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Abstract

Many tasks in computational linguistics traditionally rely on hand-crafted or curated resources like the-
sauri or word-sense-annotated corpora. The availability of big data, from the Web and other sources,
has changed this situation. Harnessing these assets requires scalable methods for data and text ana-
lytics. This paper gives an overview on our recent work that utilizes big data methods for enhancing
semantics-centric tasks dealing with natural language texts. We demonstrate a virtuous cycle in harvest-
ing knowledge from large data and text collections and leveraging this knowledge in order to improve
the annotation and interpretation of language in Web pages and social media. Specifically, we show how
to build large dictionaries of names and paraphrases for entities and relations, and how these help to
disambiguate entity mentions in texts.

1 Introduction

Methods for data analytics are relevant for all kinds of information, including text. Although we live in the
era of Big Data, Linked Data, Data-Driven Science, and the Data Deluge, for humans the most informative
contents on the Internet still is in natural-language text: books, scholarly publications, news, social media,
online communities, etc. Making sense of natural language falls into the field of computation linguistics (CL).
Semantics-focused tasks in CL include question answering (e.g., of the kind addressed by IBM Watson), word
sense disambiguation (i.e., mapping ambiguous words such as “plant” or “star” to their meanings) co-reference
resolution (e.g., mapping pronouns to a preceding noun phrase), semantic role labeling, paraphrasing and textual
entailment, automatic summarization, and more [2, 21, 28, 36, 39, 40].

Data scarceness: The models and methods that computational linguistics has developed for these tasks
over several decades benefit from data collections and text corpora, but usually require human-quality markup
and ground-truth annotations, compiled and curated by experts (incl. quality measures such as inter-annotator
agreement). CL refers to these assets as resources, as opposed to the raw sources. As human effort is the
bottleneck, the available resources tend to be fairly small. A corpus with thousands of short documents (e.g.,
news articles), ten thousands of sentences, and millions of words is considered large. For tasks that need only
unlabeled data, such as statistical machine translation, Web corpora can be harnessed and have indeed strongly
influenced the state of the art. However, the semantic tasks mentioned above rely on deeper resources with
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fine-grained labeling. Note that crowdsourcing is not a viable alternative for expert-quality annotations. Entity
recognition and disambiguation, for instance, often requires thoughtfulness that goes beyond what the typical
mturk worker delivers. For example, the sentence “Berlin talks to Paris about the Euro problem with Greece
and Spain” should yield four entities: German government (not the city of Berlin, a case of metonymy), French
government, financial crisis in Greece, financial crisis in Spain.

Time for big data: This situation has changed in the last few years. Starting in 2006, projects like DBpedia
[3], freebase.com, WikiTaxonomy [42], and YAGO [47] have constructed huge knowledge bases (KBs) of enti-
ties (people, places, etc.), their semantic classes (e.g., musicians, waterfalls, love songs, etc.), and relationships
between entities (e.g., worksFor, wonPrize, marriedTo, diedIn). To this end, YAGO tapped into knowledge-
sharing communities like Wikipedia, and integrated the data derived there with existing CL resources like the
WordNet thesaurus [12] as a semantic backbone. The resulting KBs are big-data assets that combine the rigor
and quality of traditional resources with the wealth and scale of automatically harvested Web sources. This
trend is still ongoing: KBs keep growing, specialized KBs are created, KBs accelerate the CL-style annotation
of large corpora, and many of these resources are semantically interconnected at the entity level in the Web of
Linked Data [18]. The following two examples illustrate how such big data assets can contribute to advanced
tasks in computational linguistics.

Example 1: Consider a question answering scenario where a user asks: “Which composer from the eternal
city wrote the score for the Ecstasy scene?”, perhaps with the additional cue “. . . , which was later covered
by a classical string player and a metal band”. There is plenty of data available to retrieve the answer (in
imdb.com, freely available KBs, or Web pages), but the crux is to match the natural-language input against
the representations in the data sources or Web contents. The computer needs to understand ambiguous words
and phrases such as “eternal city”, “Ecstasy”, “score”, “player”, and “metal band”, and needs to match them
against answer candidates such as “Ennio Morricone is a composer born in Rome, who became famous for
the film music of several westerns. His Ecstasy of Gold was later performed also by cellist Yo-Yo Ma and by
Metallica.” For the matchmaking, the computer needs to solve difficult problems of named entity disambiguation
(NED) (e.g., “eternal city” means Rome) and word sense disambiguation (WSD) (e.g., “cellist” matches “string
player”).

Example 2: Consider an entity search engine or a text analytics tool that makes recommendations for related
entities. For example, when the user has discovered Ennio Morricone, the system may point out: “You may also
be interested in Sergio Leone.” A good system should augment this recommendation with an explanation of how
Leone and Morricone are related. For example, the system could state that both are born in Rome, drawing from
the facts in a KB or structured Web data. A more elaborated hint could be that Leone directed the dollar trilogy
and Morricone composed the music for these movies, or more simply that both contributed to the movie “The
Good, the Bad, and the Ugly”. Here, both “born in” and “contributed to” are binary relations, where the former
may be explicit in a KB and the latter is a priori merely a verbal phrase in a large text corpus. For being able to
generate such informative explanations, the computer needs to have large dictionaries of relational paraphrases
and understand how their synonyms and other lexical properties.

In this paper, we give an overview of our recent and ongoing work along these lines. We demonstrate a
virtuous cycle in harvesting knowledge from large data and text collections and leveraging this knowledge in
order to improve the annotation and interpretation of language in Web pages and social media. Specifically, we
show how to build large dictionaries of names and paraphrases for entities and relations, and how these help to
disambiguate entity mentions in texts. So we move from natural language to explicit knowledge structures, and
then apply this knowledge for better machine-reading of language.

Section 2 reviews the transition from traditional CL resources to Web-scale KBs. Section 3 shows that KBs
are key to building comprehensive high-quality dictionaries that connect names and phrases with entities and
relationships. This in turn is a major asset for disambiguating surface names of entities in natural-language texts
like news or social media, as explained in Section 4. Finally, Section 5 discusses the use case of how all this is
beneficial for improving question answering over KBs and Linked Data sources.
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2 Background on Knowledge Bases

The most widely used, traditional-style CL resource is the WordNet thesaurus [12]: a lexical collection of words
and their word senses. Each word, such as “player”, is mapped to one or more (usually more) concepts, and each
concept is represented by its synonymous words that express the concept: a so-called synset accompanied by a
short gloss. Two examples for synsets (with glosses in parentheses) are {player, participant} (a person who
participates in or is skilled at some game) and {musician, instrumentalist, player} (someone who plays a
musical instrument as a profession). These concepts are organized in a DAG-like hierarchy, with generalizations
(hypernyms) such as contestant (which, for example, has another child athlete) for the first sense of “player”
and performing artist for the second sense, as well as specializations (hyponyms) such as football player
or organist, singer, soloist, etc. WordNet contains more than 100,000 concepts and more than 200,000 word-
sense pairs, all hand-crafted. It does not rigorously distinguish between classes that have entities as instances,
e.g., football player, and general concepts, e.g., harmony, sunset, etc. Nevertheless, the class hierarchy of
WordNet is the world’s most comprehensive taxonomy of entity types.

The main deficiency of WordNet is that its classes have few instances; for example, WordNet does not know
any football player or organist, and merely a few dozen singers. KB projects like YAGO closed this gap by
1) harvesting individual entities from Wikipedia and similar sources (e.g., geonames.org or musicbrainz.org),
and 2) automatially mapping these entities into their proper WordNet classes. To this end, YAGO uses a noun
phrase parser (a CL technique) to analyze the names of Wikipedia categories and identify their head words (e.g.,
“composers” in “Italian composers of film scores”), which determine candidates for superclasses of a given
category. This often leaves ambiguity (e.g., “score” in the sense of grading someone’s performance or in the
sense of a musical composition) and also nonsensical candidates (e.g., “member” – of what?); YAGO uses simple
but powerful heuristics for disambiguation. In total, this procedure yields ca. 10 million entities ontologically
organized into ca. 350,000 classes: all WordNet classes plus those from Wikipedia that can be successfully
mapped. Manual assessment over samples (with statistical confidence) shows that the mappings are correct
in 95% of all cases. Together with relational facts derived from Wikipedia infoboxes and all provenance and
context data (extraction rules or patterns, extraction source, etc.), YAGO contains nearly half a billion RDF
triples. Interestingly, the entire construction of YAGO takes only a few hours on a reasonably configured server
– there is no need for Map-Reduce parallelism or other kinds of scale-out techniques.

A number of projects have taken this line of automatic KB construction further in various ways:

1) increasing the number of facts about entities, by more aggressively tapping into infoboxes and other struc-
tured sources – notable examples are DBpedia [3] and freebase.com;

2) extending the KB with multilingual names of entities and classes – examples are UWN [8, 9], BabelNet [37],
and WikiNet [35], and creating cross-lingual mappings between entity infoboxes [38];

3) collecting more entities from the Web, covering the long tail of out-of-Wikipedia entities – see, for example,
the work on WebSets [7] and on instances-and-attributes discovery [1, 41];

4) collecting more fine-grained classes from the Web and placing them in the class taxonomy – Probase [54]
and the work on doubly anchored patterns [22] are examples;

5) discovering and compiling new relations and their instances in an “Open Information Extraction” manner –
from natural-language texts (e.g., TextRunner/ReVerb [4, 10]), from Web tables and lists (e.g., [25, 27, 49,
51]), by ab-initio machine learning (e.g., NELL [5]) or by crowdsourcing (e.g., ConceptNet [17, 45]).

3 From Language to Knowledge: Paraphrases at Web Scale

Names and keyphrases of entities: KBs are not an end by themselves; they allow us to connect Web contents
with entities and their semantic properties, and thus enable more intelligent interpretation of contents. Therefore,
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it is crucial that a KB also captures surface names for entities, as a counterpart to the WordNet synsets for general
concepts. For example, for people, we should compile official full names (e.g., “Diana Frances Spencer”) as well
as short names (e.g., “Diana Spencer”, “Lady Diana”), nicknames (e.g., “Lady Di”), role names (e.g., “Princess
of Wales”, “first wife of Prince Charles”), and other paraphrases (e.g., “queen of hearts”). For locations, orga-
nizations, and products, an even wider variety of equivalent names often exists. In addition to such names and
paraphrases, it is often useful to know further keyphrases that are strongly connected with entities. For example,
“British Royal Family” or “Paris car crash” with Lady Diana. Such keyphrases can be mined from large corpora
by identifying noun phrases (via part-of-speech tagging and chunk parsing, both CL techniques) and weighing
them by mutual information (MI, aka. relative entropy) with the name of the given entity [20, 48]. We have
systematically compiled both names and keyphrases from Wikipedia redirects, href anchors, headings, and ref-
erences, thus populating the two YAGO relations means(name, entity) and hasKeyphrase(entity, phrase)
with more than 10 million and 80 million triples, respectively. At such input scales (the English Wikipedia con-
tains more than 100 million href links) and output sizes, Map-Reduce techniques come in handy for gathering
candidates and computing MI weights of phrases. Recently, Google has compiled a similar and even larger
dictionary from their Web index, by considering href anchors pointing to Wikipedia articles [46].

Relational patterns: In high-quality KBs, the facts between entities are limited to a small set of pre-
specified relations. YAGO knows ca. 100 relations; DBpedia and Freebase provide a few thousand, but these
are dominated by attribute-style properties with literals as arguments, e.g., hasRevenue, hasPopulation, hasGDP,
hasCallingCode, etc. Interesting methods for compiling paraphrases for verb relations have been developed in
[16, 23, 31, 26, 52]. Until recently, only ReVerb [10] offered a larger number of relational patterns. However,
these are verbal phrases between noun phrases rather than properly typed relations, and consequently exhibit a
large amount of noise. Examples of the resulting “factoid” triples are:

⟨ “Carlos”, “composed for”, “voice and keyboards” ⟩,
⟨ “Maestro Morricone”, “composed for”, “the film” ⟩,
⟨ “Ennio Morricone”, “was expected to win”, “the Oscar” ⟩,
⟨ “Coulais”, “has not won”, “any of them” ⟩.

Note that the first two patterns look identical but have different semantics, as the first refers to instruments as
right-hand arguments and the second to movies. The other two patterns likely express the same relation (not
winning an award), but this is not captured here as patterns are merely surface forms. Finally note that the
arguments of the relational patterns are mere phrases, with ambiguous meanings (Carlos, the terrorist, or Juan
Carlos, the Spanish king, or the composer Wendy Carlos or . . . ? Are Ennio Morricone and Maestro Morricone
the same person?) and not necessarily denoting an entity at all (“any of them”).

SOL patterns: This lack of semantic rigor motivated our approach, where we leverage the existing KB
of canonicalized entities and their rich type system. We have compiled, by mining Web corpora, relational
paraphases and organize them into pattern synsets with each synset having a type signature. To this end, we
define a notion of syntactic-ontological-lexical patterns, SOL patterns for short, which are frequently occurring
sequences of a) words (in lemmatized form, e.g., infinitive for verbs), b) part-of-speech tags (e.g., ADJ for ad-
jectives or PRP$ for possessive pronouns), c) wildcards “∗” that stand for arbitrary words or word sequences,
and d) semantic types as placeholders for arbitrary entities of a specific type (e.g., instruments, songs, movies,
etc.). For example,

⟨musician⟩ ∗ compose for ∗ ⟨instrument⟩
is the SOL pattern that adds typing to the first example above, while a different SOL pattern

⟨musician⟩ ∗ compose for ∗ ⟨movie⟩
could be inferred from occurrences of individual musicians with individual movies and the “compose for”
phrase. Further SOL patterns could be

⟨person⟩ ∗ honor by ∗ ⟨award⟩,
⟨person⟩ ∗ not win ∗ ⟨award⟩, or
⟨person⟩ ∗ disappointed ∗ PRP$ nomination ∗ ⟨award⟩,
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the latter being derived from sentences such as “. . . was disappointed that her nomination did not result in . . . ”.
The second and the third pattern could be combined to form a pattern synset of equivalent patterns.

Big data methods: Our method for mining SOL patterns and organizing them into a pattern taxonomy
proceeds in four steps: 1) extracting type-agnostic patterns, 2) enhancing these patterns with type signatures, 3)
identifying synsets of equivalent SOL patterns, 4) inferring subsumptions among pattern synsets. For step 1 we
employ techniques for frequent sequence mining [15, 14], after detecting entity names in sentences and mapping
them to entities registered in a KB. Here we utilize the large dictionary names and their potential meanings, dis-
cussed in Section 2; the actual disambiguation method is discussed in Section 4. As we process many millions
or even billions of sentences, the frequent sequence mining makes use of Map-Reduce parallelization (see [33]
for details). For step 2 we replace entities by their semantic types and then compute frequent sequences with
type generalizations. For example, the pattern

⟨organist⟩ ∗ composed for ∗ ⟨western movie⟩
may not be frequent enough, but then we lift the pattern into ⟨musician⟩ . . . ⟨movie⟩ or ⟨artist⟩ . . . ⟨movie⟩,
etc. In steps 3 and 4 we consider the subsumption and equivalence of the resulting SOL patterns. To this end,
we compare the support sets of patterns, i.e., the sets of entity pairs that co-occur with patterns. We say that a
pattern p, say

⟨singer⟩ ∗ PRP$ ADJ voice in ∗ ⟨song⟩,
is subsumed by pattern q, e.g.,

⟨musician⟩ ∗ performed ∗ ⟨song⟩,
if the type signature of q is more general than (or the same as that of) p and the support set of p is, to a large
extent, contained in the support set of q. The degree of set containment and the confidence in the pattern sub-
sumption are quantified by statistical measures. Mutual subsumption between two patterns then yields synsets
of (approximately) equivalent patterns. Finally, step 4 post-processes the output to ensure that the pattern taxon-
omy forms a proper DAG without cycles. Steps 3 and 4 operate on a prefix tree that encodes patterns and their
support sets. All steps are parallelized using the Map-Reduce platform Hadoop.

Further details of this method are described in [33]. The resulting pattern taxonomy is called PATTY, and
is available at the Web site http://www.mpi-inf.mpg.de/yago-naga/patty/. We currently offer PATTY
collections built from the ClueWeb’09 corpus (a large crawl with 500 million English Web pages) and from the
full text of the English Wikipedia (ca. 4 million articles). The former is larger; the latter is cleaner and contains
more than 300,000 relational patterns with a sampling-based accuracy of 85% determined by human judges.
Our Web site includes demos for several tasks [34]:

1) PATTY as a thesaurus of relational synsets including paraphrases for the canonicalized relations offered by
DBpedia and YAGO,

2) schema-free search over entities and relational patterns, treating PATTY as a database of RDF triples, and

3) PATTY as a tool for explaining the relatedness of given entities (cf. [11, 29]).

4 From Knowledge to Language: Named Entity Disambiguation

NED problem: To demonstrate the enormous benefits of the compiled KB and dictionaries of names, keyphrases,
and patterns, we now turn to the problem of named entity disambiguation, NED for short. Consider the exam-
ple text “Carlos played the Moog in the Ludwig van scenes and arranged an electronic chorus for the fourth
movement of the Ninth”. There are standard techniques from computational linguistics for detecting spans of
words that potentially denote named entities, so-called mentions of entities. Here, “Carlos”, “Moog”, “Ludwig
van”, and “the Ninth” are mentions that can be detected by shallow parsing and noun-phrase analysis, using
conditional random fields [13]. This step also faces ambiguity, e.g., considering “Ludwig van” vs. “Ludwig van
scenes” as candidate mentions, but the methodology is fairly mature. The task that NED subsequently needs to
solve is to map each of the four mentions to exactly one (or, alternatively, at most one) entity registered in a KB.

5



The candidate space for the mapping is often huge. For example, Wikipedia and thus YAGO know four people
with last name “Carlos” and more than 50 with first name “Carlos”, including a king, a terrorist, many athletes,
many musicians, etc. In addition, there are also cities, movies, fictional characters, and a guitar brand named
“Carlos”. There are more than 20 ninth symphonies, and “Ninth” has all kinds of other meanings as well (e.g.,
the Ninth Avenue in Manhattan).

The NED problem is tackled by combining different ingredients from the following considerations [6, 30,
24]. Our method combines all of them in a judicious manner [19].

• Popularity of entities: An ambiguous name is more likely to denote a prominent entity than some lesser
known person or location in the long tail. For example, “Moog” is more likely to mean the synthesizer or
its inventor Robert Moog, rather than the painter and poet Peter Moog or the Moog software package. The
techniques for mining name-entity pairs (see Section 3) can easily collect frequency information from href
anchors or could consider additional information like the lengths and link degrees of Wikipedia articles, in
order to estimate the conditional probability P [e|n] for entity e when observing name n. This notion of
popularity is good as a prior for NED, but always needs to be combined with other components.

• Similarity of contexts: Mentions are surrounded by text, and this context can be compared to textual de-
scriptions of candidate entities. One way of doing this is to construct bags-of-words or statistical language
models (using IR techniques) over words, bigrams (word pairs), or entire phrases in the mention’s proximity
of the input text, on one hand, and over the same style of tokens in the Wikipedia article of an entity. Once
these models are built, similarity measures like cosine (for bags-of-words vectors) or Kullback-Leibler di-
vergence (for language models) can be used to assess how well a candidate entity e fits with a mention m,
given the surrounding contexts cxt(. . .): P [e|n, cxt(e), cxt(n)] ∼ sim(cxt(e), cxt(n)).

• Coherence among entities: Entities occur together in a text not at random, but only if they are seman-
tically related to each other. For example, why would Carlos, the terrorist, be mentioned with the Moog
synthesizer in a news article or blog posting? Instead, it is more likely that a musician like Wendy Carlos
co-occurs with instruments like the Moog, regardless of which surface forms are used to refer to these enti-
ties. This suggests a notion of coherence for a set of entities. When entities are registered in a KB and have
corresponding Wikipedia articles, one way of quantifying the coherence between two entities is based on
overlap measures between the articles’ incoming links [30]. For tractability, the coherence of a set E with
more than two entities is factorized into pair-wise coherence: coh(E) = P [{e|e ∈ E}] =

∏
a,b∈E P [a, b]

∼ overlap(in(a), in(b)).

Keyphrases for similarity: In our work on AIDA, we developed a particularly powerful kind of context-
similarity model, based on the keyphrases of entities gathered by the methods of Section 3. Instead of using all
words or bigrams in comparing the context of a mention and the context of an entity, we use only entity-specific
keyphrases. For example, Wendy Carlos has associated keyphrases “Moog synthesizer”, “Well Tempered Syn-
thesizer”, “electronic musician”, etc. These are partly matched in the input text surrounding the mention “Car-
los” (our example above). In [48], we developed a sophisticated model for partial keyphrase matching which
we adopted and extended to the task of NED. This model considers the proximity of words in a partial match,
uses mutual-information weights for both words and phrases, and aggregates scores over all keyphrases of a
given entity. For example, when comparing Beethoven’s keyphrase “Ninth Symphony’s Ode to Joy” could be
against the sentence “. . . Ode in the fourth movement of the Ninth . . . ”, the score contribution is proportional
to the total weight of the two matched words and inversely proportional to the length of the text window that
contains them. This is a very powerful model, but one needs a lot of care for an efficient implementation, using
big-data techniques like min-hash sketches and locality-sensitive hashing [43].

Graph algorithms for coherence: AIDA expresses the joint inference on mention-entity context similarity
and entity-entity coherence as a problem of computing dense subgraphs. It builds a graph with mentions and
candidate entities as nodes. A combination of keyphrase-based similarity and popularity scores is used for
weights of mention-entity edges; entity-entity edges are weighed by link-overlap-based coherence. Figure 4
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Wendy Carlos 

Carlos the Jackal 

Carlos Santana 

Roberto Carlos 

Juan Carlos I of Spain 

Robert Moog 

Moog synthesizer 

Peter Moog 

Moog (code) 

Ludwig van Beethoven 

Beethoven (crater) 

Beethoven‘s Symphony No 9 

Bruckner‘s Symphony No 9 

Ninth Avenue (Manhattan) 

Carlos played 

the Moog in the 

Ludwig van scenes. 

He arranged an 

electronic chorus for 

the fourth movement 

of the Ninth. 

Figure 1: Example graph for named entity disambiguation

shows an excerpt for our running example. Realistic graphs can easily have many thousands of nodes, say for a
news article that uses common last names or highly ambiguous phrases.

Given such a graph, the task of NED becomes a problem of computing a dense subgraph with high edge
weights. Inspired by work on social network analysis [44], that is, “big data”, we actually pursue the goal of
finding a subgraph whose minimum weighted degree (the total weight of a node’s incident edges) is as large as
possible, with appropriate constraints for the NED mapping. The intuition here is that NED should be done such
that the weakest link is as strong as possible. Not surprisingly, this problem is NP-hard; we devised practically
viable approximation algorithms [19]. The NED quality of this method achieves top results on benchmark tasks
of the CL community. AIDA is available online at http://www.mpi-inf.mpg.de/yago-naga/aida/.

Big data methods: In this CL-centered work, we leveraged large-scale KB’s and dictionaries as key assets as
well as a variety of methods typical for big data analytics: dictionaries and statistics from Web data, approximate
matching, dense-subgraph computation. One of the next steps that we aim for is to apply NED to an entire corpus
in a near-real-time and high-throughput manner. As a use case, consider that an analyst wants to study the media
coverage of a country’s politicians in one day’s news (in thousands of newspapers) and social media, and also
investigate the relationships with other people and organizations as expressed in this day’s media. Another
scenario is that a journalist wants to track a politician or celebrity over an extended time period in a large media
archive, to discover patterns and trends in the entities and contexts. In both of these use cases, we need to scale
up NED to process huge amounts of input documents. While this can be scaled out by partitioning the inputs,
there may be better choices (e.g., in terms of memory consumption and parallel throughput) like partitioning the
dictionary or dedicating compute nodes to specific subsets of target entities.

5 Use Case: Translating Questions into Queries

To illustrate how the knowledge-language interplay helps for advanced tasks, reconsider our initial question
answering scenario where a user asks: “Which composer from the eternal city wrote the score for the Ecstasy
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scene?” We have developed methods and a prototype system, called DEANNA [50], for automatically translat-
ing the natural language question into a structured SPARQL query that can be evaluated over subject-predicate-
object (SPO) data in the RDF model. The choice of RDF and SPARQL is motivated by their schema-relaxed or
schema-free nature and the fact that the Web of Linked Data provides huge amounts of informative and diverse
SPO triples. The example question is translated into the query:

Select ?p Where {
?p type composer . ?p bornIn Rome . ?p created Ecstasy of Gold . }

where ?p is a variable and the appearance of the same variable in different triple patterns denotes joins.
A major difficulty in this question-to-query translation lies in mapping phrases like “composer”, “eternal

city”, or “Ecstasy” into classes and entities and phrases like “from”, and “score for” into relations of the under-
lying KBs and other RDF sources. This resembles the NED problem discussed in Section 4, but we face a more
general disambiguation problem here. A priori, a word like “score” could be either a class (e.g., soundtracks), or
an entity (e.g., the movie “The Score”, or a music album, or a company), or even a relation (e.g., hasSoundtrack
between movies and music pieces, or scoresFor between football players and their clubs). Our DEANNA sys-
tem generates all these potential meanings, using the dictionaries and pattern taxonomies discussed in Section
3. DEANNA then imposes type constraints on the feasible combinations. If we consider mapping a phrase like
“score for” into the relation wroteMusic, we constrain the left and right arguments of the phrase, “Which com-
poser” and “Ecstasy”, to be of types composer and piece of music, respectively. These and other constraints are
encoded into an integer linear program (ILP) for a combined selection-and-assignment problem: select appro-
priate phrases from the input question and assign them to classes, entities, or relations. The objective function is
to maximize the coherence among the chosen candidates. The resulting ILP is not exactly small, even for short
inputs, but modern solvers (e.g., http://www.gurobi.com) can handle this in reasonable time, usually a few
seconds.

Further details on this method are given in [50]. For the example question, DEANNA generates the SPARQL
query shown above, and evaluating this query over YAGO returns the correct answer: Ennio Morricone.

6 Conclusion

This paper has given an overview of our work on tackling various problems in computational linguistics, by
methods that are typical for big data analytics: frequent sequence mining at Web scale, co-occurrence statistics,
approximate matching, graph algorithms, scalable optimization such as ILP. Details on our work can be found
in the original papers cited in each section.

We believe that these methods and the semantic assets from large knowledge bases and the Web of Linked
Data are game-changers for some notoriously hard problems in computational linguistics. Text understanding in
terms of entities and relationships, and question answering in natural language can greatly benefit from big data
and the accompanying methodology.
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