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Letter from the Editor-in-Chief

IEEE Computer Society Activities

Those who read these letters know that I have commented before about the shortcomings in the way the Com-
puter Society is organized and run. The organization currently concentrates financial control at the top and
makes it difficult for technical committees like our Technical Committee on Data Engineering (TCDE) to un-
dertake initiatives, limiting bottom up entreprenurial opportunities. My thought has long been that changing this
would open up new possibilities for the TCDE to better adapt to the current landscape of professional activities
and engagements. And those changes would benefit the database technical community.

I have nothing final to report here. However, there are two committees within the Computer Society that are
currently studying the fundamental organizational arrangements, one led by the Technical Activities Committee
Chair Sven Dietrich, the other by Computer Society President-Elect Dejan Milojicic. For the Computer Society
to thrive in the future, my view is that this kind of organizational scrutiny is an essential first step. I hope to have
something more definitive to report in my next letter.

The Current Issue

Science has long prided itself on the primacy of data. The big breakthroughs usually occur because of data that
is unexplained by the prior paradigm. The exploitation of science by technology depends upon using data to
improve processes and techniques. So data is central to the scientific enterprise.

Given that, one would perhaps conclude that databases are similarly central. But that has not been the case.
Databases were originally developed to solve the business data processing problem. Think payroll and orders.
It was not developed with science in mind. But that is changing.

Two of the key people in re-orienting the database area toward the needs of science have been Jim Gray
and Michael Stonebraker. Jim worked early on with astronomers to use database technology to serve as the
backbone for their sky survey. Mike’s efforts have resulted in the multi-university SciDB effort to provide
database technology broadly to many scientists in many disciplines.

The current issue captures the now sizable effort to provide database technology tailored to the needs of
scientists. It also demonstrates that this effort is a two way street in which methods from other sciences can
influence how computer science might use data. This is both an active and a very important area of database
research. Juliana Freire, the editor for the issue, has succeeded in bringing together a set of papers that captures
many of the threads in ”scientific data management”, from leaders in this area. This area is a great opportunity
for our field to help the overall scientific enterprise. My thanks to Juliana, who has worked hard to produce an
issue that is a great introduction to the area and a valuable snapshot of its state of the art.

David Lomet
Microsoft Corporation
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Letter from the Special Issue Editor

The explosion in the volume of digital data and its wide availability is revolutionizing many scientific domains.
At the same time, scientists faced with this data deluge must overcome many challenges to manage and explore
these data. Complex processes are needed to acquire, process, and analyze the data. Even through there are
robust and efficient databases systems, they fail to meet many of the requirements of emerging scientific appli-
cations which involve diverse data and require operations that go beyond what is currently supported. These
new users and applications present new research problems in data management as well as a great opportunity
for our community to have practical impact.

In this issue, we have collected a set of articles that highlight new directions for database research; relate
limitations in current data management technology; and provide examples of how database research has been
successfully applied to scientific problems in different domains, including neuroscience, astronomy, ecology.
Motivated by needs in simulation sciences, Heinis et al. present a series of techniques they have developed to
enable the construction and analysis of bigger and more detailed spatial models. They discuss the application
of these techniques to real neuroscience datasets and show that they obtain a considerable performance im-
provement over the state of the art. In the context of a collaboration between astronomers and database experts,
Vandeplas et al. are working on a platform for processing next-generation telescope image collections. They aim
to process large volumes of sky images and allow questions to be efficiently answered over these data. Their pa-
per describes the architecture of AscotDB, the system they have built, as well as techniques they have developed
to address performance and usability issues. Stonebraker et al. presents an overview of the scientific database
research at M.I.T, and summarize their work on making SciDB elastic, providing skew-aware join strategies, and
producing scalable visualizations of scientific data. Alex Szalay considers the problem of analyzing very large
simulation data, which are becoming increasingly harder to access, analyze and visualize. To allow broader
usage of these data, he posits that analyses and visualizations must move to where the data resides and discusses
the challenges in creating such interactive laboratories. Talbert et al. discuss challenges faced by ecologists in
the field of species distribution modeling. Because of the scale of the data and the number of different models
that are available, analyses are complex and require computationally-intensive sensitivity analysis accounting
for various sources of uncertainty. While there exists technology to support these analyses, they are out of reach
for many scientists who do not have a computer science background. To address this problem, Talbert et al.
propose solutions that make use of scientific workflow systems. The last paper in this special issue examines
the problem of reproducibility in science. While reproducibility is essential in this era of data-intensive science,
the practice has not been widely adopted. One reason that is often cited is the fact that creating reproducible
experiments is hard and time consuming. Chirigati et al. posit that this due in part to the lack of appropriate tools
that support the tasks required for reproducibility. Besides characterizing the key tasks involved in the lifecycle
of reproducible experiments, they propose a computational reproducibility benchmark. The benchmark aims to
provide a means to categorize existing tools and better understand the features they support and how well they
are supported.

These papers underscore importance of cross-domain synergies. They provide concrete examples of how
database research has benefitted different scientific domains and how new research questions can be derived
based on the needs of other areas. They also give evidence that data management is an essential component of
science, and that our community has many challenging and significant problems to tackle.

I would like to thank all of the authors who agreed to share their work and experiences, as well as Dave
Lomet who has provided invaluable guidance during the process of putting this issue together.

Juliana Freire
New York University
New York, New York
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Enabling Scientific Discovery Via Innovative Spatial Data
Management

Thomas Heinis, Farhan Tauheed, Mirjana Pavlovic, Anastasia Ailamaki
Data-Intensive Applications and Systems Laboratory

École Polytechnique Fédérale de Lausanne, Switzerland
{firstname.lastname}@epfl.ch

Abstract

Researchers in several scientific disciplines are struggling to cope with the masses of data resulting from
either increasingly precise instruments or from simulation runs on ever more powerful supercomputers.
Efficiently managing this deluge of data has become key to understand the phenomena they are studying.
Scientists in the simulation sciences, for example, build increasingly big and detailed models, as detailed
as the hardware allows, but they lack the efficient technology to update and analyze them.

In this paper we discuss how innovative data management techniques we have developed, enable
scientists to build and analyze bigger and more detailed spatial models and how these techniques ulti-
mately accelerate discovery in the simulation sciences. These include spatial join methods (in memory
and on disk), techniques for the efficient navigation in detailed meshes, an index for range query ex-
ecution on complex and detailed spatial data as well as in-memory mesh indexes. The evaluation of
these techniques using real neuroscience datasets shows a considerable performance improvement over
the state of the art, and that the indexes we proposed scale substantially better for the purpose of the
analysis of bigger and denser spatial models.

1 Introduction

The simulation of spatial models has become a standard practice complementing traditional methods for under-
standing natural phenomena across many scientific disciplines. Examples cover various domains and include the
simulation of peptide folding [3], star formation in astronomy [4], earthquakes in geology [6], fluid dynamics as
well as the brain simulation in neuroscience [9].

Although the scientific disciplines are vastly different, the process of building and simulating a model is
identical. As Figure 1 illustrates, data from the wet lab, from literature and from medical records is used to
assemble an initial model. The model is then analyzed, validated and finally simulated. During and also after
simulation, the model needs to be analyzed and visualized. The results of the visualization and analysis are
finally fed back to the building phase to build more realistic models. The unprecedented amounts of data in every
phase throughout the building and simulating process makes the data management in simulations challenging.

It is, however, not only the amount of data that keeps on growing and challenging current indexing methods.
To develop a better understanding the scientists continuously increase the size and complexity of the simulations,

Copyright 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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pushing the limits of their computing infrastructure. In neuroscience, for example, scientists build models on the
subcellular level (e.g., modelling neurotansmitter), thereby making the model considerably more detailed and
dense. The data management challenges pertain to the size as well as complexity or level of detail of the models.

1

Experimental 
Observations

Analysis

Visualization

Model 
Building & 

Refinement
Simulation

Literature 
Research

Medical 
Records/Data

Figure 1: Steps of a simulation workflow.

The increasing size and complexity, i.e., the den-
sity (number of spatial elements per volume), of spa-
tial datasets used in simulations renders existing tools
and algorithms inadequate. Increasing density (or
level of detail) in simulation datasets challenges the
standard indexing approaches like the R-Tree (or its
improvements [2]). The more elements a spatial
dataset packs in the same space, i.e., the denser it is,
the more the elements on the leaf level of the R-Tree
overlap. More detrimental to query execution time,
however, is that more overlap on the leaf level trans-
lates into disproportionately more overlap in the tree

structure of R-Tree [15] and query execution time of the R-Tree consequently does not scale well with density.
Similarly, the update frequency and scale in simulation applications (for example in earthquake or computational
fluid dynamics simulations almost all elements change position in every step) render known update mechanisms
for spatial indexes inefficient. Novel indexing techniques consequently need to be developed to provide efficient
and scalable access to dense and frequently updated spatial datasets.

In this paper we identify the state-of-the-art spatial indexes used in the simulation workflow that do not scale
with increasing density/level of detail of the spatial models. We develop new indexes for range query execution,
spatial join and prefetching of spatial data based on the idea that while density prevents the state of the art from
scaling, the proximity of the elements in dense datasets can be used to our advantage. More particularly, the
approaches we develop are based on the key insight that the connectivity (inherent or added) in datasets can be
used to recursively explore datasets independent of density (and hence avoiding the overlap problem).

In the remainder of this paper we present the data management techniques based on connectivity to support
building and simulating large-scale models. The paper is organized along the simulation workflow: we first give
an overview over the methods we have developed for building [11, 14] models, for analyzing [15, 17] spatial
models and finally for analyzing running simulations [12, 16]. We subsequently conclude and discuss the impact
the connectivity-based indexing techniques have on a neuroscience use case.

2 Model Analysis & Visualization

A crucial type of query in the model building process and in the model analysis phase is the spatial range query.
Range queries are repeatedly used to visualize parts of the models or to ensure that the models built satisfy
statistical constraints (in case of neuroscience, for example, testing the tissue density, synapse density, etc.). It is
also equally important for many of their analysis to execute a series of range queries that follow one of the many
structures (e.g., a road in a road network in GIS) in the model to assess the quality or validity of the model.

2.1 Range Queries on Dense Spatial Models

The efficient execution of range queries to build and validate models is pivotal today and will become even more
important in the future where the models will be increasingly dense (i.e., biorealistic through modeling phenom-
ena on the subcellular level). While today’s spatial indexing approaches [2] execute range queries efficiently
on many datasets, they unfortunately do not do so on today’s detailed and dense spatial models [15]. To make
matters worse, they will only scale poorly to more detailed future models as experiments show [15].
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Today’s methods are based on the hierarchical organization of spatial data (R-Trees and variants [2]) and
therefore suffer from overlap [2] and dead space. Overlap increases considerably with increasing level of de-
tail/density of the dataset: as the number of spatial elements in the same unit of space increases, so does the
overlap of tree-based indexes [15]. Despite numerous proposed improvements, e.g., reducing overlap through
splitting and replicating elements (R+-Tree [2]), the fundamental problem remains the same and needs to be
addressed to enable the simulation scientists to build and analyze more detailed models.

Seed

Partition 

Range Query

Figure 2: Query execution: given an inital
group of elements (dark), FLAT recursively
visits all neighbors of the seed partition.

To enable scientists to build and analyze models with an un-
precedented level of detail, we developed FLAT [15]. The key
insight we use is that while finding all elements in a particular
range query in an R-Tree suffers from overlap, finding an arbi-
trary element in a range query is independent of overlap and thus
is a cheap operation. With this insight, we develop a two-phase
query execution approach where we (1) find an arbitrary element
e in the query range using an R-Tree and (2) recursively retrieve
all other elements (the neighbors of e) within the range using
neighborhood information (what elements neighbor what other
elements) previously added to the dataset. Both phases are inde-
pendent of overlap and density as the first only depends on the
height of the R-tree and the second only depends on the number
of elements in the range query. FLAT thus becomes independent

of overlap and scales to much denser/detailed models.
When indexing, FLAT needs to build an R-Tree used to find an initial element and it also needs to com-

pute neighborhood information of the elements. To curb the amount of information stored, FLAT only stores
neighborhood information on the level of groups of elements instead of on the level of single elements. FLAT
groups spatially close elements together (and stores them on the same disk page), indexes the groups with the
R-Tree and finally computes the neighborhood information between the groups. The neighborhood information
itself is stored in the leaf nodes of the R-Tree. Figure 2 illustrates how queries are executed using the groups of
elements: given an initial arbitrary group in the query range, FLAT recursively retrieves all neighbors until all
groups in the query range are retrieved.

FLAT works on arbitrary datasets from different disciplines and as measurements show it can speed up query
execution by up to one order of magnitude on a dense spatial model from neuroscience [15]. The improvement
over the state of the art is bigger, the more densely packed the spatial datasets are. Indeed, similar results are
obtained for equally densely packed spatial datasets from astronomy and computer vision [15].

2.2 Executing Guided Spatial Range Query Sequences

An important type of query for the model analysis process is the execution of a series of range queries: following
a structure in the model, e.g., a neuron branch, neuroscientists need to interactively execute range queries to
analyze the model. On the result of each range query they compute different types of statistics (tissue density,
synapse placement, synapse count, etc). Series of range queries are not only crucial for the neuroscientists, but
also for other scientists who analyze road networks, arterial trees and others.

Executing a sequence of range queries is an interactive process where a scientist follows a structure, executes
a query, performs analyses or computes statistics on the query result, studies the analyses results and then decides
on the location of the next query and executes it. The disk is idle during the computation of statistics (between
two range queries) because execution of the series is interactive and the next query location is unknown. To speed
up the execution of the series data can be prefetched at potential query locations while the disk is otherwise idle.

State-of-the-art approaches to prefetch spatial data only do so with low accuracy because they rely only on
limited information, i.e., the position, of previous queries to predict the location of the next query. One particular
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approach [13] uses the last query position and prefetches around it. More sophisticated approaches [1] use the
last few positions, fit a polynomial and extrapolate the polynomial to predict the next query location. Series
of range queries on structures like neurons or arterial trees, however, are not smooth at all but jagged and are
therefore impossible to interpolate accurately with a polynomial. A different class of approaches [8] learns from
past user behavior by keeping track of all paths visited in the past and by basing predictions on the accumulated
history. Given the massive size of today’s spatial models, however, it is unlikely that any path will be visited
twice, therefore making prefetching strategies based on past paths visited inaccurate.

n-1

n-2

n-3
n-4

Figure 3: Pruning the irrelevant structures (solid lines)
from the candidate set (dashed lines) in subsequent
queries (solid squares) of the series.

To prefetch more accurately and to speed up
the execution of series of range queries we develop
SCOUT [17]. SCOUT departs from previous ap-
proaches because it does not consider previous query
positions, but instead takes into account the previous
query content (the structures in the previous query)
knowing that scientists are likely to follow one of the
structures in the previous queries.

SCOUT summarizes the structures of the most re-
cent query q, i.e., it identifies the topological skeleton
in q and approximates it with a graph. The graph of q
represents all the structures the scientist is potentially
following and SCOUT therefore prefetches data at all

locations where the graph edges and therefore the structures exit query q. Range queries are executed to prefetch
data at these locations until the user executes a new query in the series.

Clearly, having to prefetch at several different locations will reduce accuracy as only one of the prefetched
locations is correct. SCOUT uses candidate pruning to reduce the number of prefetching locations, exploiting
that all previous queries must contain the branch the scientist follows. To prefetch for the nth query, SCOUT
thus only needs to consider the set of branches leaving the (n− 2)th query and the set of branches entering the
n − 1th (most recent) query. The branch followed is in the intersection of both sets. As the number of queries
in a series increases, the number of branches in the intersection between two consecutive queries decreases
continuously and the branch the user follows can be identified. Figure 3 shows a series of range queries (n− 1
to n − 4th query) obtained by a neuroscientists interactively executing queries, i.e., through executing n − 4
and depending on the result executing query n− 3. The figure also illustrates how through iteratively reducing
the set of candidates, SCOUT can reliably identify the structure the scientist follows after only a few queries,
ultimately speeding up query series by a factor of up to 15× [17].

3 Model Building

A crucial operation in building spatial models is to find the intersections of spatial elements. In many simulation
models, overlap or intersection between elements no longer realistically reflects the system modeled (neurons
cannot overlap in reality and neither can celestial objects). A spatial join is consequently needed in the model
building phase to detect errors, i.e., intersections.

Neuroscientists use the spatial join for yet a different application: to obtain a biorealistic model they need
to determine where to place synapses (structures that permit electrical impulses to leap between neurons). Prior
research shows [7] that synapses need to be placed where neurons are within a given distance to each other,
translating the problem into a spatial or distance join.
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3.1 In-Memory Spatial Join

If the spatial model fits into the main memory of a single machine or in the aggregate memory of a supercom-
puter, the spatial join needs to be performed in memory. Despite decades of research into spatial joins, only
two algorithms have been particularly designed to join two datasets in memory: the nested loop join [5] and
the sweep line approach [5]. Neither of the approaches scales well: the nested loop join has quadratic com-
plexity while the sweep line approach is inefficient in case too many elements are on the sweep line (excessive
comparisons of elements nearby in one dimension but distant in a different dimension).

Dataset A Dataset B

(a) The datasets A and B

filtered

Tree Building (based on 
dataset A)

Assignment (of dataset B)

Level 0

Level 2

Level 1

(b) Tree building, assignment and joining phases

Figure 4: The three phases of TOUCH: building the
tree, assignment and joining.

Existing work developed for disk [5] can of course
also be used in memory. Disk-based spatial joins can
be categorized into space- or disk-oriented partition-
ing approaches and while both classes have advantages,
they also have clear disadvantages: space-oriented ap-
proaches [5] need to replicate elements (elements inter-
secting with two partitions need to be copied to both)
increasing the memory footprint and incurring multiple
detections of the same intersections. Data-oriented ap-
proaches [5], on the other hand, suffer from the over-
lap problem shared by all R-Trees. Overlap in data-
oriented approaches degrades performance already today,
but more importantly, it will increase with denser future
datasets [15].

Given the shortcomings of current in-memory spatial
join approaches and the challenges of disk-based spa-
tial joins, we develop a novel in-memory spatial join
algorithm called TOUCH [11]. TOUCH avoids space-
oriented partitioning because space-oriented partitioning
requires replication of elements which (a) increases the
memory footprint and (b) requires multiple comparisons
between copies of elements (as well as making the re-
moval of duplicate results necessary). TOUCH also tar-
gets at avoiding the problem of overlap prevalent in ap-
proaches based on data-oriented partitioning.

TOUCH uses data-oriented partitioning to avoid the
replication problem and builds an index similar to an R-
Tree on the first dataset A (all elements of A are in the
leaf nodes). To avoid the issue of overlap, it does not
probe the index for each element of the second dataset
B. Rather, it assigns each element b of B to the lowest
(closest to the leafs) internal node of the index that fully contains b. Only after all elements of B are assigned
to nodes of the index, TOUCH performs the actual join: elements of B in each internal node n are tested for
intersection with all leaf nodes (containing elements of A) reachable from n. Figure 4 illustrates the process,
i.e., how the index is built on dataset A, how the elements of dataset B are assigned to nodes and finally, how
internal nodes are joined with leaf nodes.

Our measurements show that TOUCH outperforms known in-memory approaches as well as disk-based
approaches used in memory [11]. TOUCH is the fastest to perform the join followed by PBSM [5], a simple
space-partitioning approach used in memory. Although PBSM is the fastest competitor, it is still one order of
magnitude slower and also uses considerable more memory (a factor of 8 × more).
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3.2 Selective On-Disk Spatial Join

The spatial join, however, is not only crucial in memory. To build large-scale models that do not fit into main
memory, efficient out-of-core methods are required to support simulation scientists. A particularly important
disk-based spatial join needed by simulation scientists is the joining of datasets of different density, i.e., of
similar spatial extent but with a vastly different number of spatial elements. Example applications include adding
a few roads or other spatial objects to GIS datasets, adding the branches of one neuron to a spatial model of the
neocortex and similar applications. The efficiency of the join is pivotal as it is oftentimes executed repeatedly to
join several sparse datasets with one dense dataset.

Dataset&A&

Dataset&B&

Figure 5: GIPSY uses the sparse
dataset to walk/crawl through the dense
dataset.

Many approaches for disk-based spatial joins [5] have been de-
veloped in the past and each can be used to join a dataset Ai (with
few elements) and B (with a massive number of elements). Existing
approaches, however, are not efficient for a join where with a very
small Ai, only a small subset of B needs to be retrieved (and tested
against Ai). State-of-the-art approaches based on space-oriented parti-
tioning (e.g., PBSM [5]) create coarse-grained partitions and thus the
entire dataset B is read for a join, leading to excessive disk access.
Approaches based on data-oriented partitioning, on the other hand, re-
quire hierarchical trees (e.g., synchronized R-Tree [5]) to access the
data and thus suffer from the well documented problems of overlap,
also resulting in excessive disk access.

We develop GIPSY, a novel approach that avoids the coarse-
grained partitioning of space-oriented approaches and instead uses the
fine-grained data-oriented partitioning, thereby enabling the join to
read from B only the small subset required. At the same time GIPSY
avoids the excessive disk page reads and comparisons due to overlap
in the tree structure of data-oriented approaches. Instead of traversing a tree like data-oriented approaches (e.g.,
the R-Tree), GIPSY traverses the data using a crawling approach [15].

More precisely, GIPSY partitions dataset B in data-oriented fashion and adds neighborhood information to
B, i.e., what elements neighbor what other elements. It then takes the elements of the sparse dataset Ai and
visits them one after the other by walking between them using the neighborhood information previously added
to the dense dataset B. Once GIPSY arrives at the location of a particular element ei of the sparse dataset,
it uses crawling (again using the neighborhood information) to find all elements of the dense dataset around
ei’s location and tests them for intersection with ei. Once no more elements intersecting with ei can be found,
GIPSY walks to the position of the next spatial element ei+1 of Ai in the dense dataset B. Figure 5 illustrates
how GIPSY uses the sparse dataset to direct walking in the dense dataset.

With its novel combination of crawling and data-oriented partitioning, GIPSY achieves a 2 to 18× speedup
compared to the fastest approaches (indexed nested loop and PBSM, both in [5]) when joining several Ai with
B. The evaluation [14] further shows that the improvement over the state of the art grows considerably bigger,
the more sparse datasets Ai are joined with B or the bigger the difference in density between Ai and B is.

4 Model Simulation

To analyze, steer and monitor the spatial model while the simulation runs, a number of spatial range queries
needs to be executed on the spatial model entirely stored in main memory of the simulation infrastructure at every
step of the simulation. Indexing the spatial model speeds up range query execution, however, current indexing
methods cannot efficiently support the large-scale updates of simulation applications. During simulation the

8



spatial models undergo massive changes, resulting in a change of position of all spatial elements in the model at
every step of the simulation. Maintaining an index in face of changes on this scale incurs considerable overhead.

Current methods particularly designed to support large-scale updates on spatial indexes cannot cope with
simulation applications: not enough queries are executed on the index at every time step to amortize the cost
of rebuilding lightweight spatial indexes (MOVIES [10]) at every time step or the cost maintaining indexes
designed specifically to reduce update cost (LUR-Tree or QU-Trade [10]). Approaches particularly designed
for moving objects that index trajectories (e.g., STRIPES, TPR-Tree [10]) cannot be used either because the
unpredictable nature of the movements in simulation applications cannot be interpolated with polynomials.

Range&Query&

Surface&

Figure 6: OCTOPUS: Starting
from the surface, the edges of the
polyhedra will be visited.

To support the efficient execution of range queries on entirely main
memory resident meshes undergoing frequent and massive changes we de-
velop OCTOPUS [16]. Even with unpredictable changes affecting the entire
mesh dataset OCTOPUS outperforms state-of-the-art methods by working
on the mesh datasets directly instead of maintaining complex data structures
(like indexes). OCTOPUS uses the connectivity of the mesh to avoid access-
ing the entire mesh when computing query results: given any vertex inside
the query region, OCTOPUS can use the mesh connectivity to recursively
retrieve all vertices inside the query. Using the current state of the mesh di-
rectly in memory has the advantage that the result can be computed without
having to consider the change of the vertex location in the last update.

Solely depending on the connectivity of the mesh, however, bears the
risk that the result is incomplete because parts of the mesh in the query re-
gion may not be connected (as illustrated in Figure 6). OCTOPUS therefore
starts the mesh traversal from the mesh surface enclosed in the query region
and recursively retrieves all neighboring elements within the query range (in

the absence of a surface vertex in the query range, it starts a directed walk from a random element to find a vertex
inside the range). By building on the key insight that every vertex inside a query range is connected to at least
one vertex on the surface, we prove [16] that OCTOPUS retrieves the complete result. To find start elements on
the mesh surface, OCTOPUS maintains a set of pointers to the surface elements. The set only infrequently needs
maintenance because the surface only changes in the rare event where the connectivity of the mesh changes.

Our experiments show that OCTOPUS achieves a speedup between 7.2 and 9.2× compared to the state of
the art. OCTOPUS will scale better with increasingly detailed meshes than other approaches because it only
needs to keep track of the mesh surface: when meshes become more detailed, the size of surface grows only
quadratic whereas the size of the complete mesh grows cubic. We also develop a general version for the efficient
execution of spatial range queries on arbitrary data other than meshes [12].

5 Conclusions

To study in more detail how a natural phenomena works, scientists in different disciplines build and simulate
increasingly big, complex and detailed models of the system they study. State-of-the-art methods no longer can
be used to efficiently build, analyze and validate models because they have grown too big and too detailed. We
have therefore developed new tools and indexes by carefully analyzing strengths and weaknesses of the state of
the art. Where it is efficient and scalable, we use elements of known approaches (e.g., data-oriented partitioning
in GIPSY, the R-Tree to find a random start element in FLAT etc.) and combine them with novel ideas (e.g.,
using query content in SCOUT). The resulting methods execute queries/joins faster and scale better to bigger
and denser spatial models.

We have tested and deployed the indexes and techniques in the context of the Blue Brain Project (BBP [9])
where neuroscientists attempt to build and simulate the human brain. The impact of the methods we have
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developed on the BBP are substantial as today they can build and analyze bigger models faster. While previously
limited to building and analyzing models of 100’000 neurons, the new methods have enabled them to grow the
models to 10’s of millions (with a theoretical maximum of 33 million neurons on the current infrastructure). The
new tools have not only accelerated discovery, but have also enabled it: analyses, e.g., assessing if the synapse
density is bio-realistic, have not been possible without efficient means to access the spatial models.

Our work also demonstrates that despite decades of research in spatial data management, many challenges
remain. Increasing main memory as well as novel storage technology (in the memory hierarchy), for example,
means that several spatial indexes need to be redesigned. New types of datasets (e.g., dense, complex spatial
datasets) make new indexes necessary and new types of queries (e.g., series of range queries) also call for the
development of new indexes. Many interesting opportunities for exciting research therefore remain.
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Abstract

AscotDB is a new, extensible data analysis system developed at the University of Washington for
the interactive analysis of data from astronomical surveys. AscotDB is a layered system: It builds on
SciDB to provide a shared-nothing, parallel array processing and data management engine. AscotDB
wraps SciDB with a Python middleware that enables efficient storage and manipulation of spherical
data, such as images from telescopes or satellites. The goal is to support the efficient storage of raw
pixel-level data without any prior preprocessing steps. To enable both exploratory and deep analysis
of the data, AscotDB’s front-end design integrates a python interface with a graphical interface based
on the Astronomy Collaborative Toolkit (ASCOT). AscotDB supports seamless switching between these
two modes of interaction and captures a precise trace of a user’s operations on the data to ensure
repeatability. In this paper, we present an overview of the AscotDB system. While based on astronomy
as its key application-domain, AscotDB primitives are general enough to be applicable to other scientific
fields concerned with data on a sphere.

1 Introduction

Astronomy, like other scientific fields, is currently moving to a new realm of research driven by large datasets.
One example of this new approach is the upcoming Large Synoptic Survey Telescope (LSST) [4], which will
begin operations toward the end of this decade. The LSST will repeatedly image the entire southern sky over ten
years, resulting in unprecedented volumes of uniformly-calibrated astronomical data – up to a hundred Petabytes
by the end of the survey. The scientific results from these data will depend on our ability to perform fundamental
operations at scale, including the detection of faint objects through the stacking of multiple exposures and
the detection of variable objects through the differencing of exposure pairs, all while taking into account the
temporally and spatially varying point-spread function – that is, the mathematical model of how light from any
given object is detected by the camera after refraction by the atmosphere and telescope optics.

The AscotDB project is a collaboration of an inter-disciplinary team comprising astronomy and database
experts with the goal of answering one question: What would be the most transformative tool for processing
these next-generation telescope image collections? The AscotDB system has emerged in answer to this question.

Copyright 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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In order to image the visible sky, LSST will undertake repeated exposures over ten years with each image
partially overlapping with hundreds of others. To enable efficient stacking and comparison of these images, it
is vital to store the data in a way that allows efficient indexing of pixel positions both on the sky and in time.
While pipelines are being designed by the LSST team to handle this image processing task and create catalogs of
detected objects, the truly transformative science will come from providing scientists with the ability to directly
query the raw data, and to enable interactive and exploratory computation and visualization of that data.

AscotDB integrates several pieces of technology: the SciDB engine for data storage and processing, Ascot
for graphical data exploration, and Python for easy programmatic access. None of these technologies solves the
problem on its own. More importantly, their naı̈ve combination is also insufficient.

SciDB. SciDB [14] is an open-source database system with inherent support for multi-dimensional arrays.
The inherent support means the entire SciDB stack is designed based on the array data model. In prior work [5,
10, 15], we showed that an array-based database system such as SciDB is well-suited to store and manipulate
small patches of sky images pre-projected (or warped) onto a regular Cartesian grid. Although this SciDB-
based solution is compelling, the solution remains a step removed from the raw data: it requires significant
overhead to individually warp images to each local tangential projection before loading them into the database
for an analysis, and the local nature of the tangential projection means the entire sky cannot be analyzed at once.
Because SciDB is built for efficient computing over Cartesian arrays, it is not straightforward to use it for the
inherently spherical data gathered by astronomical surveys.

Ascot. While efficient data storage and manipulation is an important piece of the astronomer’s task, another vi-
tal component is the ability during an analysis to visually interact with and explore data in order to determine the
next analysis step. The AStronomy COllaborative Toolkit (ASCOT) [9]1 developed in the Astronomy commu-
nity, is a collection of Web-based gadgets that facilitate collaboration between astronomers. These gadgets are
assembled into a dashboard and communicate using a node.js server. Through the use of a customizable dash-
board interface, users can easily visualize, manipulate, and share large data sets from many different sources.
Ascot, however, only enables the display of individual images and the analysis of pre-processed catalog data. It
does not support the large-scale analysis of pixel data.

Python. For both data analysis and visualization, Python is fast becoming a defacto standard in the astronomy
research community. The scientific Python ecosystem, built around the core tools of NumPy & SciPy [12], Mat-
plotlib [7], and IPython [13] (including the web-based interface of the IPython notebook), provides a complete
environment for the analysis and visualization of data at a small to medium scale. Due to its advantages, a wide
selection of current and future astronomical surveys are now building their data analysis pipelines using Python.
Of particular relevance for this work, the LSST project plans to use Python as their primary data pipeline
interface. In this environment, it is increasingly important for data analysis tools to provide Python-hooks for
any computing infrastructure. Python alone, however, provides limited data management capabilities and is
non-trivial to use on LSST-sized datasets.

AscotDB builds on the combination of these three pieces of technology to provide a compelling and power-
ful environment for the exploration, analysis, visualization, and sharing of large astronomical datasets. AscotDB
further contributes several techniques: It extends SciDB with native support for efficient iterative computations
(Section 2.1). It provides more intuitive Python language bindings through a new SciDB-py package (Sec-
tion 2.2). It further integrates the graphical and programmatic interfaces to support seamless switching between
the two modes of interaction (Section 2.3). Finally, it adds a middleware-layer that enables the manipulation of

1http://ascot.github.io/
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Figure 1: AscotDB architecture: SciDB as back-end, python middleware, Ascot and IPython as front-ends.

spherical data in SciDB (Section 3). Because it focuses on producing a tool that is transformative and accepted
by scientists, AscotDB illustrates how necessary technologies must be integrated and extended.

2 AscotDB

The basic operations astronomers perform on images fall into two categories: detection and measurement. De-
tection is the process of identifying the location of individual sources in an image, where the sources might be
stationary objects such as individual stars and galaxies, or moving/transient objects such as asteroids or super-
novae. Measurement involves computing well-calibrated statistics from the light of the individual objects: for
example, computing the total optical flux from a star through a detailed model of its response across the CCD
pixels. AscotDB provides the user with two modes of interaction with the data: (1) Visual interaction with Ascot
gadgets that we describe in Section 2.1 – these visual interactions are an important component of the detection
process; and (2) an IPython interface for programmatic interaction for both detection and measurement that we
describe in Section 2.2. Importantly, AscotDB integrates the two modes of interaction for a seamless experi-
ence (Section 2.3). The overall architecture of AscotDB and the high level interaction between components is
diagrammed in Fig. 1.

2.1 Graphical Front-End Support

Figure 2(a) shows a screenshot of AscotDB’s graphical interface. AscotDB retains important Ascot features in-
cluding its extensibility through the addition of new gadgets and its sharing capabilities across users. AscotDB,
however, radically transforms Ascot’s data analysis capabilities. Originally, Ascot enabled users to view a single
telescope image at a time and overlay on the image catalog data extracted from a back-end relational DBMS. In
contrast, AscotDB enables users to manipulate raw pixel data. For example, users can stack images of the sky
that fall within a region, clean them using an iterative process, re-run a source detection algorithm, annotate in-
teresting sources, and generate visual summaries (e.g., light curves) before initiating a measurement process. To
support these novel operations, AscotDB stores the telescope image data inside SciDB and translates operations
on the interface into queries over SciDB’s arrays. Because scientists are technically savvy users and because
graphical interfaces can inaccurately capture a user’s intent, AscotDB always shows the queries that it generates
and enables a user to modify them before executing them. While the general integration of Ascot with SciDB is
mostly an engineering project, ensuring high-performance required important extensions to the SciDB engine.
In particular, several operations including source detection and data cleaning are iterative in nature. To support
these iterative tasks at interactive speeds, we extended SciDB with native support for array iterations, described
in a recent system demonstration [10]. The support includes the execution of such iterations in shared-nothing
clusters and various optimizations such as incremental processing. Figure 3 illustrates the performance of SciDB
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(a) Graphical front-end of AscotDB. (b) Programmatical front-end of AscotDB.

Figure 2: Two modes of interaction with AscotDB: visual interface and IPython interface. The visual interface
is embedded in IPython, but here is shown separately for purposes of illustration.

with incremental iterative processing extensions on an application called “Sigma clipping”2. Incremental itera-
tive processing is based on the idea that the output at each iteration differs only partially from the output at the
previous iteration. Performance can thus significantly improve if the system computes, at each iteration, only
the part of the output that changes rather than re-computing the entire result.

A second important design decision in AscotDB’s graphical front-end was to strike a balance between a tool
specialized for one analysis task and a general-purpose system such as Tableau [17]. For AscotDB, we opted
to develop one gadget per high-level activity (e.g., data cleaning, image stacking, and time-series extraction)
since the community typically performs a small set of such activities. AscotDB enables users to assemble these
gadgets and thus activities in arbitrary combinations.

2.2 Front-End Python Support

Python has seen significant uptake among astronomers and other domain scientists because it is open-source,
cross-platform, and easy for non-programmers to learn. Furthermore, third-party packages such as Numpy for
array-oriented computing, Scipy for fast scientific algorithms, Matplotlib for publication-quality visualization,
and IPython for interactive computation and data exploration provide a foundation for a host of more specialized
packages implementing algorithms used in a wide variety of scientific fields.

For this reason, an intuitive Python interface to SciDB is essential to make it as useful as possible for the
astronomical data analysis task. While SciDB does provide a low-level Python API for the execution of Array
Query Language (AQL) and Array Functional Language (AFL) queries, the interface is too opaque for it to be
useful to most astronomers. For this reason, we have created the SciDB-Py3 package, which provides a high-
level Python interface to SciDB, designed with an API familiar to users of the NumPy array computing library.
Rather than interacting with data arrays via a query language like AQL or AFL, SciDB-py allows users to express
operations in a high-level scripted manner, and thus makes the computing power of SciDB more accessible to
data scientists.

2http://db.cs.washington.edu/myria/repository/uw-cat.html
3http://jakevdp.github.io/SciDB-Py
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Figure 4: Data analysis workflow with and without our
spherical-coordinates extension. In the old workflow,
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each region must be warped multiple times. Addition-
ally, queries can never span large regions.

The following shows a short SciDB-Py session along with the equivalent SciDB AFL query commands:

SciDB-Py Python Code: Equivalent AFL session

# Interface to a scidb cluster on the local machine via Shim
from scidbpy import interface
sdb = interface.SciDBShimInterface(’http://localhost:8080’)

# Create a random array with 1000 rows & 5 columns:
X = sdb.random((1000, 5))

# Compute the mean and standard deviation of each column
xcolmean = X.mean(0)
xcolstd = X.std(0)

# center and normalize each column
XC = (X - xcolmean) / xcolstd

/* The following are the AFL queries generated and
executed automatically by the scidbpy module */

store(build(<f0:double> [i0=0:999,1000,0,i1=0:4,1000,0],
random()/2147483647.0), X);

store(aggregate(X, avg(f0), i1), Xcolmean);
store(aggregate(X, stdev(f0), i1), Xcolstd);

store(project(apply(cross_join(X, Xcolmean, X.i1, Xcolmean.i1),
x, X.f0 - Xcolmean.f0_avg), x), tmp);

store(project(apply(cross_join(tmp, Xcolstd, tmp.i1, Xcolstd.i1),
x_0, tmp.x/Xcolstd.f0_stdev), x_0), XC);

The operations specified in this script are executed entirely within the SciDB architecture through the automat-
ically generated AFL queries; the actual AFL queries are transparent to the user, and the Python interpreter
itself never sees the data. By providing such an intuitive, high-level wrapper around the efficient storage and
operations available in SciDB, SciDB-py makes the power of SciDB accessible to the average scientific Python
user.

The Python interface to AscotDB is provided via the IPython notebook as illustrated in Figure 2(b). IPython
is a set of tools designed to facilitate the entire life-cycle of a scientific project, from data exploration to pub-
lication. One component is a browser-based notebook with the support for editing and running Python code,
as well as rich objects such as embedded plots, html objects, and mathematical expressions. Integrating the
interactive, visual scientific computing environment of IPython with the power of the SciDB-Py interface within
the AscotDB environment enables seamless sharing and processing of large astronomical datasets.

2.3 Graphical Interface and Python Integration

An important feature of AscotDB is the integration of both the graphical and python modes of interaction such
that the user can go seamlessly back and forth between them. The main question to be answered is how to keep
the working data in both modes synchronized. One possibility is to keep track of all the actions in the Ascot
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front-end in the form of SciDB queries and, after switching the mode to Python, have the system run the same
queries in the same order in the background. This approach makes it easier to track the lineage of data and thus
facilitates reproducibility. However, a session where a user interacts with a graphical engine can be long, can
contain a large number of queries, and can dwarf the remaining Python script. Another approach is to move
minimal amounts of data between the two interfaces to keep the working data synchronized. In AscotDB, we
chose to synchronize the two interfaces by capturing user queries because of this approach’s lineage tracking and
reproducibility properties. To address the problem of large query sessions, however, in the AscotDB system, we
are experimenting with a variety of techniques to automatically extract minimal query sets, which produce the
results from a visual analysis session. Our key aim is to minimize the number of queries but without re-ordering
them nor combining them into more complex and difficult-to-understand queries. It is critical for the user to
identify in the summary script all the key steps that he or she took during the visual exploration.

3 Spherical Coordinates

While SciDB provides an efficient environment for storing and manipulating very large array-oriented data, the
arrays must be Cartesian: that is, data on a simple N -dimensional rectangular grid. In many scientific fields,
especially those relying on astrophysical and geophysical data, the data lie on a sphere and this assumption
breaks down.

In the case of a full-sky multiply-imaged optical dataset like LSST, this makes the global analysis of imaging
data within SciDB very difficult. The data consists of individual images covering ∼ 10 square degrees, which
are taken at different times and cover partially-overlapping regions of the sky. Software tools exist that can warp
overlapping images to a uniform tangential projection for the purposes of image stacking and differencing, but
the distortion characteristics of a tangential projection are such that a single warping is sufficient over only a
small region of sky. The result is that each individual exposure must be partially warped on the order of four
separate times in order to analyze a full sky’s worth of data. With images stored as binary files on disk, there is
significant overhead in data I/O for these multiple warpings and coadditions. Fig. 4 illustrates this workflow in
contrast with the new one that our approach enables.

To avoid this overhead both in performance and data management complexity, we add a middleware layer
to SciDB that enables direct operations on spherical data, with the ultimate goal of pushing these middleware
extensions into SciDB. This task boils down to the classic problem of full-sphere projections. Cartographers over
the centuries have invented schemes for representing the earth’s surface as a flat map; the storage of spherical
data within SciDB requires an analogous flattening. Many such partitions have been proposed and used in the
literature, each with distinct advantages and disadvantages.

The Hierarchical Equal Area isoLatitude Pixelization (HEALPix) [6] spherical pixelization is commonly
used in astronomy, especially for datasets which cover a large portion of the sky. This approach has three key
scientific benefits. First, it produces pixels of equal area, which significantly facilitates essential operations based
on integration, such as kernel-smoothing, convolution, and regridding. Second, it can be represented in a number
of useful ways, including a hierarchical encoding that facilitates spatial queries such as neighbor-searches, a ring
encoding which facilitates efficient computations of the fast spherical harmonic transform (SpHT), and a double-
pixellization, outlined below, which allows us to take advantage of the efficient array processing primitives
already implemented within SciDB.

HEALPix is based on a tesselation of twelve equal-area partitions of the sphere, each of which are hierar-
chically sub-divided in a quad-tree structure to attain arbitrarily precise angular resolution. The twelve funda-
mental partitions are chosen so as to minimize the distortion within any single sub-pixel, and oriented so as to
align sub-pixels along lines of constant latitude (vital for SpHT computations). The resolution of a HEALPix
map is governed by the number of levels in the pixel hierarchy, specified via the parameter Nside = 2ℓ, with
ℓ = 0, 1, 2.... The number of pixels is Npix = 12N2

side, and it follows that the angular size of each pixel is
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Nside =1

Nside =2 Nside =4

Figure 5: (Left) First three levels of the HEALPix hierarchical pixelization, shown in Orthographic projection.
(Right) Schematic showing the construction of the HEALPix double-pixelization scheme for Nside = 4

Ωpix = (π/3)N−2
side. A visualization of the first three levels of HEALPix partitioning is shown in Fig. 5(left).

3.1 Representation and Transformations

While the equal-area hierarchical layout discussed above has advantages, one disadvantage is that it cannot
be represented easily as a Cartesian grid of pixels. While the subdivisions within each of the 12 fundamental
partitions do form a warped 2-dimensional grid, the junction of the three shaded regions in Fig. 5(left), for
example, shows that the boundaries between the twelve fundamental partitions do not fit this Cartesian model.

We choose to address this using the double pixellization scheme outlined in [3]. As shown in the upper panel
of Fig. 5(right), if the twelve fundamental partitions can be unwrapped onto the plane in a modified cylindrical
equal-area projection (as specified in [6]), the pixels are arranged in a partially-filled regular grid, rotated 45◦

with respect to the primary x, y axes. Additionally, in this orientation, each valid (x, y) pair has an invertible
mapping to a (latitude, longitude) pair (see details in [3, 6]), easing the ability to convert between the HEALPix
representation and the standard world coordinate system.

The key insight for the double pixelization is that by interposing a new pixel between each of the standard
HEALPix pixels, we can recover a grid with a standard orientation which preserves nearly all of the desirable
properties of the original HEALPix pixelization, as shown in Fig. 5(right). Here, the solid points show the pixel
centers from the standard pixelization, while the open points are the pixel centers added to construct the oriented
grid. One disadvantage of this re-orientation is the fact that eight of the pixels (those located at the concave
edges) now represent only 3/4 the area of the other pixels: the missing area is accounted for by the addition of
a new pixel at each pole. Thus the number of pixels in the double-pixelization scheme is 24N2

side+2, compared
to the 12N2

side pixels of the standard pixelization. One other disadvantage of the double pixelization is that
regridding between HEALPix representations of different resolutions (i.e. changing Nside) becomes much less
straightforward. Note that on this grid, the pixels have a filling-factor of ∼ 75%, and at any desired resolution
this can be efficiently stored within SciDB as a sparse Cartesian array.

The transformations needed to map a variety of image-plane coordinate representations onto HEALPix co-
ordinates are defined via the WCS standard [2], which is implemented in standard Python tools such as astropy4.
Astronomical image data typically comes in the form of Flexible Image Transfer System (FITS) files, whose

4“A Community Python Library for Astronomy” http://astropy.org

17



headers contain image projection parameters within the FITS/WCS standard. Because of this, the process for
loading images onto the HEALPix grid is generic enough to be used for any modern astronomical data. Note
that any individual image (or set of images at a given time) will fill only a small subset of the entire field: in
SciDB, this can be represented as a sparse two-dimensional array.

There are two potential approaches warping observed data to the HEALPix grid: it can be performed as a
preprocessing step prior to loading the data into the database, or as an operation within the database itself.

The first approach is to pre-warp images in an analog to the typical approach. Images, however, are now
pre-projected onto a super-resolution grid of HEALPix pixels rather than a local tangential projection. A suitable
super-resolution warp allows the precise pixel overlap to be treated as a second-order effect. While the typical
approach warps each image to one of a number of local tangential representations, the new spherical approach
requires each image to be warped only once onto a global HEALPix representation, cutting computation and
data access costs up to about 75% for the warping calculation. The final dataset is represented in SciDB as a
sparse 3-dimensional array, containing HEALPix-gridded two-dimensional images indexed by the time at which
they were taken. Fig. 4(right) illustrates the workflow when using this method.

The second approach pushes the warping step into SciDB itself, obviating the need for preprocessing outside
SciDB. By choosing an extremely fine resolution for the raw data within SciDB, the flux within each input image
pixel can be stored at the location of the pixel center with nearly arbitrary resolution5, leaving all other pixels
empty. The result is an extremely sparse data structure which efficiently indexes the actual pixel-level data,
without need for any preprocessing step. The translation of this sparsely-indexed data into the warped dense
HEALPix representation is a well-defined operation rooted in 2D spatial convolution. Because SciDB does not
currently implement efficient convolutions, we chose the first approach, leaving the second option for future
work.

3.2 Operations

Once the data is warped and stored on a HEALPix grid within SciDB, the basic class of desired operations come
virtually for free.

• Selection: SciDB implements efficient selection along the axes of the stored array. This allows efficient
selection of data at a given time, as well as angular selection on the sky. Because there is a straightfor-
ward algebraic relationship between typical local sky queries and the HEALPix double-pixel coordinates,
desired data selection can be implemented as a native SciDB query.

• Aggregation: In the same way, built-in SciDB aggregates can be used to compute statistics of interest,
most notably the co-addition of sub-images across time.

• Iterations: Many essential image processing operations, from trimmed co-addition to PSF matching,
require an iterative approach to the data. As discussed in Section 2.1, we extended SciDB to enable
efficient iterative operations on large datasets. This work can be used with the spherical projections to
allow powerful iterative analysis of full-sky datasets.

• Convolution: Many image processing tasks require efficient convolutions, from warping to object de-
tection and tracking to PSF matching for image coaddition. Though SciDB currently implements a rudi-
mentary windowing convolution, it does not contain the full convolution operator required for these tasks.
Implementation of efficient convolutions is an important area of future work, as it will allow a wide variety
of image processing tasks to be implemented in a scalable way within SciDB.

• Regridding: With the HEALPix double-pixelization scheme, regridding can be implemented using a
convolution operation, with some extra care at the boundaries.

5Technically, due to the int64 index labels, the resolution is limited to & 0.1 pico-arcsec, which is more than sufficient for any current
astronomical observation.
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Because the translation between spherical coordinates and SciDB array coordinates is negligible in time, the
performance of the above operations is equal to the performance of the underlying SciDB queries.

4 Related Work

Because the AscotDB project is so broad in its aims and the array of technologies it utilizes, there is related
work in many areas.

EXTASCID [4] is an extensible parallel system that provides native support both for arrays and key-value
relations. The execution strategy in EXTASCID is through the UDA interface with easy reasoning for paral-
lelism, while AscotDB provides parallelism through SciDB with native support for arrays only. On the other
hand, AscotDB provides support for iterations and direct query on spherical data with two modes of interaction:
visual front-end and Python programmatic front-end.

AstroShelf [11], similar to AscotDB, is a collaborative system that enables astrophysicists to investigate
celestial objects using catalog data hosted at different sites. Astroshelf is a stream processing system that matches
events (either celestial events or user annotations) to users who are likely to be interested in them. In contrast,
AstroDB focuses on interactive, collaborative processing of archived data.

Blaze [1], often billed as the “Next generation NumPy”, aims to implement a very general array framework
within Python. It will support a wide variety of table and array-like structures capable of handling arbitrary local
and distributed memory layouts, type heterogeneity, axis labels, missing or masked values, and other commonly-
requested features. SciDB is just one of a wide variety of potential backends for large-scale distributed array
storage and computing through Blaze: in this light, SciDB-Py can be considered a precursor to the much more
ambitious framework Blaze promises to implement.

For spherical partitioning of datasets, one well-studied method is the Hierarchical Triangular Mesh (HTM)
[16], used in the SDSS SkyServer. HTM is efficient, but suffers two disadvantages compared to the current work:
First, its triangular representation does not lend itself to the Cartesian representation required to take advantage
of operations within SciDB. Second, its non-equal pixel areas add overhead to integration-based tasks common
in image manipulation and processing.

5 Conclusion

Efficient data exploration, visualization, and analysis in the context of future large astronomical surveys will
require a combination of advances in the areas of large-scale data storage, processing, and visualization, as well
as specialized operations suitable for data on the sphere of the sky. We have presented one set of approaches
to this problem: AscotDB. We utilize a HEALPix-based spherical projection to unravel spherical data and store
it within a three-dimensional SciDB array, indexed both by time and by location on the sphere. We choose the
representation carefully so as to utilize the full functionality of the native array-processing power of SciDB. With
the current capabilities of SciDB, this approach already decreases the image pre-processing load by around a
factor of four; with future work on a native convolution operator within SciDB, the need for an out-of-database
preprocessing will be eliminated. The work here, along with future directions of development in SciDB, points
to a system where a full-sky worth of time-domain astronomy imaging data can be directly stored and indexed
in a way that will enable efficient image analysis tasks to be performed on-demand and at-scale.

Acknowledgments: This work is partially supported by grants from the LSST corporation, NASA grant
NNX09AK84G, DOE award DESC0002607, NSF grants ACI-1226371 and IIS-1110370, and the Intel Science
and Technology Center for Big Data.
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Abstract

This paper presents a snapshot of some of our scientific DBMS research at M.I.T. as part of the Intel
Science and Technology Center on Big Data. We focus our efforts primarily on SciDB, although some
of our work can be used for any backend DBMS. We summarize our work on making SciDB elastic,
providing skew-aware join strategies, and producing scalable visualizations of scientific data.

1 Introduction

In [19] we presented a description of SciDB, an array-based parallel DBMS oriented toward science applications.
In that paper we described the tenets on which the system is constructed, the early use cases where it has found
acceptance, and the state of the software at the time of publication. In this paper, we consider a collection of
research topics that we are investigating at M.I.T. as part of the Intel Science and Technology Center on Big
Data [20]. We begin in Section 2 with the salient characteristics of science data that guide our explorations. We
then consider algorithms for making a science DBMS elastic, a topic we cover in Section 3. Then, we turn in
Section 4 to query processing algorithms appropriate for science DBMS applications. Lastly, in Section 5 we
discuss our work on producing a scalable visualization system for science applications.

2 Characteristics of Science DBMS Applications

In this section we detail some of the characteristics of science applications that guide our explorations, specifi-
cally an array data model, variable density of data, skew, and the need for visualization.

Array Data Model Science data often does not fit easily into a relational model of data. For example, Earth
Science data [18] often comes from satellite imagery and is fundamentally array-oriented. Astronomy telescopes
are effectively large digital cameras producing pixel arrays. Downstream, the data is processed into a 2-D or
3-D coordinate system, which is usually best modeled as an array. Moreover, it is often important to keep track
of time, as objects are recorded over days or weeks of observations; time is simply another dimension in an
array-based system, but must be glued on to a relational model of data.

Copyright 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

21



Field observations are invariably spatially-oriented and queried in a 3-D space (e.g., latitude, longitude, and
time). Often additional dimensions are present (e.g., elevation). Searching in a high dimensional space is natural
and fast in a multi-dimensional array data model, but often slow and awkward in a relational data model.

Lastly, much of the analytics that scientists run are specified on arrays, for example k-nearest neighbors,
spatial smoothing, fourier transforms, and eigenvectors. These are naturally executed in an array DBMS, but
require relational data to be cast into arrays for execution. For these reasons, we believe that array DBMSs are
a natural fit for science data, and our research has focused in this area.

Sparse or Dense Array Some arrays have a value for every cell in an array structure. For example, it is
common practice to “cook” satellite imagery into a dense array, where each cell represents a tile on the earth
surface and the cell value is some interpolation over a time period of the actual collected imagery data. For
example, one common interpolation is to select the cell value from the possible ones, which has the least cloud
cover. This interpolation produces a very large, dense array. On the other hand, the raw satellite imagery
is recorded in a three-dimensional space, for example (latitude, longitude, time), or a four-dimensional space
(latitude, longitude, altitude, time). Sometimes spherical coordinates are used. In any case, the recorded data is
very sparse. Our experience is that an array DBMS must be prepared to cope with data that ranges from very
sparse to very dense.

Skewed Data If we imagine a database consisting of the position of each resident of the United States, then
the density of points in Manhattan is 105 greater than the density in Montana. This sort of skew, whereby some
regions of array space have substantially more data than others, is very common in science applications. In
astronomy, there are regions of the sky that are more interesting than others, and the telescope is pointed there
more often. In a database of ship positions, the vessels congregate in and around major ports waiting to load or
unload. In general, our experience is that moderate to high skew is present in most science applications.

Visualization Focus In business data processing, a form-based interface is exceedingly popular. For example,
to look up pending airline reservations, one inputs one’s frequent flyer number into a form. To find the balance
in one’s checking account, one enters the account number, and so forth. Scientists rarely want this sort of
form-based user interface. Instead, they usually want a visualization system through which they can browse
and inspect substantial amounts of data of interest. For example, one Earth Science group is interested in snow
cover in the Sierra Nevada mountains. Hence, they want to “fly over” the study area, browsing satellite imagery
and then zoom into areas of interest. Therefore, the front end issuing queries to a science database is often a
visualization system.

3 Elasticity

Given that scientists never want to discard data, this leads to a “grow only” data store. Also, the amount of
data that they want to process often increases with time, as they collect more data from experiments or sensors.
Hence, a science DBMS should support both data elasticity and processing elasticity. Of course, elasticity
should be accomplished without extensive down time; in the best of all worlds, it is accomplished in background
without incurring any downtime. Often science data is loaded an experiment-at-a-time or a day-at-a-time, i.e.,
periodically. In between load events, it is queried by scientists.

We have constructed a model of this desired elasticity behavior. It consists of three phases, a loading phase
where additional data in ingested, followed by a possible reorganization phase, followed by a query phase
whereby users study the data. These phases repeat indefinitely, and the job of an elasticity system is three fold:
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• predict when resources will be exhausted

• take corrective action to add another quanta of storage and processing

• reorganize the database onto the extra node(s) to optimize future processing of the query load

Our model specifies a cost function for these three activities that minimizes a combination of provisioned
resources and time elapsed in querying, data insertion, and incremental reorganization. We use this model to
study the impact of several data partitioners on array database performance in terms of workload latency. Our
elastic partitioners are designed to efficiently balance storage load, while minimizing reorganization time during
cluster expansion operations.

We have implemented this model for SciDB, and the details can be found in [14]. In addition, we have
studied the behavior of the model on two different use cases. First, we have explored a MODIS satellite imagery
database [1], with appropriate queries primarily from [18]. This data set is large, sparse and uniform, as the
satellite covers each portion of the earth’s surface at the same rate. In addition, we have explored a U.S. Coast
Guard database of ship positions, AIS [7], which are highly skewed as noted above.

The query phase of our workload is derived from real use cases, and each has a mix of select-project-join
(SPJ) and domain-specific science queries, many of which are spatial. The SPJ benchmarks have three compo-
nents: selection, a distributed sort, and an equi-join, and these queries capture simple relational transformations
on the data. Our science benchmarks are customized to each use case. AIS executes a k-nearest neighbor
query, studying ship density patterns, a ship collision detector, and a regridding from detailed lat/long space to
an aggregated n-dimensional projection. Our MODIS evaluation includes a k-means clustering, used to model
rainforest deforestation, a windowed aggregate to generate a smoothed image of the satellite’s recordings, and a
rolling average of measurements for environmental monitoring. We detail our benchmark queries in [1].

3.1 Elastic Array Partitioning

Well-designed data placement is essential for efficiently managing an elastic, scientific database cluster. A good
partitioner balances the storage load evenly among its nodes, while minimizing the cost of redistributing chunks
as the cluster expands. In this section, we visit several algorithms to manage the distribution of a growing
collection of data on a shared nothing cluster. In each case we assume an array is divided into storage “chunks”,
specified by a “stride” in a subset of the array dimensions. Moreover, every array is assumed to have a time
dimension, where the insertion time of values is recorded. Obviously, this dimension increases monotonically.

Elastic array partitioners are designed to incrementally reorganize an array’s storage, moving only the data
necessary to rebalance storage load. This is in contrast to global approaches, such as hash partitioning. The
classic hash partitioner applies a function to each chunk, producing an integer, and this hash value, modulus the
number of cluster nodes, assigns chunks to nodes. Using this technique will move most or all of the data at each
redistribution, a high cost for regularly expanding databases.

Elastic and global partitioners expose an interesting trade off between locally and globally optimal partition-
ing plans. Most global partitioners guarantee that an equal number of chunks will be assigned to each node,
however they do so with a high reorganization cost, since they shift data among most or all of the cluster nodes.
In addition, this class of approaches are not skew-aware; they only reason about logical chunks, rather than phys-
ical storage size. Elastic data placement dynamically revises how chunks are assigned to nodes in an expanding
cluster, and also makes efficient use of network bandwidth, because data moves between a small subset of nodes
in the cluster. Note that skewed data will have significant variance in the stored chunk sizes. Hence, when a
reorganization is required, elastic partitioners identify the most heavily loaded nodes and split them, passing on
approximately half of their contents to new cluster additions. This rebalancing is skew resistant, as it evaluates
where to split the data’s partitioning tables based on the storage footprint on each host.

23



In this work, we evaluate a variety of range and hash partitioners. Range partitioning stores arrays clustered
in dimension space, which expedites group-by aggregate queries, and ones that access data contiguously, as is
common in linear algebra. Also, many science workloads query data spatially, and benefit greatly from pre-
serving the spatial ordering of their inputs. Hash partitioning is well-suited for fine-grained storage partitioning,
because it places chunks one at a time, rather than having to subdivide planes in array space. Hence, equi-joins
and most “embarrassingly parallel” operations are best served by hash partitioning.

3.2 Hash Partitioning

In this section, we discuss two elastic hash partitioners. The first, Extendible Hash, is optimized for skewed
data, and the alternative, Consistent Hash, targets arrays with chunks of uniform size. Both algorithms assign
chunks to nodes one at a time. Each chunk is numbered 1...k based on its position within the source array, and
the engine hashes the chunk number to find its location.

Extendible Hash [15] is designed for distributing skewed data. The algorithm begins with a set of hash
buckets, one per node. When the cluster increases in size, the partitioner splits the hash bucket of the most
heavily loaded hosts, partially redistributing their contents to the new nodes. For data that is evenly distributed
throughout an array, Consistent Hash [16] is a beneficial partitioning strategy. Think of the hash map distributed
around the circumference of a circle, where both nodes and chunks are hashed to an integer, which designates
their position on the circle’s edge. The partitioner finds a chunk’s destination node by tracing the circle’s edge
from the hashed position of the chunk in the clockwise direction, assigning it to the first node that it finds.
When a new node is inserted, it accepts chunks from several pre-existing nodes, producing a partitioning layout
with an approximately equal number of chunks per node. This algorithm assigns the logical chunks evenly
over the cluster, however, it does not, address storage skew, because the chunk-to-node assignments are made
independent of individual chunk sizes.

3.3 Range Partitioning
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Figure 1: An example of K-d Tree array partitioning.

Range partitioning has the best performance for
queries that have clustered data access, such as group-
ing by a dimension or finding the k-nearest neighbors
for a cell. In this section, we examine three strategies
for clustered data partitioning, n-dimensional (K-d
Tree and Uniform Range), and time-based (Append).

A K-d Tree [12] is an efficient strategy for range
partitioning skewed, multidimensional data. The K-d
Tree stores its partitioning table as a binary tree. Each
node is represented by a leaf, and all non-leaf nodes
are partitioning points in the array’s space. To locate
a chunk, the algorithm traverses the tree, beginning at
the root node. If the root is a non-leaf node, the partitioner compares the chunk’s first logical coordinate to the
node’s split point, progressing to the child node on the chunk’s side of the divide. The lookup continues until it
reaches a leaf node, completing this operation in logarithmic time.

In this scheme, each host is responsible for an n-dimensional subarray, and partitioning points are defined as
planes in array space. When a new cluster node is added, the algorithm first identifies the most heavily loaded
host. If this is the first time that the host’s range has been subdivided, the partitioner traverses the array’s first
dimension until it finds the point where there exists an equal number of cells on either side of it, the dimension’s
median. The splitter cuts the hot host’s range at this point, reassigning half of its contents to the new addition. On

24



subsequent splits, the partitioner cycles through the array’s dimensions, such that each is cut an approximately
equal number of times.

Figure 1 demonstrates a K-d Tree that begins by partitioning an array over two nodes; it is divided on the
x-axis at the dimension’s midway point, 5. The left hand side accumulates cells at a faster rate than the right,
prompting the partitioner to cut its y-axis for the second split, where this dimension equals 2. Next, the K-d Tree
returns to cutting vertically as the third node joins the cluster.

A second variation, Uniform Range, optimizes for unskewed arrays. In this approach the array assigns
an equal number of chunks to each node, and it executes a complicated global reorganization at every cluster
expansion to maintain this balance. This algorithm starts by constructing a tall, balanced binary tree to describe
the array’s dimension space. If the partitioner has a height of h, then it has l = 2h leaf nodes, where l is much
greater than the anticipated cluster size. Each non-leaf node in the tree specifies a split point, where a dimension
is divided in half, and the tree rotates through all dimensions, subdividing each with an equal frequency. For
a cluster comprised of n hosts, Uniform Range assigns its l leaf nodes in groups of size l

n , where the leaves
are sorted by their traversal order in the tree. When the cluster scales out, this tree is rebalanced by calculating
a new l

n slice for each host; hence the partitioner maintains multidimensional clustered array storage, without
compromising load balancing. This approach has a high reorganization cost compared to K-d Tree, because
such operations move most or all of the array at each rebalancing.

A third variant of range partitioning is an Append strategy. Append subdivides the no-overwrite array on
its time dimension alone, by sending each newly inserted chunk to the first node that is not at capacity. A
coordinator maintains a count of the storage allocated at each node, spilling over to the next one when the
current one is full. This partitioner works equally well for skewed and uniform data distributions, as it adjusts
its layout based on storage size, rather than logical chunk count. Append partitioning is attractive because it has
minimal overhead for data reorganizations. When a node is added, it stores new chunks when its predecessor
becomes full, making it an efficient option for a frequently expanding cluster. On the other hand, this partitioner
has poor performance if the cluster adds many nodes at once, since it will use only one new node at a time.

To recap, we have studied a collection of elastic partitioning algorithms. All, except Append, are designed
for either a skewed or uniform data distribution. The schemes (excluding Uniform Range) are all incremental;
hence they move a subset of the chunks during a scale out operation, writing only to new nodes. In the next
section we compare these schemes with a baseline strategy of Round Robin allocation. Round Robin assigns
nodes to chunks circularly based on chunk number. Hence, if chunk n is being assigned to a cluster of k nodes,
this approach will send it to node n modulus k. The baseline evenly distributes the logical chunk numbers over
all nodes, however when the cluster expands, all hosts usually shift their data to add one or more hosts to the
partitioning rotation.

3.4 Elastic Partitioner Results
We studied elastic partitioning on a cluster starting with two nodes, which expands in increments of two nodes.
Our MODIS case study consists of adding 630 GB to an empty database over 14 days in 1 day increments. In
addition, we experimented with adding 400 GB of AIS ship data spanning 3 years, inserted in 36 batches, each
covering one month. In both cases, this is the rate at which we receive data from its source.

Figure 2(a) demonstrates the performance of the various partitioning schemes on our two benchmarks during
the ingest and reorganization phases. For both of our use cases, the insert time is nearly constant cost because
all of the schemes load the data and then spread it over the cluster according to the partitioning scheme under
evaluation. The cost of redistribution during the three expansions is less uniform. Append is a clear winner in
this space, as it does not rebalance the data; it only shifts future additions to the newly provisioned nodes. K-d
Tree and hash partitioning both perform well, as they incrementally reorganize the data by writing only to the
newly provisioned nodes. Round Robin and Uniform Range globally redistribute the data, and hence have a
higher time requirement.
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Figure 2: (a) Elastic partitioner performance for data ingest and reorganization. Percentages denote relative
standard deviation of storage distribution. (b) Benchmark performance of elastic partitioning schemes.

We assess the evenness of a scheme’s storage distribution by the relative standard deviation (RSD) of each
host’s load, and the percentages are shown in Figure 2(a). After each insert, this metric analyzes the database
size on each node, taking the standard deviation and dividing by the mean. We average these measurements over
all inserts to indicate the storage variation among nodes as a percent of the average host load, and a lower value
indicates a more balanced partitioning.

The randomized allocations, Consistent Hash, Extendible Hash, and Round Robin do best because they sub-
divide the data at its finest granularity, by its chunks. Append exhibits poor load balancing overall; this scheme
only writes to one node at a time, no matter how many are added. Skew strongly influences the performance of
our range partitioners. AIS has significant hotspots near major shipping ports, hence it has a very imbalanced
storage partitioning for Uniform Range, although this scheme is the best for our uniformly distributed MODIS
data. K-d Tree also has difficulty handling skew because it can only subdivide one dimension for each node
addition. A more comprehensive approach (i.e., quad-trees) may work better and will be studied as future work.

Figure 2(b) shows the query performance of the two use cases on the benchmark queries in between each
load cycle. Our benchmarks demonstrate that for SPJ queries, the partitioners perform proportionally to the
evenness of their storage distribution. The science benchmarks show that clustered data access is important for
array-centric workloads. K-d Tree has the best performance for both workloads, as it facilitates clustered reads,
and is moderately skew resistant. Append performed poorly in the science benchmarks for two reasons. First, it
balances query execution poorly because this strategy partitions the data by time; therefore when a pair of new
nodes are added, one of the hosts will not be used immediately. Second, new data is “hotter” in our benchmarks,
as some of the queries “cook” the new measurements into results, and compare them with prior findings.

In summary, we found that K-d Tree was the most effective partitioner for our array workloads, as it breaks
up hotspots, and caters effectively to spatial querying. For data loading and reorganization, the append approach
is fastest, but this speed comes at a cost when the database executes queries over imbalanced storage. When
we consider end-to-end performance, summing up the findings in Figures 2(a) and 2(b), K-d Tree is the fastest
solution for MODIS, whereas Append and the skewed range partitioner are on par for AIS.

4 Query Processing

At first blush, one could simply use a traditional cost-based relational optimizer, and then repurpose it for
the operators found in an array DBMS. There are two reasons why this is not likely to succeed. First, the
commutative join and filtering operations from relational systems are not prevalent in scientific workloads.
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Instead, there are many more non-commutative operations that cannot be pushed up or down the query plan
tree. Earth science [17], genomics [21], and radio astronomy [22] all exhibit this recipe of few joins paired with
complex analytics.

Hence, the opportunities for rearranging the query execution plan are more limited. Second, it is not obvious
that the relational join tactics (hash join, merge sort, iterative substitution) are the best choices for array data.

In the common case where skew is present, we have invented a novel n-way shuffle join, which is effective
at both balancing the query load across nodes as well as minimizing network traffic to accomplish the join. In
short, the algorithm entails locating sparse and dense areas of the arrays, and then sending sparse areas to the
corresponding dense ones to perform the join. Hence, it minimizes the amount of network traffic to accomplish a
distributed join. We have shown that this algorithm can be added to the merge-sort and iterative substitution join
algorithms in SciDB and never results in significantly worse performance than non-shuffle approaches. When
dense areas in one array line up with sparse areas of a second array, dramatic performance improvements result.
We also propose a second approach, which we call a load balancing shuffle join. This approach assigns chunks
to nodes such that each node executes the join on the same number of cells. Our implementation uses integer
programming to find a chunk allocation that minimizes data movement subject to achieving an even distribution
of join work across our cluster nodes.

Figure 3: Join duration with varying skew and data shuf-
fling strategies.

In Figure 3, we evaluated merge join for a pair
of 2D 100 GB synthetic arrays that share dimensions
and logical chunk sizes. We varied the degree of skew
for our input data; for the uniform case all of our
chunks are of the same size. For each other case,
the per-node partitioning follows a Zipfian distribu-
tion, where the parameter denotes the skewness of
the input, and higher values denote greater imbalance
in the data’s distribution. As a baseline, we use the
traditional move-small strategy of sending the smaller
array to the nodes of the larger one for merge joins.
Figure 3 shows the time used for data alignment (DA)
and join execution (JE).

For the uniform case, all of the algorithms per-
form comparably. When we have slight skew (α =
1), the load balancer transfers about the same amount
of data as the n-way shuffle, but it has better paral-
lelism in the join execution, producing a slight win. As the skew increases, the n-way shuffle significantly
outperforms the other techniques, moving less and less data. For α ≥ 3, we consistently have a speedup of
3X. We are in the process of finishing a SciDB implementation for our algorithms, obtaining more complete
performance numbers, and writing a paper for publication on this work. We then expect to continue this work
by developing a complete optimizer that integrates this join processing with the other SciDB operators, and
addresses the ordering of cascading joins.

5 Visualization

Modern DBMSs are designed to efficiently store, manage, and perform computations on massive amounts of
data. As a result, more analytics systems are relying on databases for the management of big data. For example,
many popular data analysis systems, such as Tableau [9], Spotfire [10], R and Matlab, are actively used in con-
junction with database management systems. Furthermore, in [23] they show that distributed data management
and analysis systems like Hadoop [3] have the potential to power scalable data visualization systems.
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(a) Baseline heatmap visualization of NDSI data (b) Aggregating NDSI data at 10,000 points resolution

(c) Aggregating NDSI data at 100,000 points resolution (d) Aggregating NDSI data at 1,000,000 points resolution

Figure 4: Heatmap visualizations produced by ScalaR, using aggregation to reduce the NDSI dataset stored in
ndsi array. Dark areas represent high amounts of snow cover

Unfortunately, many information visualization systems do not scale seamlessly from small data sets to mas-
sive ones. A given visualization may work well on a small data set with a modest number of points, but will
paint the screen black when presented with an order of magnitude more data. Having the individual visualiza-
tion system deal with this scalability issue has two major flaws. First, code must be included in perhaps many
individual modules to accomplish this task, an obvious duplication of effort. Second, visualizations run on the
client side of a client-server interface, for which large amounts of data may have to be passed back and forth and
computing resources are more limited than on the server side of the boundary. Obviously, a shared server-side
system, running close to the DBMS, should prove attractive.

To address these issues, we have developed a flexible, three-tiered scalable interactive visualization system
named ScalaR [11] that leverages the computational power of modern DBMSs for back-end analytics and ex-
ecution. ScalaR decouples the visualization task from the analysis and management of the data by inserting a
middle layer of software to mediate between the front-end visualizer and the back-end DBMS. ScalaR has been
implemented for SciDB, but is back-end agnostic in design, as its only requirements are that the back-end must
support a query API and provide access to metadata in the form of query plans. ScalaR relies on query plan es-
timates computed by the DBMS to perform resolution reduction, i.e., to summarize massive query result sets on
the fly. ScalaR’s resolution reduction model can be applied to a wide variety of domains, as the only requirement
for using ScalaR is that the data is stored in a DBMS. For example, it has been used with SciDB to visualize
NASA MODIS satellite imagery data [1], LSST astronomy data [4], and worldwide earthquake records [8].

We have run several experiments with ScalaR, assessing the runtime performance and resulting visual quality
of various reduction queries over two SciDB arrays containing NASA MODIS satellite imagery data. Specifi-
cally, we visualized normalized difference snow index (NDSI) calculations over the entire world at various out-
put sizes (data resolutions). The NDSI measures the amount of snow located at a particular latitude-longitude
cell on the earth. As a baseline, we also ran the query on the raw data, with no resolution reduction.
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Figure 4(a) shows a visualization of the baseline for one of these arrays, which we will refer to as ndsi array.
The baseline query completed in 5.68 seconds. The ndsi array is a dense SciDB array, containing roughly 6
million data points. To perform aggregation reductions, we used SciDB’s regrid operation, which divides an
array into equal-sized sub-arrays, and returns summaries over these sub-arrays by averaging the array values.
Figures 4(b) through 4(d) are the visualized results of these four reduction queries. The smallest reduction
to 10 thousand data points was the fastest with 1.35 seconds. The other reductions were comparable to the
baseline. Thus we can see that ScalaR produces small aggregate summaries of the NDSI data very quickly, but
the resulting image is blurred due to the low number of data points in the result. However, at a resolution of
100,000 data points we produce a visualization that is is a very close approximation of the original with an order
of magnitude fewer data points.

Our current focus is twofold. First we are conducting a substantial user study of ScalaR at UCSB on MODIS
data and at the University of Washington on astronomy data. In each case scientists have agreed to test the
system on real world problems. Besides obtaining feature and ease-of-use feedback, we will obtain traces of
user activity. These traces will be used to train our middle tier prefetching system, whereby we plan to use
all available server resources to predict (and prefetch) future user data. Our system contains two experts, one
is a path expert, which predicts the direction and speed on user browsing and fetches forward along this path.
Our second expert looks for patterns in the recent user activity and then looks for similar patterns further afield.
Depending on their success, experts are given more or less space in the cache and more or less machine resources
to prefetch items. Our prefetching system is nearly operational and we hope to test it in the near future.

We also plan to extend ScalaR’s front-end visualizer, which currently requires users to specify all compo-
nents of the final visualization, including what resolution reduction technique to use, the data limit to impose
on the back- end, the x- and y-axes, the scaling factor, and coloring. Lack of experience with visualizing the
underlying data can make it difficult for users to make these specific visualization choices in advance, and can
result in many iterations of trial and error as users search for a suitable way to visualize the data.

To help users quickly make better visualization choices, we are designing a predictive model for identifying
the most relevant visualization types for a given data set. We will use the model to produce sample visualizations
in advance, reducing the number of choices a user must make and simplifying his visualization task.

To train our predictive model, we are creating a corpus of visualizations from the web. For each visualization
we have access to the data set that was used to create it. We will use this underlying data to learn what features
potentially correspond to specific visualization types. The visualizations are collected from a wide variety of
web sources, including the Many Eyes website [5], various ggplot2 examples [2], and the D3 image gallery [13].

6 Conclusions

This paper has presented the flavor of on-going array DBMS research. It presented our research directions in the
areas of elasticity, query processing and visualization. Other work in this area has been omitted because of space
limitations including provenance [24, 25] and on using the DBMS for the MODIS processing pipeline [18].
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Abstract

An important component in the fields of ecology and conservation biology is understanding the environ-
mental conditions and geographic areas that are suitable for a given species to inhabit. A common tool
in determining such areas is species distribution modeling which uses computer algorithms to determine
the spatial distribution of organisms. Most commonly the correlative relationships between the organ-
ism and environmental variables are the primary consideration. The data requirements for this type of
modeling consist of known presence and possibly absence locations of the species as well as the values
of environmental or climatic covariates thought to define the species habitat suitability at these loca-
tions. These covariate data are generally extracted from remotely sensed imagery, interpolated/gridded
historical climate data, or downscaled climate model output. Traditionally, ecologists and biologists
have constructed species distribution models using workflows and data that reside primarily on their
local workstations or networks. This workflow is becoming challenging as scientists increasingly try to
use these modeling techniques to inform management decisions under different climate change scenar-
ios. This challenge stems from the fact that remote sensing products, gridded historical climate, and
downscaled climate models are not only increasing in spatial and temporal resolution but proliferating
as well. Any rigorous assessment of uncertainty requires a computationally intensive sensitivity analysis
accounting for various sources of uncertainty. The scientists fitting these models generally do not have
the background in computer science required to take advantage of recent advances in web-service based
data acquisition, remote high-powered data processing, or scientific workflow systems. Ecologists in the
field of modeling are in need of a tractable platform that abstracts the inherent computational complex-
ity required to incorporate the burgeoning field of coupled climate and ecological response modeling.
In this paper we describe the computational challenges in species distribution modeling and solutions
using scientific workflow systems. We focus on the Software for Assisted Species Modeling (SAHM) a
package within VisTrails, an open-source scientific workflow system.

1 Introduction

The objective of this paper is to demonstrate the utility of scientific workflow tools in addressing the increas-
ingly complex data management issues associated with species distribution modeling (SDM). We start with a
brief overview of SDM and the currently available software options. We then explain two major factors that
are contributing to the increasing modeling complexity. First there is the growing array of SDM algorithms
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available, each having its own parameters, input file formats, and native software. Here the data complexity
resides in the metadata associated with the model runs, such as software version, parameter files, and input and
output that are not necessarily tracked in the SDM software. Second there is the complexity of data access;
which has become a particular challenge with the growing interest of projecting SDM results into the future by
using climate projections. We go on to explain how scientific workflow software, in particular VisTrails:SAHM
has helped ecological modelers deal with this complexity of the first factor and how we hope to use it to address
the second. The organizational capacity and provenance inherent to VisTrails:SAHM serve both to tie previ-
ously disparate tools together and maintain detailed records of the input used, output generated, and parameter
specifications and allows the modeling to take advantage of machine service architectures to construct models
using predictor layers stored on remote servers. We have found that organizing SDMs within the context of
scientific workflow simplify data and model complexities, thus allowing analysts more time to concentrate on
the ecological implications and useful application of their species distribution modeling activities.

2 Species Distribution Modeling: Overview and Challenges

Species distribution models (SDMs) are used to link species locations to spatially defined environmental vari-
ables. There are several algorithms available for fitting species distribution models which vary widely in their
origins and complexity from statistical algorithms such as classic generalized linear models (GLMs) [17] and
generalized additive models (GAMs) [13] to machine learning algorithms such as random forest [4] and boosted
regression trees [11] to network models such as artificial neural networks (ANNs) [19]. The primary focus of
the SDM literature and of the SAHM software is on observation-based determination of the correlative relation-
ships between an organism and its environment. Once quantified, these correlative relationships can be used to
gain insight into a variety of important ecological and evolutionary questions and model output can be projected
onto spatial layers to produce maps of the species’ ecological niche. Unfortunately, a large number of sources
contribute to uncertainty in the prediction of species distribution especially when projecting to new spatial or
temporal extents and when the input layers are often themselves output from other models. Approaches capable
of partially quantifying this uncertainty such as ensembles and maps or partitions of quantifiable uncertainty
have been recommended in the literature [8]. Proper model assessment often involve a sensitivity analysis on
several groups of factors including the models and the environmental data.

It has been argued that climate is often the most basic determinant of a species fundamental niche in that it
limits the species’ range at the broadest spatial scale [2]. There has been a rapidly growing interest in projecting
species distribution models onto future climate scenarios to inform management decisions under a changing
climate. In this arena, the quantification or exploration of uncertainty based on the various sources is criti-
cal and the most favorable approach involves producing species distribution maps for various combinations of
SDM models, emissions scenarios, and coupled Atmosphere-Ocean Generalized Circulate Models (AOGCMs),
downscaling methods, as well as any other known sources of uncertainty. This situation creates an explosion in
computation time and the data storage requirements for fitting SDMs. One recent paper, for example, generated
8400 projections to describe the uncertainty in fish assemblage projections [5]. The modules we are develop-
ing within SAHM are designed to remove the programming and data storage challenges that limit the use of
recommended practice for many ecologists.

The scientific data management challenges encountered in species distribution modeling stem from two main
factors. First is the number of disparate tools required for a typical SDM workflow. The second stems from the
difficulties encountered preparing and using the gridded environmental inputs. While neither of these factors is
unique in computational science, certain aspects of SDM make it a good candidate for implementing tools and
practices for robust scientific data management. First is the widespread acceptance and use of SDM methods
for many ecological research and management questions. The second is lack of experience and training among
many practitioners of SDM in the tools and techniques used for scientific data management. Additionally, with
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SDM modeling the results can be used to make controversial decisions with respect to endangered or invasive
species and proper documentation of the modeling workflow is helpful to review and defend results.

2.1 Integrating SDM Tools

Several tools are currently available for modeling species distribution. We were able to determine the most com-
monly utilized tools based on a recent survey of SDM software use by ecologists [15] and use this information to
review the available tools. Due to the complex and multidisciplinary workflows required for SDMs it is unlikely
that the entire workflow could be carried out in any single software package with the exception of possibly R,
but this would require significant programming skill. Also, due to the various components, it seems practical
that species distribution modeling requires expertise in climate models, remote sensing, GIS, the species being
considered, and statistics techniques. Further, if the model output is to be applied to natural resource man-
agement questions, expertise in that management domain is also required. All of the software packages with
GUI interfaces demonstrated limited flexibility in terms of either modeling for only one type of response, with
one modeling algorithm, not providing opportunities to explore the data, or not producing detailed graphics
for model evaluation. Most packages with GUI interfaces focused on the model fitting and evaluation com-
ponents of the workflow but require a separate set of tools and expertise to perform the preprocessing or data
layer preparation steps. These issues are only compounded for the ecologist hoping to understand the nuances
of how models differ or hoping to map patterns in uncertainty or determine when the spatial projections are
extrapolating beyond the environmental calibration space.

It is important to emphasize that the full SDM process with climate inputs will generally need to integrate
a variety of tools at different points in the process. For example, a scientist might use a web interface to select
and download the required climate inputs such as the USGS Geo Data Portal (GDP) [3]. She might then use a
custom script to process them into the format required for their model such as a toolbox in ArcMap. The model
is then run using a specific GUI tool such as Maxent. The steps to select the final model and analyze model
performance might be done with custom code, perhaps written in R. The modeling is also likely to involve
decisions and deliberations by the analyst(s); which may or may not be rigorously documented. The final model
output might then be reformatted and visualized in a final GIS program such as ArcMap. This type of workflow
often presents challenges with tractability, transportability, documentation of methodology, and repeatability.

2.2 Handling Input Data

A primary data need of species distribution modelers are the geospatially referenced gridded environmental data
often referred to as layers which are used as inputs to SDMs. These data can include traditionally mapped
GIS layers such as land cover, remotely sensed products such as those from Moderate Resolution Imaging
Spectroradiometer (MODIS)[1], and the subset that we will focus for the remainder of this paper on historic and
modeled climate products. These climate data can represent interpolations of historical readings such as PRISM
(Parameter-elevation Relationships on Independent Slopes Model [12]) or modeled hindcasts or projections of
future climate such as those produced under CMIP5 (Coupled Model Intercomparison Project Phase 5 [18]). The
native formats and schemas of these data generally fall into a limited number of standards including NetCDF
(network common data form) with CF (Climate and Forecast) metadata conventions and HDF5 (Hierarchical
Data Format, Version 5). Due to the large data volumes inherent to global and high resolution downscaled
regional climate models, the data often come tiled into discrete files either spatially or temporally. The size of
individual climate datasets is generally reasonable but cumulatively they can become quite large (100s of GBs
to 10s of TBs). Although these data generally adhere to common data schemas, scientists and analysts still often
run into novel formats or nuances that require ad hoc tools and workflows. The ability to utilize these non-
standard data formats is often beyond the capabilities of researchers without strong technical and programing
skills.
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These demands have led to the development of technologies aimed at facilitating data use by scientists
through distributed storage and remote web service based access. Examples of these technologies include
OPeNDAP, (Open-source Project for a Network Data Access Protocol) [22] , THREDDS (Thematic Realtime
Environmental Distributed Data Services) [24], and Open Geospatial Consortium (OGC) Web Coverage Service
(WCS)[14]. In general these technologies provide web service protocols for remote data access and discovery
and provide capabilities for spatial and temporal grid subsetting. These data delivery protocols can be further
extended by providing data processing services which leverage remote computational resources, for example,
The OGC Web Processing Service (WPS) Interface Standard [14] or the USGS Geo Data Portal [3].

There are currently a number of excellent tools available for researchers who need to consume scientific
data from these types of services. These include web-based interfaces, GUI tools, application specific toolkits,
and APIs for a variety of programing languages and libraries (Matlab, R, Python, GDAL, etc). While these
technologies have gained wide acceptance and use within the earth science community, their use is not currently
widespread among ecologists and biologists. This might be partly due to the lack of support for these tech-
nologies in many of the current widely-used ecological modeling tools, including those for SDM. Integrating
service-based climate data acquisition or processing currently involves either custom code to obtain the data or
a multi-tool workflow that can be cumbersome to run and document. By better integrating these technologies
with existing tools and workflows, the process could be streamlined and standardized while at the same time
realizing better computational efficiencies for species distribution modelers as well as increasing the integration
of climate science into ecology and natural resource management.

It is important to note that the temporal format, i.e., discrete daily or monthly time steps, of most climate data
must generally be summarized prior to its use in SDMs. This temporal summarization can involve one of several
common algorithms, for example, the 19 Bioclimatic (BioClim) variables which capture annual temperature and
precipitation patterns needed to model species distributions. Alternately modelers might need custom climate
temporal summary algorithms based on the life history of the species being modeled. The flexibility required
in generating these custom summaries precludes pre-calculating and caching the intermediate results. But at the
same time these summarizations result in data volume reduction by several orders of magnitude.

3 Scientific Workflows and Provenance for Species Distribution Modeling

Scientific workflow systems provide a context in which to specify computational processes which integrate ex-
isting applications according to a set of rules [6]. Within this context, scientific workflows allow researchers to
model complex analysis processes at various levels of detail and systematically capture the required information
necessary for reproducibility and sharing; collectively referred to as workflow ”provenance” [7, 21]. When ap-
plied to species distribution modeling, scientific workflow software provides an opportunity to integrate existing
SDM modeling routines seamlessly with software to ingest data, preprocess those data, and visualize model
results.

3.1 The VisTrails:SAHM System

One current implementation of SDM integrated with scientific workflow systems is the SAHM package which
runs within VisTrails [9, 10, 25]. VisTrails provide an approachable and extendable graphical user interface,
and also provides sophisticated tools for workflow provenance capture and visualization. VisTrails is written in
Python, a programing language which has many powerful and mature packages for scientific data processing
including SciPy, NumPy, and matplotlib. Additionally there are efforts underway to enable complex climate
data acquisition, processing, and visualization in VisTrails, namely the VisTrails Package UV-CDAT (Ultrascale
Visualization - Climate Data Analysis Tools) [20, 25].
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Figure 1: The VisTrails:SAHM User Interface. 1. preprocessing and data clean up, 2. merging input obser-
vational data with available covariates, 3. preliminary data exploration, 4. fitting correlative models, 5. model
evaluation, comparison, and selection. Item 0 in the figure represents the remote data access and climate data
summarization which is not currently implemented in VisTrails:SAHM

SAHM was developed as a VisTrails package to expedited the process and formalize the disparate tools
required to build complex SDM workflows. Developing our habitat modeling software within VisTrails offered
several advantages over previous tools. We are now able to develop template workflows that ecologist can
use as starting points in their own analysis. Modifications to workflows are accomplished by dragging and
dropping new modules onto the canvas and connecting these to the existing workflow components rather than by
modifying scripts. These modifications can be annotated and tracked through the history view and we can easily
compare differences between workflows. Within this framework much of the complexity of data management
and multiple tool workflow integration and are hidden from the user. By hiding this complexity we were able to
facilitate the use and coordination of fairly disparate technologies currently used in SDM. Fortunately, many of
the most commonly used tools for SDM are script-based (Matlab, R, Python), have a scripting API (ArcMap,
IDL), or can be run from the command line (Maxent and GDAL), which facilitates their incorporation into
scientific workflow software. Figure 1 shows an example SDM workflow in VisTrails:SAHM and will be used
here to highlight the complexities of 1) combining multiple analysis tools and 2) ingesting and handling a large
array of potential predictor layers. (Additional details on this example workflow and the VisTrails: SAHM
package are given in Talbert and Talbert [23]). The tools incorporated in SAHM can be broken loosely into five
components (see figure 1): 1. preprocessing and data clean up, 2. merging input observational data with available
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Figure 2: VisTrails:SAHM Output displays and compares continuous and binary maps as well as pertinent
evaluation metrics from several models

covariates, 3. preliminary data exploration, 4. fitting correlative models, 5. model evaluation, comparison, and
selection. Each module within the SAHM package allows the user to customize the step to meet their need and
many modules allow the user to visualize and explore the data allowing subsequent decisions to be informed by
previous modules in the workflow.

Another advantage to integrating current SDM tools in the VisTrails platform is the ability to incorporate co-
ordinated visualization of multiple model outputs from multiple model runs. Figure 2 show the VisTrails:SAHM
output from four model runs displayed in the built-in VisTrails spreadsheet. Output content is synced across mul-
tiple cells to facilitate model comparison. While many other SDM tools provide visualization options the ability
to easily organize and traverse numerous outputs is unique to this platform.

4 Future Work

VisTrails:SAHM is a first step towards helping ecologists use increasingly complex SDM workflows and tool
sets while also maintaining the crucial provenance and repeatability needed for defensible science. VisTrails also
has the potential to provide tractable solutions for the current and emerging input data access and computation
demands that SDM scientist encounter. The scope and context of each SDM research question can require
specific data management strategies to maximize data acquisition and processing efficiency. These strategies
are dependent on several factors including the spatial and temporal extent of the study, the number of different
species being modeled, how many iterations will be run, the downloading and processing capacity available
locally, and the technical expertise of the researcher. In this section we present four use cases which demonstrate
different strategies for handling data acquisition and processing. The first strategy presented, maintaining a local
copy of the input data, is the one most often used by species distribution modelers currently. It is presented here
as basis for comparison with the other three.
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4.1 Input Data Complexity

The traditional model for data management in SDM involves downloading or otherwise obtaining the required
gridded spatial inputs and then preprocessing and storing them on a local computer or network (see Figure
3). Once the store of local data has been created there is maximal flexibility in how the data are processed.
Given adequate computational resources locally, the processing of large areas, numerous SDMs, and multiple
iterations becomes feasible. One drawback of this strategy is that the effort to store and process the data locally
can be substantial and the disk space required to maintain local copies of the data can be limiting. Each time a
new set of climate models is released, this data management effort will need to be duplicated in full. Another
drawback is that the resulting workflow is not transferable to researchers at other locations unless they also
obtain an identical copy of the input datasets and directory structure. This can limit repeatability of individual
experiments. Using scientific workflow software to manage the initial input data acquisition and preprocessing
can solve issues related to transferability of the workflow but does not overcome limitations in data acquisition
bandwidth, storage, or processing limitations.

Figure 3: Traditional approaches to climate data management. (1) - user maintains a local copy of input data,
(2) - small subsets of data are accessed remotely as needed using OPeNDAP.

A second approach to data acquisition in SDM is to obtain just the spatial and temporal subset of the gridded
data needed for a given analysis. This is illustrated in Figure ??. Many climate and remote sensing data are
available in a tiled format which allows a user to download just the individual tiles needed. Identifying and
obtaining the appropriate tiles can be cumbersome depending on the distribution method and available tools.
One approach to facilitate getting a subset of the data is to use a service-based interface to specify the data
needed, for example, WCS or OPeNDAP. While these technologies might be unfamiliar to many ecologists their
implementation details can be hidden within user-friendly SDM applications. Implemented correctly, this tool
could automatically download and process the appropriate data based on the spatial and temporal extent of the
other SDM inputs. This type of solution works especially well for research questions on a local to regional scale.
By implementing this strategy in a scientific workflow-based tool, the inherent complexity of the current tools
can be hidden from researchers using SDM.

One concern with implementing a tool that automates service-based distribution of subsets of climate data
is that it can lead to inefficiencies and duplicated data downloads if caching is not handled appropriately. For
example, a single routine to produce a gridded climate summary might start with a call to a service to obtain the
required input data. Once the appropriate summary has been generated this routine might delete the downloaded
climate inputs to free up disk space. If there is only a single summary to produce, this strategy works fine, but
if there are numerous summaries that need to be produced they should not each be downloading the required
inputs redundantly. Within a single workflow, this level of optimization is relatively easy to set up nut across
workflows and tools this data management can be much harder to manage. Optimally a tool would implement a
persistent cache of previously downloaded inputs with a database that tracks multiple downloads of overlapping
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but non-coincident spatial extents, total cache size, and differences between the cache contents and the data
available from the data server [16].

Since SDMs generally require only a temporal summary grid of individual climate models, a third approach
to data acquisition is to use a web service to deliver only this summary grid. Given that climate models can have
hundreds to thousands of daily or monthly time steps, this strategy can represent several orders of magnitude
reduction in data volume that must be downloaded. Some climate summaries such as decadal Bioclimatic
Variables (Bioclim) are sufficiently general that they can be generated ahead of time and delivered using standard
web data services such as WCS and OPeNDAP. Unfortunately, many SDM research questions require novel
climate summaries which cannot be generated ahead of time. Using a Web Processing Service allows for these
summaries to be calculated as needed on a remote server. If sufficient computational resources are available
on the server hosting the remote processing, there is also the potential to realize a significant reduction in
computation time versus calculating these summaries locally. One example of this type of WPS is currently
being developed at the USGS Geo Data Portal (GDP) [3]. This WPS accepts custom parameters for the BioClim
algorithms. These parameters are used to generate a server side processing job which produces and returns
the desired custom summary grids. The ability of this strategy to scale to non-trivial problems given current
infrastructure has yet to be tested. But potentially it could extend the subset of SDM research problems handled
by the second option above to those covering a much larger spatial extent. If the processing was happening
locally to the data many of the issues of data caching would not be a problem.

Figure 4: OGC Web Processing Service delivering custom climate summaries (1) or complete SDM model
results (2)

A fourth approach to data management in SDM is to transfer even more of the processing workflow to a
remote server. Instead of delivering custom climate summaries it is possible to engineer a WPS which runs an
entire SDM workflow and returns the final model outputs. In this case, the species occurrence data becomes a
parameter that is transfered to the remote server hosting the WPS along with detailed processing instructions. An
advantage to having the full workflow details captured by a workflow management software such as VisTrails
is the ease by which a detailed complex workflow can be packaged and transported. In this case, all relevant
information about the workflow is stored in a compressed XML document. By scaling the data storage and
computation resources available to the WPS it is feasible to use this strategy to solve many SDM data access
issues. Implementing this solution has significant challenges though, including the trade off between compu-
tational flexibility and security on the remote server, managing large data hosted at multiple sites, and various
other implementation details, scientific workflow software can be useful in in resolving some of these issues and
hiding the unnecessary details from scientists.
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5 Conclusions

Within the field of SDM the use of service based data acquisition and processing technologies is currently un-
derutilized. This partly stems from the fact that the tools often require programing skills to be utilized effectively
and partly because the need to work with large and unwieldy climate data is still emerging in the field of SDM. As
more and more research questions require analysis of climate data the integration of these technologies will nec-
essarily become more widespread. Given that ecologists and biologists often do not have the strong background
in scripting required there is a developing need to extend current tools to take advantage of these technologies.
In order to gain widespread usage in the community any tools or workflows developed should be user-friendly,
transparent, and flexible. By building this next generation of SDM tools in a scientific workflow management
system we can achieve this goal while also adding provenance capture, repeatability, and transferability.

Our development efforts have so far focused mainly on porting and optimizing exiting SDM tools for the
VisTrails framework. This effort has been well received within the community. We are currently working to
extend this framework to take advantage of data provided via a web service as well web processing services.
The final phase of our work will extend this further to develop the four data acquisition approaches in which the
vast bulk of the data management and processing is hosted remotely on high performance systems.
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Abstract

High Performance Computing is becoming an instrument in its own right. The largest simulations per-
formed on our supercomputers are now approaching petabytes. As the volume of these simulations is
growing, it is becoming harder to access, analyze and visualize these data. At the same time for a broad
community buy-in we need to provide public access to some of the simulation results. This is becoming
another Big Data challenge, where we have to move the analyses and visualizations right where the data
is. The paper will discuss the challenges in creating such interactive numerical laboratories.

1 Introduction: Data in HPC

1.1 Motivation

The nature of science is changing, it is increasingly limited by our ability to analyze the large amounts of
complex data generated by our instruments and simulations: Jim Gray’s “Fourth Paradigm” of science [3, 14].
The largest numerical simulations use tens of millions of hours of CPU time, yet most of the analysis must
be performed while the simulations are running, since the output data are too large to be moved or stored
for reuse. As a result, it is difficult, if not impossible, to confront model predictions with the exponentially
increasing amounts of observational data. Scientists in many disciplines would like to compare the results of
their experiments to data emerging from numerical simulations based on first principles. This requires not only
that we run sophisticated simulations and models, but that the results of these simulations are available publicly,
through an easy-to-use portal. We have to turn the simulations into open numerical laboratories where anyone
can perform their own experiments.

Integrating and comparing experiments to simulations is a non-trivial data management challenge. Not every
data set from these simulations has the same lifecycle. Some results are just transient and need to be stored for
a short period to analyze, while others will become community references, with a useful lifetime of a decade
or more. As we have learned over the years, once the data volume reaches a certain size, we have to move the
analysis to the data [24, 25] rather than the traditional approach, which moved the data where our computers
were. With these large data volumes we have to approach the data in a fully algorithmic fashion — manual
exploration in small files is no longer feasible.

Copyright 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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1.2 The emerging simulation data challenge

There is an ongoing effort world-wide to build an exascale computer by approximately 2018. This reflects
a scale-up by a factor of 30 compared to the top machines in late 2013. Some of the largest particle-based
simulations today already exceed a trillion particles. If we only store their positions and velocities, and a single
particle identifier, we have to save 56TB for each snapshot, uncompressed. Needless to say, that this in itself
represents a challenge.

At the same time, fewer and fewer codes scale to run well on millions of cores, and as a result, fewer and
fewer people will use these ever larger systems. There will be an increasing gap between the wide science
community and these top users. It is increasingly important to create usable science products that can be used
by a much broader pool of users; otherwise community support will be soon endangered. Thus, we postulate
that it is extremely important to identify a mechanism through which data products from the largest simulations
in science can be released, publicly shared and used, potentially over extended periods.

1.3 Data lifecycles of simulations

On the Fly Analysis

Most truly large numerical simulations are analyzed on the fly. The analysis tools are integrated with the simu-
lation, and the derived data products are computed while the simulation is running. As these quantities represent
only a small fraction of the data, it is easy to save these values often to disk. Full restart checkpoints are thus only
generated quite infrequently. The disadvantage is that if a new analysis idea emerges after the run is finished,
the whole simulation needs to be redone.

Private reuse

Sometimes a few tens of snapshots are saved to scratch disks, tightly coupled to the supercomputers, and a
occasionally a segment of the simulation can be regenerated later from restarting from the nearest snapshot.
This is typically done by the same team who ran the original simulation.

Public reuse

There are selected cases when the simulation outputs are made available, usually done through sharing the
limited number of snapshot files. These are typically placed at a public file server, and can be downloaded at
will. However, this model of data sharing poses practical limits to data downloads at a few terabytes at most.
The limiting factor is usually the network bandwidth, although the available storage at the user’s end is also a
problem.

Public Service portal

Sometimes the simulation outputs are made available through publicly available services, enabling the users
to perform either some extractions or computations over the data. This idea of “virtual data” has been around
for more than a decade, but it has found limited uses. The Earth Science community has used OpenDAP [19]
to expose large data sets and enable a RESTful URL to subset and aggregate the data. In astrophysics, the
Millennium Database [16] has been the forerunner of such efforts. In this scenario, the creation of the public
service portal and its complex functionalities requires a substantial effort, thus it is only worth doing if the data
set will remain public for an extended period, at least a few years.
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Archival and long-term curation

There are very few simulations that have reached this stage of their lifecycle. Here an extra challenge is that not
every simulation will be equally used by the public, and over the years; some of them will fade into irrelevancy
while others emerge as a community reference. It is these latter simulations which need to be kept for a long time,
even if just for comparison and reference. For such collections, used by many different refereed publications,
reproducibility of these analyses will become another reason to keep the data, even when better and higher
resolution alternatives become available. However, as the price of both storage and computation are expected
to follow the current trends and become cheaper every day, these “legacy” data sets will comfortably fit in the
shadow of the latest and best simulations.

1.4 Petascale numerical laboratories

Even though the largest simulations today are approaching hundreds of billions of particles or grid points, the
size of the output generated is typically a few tens of TB, rarely exceeding 100TB and almost never reaching a
PB. As already mentioned above, there are many reasons for this. The larger the computer, the more cumbersome
checkpointing becomes, and while the biggest machines have a Tbit/sec aggregate sequential bandwidth to their
storage, copying 100TB will still take 800 seconds, too long to do often, limiting the number of snapshots. As
the interconnect speeds are not going to increase by a factor of 30-100, it is likely that this limitation remains in
place, thus even once we have exascale machines, the outputs will still remain in the few PB range.

When the primary consideration is checkpoint restart, it is enough to have a small number of snapshots.
On the other hand, if the goal is to be able to reconstruct the fine-grained spatial and temporal history of the
simulation, and look at any part in detail, it is important to match the high spatial resolution with an appropriate
temporal resolution, i.e. a large number of snapshots. For example, if we simulate a Milky Way-like galaxy,
and want to study its dynamics in detail in our laboratory, we need to save outputs more frequently than the
characteristic rotational period of 108 years. This means that even the simulations need to be designed and run
differently if the target is to create a long-lived numerical laboratory used by hundreds of scientists.

2 The Challenges

The premise of this paper is that due to community pressure and demand for repeated posterior analyses some
of the best and largest simulations will be turned into public numerical laboratories. This process presents
nontrivial challenges for every step of the simulation and reuse process. In particular, we need to figure out

1. Where to store the data for the reuse

2. How to move the data to this location

3. How to look at it, how to render peta/exabytes

4. How to interface to the data

5. What analysis patterns will be used

6. What architectures to use for the posterior analysis

In the following subsections we will look at these in some detail.
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2.1 Moving the data
Storage attached to supercomputers has a premium. In order to minimize the overhead due to checkpointing,
this storage has to be very fast, also on the fast interconnect. The primary function of this storage is to dump
the contents of the RAM into large sequential files at maximum speed. To keep petabytes of data for months to
years and running interactive analyses by hundreds of users requires a different architecture.

The most important aspect of this is that the long term data storage should use inexpensive storage technol-
ogy so that it can keep accumulating important data. This facility (we will call it Numerical Laboratory from
now on) has to be interconnected with a high speed network to the primary data site, the HPC machine. Today,
many large data sets are moved via “sneakernet” [11], i.e. copying the data onto disk drives and shipping or
carrying the drives physically. This works for data that fits onto a small number of hard disks, up to about 10TB,
or 3 disks. Beyond this, mounting tens of disks, partitioning, and copying the data, and keeping track of what is
where becomes impractical.

Network transfer of larger files is also non-trivial. Over a 10 Gbps link (assuming wire speed) we can move a
100TB data set in about 80,000 sec, or 1 day. Over such a link realistic transfer speeds are more in the 6Gbps/sec
range. It is important to note that these transfers must be done from disk-to-disk. Both ends of the transfer must
have fast enough I/O to support 1GBps disk reads and writes. Once transfers take more than a few hours, often
they get interrupted. Luckily, user friendly technologies, like Globus OnLine [10] are emerging which support
automatic recovery from such errors. These are maximizing the network throughput by enabling parallel striping
of the transfer.

Many of the national supercomputer sites are in the process of upgrading their connections to 100G. Both
ESNet and Internet2 are moving their backbones to 100G. Using these, one can theoretically move a PB in a
day. Internet2 provides Layer 3 10G services, but for a while the 100G connectivity will remain Layer2 only,
making the routing more cumbersome.

Local networking rules and firewalls can have a dramatic impact on the transfer speeds. Many institutions
are setting up demilitarized zones (DMZs) to isolate a segment of their network that can talk to the outside
at high speeds. OpenFlow [20] is emerging as a mechanism to have applications configure and negotiate fast
virtual circuits across the continent. So, while it is still rather painful today to move data exceeding 100TB,
this capability is expected to become increasingly available to a wider set of institutions, while PB-scale data
transfers will still be relatively limited.

2.2 Interfacing to the data: files or services?

The simplest thing is to simply provide access to the simulation files. This is the most frequent mechanism
used today to disseminate outputs. However, these large files store the data in large contiguous chunks, usually
partitioned following the domain decomposition, in a packed (often proprietary) binary format. Access to the
data this way is only useful if the simulations are small, or all the data is loaded back into memory. If each
snapshot is tens of TB, there are not many user-owned computational facilities that can support such an amount
of RAM. Also, the user of the data has to understand the data formats, units, organization, domian decomposition
and boundary conditions. Often mastering these requires several days, in not a week, of preparation and coding,
prohibitive for a casual user.

Having a service oriented access with a finer granularity has a lot of advantages. Data can be provided
“shrink-wrapped”, with calibrations applied, in proper physical units, like the archive for the Sloan Digital Sky
Survey [12]. Aggregates can be computed and subsets can be extracted on demand. The result is that the user
performs the low level data processing right on top of the data, inside the Laboratory, reducing the volume to be
transmitted across the wide area network. Of course, this requires enough computing power tightly integrated
with the data storage. On the other hand, from a community perspective the individual users can run their
petascale analyses form a laptop, rather than forced to build their own facility, so this may be a reasonable value
proposition for the community as a whole.
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2.3 Access patterns for analysis

There are several distinct access patterns how a posterior analysis will access the simulation data.

Global analytics

These are analyses that require access to the whole simulation volume. Examples of these are computing the
Fourier transform of a scalar field, like density, spatial correlation functions, or computing the density for a
particle-based simulation using a smoothing kernel. These operations are quite similar to those performed on
a supercomputer during the simulation itself (Poisson solvers, etc). As the global data access touches a very
large fraction of the data, this pattern is optimally satisfied by loading the sequential dumps of the snapshots.
As data sizes grow, running these analyses over a heavily partitioned parallel system is creating an increasing
communication overhead, e.g. the transpositions needed for the 3D FFT.

Rendering

Many other analyses are similar to a rendering of a subvolume. These of course include visualizations of large
subsets. In cosmology in particular, an interesting challenge emerges: as we create a rendering of a light cone in
the Universe, create an image of what a virtual telescope would see, we have to account for the finite speed of
light within the simulation. As we look farther and farther along the line of sight, we see simulation at an earlier
time. This means that unless we have many snapshots stored, such renderings are impossible to recreate.

The effects of gravitational lensing is currently computed by collapsing the distribution of mass along the
line of sight within the simulation onto idealized slabs, where the projected mass density acts as a refractive
index, to scatter light gravitationally. This is really a computer graphics problem, rendering the mass onto
multiple planes and then doing a parallel ray-tracing.

Another problem resembling rendering is computing the pair annihilation of dark matter particles in a sim-
ulation. The collision rate of particles is proportional to the density squared, and the cross section can have an
additional dependence on the velocity of the particles. Thus, the resulting maps can be very sensitive to the local
environment. However, this is still a rendering problem, where we take a scalar field attached to a particle based
support and create a projected map.

Typically these patterns require accessing a substantial fraction, but not all, of the simulation volume. Vari-
ous spatial data structures, like octrees, space filling curves, can help in optimizing the amount of data to be read
into RAM. A spatial index with a flexible geometric search capability is required for efficient data access. GPUs
can be extremely useful in these computations.

Localized access

There are computational tasks which require a very localized access. For example in order to compute the fluid
velocity at a given location, we need to extract a small volume of a few grid cells in each direction, the size of
our kernel, and then compute an interpolated value. Such immersive computations have been used to create a
smart laboratory for turbulence [27].

In cosmology simulations often we run the simulation with collisionless dark matter only. Then a friend-of-
friends algorithm is used to group of particles into halos and subhalos. Some of these will be called galaxies.
Using the merger history of these groups one can heuristically estimate what the physical properties of these
galaxies would be. In the Millennium simulation this is precomputed, However, there is a growing need to be
able to perform these computations on-demand, changing the heuristic rules leading to a galaxy and understand
their impact on the final ensemble of observable galaxies.

These patterns all require a very fine-grained localized access to small parts of the data. Here databases with
a high-resolution spatial index can make a huge difference in enabling fast data reads.
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2.4 Immersive access, virtual sensors

For a scalable analysis we need to come up with a data access abstraction or metaphor that is inherently scalable.
For the user it should not matter whether the data in the laboratory is a terabyte or a petabyte. The casual user
should be able to perform very light-weight analyses, without downloading much software or data. Accessing
data through the flat files violates this principle: the user cannot do anything until a very large file has been
physically transferred.

On the other hand one can create a so-called immersive environment, where the users can insert immersive
virtual sensors into the simulation [18]. These sensors can then feed data back to the user. They can provide
a one-time measurement, they can be pinned to a physical (Eulerian) location or they can “go with the flow as
comoving Lagrangian particles. In this case, assuming that the sensors can access the data server side very fast,
the only scaling is related to the number of particles.

By placing the particles in different geometric configurations, users can accommodate a wide variety of
spatial and temporal access patterns. The sensors can feed back data on multiple channels, measuring different
fields in the simulation. They can have a variety of operators, like computing the Hessian or Laplacian of a field,
or applying various filters and clipping thresholds.

This pattern also enables the users to run time backwards, impossible in a direct simulation involving dis-
sipation. Imagine that the snapshots are saved frequently enough that one can interpolate particle velocities
smoothly enough. Sensors can back-track their original trajectory and one can see where they came from, all
the way back to the initial conditions. We can also imagine cases where one simply retrieves the velocity of
the sensor particles, and applies a special equation of motion involving other factors (inertia, friction, stochastic
perturbations) and move the particles externally, possibly on a users laptop, anywhere in the world. This simple
interface can provide a very flexible, yet powerful way to do science with large data sets from anywhere in the
world.

2.5 Data organization, streams and indexes

Much of the efficiency of the numerical laboratory will depend on how the data is organized and laid out on the
storage devices. If we talk about several petabytes of data, the only real storage option is using an array of hard
disks. These are still mechanical device. They speed of revolution has remained largely constant over the last
decade, and the inexpensive commodity drives have settled at around 7200 rpm. As the density of disk platters
grows, the disk capacity increases by the inverse square of the magnetic domain size. The read speed increases
as the inverse, thus it takes longer and longer to read the ever larger disk platters, disks are becoming sequential
devices.

For large data volumes we need first of all a maximally sequential layout. As many numerical simulations
cover a 3+1D domain, simply storing a large subvolume as a separate file, ordered in x,y,z is less than optimal
for small localized accesses: for each small subvolume we need to perform many separate reads, spaced by a
stride apart, for a single extraction. This results in a very poor cache localization, and many random accesses on
the external disks.

Space filling curves have been used for a long time [22] as a cache resilient way to access such spatial data.
Indeed, using a Peano-Hilbert or a Morton curve enables a mapping of a 3D region to a contiguous sequential
location, providing a handle to maximally sequential data access. The key of the space filling curve can then be
used as an index into the physical data store, and every subvolume can be represented as a set of range queries
over the key. Such operations are highly optimized in relational databases, if this is mapped onto a clustered
index (primary key).

At the same time, in particle-based simulations the need often arises to follow trajectories of individual
particles. In this case we need an inverted index. Rather than storing the whole date over again, a rather
expensive proposition for petabyte data sets, one can create highly compressed indexes, which use the fact that
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particles move with a finite velocity [6]. This way we can represent the whole trajectory of the particles in a
fraction of the original storage.

2.6 Visualization and Rendering

A visual exploration of the data is a powerful tool of science. While we have immersive caves and large video
walls with tens of millions of pixels near our supercomputers, they are not helping much a wider community.
For many scientists the most useful aspect of visualization is to help them decide whether an idea or hypothesis
is to be discarded or worth further exploration. The faster data can be transformed and looked at, the faster
the whole feedback loop from the conception of a new idea to transformation and rendering can be performed,
the more useful it becomes. Today much of the user-side visualization is done with a few open source toolkits,
executed near the user, typically on a workstation with a mid to high end GPU. This approach, while it can give
a fast turnaround, is unfortunately not scalable to large data volumes.

Fast GPUs have changed the landscape for scientific visualization. Their rendering speeds are such, that
most visualization projects are limited by the bandwith for data to be loaded into GPU memory. For this reason,
just like for Big Data analytics where we have to execute our workflows as close to the data as possible, large
scale visualization must also be performed right on top of the data [26].

For petabytes, only remotely driven visualizations will have the bandwidth to access the underlying data
sets. This approach is aided by the fact that we have reached a point when user devices can reliably access
streaming content at speeds allowing HD video almost anywhere. In this case we only have to move the result
of the rendering, not the source, reducing data volumes by many orders of magnitude.

The data access patterns necessary for petascale visualizations have several algorithmic and architectural
consequences. The visualizations must be done in parallel, where the distributed components are co-located
with a distributed data storage. At the same time, visualizations can have very different locality requirements.
In some cases we need the data at a small granularity, where indexes based on space filling curves work very
well. In other cases we need a large fraction of the subvolume, organized in (x,y,z) order. Given the ultra high
speeds of the GPU on-board RAM, reorganizing data in GPU memory is much faster than regular RAM, thus
loading the data in memory in (almost) arbitrary order, and then copying into its final location on the GPU works
extremely well in practice [5].

3 Architectures of Numerical Laboratories

One might first think that given the recent proliferation of commercial cloud solutions will bring an immediate
solution to the table. There are several interesting and important aspects of these cloud architectures. The most
important is that they do not try to be everything for everybody. Due to their commercial nature they have been
built with a razor-sharp focus, with several major tradeoffs in their design.

These are extreme scalability, economies of scale and resilience. The clouds built by Amazon, Google and
Microsoft are all based on the principle that components will fail, and systems have to survive and recover, and
data cannot be lost. This is accomplished by massive data replication and excessive monitoring. The commercial
clouds must also be cheap to operate.

The data in these clouds is largely unstructured, from web content to click streams. Also, the connectivity
of the data is quite different: mostly it is large graphs describing links or social networks. Much of the software
framework for the processing reflects this necessity.

Scientific data is quite different. Much of our data, especially the simulations is highly structured, with well
defined schemas and data structures. There are well-defined 2 and 3D domains, with distinct timesteps, and
boundaries. With the large data volumes, there are similarities as well, especially how in science we are also
exploring phenomenological correlations rather than only searching for strict, causal relationships. Nevertheless,
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due to the more structured nature of scientific data, the computations can utilize vectorizable architectures, like
GPUs much better.

The economics is also different. Pricing for the external users of the commercial clouds is driven by the
perceived business model of a small, but dynamically growing business, which is generating revenue from
efficiently using data analytics over small to mid-scale data volumes. The prices for compute cycles are generally
very competitive when compared to the costs of running your own.

The same cannot be said about storage, once it reaches Terabytes. The monthly cost of a TB of storage on
the commercial clouds is roughly equal to the price of a TB disk drive [21]. Of course, in the cloud one gets
redundant storage, service guarantees and the costs of operations are included. But there is also a download
charge, and access costs apply. So, for many science projects today putting data in a commercial cloud on a pay
as you go basis is simply not affordable. Also, bandwidth between the data and compute is marginal. As a result,
very few mid to large scale data sets have been placed into the cloud, other than a few experiments, or making
use of occasional free storage space by the providers. It is important to note, that this is entirely a function of
the pricing should cloud storage prices drop by order of magnitude, for mid-size data sets in the few tens of TB
this could be a very attractive proposition.

For data sets in the 100 TB to PB range, getting data into the cloud is hard. The costs per year are close to
1M, and structured access to the data is not as fast as one can achieve with a dedicated system.

3.1 Amdahl number

It is good to have a simple characterization of the I/O needs of both computational tasks and the underlying
computer architectures. Bell, Gray and Szalay [2] has introduced the Amdahl number, the sequential I/O speed
in bits/sec divided by the total instructions/sec, following Amdahls seminal paper [1]. This simple metric shows
a clear distinction between supercomputers, with Amdahl numbers around 0.001, workstations at around 0.1,
and data analytics engines at Amdahl numbers close to 1.

Furthermore, the Amdahl number can also be computed for a computational task, like a numerical simu-
lation, or their posterior analyses, by dividing the output size by the CPU hours, converted to the appropriate
units. Typically, our supercomputer simulations have Amdahl numbers much lower than the hardware they are
running on. This is almost by definition, as one could only saturate the hardware by continuously maxing out
the I/O, at the expense of computations, defeating the purpose of using a supercomputer.

On the other hand, posterior analyses of the data can have very different Amdahl numbers. Streaming
analyses of petabytes can easily require Amdahl numbers close to unity. Small-granularity database queries are
in this category. As outlined in Section 2.3, there is a whole spectrum of computational tasks whose needs cover
a wide range of Amdahl numbers.

One can also define an approximate Amdahl number for a GPU. As an example, an NVIDIA Kepler K20 card
has about 1.3Tflops and its I/O is limited by the practical bandwidth of 6GB/sec over a PCIe gen2 backplane.
This translates to an Amdahl number of 0.037, definitely higher than a supercomputer.

3.2 Database servers or supercomputers?

The challenge is to define an architecture that is (i) efficient and inexpensive for storing petabytes of data, (ii)
provides streaming high bandwidth to the data, (iii) can occasionally perform compute-intensive tasks involving
large amounts of data. It is clear, that supercomputers have enormous processing power, but they are too expen-
sive for the posterior processing of large data sets. It is also clear that database servers have been successful in
providing fast, indexed access to small granularity data, they do not have the compute power to perform some of
the more floating point intensive analyses. But between these two edge cases there is a continuum of problems
to be tackled successfully.
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3.3 Storage hierarchies for data analysis

Given the wide range of data access patterns, we need a system that is capable of accessing data both sequen-
tially at high speeds, but can also provide high IOPS for small accesses, and is capable of high computational
performance. The challenge is that building a homogeneous system that satisfies all these criteria would be next
to impossible, and certainly very expensive.

The key is heterogeneity. One can build systems that can be close to optimal along each of these requirements
individually. We know how to build fast streaming engines that can move data sequentially at backplane speeds
from Hard disks all the way to GPUs, like the JHU Data-Scope. Also we know how to use solid state disks to
provide close to a million IOPS per server. And we are learning how to use large memory servers.

Commodity interconnect is becoming very affordable. Infiniband and 40G Ethernet are below 500 USD
per port, and latencies are approaching a microsecond. With a million IOPS from an SSD system, the latency
of reading a packet of data is similar than over our fastest networks. For memory intensive problems one can
combine commodity systems soon with 6TB of memory, tens of TB of SSD and ultra fast interconnects, blurring
the traditional domain decomposition issues.

4 Use cases and examples

4.1 Turbulence

Over the last few years we have built several different numerical laboratories that have been used to prototype
and explore the ideas outlined in this paper. The first of these deals with turbulence. We took a relatively small
10243 box containing a simulation of isotropic turbulence. The simulation consisted of approximately 10,000
timesteps. We created snapshots of the first 100 timesteps, then every 10th, until we reached 1000 snapshots.
The outputs were the three velocity components and the pressure. The total data volume is about 30TB.

The data has been reorganized into small, 83 cells, which are labeled by a Morton curve or z-index. These
cubes are stored as BLOBs in a relational database system (Microsoft SQL Server). The z-index is used as a
partitioning key. The database is used as an indexed data access layer. The BLOBs contain a user-defined data
type (UDT) of a multidimensional array of a single homogeneous primitive data type. Arrays can be either small
(8kB) or large (up to 2GB). The UDT has various methods enabling Matlab-like array manipulations [8].

On top of the indexing is a generalized spatial search library that can be used for data extractions defined
by various geometric primitives and their Boolean combinations [17]. All these functionalities heavily use the
object-relational interface of SQL Server, enabled through the CLR integration [13].

The data is accessible through various web services. The first service we have implemented was the one of
the virtual sensors. Users can use their own laptop to insert an array of sensors, defined by a 3+1 dimensional
coordinate. The user can lay out these sensors in various geometric patterns, providing a simple yet flexible
interface for accessing data. The service returns the interpolated velocities at the different locations. Other
derived quantities, like computing the velocity gradient tensor can also be requested. There are several different
language bindings available (C++, Fortran, MATLAB).

The users can then run various statistical analyses over the data returned. They can also implement their
own path integrator, and use the velocities to move the particles, but with the additional capability of adding
additional components, like a small stochastic force term. However, using the database, one can do analyses that
would not be possible in real time when the simulation is running on the supercomputer.

As turbulence is a dissipative phenomenon, one cannot run the simulation backward. As we have stored the
full temporal history of the velocity field, at a high enough resolution for path interpolation, we can move the
particles backwards in time, and determine where all the particles in a given neighborhood come from! This has
led recently to a paper in Nature [9].
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This simple interface has been highly successful, by 2011 we have exceeded 100 billion sensor lookups
delivered to users all over the world. With time, it became clear, that moving many massless Lagrangian particles
along their trajectory was a pattern frequently requested. Thus, we added another service were you can place
the sensors which then would move with the flow, reporting their positions and velocities.

For the isotropic turbulence database the data set is large enough that it is non-trivial to stream the data from
a remote server to a visualization engine. We have performed several experiments in visualization tight on top
of the data. We have built a separate server with a fast motherboard with multiple PCIe x16 slots (gen 2). The
system also contained a high-end visualization card (NVIDIA GTX 690) and a high throughput LSI 9211 disk
controller, connected to 120GB OCZ Vertex 3 SSD drives, running Windows Server 2008. We have copied 32
snapshots of the turbulence database over to this system. The disks were able to deliver over 1GB/sec sequential
throughput.

A rendering engine built in DirectX 10 was used to create various visualizations. The renderer was sending
queries to the database, which in turn delivered the velocity field in 83 blocks, together with a z-index used for
the database organization. The arrival order of the blocks was not guaranteed. The data was immediately copied
into the GPU. The real 3D position of each block was calculated from the z-index and the high bandwidth of the
GPU memory enabled a very fast copy of the data into its final location, organized in the usual (x,y,z) order for
optimal rendering.

The visualization engine had options for calculating various derived quantities, like the velocity gradient
tensor, and its invariants, implement various smoothing operators for multiscale visualizations, or to visual-
ize velocity fields by inserting clouds of particles which then moved along the streamlines [5]. During these
experiments we have achieved over a GB/sec data transfer speeds, mostly limited by the number of SSDs.

4.2 Cosmological N-body simulations

The Millennium Simulation

We are currently in the process of building several different numerical laboratories out of large-scale cosmologi-
cal N-body simulations. The first of those was based upon the the Millennium simulation [23]. Its database, built
by Gerard Lemson [16] has been in use for over 7 years, and has hundreds of regular users, and has resulted in
several hundred refereed publications. The database contains value added data from a simulation originally only
containing 10B dark matter particles. These particles form hierarchical clusters, so called sub-halos and halos,
which in turn become the sites where galaxies might form. A semi-analytical recipe was used to create mock
galaxies in the simulations, and their hierarchical mergers were tracked in a database structure. The merger
history was used to assign a plausible star formation rate to each galaxy which in turn can be used to derive
observable physical properties.

The database contains several such semi-analytic scenarios. The set-oriented SQL query language makes it
remarkably easy to formulate very complex aggregate queries over the temporal history of various subsets of
galaxies and create samples that can be compared directly to observations.

Via Lactea II and Silver River

These simulations seek to simulate the formation and evolution of the Milky Way galaxy. Via Lactea II [7, 15]
was the first of the two, with about 1B dark matter particles, it was one of the highest resolution such simulation.
It led to a bigger simulation, the Silver River, which has over 50B particles.

There are several non-trivial numerical experiments that can be turned into a public laboratory. The first
involves a computation of the annihilation of the dark matter particles. The Fermi satellite is in the process of
observing high energy radiation from space, and it is not unreasonable to expect that in the near future it might
see a sign of excess radiation from the Galactic Center that can be attributed to the annihilation of the elusive
dark matter.
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In preparation, we have built a numerical experiment, where users can interactively choose a viewpoint
relative to the Galaxy, and then compute an image of the high energy radiation coming from the annihilation.
Furthermore, the users can choose the physical properties of the cross section for the annihilation. Different
physical models for the dark matter can yield dramatically different images. Originally, computing a single
annihilation map took over 8 hours on a regular server. Using a rendering algorithm written in the shader
language of Open GL, and streaming the data efficiently from the disks, we are now able to compute a single
map in 23 seconds, changing the kinds of analyses one can perform [28]. Soon a public service enabling
scientists to play with such scenarios will be live.

One can imagine immersive uses of the numerical laboratory, similar to the turbulence case. The Sloan
Digital Sky Survey has detected the remnants of several dwarf galaxies which collided with the Milky Way, and
their structure was disrupted in the collision, their stars ended up in an elongated “stream [4]. One can easily
image a scenario, where a user can take a small dwarf galaxy, consisting of about 1M particles, picks a trajectory
and shoots it into the Milky Way. The dwarf galaxy moves in the time-dependent, high resolution potential of
the original simulation, and the user can watch interactively how the particles are scattered into the elongated
stream, and repeat the experiment until the desired final state is achieved. Our group is currently in the process
of building such an interactive application.

The Indra suite of simulations

In astrophysics we have a single universe to observe, and we cannot even change our position, thus we are
restricted to a single realization of space surrounding us. The only way to estimate the statistical uncertainty
arising from the fact that we can only observe a finite sample of the Universe, the so called “cosmic variance is
to use simulations. Most of the large simulations are trying to be the largest of their kind, thus focusing all the
computational resources in generating a single realization.

There is also a need to create a statistical ensemble of simulations. Instead of focusing on the largest number
of particles, or the highest resolution, we should create an ensemble of simulations, which can be used to
estimate statistical uncertainty for our various observables, which can then be used to assess the significance of
real observations of the Universe.

We are in the process of creating the Indra suite, eventually consisting of 512 simulations of 1B particles
each. While none of the individual simulations are particularly large, their ensemble will have an data volume
of more than 1PB [6]. Currently we have already ran the first 100 realizations, and have more than 200TB of
data. Using this ensemble one can study covariances on such large scales, where none of the simulations have
enough independent subvolumes. As it turns out, studying the density fluctuations on scales of the so called
Baryon Acoustic Oscillations (BAO) is one of the most important challenges of cosmology today, and Indra will
uniquely be able to support such explorations.

5 Summary

The next generation simulations will have trillions of particles, petabytes of output. Some of the simulations will
be multigrid, some will be a combination of fluids and discrete particles. A wide community of users is ready to
use the output of these simulations, and compare them to experiments and observations. The science community
has used several of these prototype numerical laboratories successfully, even artfully. It is clear that the stage is
set to have a new platform, which bridges the current gap between supercomputers and database servers. It is
clear that the key to efficient data analysis is a good data layout and efficient data access.

The data access patterns identified in this paper are quite diverse, there is no single platform or architecture
that fits all. Most likely we will need a heterogeneous ecosystem of system components, each optimized for
different data access patterns and enough internal bandwidth to move parts of the data to the appropriate system
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dynamically. This way we can get close to optimal layout for most analyses. In order to do so, we have to under-
stand and characterize how different data access and analysis patterns map onto different system architectures
and components.
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and Its Siblings. The Astrophysical Journal Letters, 642:L137–L140, May 2006.

[5] K. Bürger, M. Treib, R. Westermann, S. Werner, C. C. Lalescu, A. S. Szalay, C. Meneveau,
and G. L. Eyink. Vortices within vortices: hierarchical nature of vortex tubes in turbulence.
http://arxiv.org/abs/1210.3325, 2012.

[6] D. Crankshaw, R. C. Burns, B. Falck, T. Budavari, A. S. Szalay, and J. Wang. Inverted indices for particle
tracking in petascale cosmological simulations. In SSDBM, page 25, 2013.

[7] J. Diemand, M. Kuhlen, and P. Madau. Formation and Evolution of Galaxy Dark Matter Halos and Their
Substructure. The Astrophysical Journal, 667(2):859–877, Oct. 2007.
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Abstract

Creating and testing reproducible computational experiments is hard. Researchers must derive a com-
pendium that encapsulates all the components needed to reproduce a result. Reviewers must unpack
the encapsulated components, run them in an environment that could be different from the source en-
vironment, and verify the results. Although many tools support some aspect of reproducibility, there is
no common benchmark against which single or multiple tools can be tested. This paper describes a
benchmark that can be used to categorize and better understand existing systems. The benchmark will
also serve as the basis for a competition whereby tool builders will demonstrate if and how their systems
support end-to-end reproducibility.

1 Motivation
Ever since Francis Bacon, a hallmark of the scientific method has been that experiments should be described
in enough detail so that they can be repeated and perhaps generalized. When Newton said that he could see
farther because he stood on the shoulders of giants, he depended on the truth of his predecessors’ observations
and the correctness of their calculations. In computational terms, this implies the possibility of (i) repeating (or
replicating) results on nominally equal configurations, and (ii) generalizing the results by replaying them on new
data sets, verifying how they vary with different parameters, and re-using and extending the experiment.

In principle, reproducibility should be easier for computational experiments than for natural science experi-
ments, because not only can computational processes be automated, but also computational systems do not suffer
from the “biological variation” problem that plagues the life sciences. Unfortunately, the state of the art belies
this apparent ease. Most computational experiments are specified only informally in papers, where experimental
results are briefly described in figure captions; the code that produced the results is seldom available and may be
tied to specific configurations; and configuration parameters change results in unforeseen ways.

The lack of reproducibility has serious implications and has led to a credibility crisis in computational sci-
ence [5]. In the absence of reproducibility, it has become difficult and sometimes impossible to verify scientific
results, sometimes leading to major mistakes that are corrected only long after they are published, if ever. Fur-
thermore, scientific discoveries do not happen in isolation. Important advances are often the result of sequences
of smaller steps. If results are not fully documented, reproducible, and generalizable, it becomes hard to re-use
and extend them.

Copyright 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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Recently, there has been great interest on reproducibility and in the publication of reproducible results [2, 6,
7, 11, 14, 15, 16, 19, 23]. A number of conferences and journals instituted a reproducibility review process [1,
13, 21, 24], and while some have started to encourage authors to submit the experiments together with their
papers, others have this as a requirement [17, 20]. However, these efforts have had limited success. A major
roadblock to the more widespread adoption of this practice is the fact that it is hard to derive a compendium that
encapsulates all the components (e.g., data, code, parameter settings) needed to reproduce the results, publish
and verify them. Indeed, many scientists do not make their data and experiment reproducible [22], because
authors complain that the process is too laborious [3].

While there are tools that support reproducibility, these have often been developed in isolation and target
specific communities. There is also confusion about what the end-to-end process to attain reproducibility entails.
As a result, tools lack important features and cannot be easily integrated with other systems that support these
features. Researchers in search of a reproducibility solution are thus left in a quandary, since it is both hard to
identify the tools they need and understand the functionality they support.

As a starting point to address this problem, this paper makes two contributions. First, we characterize the key
tasks involved in the lifecycle of reproducible results, as well as different modes for attaining reproducibility.
We then propose a benchmark that exercises these tasks in one mode that we call spontaneous. We have selected
scenarios that are common in a variety of scientific domains. We also describe set of criteria to evaluate the
benchmark results. Besides serving as a tool to categorize and better understand reproducibility systems, this
benchmark will be used in an upcoming competition, where tool builders will implement end-to-end solutions
for reproducibility and these will be tested by judges. We hope that through this benchmark and competition,
insights will be obtained as to how to build comprehensive and general solutions.

2 Creating and Reviewing Reproducible Papers
In reproducible papers, the results reported, including data, plots and visualizations are linked to the experiments
and inputs. Having access to these, reviewers and readers can examine the results, then repeat or modify an
execution. Figure 1 shows one reproducible paper. In this paper, all plots have deep captions consisting of
the workflow used to derive the plot, the underlying libraries invoked by the workflow, and the input data. This
information allows the plots to be reproduced. In what follows, we describe tasks required to create reproducible
experiments which can be published and shared.

Reproducibility Tasks. The first task is to (i) create a description of the experiment. A reproducible experiment
must contain the description of the data used, the specification of the experiment – the steps followed, the un-
derlying code needed to execute the specification, and the description of the environment where the experiment
was executed. With this description, it should be possible for the author of the experiment to reproduce the
experiment at a later time. However, to publish or share the experiment, the author must also (ii) package all
the components of the experiment so that it can be executed by others in different computational environments.
Finally, when creating a reproducible paper, the author needs to (iii) connect the published results to the experi-
ments. Once a reproducible paper is submitted (or published), a reviewer should be able to unpack and run the
experiments so that she can (iv) reproduce and validate the results.
Axes of Reproducibility. We have identified three distinct criteria to characterize experiments with respect to the
level of reproducibility [9]: transparency, portability, and coverage. The transparency indicates whether partial
or complete data and code are available. There are many possibilities for each step of an experiment pipeline,
including: (a) partial data, e.g., a set of figures presented in a manuscript; (b) all data; (c) all data data plus the
executable scripts; (d) the software system as a white box (source, configuration files, build environment) or
black box (executable) on which the pipeline step is performed.

A second criterion is portability. An experiment can potentially be reproduced (a) on the original environ-
ment (basically, the author of the experiment can replay it on his or her machine); (b) on a similar environment
(i.e., same OS but different machine), or (c) on a different environment (i.e., on a different OS and machine).
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Galois conjugation relates unitary conformal field theories (CFTs) and topological quantum field theories

(TQFTs) to their non-unitary counterparts. Here we investigate Galois conjugates of quantum double models,

such as the Levin-Wen model. While these Galois conjugated Hamiltonians are typically non-Hermitian, we find

that their ground state wave functions still obey a generalized version of the usual code property (local operators

do not act on the ground state manifold) and hence enjoy a generalized topological protection. The key question

addressed in this paper is whether such non-unitary topological phases can also appear as the ground states of

Hermitian Hamiltonians. Specific attempts at constructing Hermitian Hamiltonians with these ground states

lead to a loss of the code property and topological protection of the degenerate ground states. Beyond this we

rigorously prove that no local change of basis (IV.5) can transform the ground states of the Galois conjugated

doubled Fibonacci theory into the ground states of a topological model whose Hermitian Hamiltonian satisfies

Lieb-Robinson bounds. These include all gapped local or quasi-local Hamiltonians. A similar statement holds

for many other non-unitary TQFTs. One consequence is that the “Gaffnian” wave function cannot be the ground

state of a gapped fractional quantum Hall state.

PACS numbers: 05.30.Pr, 73.43.-f

I. INTRODUCTION

Galois conjugation, by definition, replaces a root of a poly-

nomial by another one with identical algebraic properties. For

example, i and −i are Galois conjugate (consider z2 +1 = 0)

as are φ = 1+
√

5

2
and − 1

φ
= 1−

√

5

2
(consider z2− z− 1 = 0),

as well as
3
√

2,
3
√

2e2πi/3, and
3
√

2e−2πi/3 (consider z3 − 2 =
0). In physics Galois conjugation can be used to convert non-

unitary conformal field theories (CFTs) to unitary ones, and

vice versa. One famous example is the non-unitary Yang-Lee

CFT, which is Galois conjugate to the Fibonacci CFT (G2)1,

the even (or integer-spin) subset of su(2)3.

In statistical mechanics non-unitary conformal field theo-

ries have a venerable history.1,2 However, it has remained less

clear if there exist physical situations in which non-unitary

models can provide a useful description of the low energy

physics of a quantum mechanical system – after all, Galois

conjugation typically destroys the Hermitian property of the

Hamiltonian. Some non-Hermitian Hamiltonians, which sur-

prisingly have totally real spectrum, have been found to arise

in the study of PT -invariant one-particle systems3 and in

some Galois conjugate many-body systems4 and might be

seen to open the door a crack to the physical use of such

models. Another situation, which has recently attracted some

interest, is the question whether non-unitary models can de-

scribe 1D edge states of certain 2D bulk states (the edge holo-

graphic for the bulk). In particular, there is currently a discus-

sion on whether or not the “Gaffnian” wave function could be

the ground state for a gapped fractional quantum Hall (FQH)

state albeit with a non-unitary “Yang-Lee” CFT describing its

edge.5–7 We conclude that this is not possible, further restrict-

ing the possible scope of non-unitary models in quantum me-

chanics.

We reach this conclusion quite indirectly. Our main thrust

is the investigation of Galois conjugation in the simplest non-

Abelian Levin-Wen model.8 This model, which is also called

“DFib”, is a topological quantum field theory (TQFT) whose

states are string-nets on a surface labeled by either a triv-

ial or “Fibonacci” anyon. From this starting point, we give

a rigorous argument that the “Gaffnian” ground state cannot

be locally conjugated to the ground state of any topological

phase, within a Hermitian model satisfying Lieb-Robinson

(LR) bounds9 (which includes but is not limited to gapped

local and quasi-local Hamiltonians).

Lieb-Robinson bounds are a technical tool for local lattice

models. In relativistically invariant field theories, the speed of

light is a strict upper bound to the velocity of propagation. In

lattice theories, the LR bounds provide a similar upper bound

by a velocity called the LR velocity, but in contrast to the rel-

ativistic case there can be some exponentially small “leakage”

outside the light-cone in the lattice case. The Lieb-Robinson

bounds are a way of bounding the leakage outside the light-

cone. The LR velocity is set by microscopic details of the

Hamiltonian, such as the interaction strength and range. Com-

bining the LR bounds with the spectral gap enables us to prove

locality of various correlation and response functions. We will

call a Hamiltonian a Lieb-Robinson Hamiltonian if it satisfies

LR bounds.

We work primarily with a single example, but it should be

clear that the concept of Galois conjugation can be widely ap-

plied to TQFTs. The essential idea is to retain the particle

types and fusion rules of a unitary theory but when one comes

to writing down the algebraic form of the F -matrices (also

called 6j symbols), the entries are now Galois conjugated. A

slight complication, which is actually an asset, is that writing

an F -matrix requires a gauge choice and the most convenient

choice may differ before and after Galois conjugation.

Our method is not restricted to Galois conjugated DFibG

and its factors FibG and FibG , but can be generalized to in-

finitely many non-unitary TQFTs, showing that they will not

arise as low energy models for a gapped 2D quantum mechan-
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FIG. 4. (color online) Scaling of the finite-size gap ∆(L) (in units

of Jp) with linear system size for the Hermitian projector model

H
herm on two different lattice geometries: the honeycomb lattice

with L×W plaquettes (top panel) and 2-leg ladder systems of length

L (bottom panel).
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FIG. 5. Edge labeling for a plaquette of the ladder lattice.

The quasi-one dimensional geometry allows to numerically

diagonalize systems up to linear system size L = 13. The

finite-size gap of the Hermitian model Hherm is again found

to vanish in the thermodynamic limit, showing a linear de-

pendence on the inverse system size as shown in Fig. 4b). To

further demonstrate the fragility of these gapless ground states

against local perturbations we add a string tension18

Hpert = Jr
∑

rungs r

δl(r),τ (13)

favoring the trivial label l(r) = 1 on each rung of the ladder.

We parameterize the couplings of the competing plaquette and

rung terms as

Jr = sin θ and Jp = cos θ ,

where θ = 0 corresponds to the unperturbed Hamiltonian.

The phase diagrams as a function of θ have been mapped out

for both the DFib model18 and the DYL model,4 respectively.

Directly probing the topological order in the DYL model

and its Hermitian counterpart we show the lifting of their re-

spective ground-state degeneracies in Figs. 6 and 7 when in-

cluding a string tension. We find a striking qualitative dif-

ference between these two models: For the DYL model the

lifting of the ground-state degeneracy is exponentially sup-

pressed with increasing system size – characteristic of a topo-

logical phase. For the Hermitian model, on the other hand, we

find a splitting of the ground-state degeneracy proportional to

JrL. The linear increase with both system size and coupling

can be easily understood by the different matrix elements of

the string tension term on a single rung for the two degener-

ate ground-states of the unperturbed model. Plotting the low-

energy spectrum in Fig. 7 clearly shows that the two-fold de-

generacy of the unperturbed Hermitian model arises from a

(fine-tuned) level crossing. Similar behavior is found in the

honeycomb lattice model (not shown).

Considering the model in a wider range of couplings, as

shown in Fig. 8, further striking differences between the non-

Hermitian DYL model and its Hermitian counterpart are re-

vealed: The DYL model exhibits two extended topological

phases around θ = 0 and θ = π/2 (with two and four de-

generate ground states, respectively), which are separated by

a conformal critical point at precisely θc = π/4 as discussed

extensively in Refs. 4 and 18. In contrast, the Hermitian model

Hherm exhibits no topological phase anywhere, and the inter-

mediate coupling θ = π/4 does not stand out.
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FIG. 6. (color online) Ground-state degeneracy splitting of the non-

Hermitian doubled Yang-Lee model when perturbed by a string ten-

sion (θ  = 0).
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Figure 1: A reproducible paper. This paper by Freedman et al. [8] contains provenance-rich figures that have
been created using the VisTrails system. Clicking on a figure downloads the workflow instance and associated
provenance needed to derive the figure. This information can be examined and executed in VisTrails, reproduc-
ing the plot shown in the figure.

Finally, coverage indicates how much of the experiment pipeline is provided: (a) partial pipeline, i.e., only
a subset of the experimental pipeline from raw data to final figures can be reproduced, or (b) full pipeline, i.e.,
the entire pipeline, from raw data all the way up to document, can be reproduced. As an example, experiments
that rely on data derived by third-party Web services, special hardware, or lab experiments may not be fully
reproduced, because repeating all the steps may be impossible. At that point, coverage would be reduced to
intermediate data alone. Note that transparency indicates whether for a step of the pipeline data and/or code are
available, whereas coverage has to do with how many steps of the pipeline are available.

Reproducibility Methodology. There are two main modes of creating reproducible experiments: (i) one can
plan for reproducibility while doing research, or (ii) one can make the experiments reproducible after the fact,
i.e., after they have been developed on a source machine. For the former, there are both best practices (e.g.,
the use of version control systems) as well as specialized tools that systematically capture provenance as the
experiments are carried out. One advantage of this mode is that not only it ensures that the derived results
are reproducible, but also this provenance captures the different trails followed, and can serve as a guide to
researchers who want to understand the different choices that were examined [10], e.g., data input and parameter
value combinations, or different algorithms used. However, when appropriate tools are not available, or they are
simply not adopted, it should still be possible to make experiments reproducible, which is the goal of the second
mode, called unplanned, or spontaneous. For a given set of results, this entails the creation of an executable
description of how the results were derived.
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3 The Reproducibility Benchmark

Desiderata. We had a number of goals while designing this benchmark. Besides verifying the ability of tools to
perform the different reproducibility tasks, we would also like to understand how well these are supported and
under which conditions. Thus, to serve as the basis of the benchmark, it is critical to use an experiment that is
representative and covers many of the steps that are common in scientific exploration. Furthermore, the exper-
iment must be expandable, in the sense that it should be possible to tweak it to match different reproducibility
methodologies, scenarios (e.g., single and multiple machines), and levels of reproducibility. Last, but not least,
to be inclusive, the experiment should also run on different multiple OS platforms.

The Experiment. We selected a computational experiment that includes both the execution of a simulation and
the analysis of its results: Monte Carlo simulation of the Ising model, described in detail in [18]. The experiment
pipeline consists of three main steps:

1. Simulation Phase. First, large-scale simulations are prepared and executed, resulting in the raw simulation
output. This phase is commonly time-consuming and not easily reproducible by a reader of the paper.
Thus, the output is often archived, as well as all steps to reproduce this data.

2. Evaluation Phase. Next, the data is analyzed and evaluated. As an example, the data is plotted in figures
that allows readers to judge the quality of the derived results.

3. Publishing Phase. Finally, both the figures and other results are included in a manuscript.

Such workflows are common in many scientific domains and exercise important requirements for the differ-
ent reproducibility tasks. The experiment can run on Windows, Linux and OS X, and it can also be tuned to use
different computational environments (e.g., single machine and cluster).

Reproducibility Modes and Evaluation Criteria. To consider the two reproducibility methodologies and the
tools that handle them, the benchmark has two categories: unplanned, which tests solutions for making an
existing experiment reproducible, even though the experiment was never designed with reproducibility in mind;
and planned, which simulates the creation of an explicitly reproducible experiment from scratch. In both cases,
the goal is to evaluate the completeness of the tool with respect to the reproducibility tasks, as well as the
transparency of the derived experiment. Additional features that are tested include usability, the ability to run on
multiple platforms and on a remote cluster, and the inclusion and automatic update of results in the paper. For
the planned mode, the benchmark includes binary and source code, and a textual description of the experiment.
Users will utilize this information to simulate the creation of the experiment from scratch. The spontaneous
benchmark provides binary code which runs on a particular linux environment. Tools will need to wrap these
binaries after one execution of this binary code in the source environment. The wrapped package must then be
able to run in a target environment and create an executable paper. Here, we focus on the spontaneous mode.

There will be two kinds of users who deal with this benchmark. Authors will create a reproducible exper-
iment using tools, and reviewers/judges will unpack the experiment and look at results for different parameter
combinations and input files.
1. Author role. The author will make the experiment reproducible by wrapping to run on various platforms,
after running it on a source platform (or a virtual machine or set of virtual machines representing the source
platform). Multiple variations of the experiment are provided. One of them requires execution on a cluster of
computers. The experiment can also be tuned to generate different numbers of results, allowing the scalability
of the systems to be assessed.
2. Reviewer role. Judges/reviewers will determine usability: the tool-produced package should be easy to
unpack, run the experiments, and explore parameter variations. In addition, since reviewers may have to copy
the experiments, it is important to consider (and measure) the size of the package. For example, while virtual
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machines provide great portability, they can be very large – much larger than packages derived from tools
that include only the required dependencies [4, 12]. More important perhaps, virtual machines might capture
information the code authors do not wish to reveal.

4 The Spontaneous Reproducibility Challenge

For the spontaneous challenge, there will be a training and a real experiment (binaries and data). The training
set will be used by tool developers while preparing their tools for the challenge. The real set will be sent well in
advance but encrypted. The decryption key will be sent the day the competition begins. Also, for each challenge,
there will be both a tool-building portion and a blinded judgement portion. To create reproducible documents,
there will have to be some integration with typesetting packages such as LATEX or text editors such as Microsoft
Word. Since there is no general tool that supports all the reproducibility tasks, we envision that tool builders will
form alliances in order to win the benchmark competition.

Besides the evaluation criteria outlined in Section 3, another criterion for the tool-builder part is a timing
test: how long does it take for the team to wrap the code and data for each target system? Scoring works as
follows assuming N participants: the fastest team for a given target system receives N points, the second fastest
receives N-1, ... Any team that does not succeed in wrapping the code for a particular target system receives
zero points for that target.

The wrapped code will be uploaded to a judge site where it will be blinded by the chair of the competition.
Each wrapped code will then be judged by three judges on the following criteria:

1. Given a configuration file in text format (using the same format for training and test), run through every
combination of parameters and calculate the mean and the variance of some parameter (e.g., critical tem-
perature in the case of the Ising model). In the configuration file the possible values of each parameters
will be provided. If this works, then the team receives N/2 points. Otherwise zero points.

2. The size of the package that runs on the target machine. The smallest package of those that run receives
N points, the second smallest N-1, etc. If the software does not run, then the team receives zero points.

3. How long does it take the judges to run the tool in wall clock time with new parameter settings, generate
all the graphs and numerical values, and embed these into a new version of the paper? The fastest team
receives N points, the second fastest receives N-1, ... If it doesn’t work, then 0 points.

4. Can the judges interact with the paper and change parameters and/or input data and have the figures update
without further special action? Any team that can do this receives N points. Otherwise 0.

5. The judges subjective score on a scale of easy (3) to difficult (0). The three judges’ scores are summed
and then the team with the highest score receives N points, the second highest N-1, ...

The team with the highest score will receive a monetary prize. If more than one team ties for the most points,
the prize will be divided equally. All participants will have the option to write an article about their effort in the
journal Information Systems.
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