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Abstract

Over the past few years, our Data Management, Exploration and Mining (DMX) group at Microsoft
Research has worked closely with the Bing team to address challenging data cleaning and approximate
matching problems. In this article we describe some of the key Big Data challenges in the context of
these Bing services primarily focusing on two key services: Bing Maps and Bing Shopping. We describe
ideas that proved crucial in helping meet the quality, performance and scalability goals demanded by
these services. We also briefly reflect on the lessons learned and comment on opportunities for future
work in data cleaning technology for Big Data.

1 Introduction

The aspirational goal of our Data Cleaning project at Microsoft Research [6] (started in the year 2000) is to
design and develop a domain independent horizontal platform for data cleaning, so that scalable vertical solutions
such as address cleansing and product de-duplication can be developed over the platform with little programming
effort. The basis for this goal is the observation that some fundamental concepts such as textual similarity and
need to extract structured data from text are part of many data cleaning solutions. Our platform is designed to
capture and support these concepts. The technologies that we have developed include a customizable notion
of textual similarity along with an efficient lookup operation based on this similarity called Fuzzy Lookup, a
clustering operation called Fuzzy Grouping, and an Attribute Extraction (aka Parsing) operation for extracting
structured attributes from short text (e.g. extract attributes of the product item such the Brand, Product Line,
Model from a product title).

Fuzzy Lookup and Fuzzy Grouping have shipped in Microsoft SQL Server 2005 [3]. Subsequently, as Bing
started offering vertical services such as Bing Maps [4] and Bing Shopping [5], we became aware of several data
cleaning challenges they faced. Over the past few years, we have worked closely with these teams in Bing to
address some of the important data cleaning challenges that arise in their services. This engagement with Bing
has helped shape the evolution of our Fuzzy Lookup and Attribute Extraction technologies and serves as an
illustration that a domain independent horizontal platform for data cleaning can be leveraged relative easily by
developers of vertical solutions. Two major principles underlying the design of our data cleaning technologies
are customizability and performance at scale; and as we describe in this article, both are crucial in order to meet
the ”Big Data” challenges of Bing. We also reflect briefly on the lessons learned and comment on potential
opportunities for future work in data cleaning for Big Data.
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2 Scalable Approximate String Matching for Bing

Scalable approximate string matching (fuzzy matching) is an essential problem for Bing. The need for approxi-
mate string matching in Bing arises in a variety of online and offline settings. For example, when a user submits
a query to Bing Maps, locations (e.g. city, address, landmark) that are mentioned in the query need to be matched
approximately against a large dataset of known locations. Need for offline fuzzy matching arises in many en-
tity resolution scenarios involving comparing a big data set with a big entity reference table. In this section,
using Bing Maps as the motivating scenario, we first describe the requirements we encountered for online fuzzy
matching and key technical ideas that proved essential is meeting these requirements. Next, we discuss offline
fuzzy matching that we implemented on top of Microsoft Cosmos/SCOPE [9] (a distributed data processing
platform developed and used by Bing) and demonstrate the scalability of these techniques using de-duplication
as the motivating scenario.

The Fuzzy Lookup technology what we developed provides efficient and scalable fuzzy matching for both
these scenarios. For the online fuzzy matching scenario of Bing Maps, Fuzzy Lookup is implemented as a DLL
that can be linked into the server code, whereas for the offline scenarios, it is implemented as a SCOPE script.
Although these implementations differ, we note that in both cases, the notion of customizable similarity exposed
to applications is the same.

2.1 Online Fuzzy Matching in Bing Maps

We begin with a brief overview of Bing Maps and its online fuzzy matching requirements; and then highlight a
few key technical and architectural considerations that proved important.

2.2 Bing Maps Overview and Fuzzy Matching Requirements

Overview: Bing Maps is a web-based platform providing a variety of geospatial and location-based services
including interactive maps, satellite imagery, real-time traffic, directions and task-oriented vertical portals. Users
typically begin their interaction with these services by entering a text-based query for a specific point-of-interest
(POI) such as a street address or named entity such as a business, landmark, city or region. Given a user query,
the system matches it against a large data set of POIs and then returns information which it believes to be most
relevant, for instance, repositioning the interactive map to display a specific location.

Customizable Similarity: There are several challenges involved in determining the intent of a user query
and identifying the appropriate POI. Queries, such as a street address, are often complex strings containing
substructure like street number, street name, city, state and zip code. Users often make spelling mistakes, use
various conventions for abbreviating strings, or in general represent a given entity in a manner different from
that present in the database of POI. Moreover, different countries or regions often require different sets of
abbreviations etc. Finally, the query itself may be ambiguous and match many different reference entities with
varying degrees of similarity.

Performance at scale: The worldwide POI database consists of upwards of 100 million entities. It continues
to grow as new classes of people, places and other broad categories of entities are supported by the platform.
Each entity has a primary textual representation, but may also include several alternative forms such as abbre-
viations or synonyms. The services of the system are localized for various languages and regions, so this data
set is amenable to partitioning by region. Nevertheless, regions having upwards of 20 million entities are not
uncommon, and thus any approximate string matching solution must be highly performant at this scale. Since,
for a given query, fuzzy matching may be invoked multiple times (since a query may be parsed in different
ways), and the query has strict overall latency SLAs, each invocation of fuzzy matching needs to complete in
about 3 msec on average with a worst-case latency not exceeding 15 msec.
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Low memory footprint: To achieve high availability and dynamic load balancing, the service is designed to
be relatively stateless, with any necessary storage of user-data existing in a separate tier. This stateless model
allows virtual machine (VM) images to be replicated across compute clusters to dynamically load balance against
changes in user demand for the services. If demand picks up, new instances of the VM images can be created
on additional machines. To allow efficient load balancing, the VMs are defined to be of fixed capabilities in
terms of memory usage and CPU power. For example, a typical VM configuration is 4 GB or 8 GB putting tight
constraints on the memory budget of any fuzzy matching solution. In particular, this requires the indexes used
for fuzzy matching to be as compact as possible, while still allowing the performance goals to be met.

2.3 Key Ideas and Techniques

Transformation Rule based Set Similarity: In light of the system and design constraints above, it was important
to find a suitable measure of string similarity that could provide sufficient precision/recall (quality) while at the
same time being amenable to indexing techniques that would enable the performance and scalability goals to be
met. The transformation rule based set similarity function (see [2] for details) that we implemented in Fuzzy
Lookup enabled these rich kinds of domain knowledge to be expressed within our framework. The notion of
transformation rules was particularly important for Bing Maps. It is common for street names to have alternate
forms. For instance, in ZIP code 33027, SW 154th Ave is also known as Lacosta Dr E. In this case, it is important
that the rule be contextual and apply only when we know that the record refers to a particular ZIP code.

The matching framework we designed is an extensible architecture which allows arbitrary transformation
providers to be plugged in. A transformation provider can be based on static rules from a file or can be generated
dynamically on-the-fly programmatically. In addition to nearly 100,000 pre-defined transformations such as the
examples above, Bing Maps utilizes several additional dynamic transformation providers to provide spelling
mistake correction and string splitting/merging. For instance, looking up a query substring against a dictionary
of words known to be in the reference records and suggesting corrections on-the-fly. The example shown in
Figure 1 illustrates transformation rule based set similarity. The two addresses being matched are: LHS: ”SW
154th Ave Florida 33027” and RHS: ”Lacosta Dr E FL 33027”. Logically, all relevant transformation rules are
applied to the LHS and the RHS, producing two variants on each side. Then among the cross-product of these
variants, the pair of strings with the highest set similarity (i.e. Jaccard similarity) is chosen. In this example, the
variants are in fact identical, so the overall similarity score between the two input strings in the presence of the
transformation rules shown is 1.0.

Figure 1: Transformation Rule based Set Similarity
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Locality Sensitive Hashing (LSH): One important reason for having Jaccard similarity as the base similarity
function is that we are able to very efficiently index this function. In particular, we exploit locality-sensitive
hashing (LSH), which is a well-known signature scheme for Jaccard similarlity. Using this signature scheme
we obtain a probabilistic guarantee of finding all the matches above a given similarity threshold. Another key
advantage of this indexing technique compared to an inverted index based method is that we could precisely tune
the space/time trade-off to put a strong bound on the average lookup time. One of the non-trivial challenges we
addressed was to engineer LSH so that the blowup caused by transformation rules does not hurt performance.

Additional performance optimizations: While computation of similarity in the presence of transformations
is efficient for a relatively small number of transformation rules, performance does become an issue when there
are a very large number of rules. The scale and tight performance requirements of Bing Maps required the
addition of a rule pruning step to select only a limited number of the best rules. An important technique used
was a Bloom filter over adjacent token pairs in the reference table. Precedence is given to a transformation
which transforms a pair of adjacent tokens into a pair which actually occurs in the reference table. We also
found that, for certain transformation providers (e.g. Edit transformation provider that dynamically generates
transformation rules), pre-computation and caching techniques helped avoid repeated expensive work, such as
performing an edit distance lookup of a word against a very large dictionary of words, and brought down the
end-to-end lookup time considerably. We also used lightweight compression of string data to help reduce the
overall memory footprint of the matching service. Finally, for computing pairwise similarity between a pair of
records in the presence of transformation rules, the bipartite matching based algorithm ([2]) greatly improved
performance.

Trade-offs of managed code implementation: Our components were written fully in managed C# and .NET.
This afforded rapid software development and reliable, easy-to-maintain code. We did have to be cognizant of
the garbage collector to ensure that full collections did not take too long. This was achieved through allocation
of objects having long lifetimes into more compact data structures having fewer object handles visible to the
garbage collector. With improvements to asynchronous GC techniques in newer releases of the CLR, we believe
that this will increasingly become less of a consideration.

2.4 Offline Fuzzy Matching on Cosmos (Bing’s MapReduce Engine)

While online approximate string matching is a necessary component of modern web services, equally important
are the offline pipelines which ensure that the underlying reference data is of high quality. Bing ingests data feeds
from a variety of data providers and data sources which have varying degrees of completeness, consistency and
overall data quality. The same entity may be represented in different ways across the different data sources and
mentions must be resolved to remove duplicates. Thus in order to identify duplicates a necessary step is to find
all pairs of records that exhibit a similarity above a pre-defined threshold, i.e. it is a self-join scenario.

There are many commonalities between the online and the offline matching processes. Instead of low latency
driving the design choices, in the offline world, it is the scale of the data which requires that the matching solution
to be very fast. In both cases the same desiderata of a domain-independent yet highly customizable framework
still applies. We found that our techniques developed for the online world have many properties that make them
equally suitable for the offline world and exhibit very nice scaling properties. Much of the offline processing
in Bing is performed on a massively parallel and distributed MapReduce architecture known as Cosmos, with
a higher level SQL like language on top referred to as SCOPE [9]. The data and computation for a given large
processing pipeline is typically distributed across thousands of nodes. In this setting, the main challenges for
the problem of entity resolution between data sources include reducing the number of comparisons between
candidates, reducing the overall data movement and subdividing the problem so as to maximize the amount of
parallelism.

A frequently used strategy for identifying similar entities between data sources is to derive one or more
blocking keys for each entity and then perform pairwise comparisons between all entities which share a given
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blocking key. This approach has the advantage that the work for each distinct key can be parallelized. In fact,
the signature scheme developed in the online case uses this same principle except the input arrives one at a time
instead of in batch. From a query processing perspective, we observe that what is needed is an algorithm for
performing an equi-join of candidate records sharing a given signature. In a MapReduce system, this translates
to mapping the records on their signatures and having each reducer output the pairs of records which truly
satisfy the similarity predicate. LSH signature scheme approaches have the nice properties that, not only do they
(probabilistically) guarantee that all matches will be found, the signature parameters can be tuned to control
the size of each block, allowing effective means to optimize the match operation to the bandwidth and CPU
characteristics of the underlying compute cluster. Using these techniques, we were able to find all approximate
duplicates in a table of 1 billion organization name and address rows in less than an hour. Figures 2 and 3 show
how our offline fuzzy matching technique scale with the the data size and number of nodes (machines). Finally,
we also note that recent work on fuzzy joins on MapReduce ([7][8]) use similar techniques.

Figure 2: The figure above illustrates the performance of various signature scheme settings for the offline task
of finding all approximate duplicates in tables of various sizes. We found that prefix filtering did not scale
very well. LSH with 27 hash tables over 10 dimensional signatures performed best and exhibits good scaling
characteristics.

Figure 3: For the offline task of finding all pairs of fuzzy matches in a table using a fixed signature scheme
setting we see significant speedup with number of nodes with diminishing returns beyond a point.
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3 Attribute Extraction and Dictionary Augmentation in Bing Shopping

Parsing (or attribute extraction) is the process of extracting structured attribute values from short textual input.
Attribute extraction is an important operation that is common in several data cleaning tasks. As mentioned
earlier, we have developed an Attribute Extraction operator as part of our data cleaning platform. This operator
relies on dictionaries for each attribute that defines what values are allowable for that attribute. For example
for the Brand attribute of a Digital Camera product category, the dictionary may specify that the allowable
values are: {Canon, Panasonic, Nikon, ...}. For numeric attributes (such as Megapixel), our Attribute extraction
operators allows a set of regular expressions to define the allowable patterns. We use Bing Shopping as the
motivating scenario in the description below, although our techniques are general and can be applied to other
domains as well.

3.1 Bing Shopping Overview and Requirements

Overview: Bing Shopping is the commerce search vertical of the Bing search engine. It uses a referral model:
when a user searches for a product, it suggests merchants with offers for that product. The service aggregates
product catalogs, reviews and offers from external feeds and serves queries that are detected with commerce
intent. One of the core components of the Bing Shopping backend is a master product catalog service that
integrates product catalogs from different product data providers into a single master product catalog. The
goal of the master product catalog is to provide a complete and clean reference of product information for
other components in Bing Shopping such as offer matching, review matching, query rewriting, and to enable
rich product search experience such as faceted search. Towards this end the master product catalog not only
comprises all the products but also defines a taxonomy including a product category hierarchy, attributes for
each category and their synonyms, and legitimate values (i.e. dictionaries) for each attribute and their synonyms.
The architecture of the data processing pipeline of the master catalog service is shown in Figure 4. The three
major processes are (1) Categorization to classify products into Bing Shopping’s master category hierarchy (2)
Enrichment, which in itself is also a pipeline including tasks such as mapping provider specific attributes to
predefined master attributes, extracting attribute values from product titles, normalizing attribute values and
filling nulls (3) De-duplication to group duplicates and to choose masters among duplicates.

Figure 4: Data Processing Pipeline of Bing Shopping’s Master Catalog Service

Need for accurate parsing: When an external data provider (e.g. a manufacturer of a product, a merchant
who is selling a product) provides data to Bing Shopping, there is no standard data format. A significant number
of products arrive into the pipeline as free text in a single Title attribute. Therefore a key challenge is to parse
attribute values from free text for a given product item/offer.

Need for accurate and complete dictionaries: A challenge closely related to attribute extraction is to build
complete and accurate dictionaries for each attribute. High quality dictionaries can not only improve accuracy
of attribute extraction significantly, it can also help in other downstream uses such as query rewriting and faceted
search.

Scale: Scale of data presents another dimension of challenge. Bing Shopping’s master catalog contains
more than 30 million products and is growing very fast. Thus, operations such as Attribute extraction and De-
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duplication must run at scale. A second scale challenge arises with the taxonomy that contains more than 3000
categories and more than 44 attributes per category on average at the leaf level. Some attributes such as the
Model Number attribute contains thousands of legitimate values per category. Building complete and accurate
dictionaries for so many attributes presents a huge challenge.

The rest of section 3 will discuss attribute extraction and dictionary creation in further details because of
their particular importance.

3.2 Attribute Extraction

Overview: Attribute extraction is the process to extract attributes of product from its title. Table 1 shows some
examples of product titles. The Bing Shopping team defines important attributes and their properties such as
whether it is a numeric attribute or not for each category. For example, Brand, Product Line, Model, Resolution,
Color, Optical Zoom, Digital Zoom, etc. are defined for Digital Camera category. Attribute extraction also takes
each attribute’s dictionary as input. The output is attribute value pairs for each product.

Product Titles
Fuji FinePix Z200FD 10.0 MegaPixel Digital Camera - Silver
Panasonic Lumix DMC-FX33W 8.1 MegaPixel 3.6X Optical/4X Digital Zoom Digital Camera (White)
Casio Exilim Zoom EX-Z300 Digital Camera, 10.1 MegaPixel, 4X Optical Zoom, 4X Digital Zoom, 3” LCD, Pink
...

Table 1: Sample Product Titles of Digital Camera Category

Dictionary/Pattern Match: Attribute extraction behaves slightly differently for categorical and numeric
attributes. For a categorical attribute it relies upon dictionary matching. For example, assuming the dictionary
for the Brand attribute is Fuji, Panasonic, Casio, matching this dictionary will output Fuji as Brand for the
first product in Table 1. For numeric attributes it is pattern matching. For example, assuming the pattern for
the Resolution attribute is \d+[\.\d+] MegaPixel (Section 3.3.1 will discuss how to generate these patterns),
matching it will output 10.0 MegaPixel as Resolution for the first product in Table 1.

There are two points worth noting with the above approach. First, it assumes the dictionaries have good
coverage. For example, if Panasonic is not in the Brand dictionary, then extraction of Brand attribute fails for
the second product in Table 1. Section 3.3 will discuss a solution to this problem. Second, it assumes the
dictionaries are mostly unambiguous, i.e., dictionaries do not overlap and when there is a dictionary match, it
is a true positive match. While this assumption can lead to false positives in a general setting of information
extraction from free text, it is relatively safe in this context, especially when applying the dictionaries on a per
category basis. For example, while there are a lot of false positives to extract every ”Apple” as a laptop brand in
general, it is acceptable to extract every ”Apple” as Brand in the titles of products of laptop category.

Disambiguation: When dictionaries overlap, there is a disambiguation phase to resolve the conflicts. We
currently employ a rule based approach for disambiguation. For example, if one extraction is contained in the
other, then the longer extraction wins. If one extraction is next to its attribute name while the other is not, the
extraction next to its attribute name wins. For instance, token 4X in the second product in Table 1 matches
the pattern for attribute Optical Zoom and attribute Digital Zoom, but since it is next to attribute name Digital
Zoom, so 4X is extracted as Digital Zoom. If two numeric attributes have distinct range, then the extraction that
is closer to the mean value prevails. For example, using this rule correctly extracts 4GB as the attribute for Main
Memory and 500GB as Hard Disk Capacity from product title ”Toshiba L645DS4037 14” NB/AMD Phenom
P820/4GB/500GB/Red/Case”. If extraction involves Brand/Product Line/Model, we prefer extractions that are
consistent: i.e., it conforms to the dictionary hierarchy. For example, FinePix under Fuji and Z200FD under
FinePix. In the future, we plan to investigate the use of some sequential model like Conditional Random Fields
(CRFs) to incorporate dictionary matching and the disambiguation rules together.
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3.3 Dictionary Augmentation

Motivation: As discussed in section 3.2 attribute extraction assumes that dictionaries of good coverage are
available, but in reality these dictionaries can be rather incomplete, e.g. most of the tail Product Lines and
Models may be missing. Since complete dictionaries can be large (e.g. there are thousands of digital camera
models), in practice it is very expensive to create dictionaries entirely manually. On the other hand as evidenced
in Table 1, there exist a lot of regularities and repetitions in product titles that can be leveraged to auto-suggest
additional dictionary entries.

Kinds of dictionaries: We observe that there are three types of attributes: hierarchical, flat (numeric) and
flat (categorical). The most notable attribute hierarchy is formed by Brand, Product Line and Model. They are
also the most important attributes except for a few categories. Thus, obtaining an accurate and complete list of
Brands, Product Lines and Models, and their hierarchical relationships can be very valuable. They also have
notable regularities: they tend to have strong correlation between parent and child by the nature of hierarchy
relationship; they tend to locate together in the product titles because merchants/vendors are accustomed to
using the brand-line-model path to denote a product; if models under the same product line are composed of
alpha-numeric characters, they tend to have similar alpha-numeric patterns, for example, Canon EOS 450D,
Canon EOS 500D, etc. Flat numeric attributes also have regularity that can be easily leveraged: they form
similar alpha-numeric patterns, for example, 8.1 MegaPixel, 10.1 MegaPixel; if its attribute name is also present
in product title, they tend to locate next to each other, for example, 4X Digital Zoom. Flat categorical attributes
have regularity too but they are less reliable than the other two cases: if both attribute name and value are present
in product title they appear next to each other; sometimes data provider put attributes in the titles in a fixed order,
but often they do not (we do not discuss this kind of dictionary in more details in this article).

3.3.1 Key Ideas

Semi-supersived approach: Our dictionary augmentation tool uses a semi-supervised learning approach. The
Bing Shopping team provides a few example values for each flat attribute and the top level attribute of a hierar-
chy, and optionally the partial path or full path of the hierarchy. Table 2 and Table 3 show some example inputs.
The tool generates new values from these examples. The Bing Shopping team can then review the generated
dictionaries, confirm or reject some of the suggested entries or adds new examples and re-run the tool if needed.

Example Attribute
Fuji Brand
10.0 MEGAPIXEL Resolution
White Color
4X Digital Zoom

Table 2: Examples of flat attributes and hierarchy top attributes

Brand Product Line Model
Fuji FinePix Z200FD

Table 3: Examples of hierarchical attributes

Generating candidate regular expressions for numeric attributes: The tool generates new values for nu-
meric attributes by iteratively generalizing the numeric parts and the context part in the example values. It
first generates patterns from examples by generalizing the numeric parts, for example, 10.0 MegaPixel becomes
pattern \d+[\.\d+] MegaPixel. Matching the titles with the pattern results in additional numeric values, for
example, 8.1 MegaPixel. In turn, we then use high support numeric values, for example, 8.1 MegaPixel to find
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additional fragments of title with high similarity. For example, if 8.1 MegaPixels and 8.1 MP are both frequent,
and if their contexts also agree frequently enough, then a new pattern \d+[\.\d+] MP is generated.

Generating candidate hierarchical dictionary entries by correlation analysis: We could use correlation of
tokens to identify potential candidate entries, but the challenge is that dictionary entries are often not single to-
kens. On the other hand, simplistic techniques like finding maximal windows of correlated tokens are inadequate
since such windows could span multiple attributes. We use the following ideas to address these issues. We use
the Brand-ProductLine-Model hierarchy as example. First we rely on a set expansion technique such as SEISA
[12] to generate new brands from the given examples. We partition the product items by Category and then by
Brand, and look for regularities only within each Brand; this significantly improves precision of ProductLine,
Model dictionaries. Another key idea is the notion of anchor tokens, i.e. tokens that are both frequent and highly
correlated with Brand in each Brand partition. For example, if 474 titles have brand Panasonic and 503 titles in-
cludes token Lumix in the Digital Camera category, then correlation(Lumix) = 474/503 = 0.94. If both 503
and 0.94 are higher than predefined thresholds then Lumix is used as an anchor token for partition Panasonic. We
use correlation among neighboring tokens as the basis to build larger candidate fragments from anchor tokens.
For example, if correlation(FinePix, Z200FD) is high and significantly larger than correlation(Z200FD, 10.0),
we merge them to a single candidate FinePix Z200FD for Line-Model. We also found that further filtering of
these candidates was crucial for obtaining high precision, e.g. filtering based on proximity to the Brand token.
Finally, these candidates need to be split into ProductLine and Model. An important observation that drives this
step is that shared prefix/suffix usually denotes a boundary between attributes, for example, EOS 450D and EOS
500D.

We evaluated the dictionaries generated for the Brand-ProductLine-Model attribute hierarchy for the a few
categories. Table 4 shows the result. The precision is estimated by randomly sampling paths from the output
dictionary hierarchy and counting how many of them are correct. The recall is estimated by randomly sampling
product titles and counting how many brands, product lines and models are output by the algorithm. This
tool is used by the Bing Shopping team and it has greatly reduced the manual effort necessary to build these
dictionaries.

Category Number of Brand-Line-Models Generated Precision Recall
Digital Camera 2350 90% 70%
Shoes 27225 80% 50%
Mattress 920 75% 60%

Table 4: Precision and Recall of Generated Dictionaries

4 Conclusion and Future Work

The need for data cleaning arises in a multitude of scenarios beyond those traditionally cited in the enterprise
data integration context. In this article, we described our experiences with both online and offline data cleaning
challenges in Microsoft’s Bing services such as Bing Maps and Bing Shopping. Our data cleaning technologies
are today incorporated into these services and has significantly improved their data quality. Since Bing uses
COSMOS (a MapReduce engine) for its offline data processing needs, our offline data cleaning technologies
have been implemented on this platform and engineered for large scale. Our online fuzzy matching technology
required significant new algorithmic and engineering effort in order to meet the performance, memory and scale
requirements of Bing Maps.

Finally, we briefly comment on opportunities for future work. One of the issues that any horizontal platform
for data cleaning faces is to obtain the necessary domain knowledge for a particular vertical solution. By default,
this burden falls on application developers. However manually generating (or purchasing) this knowledge can be
expensive, tedious and error-prone. One important example of this is the need for synonyms for fuzzy matching.
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Therefore tools that can auto-suggest synonyms for entities (such as locations or products) would be valuable.
Examples of early work in this direction include [10][11]. A second issue that came up in our Bing Maps expe-
rience was that tuning the parameters of LSH to find the right balance between performance and memory was
manual and based on trial-and-error. A tool that could assist developers in tuning these parameters automatically
could have saved us significant effort. Last but not the least, performance and scalability challenges arise in each
of these data cleaning problems for Big Data, and new techniques may be necessary depending on the desired
performance/scale characteristics of the specific problem.
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