
Replicated Data Integrity Verification in Cloud

Raghul Mukundan
Department of Computer Science

Missouri University of Science and Technology
rmgq8@mst.edu

Sanjay Madria
Department of Computer Science

Missouri University of Science and Technology
madrias@mst.edu

Mark Linderman
Air Force Research Lab

Rome, NY
mark.linderman@rl.af.mil

Abstract

Cloud computing is an emerging model in which computing infrastructure resources are provided as a
service over the Internet. Data owners can outsource their data by remotely storing them in the cloud
and enjoy on-demand high quality applications and services from a shared pool of configurable com-
puting resources. However, since data owners and cloud servers are not in the same trusted domain, the
outsourced data may be at risk as the cloud server may no longer be fully trusted. Therefore, data in-
tegrity is of critical importance in such a scenario. Cloud should let either the owners or a trusted third
party to audit their data storage without demanding a local copy of the data from owners. Replicating
data on cloud servers across multiple data centers provides a higher level of scalability, availability,
and durability. When the data owners ask the Cloud Service Provider (CSP) to replicate data at differ-
ent servers, they are charged a higher fee by the CSP. Therefore, the data owners need to be strongly
convinced that the CSP is storing all the data copies that are agreed upon in the service level contract,
and the data-update requests issued by the customers have been correctly executed on all the remotely
stored copies. To deal with such problems, previous multi copy verification schemes either focused on
static files or incurred huge update costs in a dynamic file scenario. In this paper, we propose some
ideas under a Dynamic Multi-Replica Provable Data Possession scheme (DMR-PDP) that prevents the
CSP from cheating; for example, by maintaining fewer copies than paid for. DMR-PDP also supports
efficient dynamic operations like block modification, insertion and deletion on data replicas over cloud
servers.

1 Introduction

When users store data in the cloud, their main concern is whether the cloud can maintain the data integrity and
data can be recovered when there is a data loss or server failure. Cloud service providers (CSP), in order to save

Copyright 2012 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

This publication has been cleared for public release, distribution unlimited by AFRL (case number 88ABW-2012-6360).

1

storage cost, may tend to discard some data or data copies that is not accessed often, or mitigate data to second-
level storage devices. CSPs may also conceal data loss due to management faults, hardware failures or attacks.
Therefore, a critical issue in storing data at untrusted CSPs is periodically verifying whether the storage servers
maintain data integrity; store data completely and correctly as stated in the service level agreement (SLA).

Data replication is a commonly used technique to increase the data availability in cloud computing. Cloud
replicates the data and stores them strategically on multiple servers located at various geographic locations.
Since the replicated copies look exactly similar, it is difficult to verify whether the cloud really stores multiple
copies of the data. Cloud can easily cheat the owner by storing only one copy of the data. Thus, the owner would
like to verify at regular intervals whether the cloud indeed possesses multiple copies of the data as claimed in
the SLA. In general, cloud has the capability to generate multiple replicas when a data owner challenges the
CSP to prove that it possesses multiple copies of the data. Also, it is a valid assumption that the owner of the
data may not have a copy of the data stored locally. So, the major task of the owner is not only to verify that
the data is intact but also to recover the data if any deletions/corruptions of data are identified. If the data owner
during his verification using DMR-PDP scheme detects some data loss in any of the replicas in the cloud, he
can recover the data from other replicas that are stored intact. Since, the replicas are to be stored at diverse
geographic locations, it is safe to assume that a data loss will not occur at all the replicas at the same time.

Provable data possession (PDP) [2] is a technique to audit and validate the integrity of data stored on remote
servers. In a typical PDP model, the data owner generates metadata/tag for a data file to be used later for integrity
verification. To ensure security, the data owner encrypts the file and generates tags on the encrypted file. The
data owner sends the encrypted file and the tags to the cloud, and deletes the local copy of the file. When the
data owner wishes to verify the data integrity, he generates a challenge vector and sends it to the cloud. The
cloud replies by computing a response on the data and sends it to the verifier/data owner to prove that multiple
copies of the data file are stored in the cloud. Different variations of PDP schemes such as [2], [4], [6], [7], [9],
[10], [11], [12], [15] were proposed under different cryptographic assumptions. But most of these schemes deal
only with static data files and are valid only for verifying a single copy. A few other schemes such as [3], [5],
[8], [13], [14] provide dynamic scalability of a single copy of a data file for various applications which mean
that the remotely stored data can not only be accessed by the authorized users, but also be updated and scaled
by the data owner.

In this paper, we propose a scheme that allows the data owner to securely ensure that the CSP stores multiple
replicas. A simple way to make the replicas look unique and differentiable is using probabilistic encryption
schemes. Probabilistic encryption creates different cipher texts each time the same message is encrypted using
the same key. Thus, our scheme uses homomorphic probabilistic encryption to create distinct replicas/copies
of the data file and BLS signatures [17] to create constant amount of metadata for any number of replicas.
Probabilistic encryption encrypts all the replicas with the same key. Therefore, in our scheme the data owner
will have to share just one decryption key with the authorized users and need not worry about CSP granting
access to any of the replicas to the authorized users. The homomorphic property of the encryption scheme helps
in efficient file updates. The data owner has to encrypt the difference between the updated file and the old file
and send it to the cloud, which updates all the replicas by performing homomorphic addition on the file copies.
Any authenticated data structure, e.g, Merklee Hash Trees and Skiplist can be used with our scheme to ensure
that the cloud uses the right file blocks for data integrity verification. However, the ways to efficiently manage
authenticated data structures in the cloud is not within the scope of our paper.

Organization: The rest of the paper is organized as follows. Overview of the related work is provided in
Section 2 followed by the problem definition in Section 3, and a detailed description of our scheme in Section
4. Future work is discussed in Section 5.

2

2 Related Work

Ateniese et al. [2] were the first to define the Provable Data Possession (PDP) model for ensuring the posses-
sion of files on untrusted storages. They made use of RSA-based homomorphic tags for auditing outsourced
data. However, dynamic data storage and multiple replica system are not considered in this scheme. In their
subsequent work [12], they proposed a dynamic version which supports very basic block operations with limited
functionality, and does not support block insertions. In [13], Wang et al. considered dynamic data storage in a
distributed scenario, and proposed a challenge-response protocol which can determine data correctness as well
as locate possible errors. Similar to [12], only partial support for dynamic data operation is considered. Erway
et al. [14] extended the PDP model in [2] to support provable updates to stored data files using rank-based
authenticated skip lists. However, efficiency of their scheme remains unclear and these schemes hold good only
for verifying a single copy.

Curtmola et.al [1] proposed Multiple-Replica PDP (MR-PDP) scheme wherein the data owner can verify
that several copies of a file are stored by a storage service provider. In their scheme, distinct replicas are created
by first encrypting the data and then masking it with randomness generated from a Pseudo-Random Function
(PRF). The randomized data is then stored across multiple servers. The scheme uses RSA signatures for creation
of tags. But, their scheme did not address how the authorized users of the data can access the file copies from
the cloud servers noting that the internal operations of the CSP are opaque and do not support dynamic data
operations. Ayad F. Barsoum et al. [16] proposed creation of distinct copies by appending replica number
to the file blocks and encrypting it using an encryption scheme that has strong diffusion property, e.g., AES.
Their scheme supports dynamic data operations but during file updates, the copies in all the servers should be
encrypted again and updated on the cloud. This scheme suits perfectly for static multiple replicas but proves
costly in a dynamic scenario. BLS signatures are used for creating tags and authenticated data structures like
Merklee Hash Trees are used to ensure right file blocks are used during verification. Authorized users of the
data should know random numbers in [1] and replica number in [16] to generate the original file.

3 Dynamic Multi-Replica Provable Data Possession (DMR-PDP) Scheme

The cloud computing model considered in this work consists of three main components as illustrated in Figure
1: (i) a data owner that can be an individual or an organization originally possessing sensitive data to be stored
in the cloud; (ii) a CSP who manages cloud servers and provides paid storage space on its infrastructure to store
the owner’s files and (iii) authorized users - a set of owner’s clients who have the right to access the remote data
and share some keys with the data owner.

Figure 1: Cloud Computing Data Storage Model.

3

3.1 Problem Definition and Design Goals

More recently, many data owners relieve their burden of local data storage and maintenance by outsourcing
their data to a CSP. CSP undertakes the data replication task in order to increase the data availability, durability
and reliability but the customers have to pay for using the CSPs storage infrastructure. On the other hand,
cloud customers should be convinced that the (1) CSP actually possesses all the data copies as agreed upon,
(2) integrity of these data copies are maintained, and (3) the customers are receiving the service that they are
paying for. Therefore, in this paper, we address the problem of securely and efficiently creating multiple replicas
of the data file of the owner to be stored over untrusted CSP and then auditing all these copies to verify their
completeness and correctness. Our design goals are summarized below:

1. Dynamic Multi-Replica Provable Data Possession (DMR-PDP) protocols should efficiently and securely
provide the owner with strong evidence that the CSP is in possession of all the data copies as agreed upon
and that these copies are intact.

2. Allowing the users authorized by the data owner to seamlessly access a file copy from the CSP.

3. Using only a single set of metadata/tags for all the file replicas for verification purposes.

4. Allowing dynamic data operation support to enable the data owner to perform block-level operations on
the data files while maintaining the same level of data correctness assurance.

5. Enabling both probabilistic and deterministic verification guarantees.

3.2 Preliminaries and Notations

In this section, we provide details of the Bilinear mapping and Paillier Encryption schemes used in our present
work.

1. Assume that F, a data file to be outsourced, is composed of a sequence of m blocks, i.e., F = {b1, b2,..,bm}.

2. Fi = {bi1, bi2,....,bim} represents the file copy i.

3. Bilinear Map/Pairing: Let G1, G2, and GT be cyclic groups of prime order a. Let u and v be generators
of G1 and G2, respectively. A bilinear pairing is a map e : G1 x G2→ GT with the following properties:

• Bilinear: e(u1u2, v1) = e(u1, v1) . e(u2, v1), e(u1, v1v2) = e(u1, v1) . e(u1,v2) ∀ u1, u2 ∈ G1 and v1,
v2 ∈ G2

• Non-degenerate: e(u, v) ̸= 1

• There exists an efficient algorithm for computing e

• e(u1x, v1y) = e(u1, v1)xy ∀ u1 ∈ G1; v1 ∈ G2, and x, y ∈ Za

4. H(.) is a map-to-point hash function: {0, 1}∗→ G1.

5. Homomorphic Encryption: A homomorphic encryption scheme has the following properties.

• E(m1+ m2) = E(m1) +h E(m2) where +h is a homomorphic addition operation.

• E(k*m) = E(m)k.

where E(.) represents a homomorphic encryption scheme and m, m1, m2 are messages that are encrypted
and k is some random number.

4

Figure 2: DMR-PDP Scheme

6. Paillier Encryption: Paillier cryptosystem is a homomorphic probabilistic encryption scheme. The steps
are as follows.

• Compute N = p * q and λ = LCM (p-1, q-1), where p, q are two prime numbers.

• Select a random number g such that its order is a multiple of N and g ∈ ZN
2∗.

• Public key is (N, g) and secret key is λ, where N = p*q.

• Cipher text for a message m is computed as c = gm rN mod N2 where r is a random number and r ∈
ZN

∗, c ∈ ZN
2∗ and m ∈ ZN .

• Plain text is obtained by m = L(cλ mod N2) * (L(gλ mod N2))−1 mod N.

7. Properties of public key g in Paillier Scheme

• g ∈ ZN
2∗.

• If g = (1 + N) mod N2, it has few interesting properties

(a) Order of the value (1 + N) is N.
(b) (1 + N)m ≡ (1 + mN) mod N2. (1 + mN) can be used directly instead of calculating (1 + N)m.

This avoids the costly exponential operation during data encryption.

3.3 DMR-PDP Construction

In our approach, the data owner creates multiple encrypted replicas and uploads them on to the cloud. The
CSP stores them on one or multiple servers located at various geographic locations. The data owner shares the
decryption key with a set of authorized users. In order to access the data, an authorized user sends a data request
to the CSP and receives a data copy in an encrypted form that can be decrypted using a secret key shared with
the owner. The proposed scheme consists of seven algorithms: KeyGen, ReplicaGen, TagGen, Prove, Verify,
PrepareUpdate and ExecUpdate. The overview of the communication involved in our scheme is shown in 2.

1. (pk, sk)← KeyGen(). This algorithm is run by the data owner to generate a public key pk and a private
key sk. The data owner generates three sets of keys.

(a) Keys for data tags : This key is used for generating tags for the data. The data owner selects a
bilinear map e and selects a private key l ∈ Za. Public key is calculated as y = vl ∈ G2.

5

(b) Keys for data : This key is used for encrypting the data and thereby creating multiple data copies.
The data owner selects paillier public keys (N, g) with g = (1 + N) mod N2 and secret key λ.

(c) PRF key : The data owner generates a PRF key KeyPRF which generates s numbers. These s
numbers are used in creating s copies of the data. Each number is used in creating one data copy. Let
{k1, k2,..,ks} ∈ ZN

∗ be the numbers generated by the PRF key. KeyPRF is maintained confidentially
by the data owner and hence the s numbers used in creating multiple copies are not known to the
cloud.

2. {Fi}1≤i≤s← ReplicaGen (s, F). This algorithm is run by the data owner. It takes the number of replicas s
and the file F as input and generates s unique differentiable copies {Fi}1≤i≤s. This algorithm is run only
once. Unique copies of each file block of file F is created by encrypting it using a probabilistic encryption
scheme, e.g., Paillier encryption scheme.

Through probabilistic encryption, encrypting a file block s times yields s distinct cipher texts. For a
file F = {b1, b2,..,bm} multiple data copies are generated using Paillier encryption scheme as Fi =
{(1+N)b1(kiri1)N , (1+N)b2(kiri2)N ,.., (1+N)bm(kirim)N }1≤i≤m. Using Paillier’s properties the above
result can be rewritten as Fi = {(1+b1N)(kiri1)N , (1+b2N)(kiri2)N ,.., (1+bmN)(kirim)N}1≤i≤m, where i
represents the file copy number, ki represents the numbers generated from PRF key KeyPRF and rij rep-
resents any random number used in Paillier encryption scheme. ki is multiplied by a random number rij
and the product is used for encryption. The presence of ki in a file block identifies which file copy the
file block belongs to. All these file copies yield the original file when decrypted . This allows the users
authorized by the data owner to seamlessly access the file copy received from the CSP.

3. ϕ← TagGen (sk, F). This algorithm is run by the data owner. It takes the private key sk and the file F as
input and outputs the tags ϕ. We use BLS signature scheme to create tags on the data. BLS signatures
are short and homomorphic in nature and allow concurrent data verification, which means multiple data
blocks can be verified at the same time. In our scheme, tags are generated on each file block bi as ϕi =
(H(F) . ubiN)l ∈ G1 where u ∈ G1 and H(.) ∈ G1 represents hash value which uniquely represents the file
F. The data owner sends the tag set ϕ = {ϕi}1≤i≤m to the cloud.

4. P← Prove (F, ϕ, challenge). This algorithm is run by the CSP. It takes the file replicas of file F, the tags ϕ
and challenge vector sent by the data owner as input and returns a proof P which guarantees that the CSP
is actually storing s copies of the file F and all these copies are intact. The data owner uses the proof P to
verify the data integrity. There are two phases in this algorithm:

(a) Challenge: In this phase the data owner challenges the cloud to verify the integrity of all outsourced
copies. There are two types of verification schemes:

i. Deterministic - here all the file blocks from all the copies are used for verification.
ii. Probabilistic - only a few blocks from all the copies are used for verification. A Pseudo Random

Function key (PRF) is used to generate random indices ranging between 1 and m. The file
blocks from these indices are used for verification. In each verification a percentage of the file
is verified and it accounts for the verification of the entire file.

At each challenge, the data owner chooses the type of verification scheme he wishes to use. If
the owner chooses the deterministic verification scheme, he generates one PRF key, Key1. If he
chooses the probabilistic scheme he generates two PRF keys, Key1 and Key2. PRF keyed with Key1
generates c (1 ≤ c ≤ m) random file indices which indicates the file blocks that CSP should use
for verification. PRF keyed with Key2 generates s random values and the CSP should use each of
these random numbers for each file copy while computing the response. The data owner sends the
generated keys to the CSP.

6

(b) Response: This phase is executed by the CSP when a challenge for data integrity verification is
received from the data owner. Here, we show the proof for probabilistic verification scheme (the
deterministic verification scheme also follows the same procedure). The CSP receives two PRF
keys, Key1 and Key2 from the data owner. Using Key1, CSP generates a set {C} with c (1≤ c ≤
m) random file indices ({C} ∈ {1, 2,..,m}), which indicate the file blocks that CSP should use for
verification. Using Key2, CSP generates ’s’ random values T = {t1, t2,..,ts}. The cloud performs two
operations. One on the tags and the other on the file blocks.

i. Operation on the tags: Cloud multiplies the file tags corresponding to the file indices generated
by PRF key Key1.

σ =
∏
j∈C

(H(F).ubjN)l

=
∏
j∈C

H(F)l.
∏
j∈C

ubjNl

= H(F)cl.u
Nl

∑
j∈C

(bj)

ii. Operation on the file blocks: The cloud first takes each file copy and multiplies all the file blocks
corresponding to the file indices generated by PRF key Key1. The product of each copy is raised
to the power the random number generated for that copy by the PRF key Key2. The result of
the above operation for each file copy i is given by (

∏
j∈C

(1+N)bj (kirij)
N)ti mod N2. The CSP

then multiplies the result of each copy to get the result

µ =

s∏
i=1

(
∏
j∈C

(1 +N)bj (kirij)
N)ti

=
s∏

i=1

(
∏
j∈C

(1 +N)bjti
∏
j∈C

(kirij)
Nti)

=

s∏
i=1

((1 +N)
ti

∑
j∈C

bj ∏
j∈C

(kirij)
Nti)

= (

s∏
i=1

(1 +N)
ti

∑
j∈C

bj
)(

s∏
i=1

((ki)
ctiN

∏
j∈C

(rij)
Nti))

= ((1 +N)

s∑
i=1

ti
∑
j∈C

bj
)(

s∏
i=1

(ki)
ctiN)(

s∏
i=1

∏
j∈C

(rij)
Nti)

Using properties of Paillier scheme, the above equation can be rewritten as

µ = (1 +N

s∑
i=1

(ti)
∑
j∈C

(bj))(

s∏
i=1

(ki)
Ncti)(

s∏
i=1

(
∏
j∈C

(rij)
tiN))

The CSP sends σ and µ mod N2 values to the data owner.

5. {1, 0} ← Verify (pk, P). This algorithm is run by the data owner. It takes as input the public key pk and
the proof P returned from the CSP, and outputs 1 if the integrity of all file copies is correctly verified or 0
otherwise. After receiving σ and µ values from the CSP, the data owner does the following:

7

Owner CSP
1. Calculates ∆bj = bj’ - bj .
2. Encrypts ∆bj using Paillier encryption.

E(∆bj) = (1 + ∆bjN) rN , where r is some random number.
3. Calculates the new file tag for bj’, ϕ’ = (H(F) ub

′
jN)l.

4. Generates PRF keys Key1, Key2 to verify the correctness
of modify operation.

<IdF , modify, j, E(∆bj), ϕ’> , Key1, Key2
-

5. Performs homomorphic addition operation
E(bj’) = E(∆bj) * E(bj) on all the file copies.

6. Deletes the old tag and replaces it with the new tag ϕ’.
7. Calculates a response µ, σ.

µ, σ
�

8. Calculates v and d
9. Verifies if µ mod v ≡ 0 and checks if (H(F)c udN)l = σ.

Figure 3: Block modification operation in the DMR-PDP scheme

(a) calculates v = (
s∏

i=1
(ki)ticN) and d = Decrypt(µ)/(

s∑
i=1

ki). This can be calculated from the values

generated from KeyPRF and c.

(b) checks if µ mod v ≡ 0. This ensures that the cloud has used all the file copies while computing the
response.

(c) checks if (H(F)c udN)l = σ. This ensures that the CSP has used all the file blocks while computing
the response. If options b and c are satisfied, it indicates that the data stored by the owner in the
cloud is intact and the cloud has stored multiple copies of the data as agreed in the service level
agreement.

6. Update ← PrepareUpdate (). This algorithm is run by the data owner to perform any operation on the
outsourced file copies stored by the remote CSP. The output of this algorithm is an Update request. The
data owner sends the Update request to the cloud and will be of the form <IdF , BlockOp, j, bi’, ϕ’>,
where IdF is the file identifier, BlockOp corresponds to block operation, j denotes the index of the file
block, bi’ represents the updated file blocks and ϕ’ is the updated tag. BlockOp can be data modification,
insertion or delete operation.

7. (F’, ϕ’)← ExecUpdate (F, ϕ, Update). This algorithm is run by the CSP where the input parameters are
the file copies F, the tags ϕ, and Update request (sent from the owner). It outputs an updated version of
all the file copies F’ along with updated signatures ϕ’. After any block operation, the data owner runs the
challenge protocol to ensure that the cloud has executed the operations correctly. The operation in Update
request can be modifying a file block, inserting a new file block or deleting a file block.

(a) Modification: Data modification is one of the most frequently used dynamic operations. The data
modification operation in DMR-PDP scheme is shown in Figure 3.

(b) Insertion: In the block insertion operation, the owner inserts a new block after position j in a file.
If the file F had m blocks initially, the file will have m+1 blocks after the insert operation. The file
block insertion operation is shown in Figure 4.

8

(c) Deletion: Block deletion operation is the opposite of the insertion operation. When one block is
deleted, indices of all subsequent blocks are moved one step forward. To delete a specific data block
at position j from all copies, the owner sends a delete request <IdF , delete, j, null, null> to the
cloud. Upon receiving the request, the cloud deletes the tag and the file block at index j in all the file
copies.

Owner CSP
1. Encrypts the new file block s times
2. Creates tag ϕ for the new file block
3. Generates PRF keys Key1, Key2 to verify the correctness

of insert operation.
<IdF , insert, j, s file blocks, ϕ> , Key1, Key2

-

4. Inserts the new file block at location j
5. Stores the new tag ϕ.
6. Calculates a response µ, σ.

µ, σ
�

7. Calculates v and d
8. Verifies if µ mod v ≡ 0 and checks if (H(F)c udN)l = σ.

Figure 4: Block insertion operation in the DMR-PDP scheme

4 Conclusions and Future Work

In this paper, we have discussed work related to the replicated data integrity preservation in a cloud environment
and presented a Dynamic Multi-Replica Provable Data Possession scheme (DMR-PDP) to periodically verify
the correctness and completeness of multiple data copies stored in the cloud. Our scheme also supports dynamic
data update operations. All the data copies can be decrypted using a single decryption key, thus providing a
seamless access to the data’s authorized users. This scheme can be extended for multiple versions where only
deltas can be stored in the cloud and owner can save on storage cost. Currently, we are implementing the
proposed scheme for evaluating it in a real cloud platform using different performance metrics and comparing it
with some of the existing methods. We also plan to extend this scheme for secure multi-version data where only
one original and multiple deltas can be stored in the cloud.

References

[1] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “MR-PDP: Multiple-Replica Provable Data Possession,”
in 28th IEEE ICDCS, 2008, pp. 411-420.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song, “Provable data
possession at untrusted stores,” in CCS ’07: Proceedings of the 14th ACM Conference on Computer and
Communications Security, New York, NY, USA, 2007, pp. 598-609.

[3] G. Ateniese, R. D. Pietro, L. V. Mancin, and G. Tsudik, “Scalable and efficient provable data possession,”
in SecureComm 08: Proceedings of the 4th International Conference on Security and Privacy in Communi-
cation Netowrks, New York, NY, USA,2008, pp. 1-10.

9

[4] Y. Deswarte, J.-J. Quisquater, and A. Sadane, “Remote integrity checking,” in 6th Working Conference on
Integrity and Internal Control in Information Systems (IICIS), S. J. L. Strous, Ed., 2003, pp. 1-11.

[5] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia, “Dynamic provable data possession,” in CCS 09:
Proceedings of the 16th ACM Conference on Computer and Communications Security, New York, NY,
USA, 2009, pp. 213-222.

[6] D. L. G. Filho and P. S. L. M. Barreto, “Demonstrating data possession and uncheatable data transfer,”
Cryptology ePrint Archive, Report 2006/150, 2006.

[7] P. Golle, S. Jarecki, and I. Mironov, “Cryptographic primitives enforcing communication and storage com-
plexity,” in FC’02: Proceedings of the 6th International Conference on Financial Cryptography, Berlin,
Heidelberg, 2003, pp. 120-135.

[8] Z. Hao, S. Zhong, and N. Yu, “A privacy-preserving remote data integrity checking protocol with data
dynamics and public verifiability,” IEEE Transactions on Knowledge and Data Engineering, vol. 99, no.
PrePrints, 2011.

[9] E. Mykletun, M. Narasimha, and G. Tsudik, “Authentication and integrity in outsourced databases,” Trans.
Storage, vol. 2, no. 2, 2006.

[10] F. Sebe, J. Domingo-Ferrer, A. Martinez-Balleste, Y. Deswarte, and J.-J. Quisquater, “Efficient remote data
possession checking in critical information infrastructures,” IEEE Trans. on Knowl. and Data Eng., vol. 20,
no. 8, 2008.

[11] M. A. Shah, M. Baker, J. C. Mogul, and R. Swaminathan, “Auditing to keep online storage services honest,”
in HOTOS’07: Proceedings of the 11th USENIX workshop on Hot topics in operating systems, Berkeley,
CA, USA, 2007, pp. 1-6.

[12] M. A. Shah, R. Swaminathan, and M. Baker, “Privacy-preserving audit and extraction of digital contents,”
Cryptology ePrint Archive, Report 2008/186, 2008.

[13] C. Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring data storage security in cloud computing,” Cryptology
ePrint Archive, Report 2009/081, 2009, http://eprint.iacr.org/.

[14] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public verifiability and data dynamics for storage
security in cloud computing,” in ESORICS09: Proceedings of the 14th European Conference on Research
in Computer Security, Berlin, Heidelberg, 2009, pp. 355-370.

[15] K. Zeng, “Publicly verifiable remote data integrity,” in Proceedings of the 10th International Conference
on Information and Communications Security, ser. ICICS ’08. Berlin, Heidelberg: Springer-Verlag, 2008,
pp. 419-434.

[16] A. F. Barsoum and M. A. Hasan, “On verifying dynamic multiple data copies over cloud servers,” Cryp-
tology ePrint Archive, Report 2011/447, 2011, 2011, http://eprint.iacr.org/

[17] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil pairing,” in ASIACRYPT ’01:Pro-
ceedings of the 7th International Conference on the Theory and Application of Cryptology and Information
Security, London, UK, 2001, pp. 514-532.

10

