J. L. Bentley. Multidimensional binary search trees used for associative searching. Commun. ACM,
18(9):509–517, 1975.

[13] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-driven documents. IEEE Trans. Visualization & Comp.
Graphics (Proc. InfoVis), 2011.

[14] J. Duggan and M. Stonebraker. Elasticity in Array DBMSs. (submitted for publication).

[15] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong. Extendible hashing–a fast access method for
dynamic files. ACM Trans. Database Syst., 4(3):315–344, 1979.

[16] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin. Consistent hashing and
random trees: distributed caching protocols for relieving hot spots on the World Wide Web. STOC, 1997.

[17] G. Planthaber. Modbase: A scidb-powered system for large-scale distributed storage and analysis of modis
earth remote sensing data. Master’s thesis, MIT, 2012.

[18] G. Planthaber, M. Stonebraker, and J. Frew. EarthDB: scalable analysis of MODIS data using SciDB. In
BigSpatial, 2012.

[19] M. Stonebraker, P. Brown, D. Zhang, and J. Becla. SciDB: A Database Management System for Applica-
tions with Complex Analytics. Computing in Science Engineering, 15(3):54–62, 2013.

[20] M. Stonebraker, S. Madden, and P. Dubey. Intel ”big data” science and technology center vision and
execution plan. SIGMOD Record., 42(1):44–49, 2013.

[21] R. Taft, M. Vartek, N. R. Satish, N. Sundaram, S. Madden, and M. Stonebraker. Genbase: A complex
analytics genomics benchmark. Technical report, MIT CSAIL, 2013.

[22] G. van Diepen. SciDB Radio Astronomy Science Case. http://scidb.org/UseCases/radioAstronomy_usecase.pdf.

[23] H. Vo, J. Bronson, B. Summa, J. Comba, J. Freire, B. Howe, V. Pascucci, and C. Silva. Parallel visualization
on large clusters using MapReduce. In Large Data Analysis and Visualization (LDAV), 2011.

[24] E. Wu and S. Madden. Scorpion: Explaining Away Outliers in Aggregate Queries. In VLDB, 2013.

[25] E. Wu, S. Madden, and M. Stonebraker. SubZero: A fine-grained lineage system for scientific databases.
In ICDE, 2013.

30

