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Abstract

Cloud computing is an emerging model in which computing infrastructure resources are provided
as a service over the Internet. Data owners can outsource their data by remotely storing them in
the cloud and enjoy on-demand high quality applications and services from a shared pool of con-
figurable computing resources. However, since data owners and cloud servers are not in the same
trusted domain, the outsourced data may be at risk as the cloud server may no longer be fully trusted.
Therefore, data integrity is of critical importance in such a scenario. Cloud should let either the own-
ers or a trusted third party to audit their data storage without demanding a local copy of the data
from owners. Replicating data on cloud servers across multiple data centers provides a higher level
of scalability, availability, and durability. When the data owners ask the Cloud Service Provider
(CSP) to replicate data at different servers, they are charged a higher fee by the CSP. Therefore, the
data owners need to be strongly convinced that the CSP is storing all the data copies that are agreed
upon in the service level contract, and the data-update requests issued by the customers have been
correctly executed on all the remotely stored copies. To deal with such problems, previous multi
copy verification schemes either focused on static files or incurred huge update costs in a dynamic
file scenario. In this paper, we propose some ideas under a Dynamic Multi-Replica Provable Data
Possession scheme (DMR-PDP) that prevents the CSP from cheating; for example, by maintaining
fewer copies than paid for. DMR-PDP also supports efficient dynamic operations like block modifi-
cation, insertion and deletion on data replicas over cloud servers.

1 Introduction
When users store data in the cloud, their main concern is whether the cloud can maintain the data integrity

and data can be recovered when there is a data loss or server failure. Cloud service providers (CSP), in order
to save storage cost, may tend to discard some data or data copies that is not accessed often, or mitigate
data to second-level storage devices. CSPs may also conceal data loss due to management faults, hardware
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failures or attacks. Therefore, a critical issue in storing data at untrusted CSPs is periodically verifying
whether the storage servers maintain data integrity; store data completely and correctly as stated in the
service level agreement (SLA).

Data replication is a commonly used technique to increase the data availability in cloud computing.
Cloud replicates the data and stores them strategically on multiple servers located at various geographic
locations. Since the replicated copies look exactly similar, it is difficult to verify whether the cloud really
stores multiple copies of the data. Cloud can easily cheat the owner by storing only one copy of the data.
Thus, the owner would like to verify at regular intervals whether the cloud indeed possesses multiple copies
of the data as claimed in the SLA. In general, cloud has the capability to generate multiple replicas when
a data owner challenges the CSP to prove that it possesses multiple copies of the data. Also, it is a valid
assumption that the owner of the data may not have a copy of the data stored locally. So, the major task of
the owner is not only to verify that the data is intact but also to recover the data if any deletions/corruptions
of data are identified. If the data owner during his verification using DMR-PDP scheme detects some data
loss in any of the replicas in the cloud, he can recover the data from other replicas that are stored intact.
Since, the replicas are to be stored at diverse geographic locations, it is safe to assume that a data loss will
not occur at all the replicas at the same time.

Provable data possession (PDP) [2] is a technique to audit and validate the integrity of data stored on
remote servers. In a typical PDP model, the data owner generates metadata/tag for a data file to be used
later for integrity verification. To ensure security, the data owner encrypts the file and generates tags on the
encrypted file. The data owner sends the encrypted file and the tags to the cloud, and deletes the local copy
of the file. When the data owner wishes to verify the data integrity, he generates a challenge vector and sends
it to the cloud. The cloud replies by computing a response on the data and sends it to the verifier/data owner
to prove that multiple copies of the data file are stored in the cloud. Different variations of PDP schemes
such as [2], [4], [6], [7], [9], [10], [11], [12], [15] were proposed under different cryptographic assumptions.
But most of these schemes deal only with static data files and are valid only for verifying a single copy. A
few other schemes such as [3], [5], [8], [13], [14] provide dynamic scalability of a single copy of a data file
for various applications which mean that the remotely stored data can not only be accessed by the authorized
users, but also be updated and scaled by the data owner.

In this paper, we propose a scheme that allows the data owner to securely ensure that the CSP stores
multiple replicas. A simple way to make the replicas look unique and differentiable is using probabilistic
encryption schemes. Probabilistic encryption creates different cipher texts each time the same message
is encrypted using the same key. Thus, our scheme uses homomorphic probabilistic encryption to create
distinct replicas/copies of the data file and BLS signatures [17] to create constant amount of metadata for
any number of replicas. Probabilistic encryption encrypts all the replicas with the same key. Therefore, in
our scheme the data owner will have to share just one decryption key with the authorized users and need not
worry about CSP granting access to any of the replicas to the authorized users. The homomorphic property of
the encryption scheme helps in efficient file updates. The data owner has to encrypt the difference between
the updated file and the old file and send it to the cloud, which updates all the replicas by performing
homomorphic addition on the file copies. Any authenticated data structure, e.g, Merklee Hash Trees and
Skiplist can be used with our scheme to ensure that the cloud uses the right file blocks for data integrity
verification. However, the ways to efficiently manage authenticated data structures in the cloud is not within
the scope of our paper.

Organization: The rest of the paper is organized as follows. Overview of the related work is provided
in Section 2 followed by the problem definition in Section 3, and a detailed description of our scheme in
Section 4. Future work is discussed in Section 5.
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2 Related Work
Ateniese et al. [2] were the first to define the Provable Data Possession (PDP) model for ensuring the posses-
sion of files on untrusted storages. They made use of RSA-based homomorphic tags for auditing outsourced
data. However, dynamic data storage and multiple replica system are not considered in this scheme. In their
subsequent work [12], they proposed a dynamic version which supports very basic block operations with
limited functionality, and does not support block insertions. In [13], Wang et al. considered dynamic data
storage in a distributed scenario, and proposed a challenge-response protocol which can determine data cor-
rectness as well as locate possible errors. Similar to [12], only partial support for dynamic data operation is
considered. Erway et al. [14] extended the PDP model in [2] to support provable updates to stored data files
using rank-based authenticated skip lists. However, efficiency of their scheme remains unclear and these
schemes hold good only for verifying a single copy.

Curtmola et.al [1] proposed Multiple-Replica PDP (MR-PDP) scheme wherein the data owner can verify
that several copies of a file are stored by a storage service provider. In their scheme, distinct replicas
are created by first encrypting the data and then masking it with randomness generated from a Pseudo-
Random Function (PRF). The randomized data is then stored across multiple servers. The scheme uses RSA
signatures for creation of tags. But, their scheme did not address how the authorized users of the data can
access the file copies from the cloud servers noting that the internal operations of the CSP are opaque and
do not support dynamic data operations. Ayad F. Barsoum et al. [16] proposed creation of distinct copies
by appending replica number to the file blocks and encrypting it using an encryption scheme that has strong
diffusion property, e.g., AES. Their scheme supports dynamic data operations but during file updates, the
copies in all the servers should be encrypted again and updated on the cloud. This scheme suits perfectly
for static multiple replicas but proves costly in a dynamic scenario. BLS signatures are used for creating
tags and authenticated data structures like Merklee Hash Trees are used to ensure right file blocks are used
during verification. Authorized users of the data should know random numbers in [1] and replica number in
[16] to generate the original file.

3 Dynamic Multi-Replica Provable Data Possession (DMR-PDP) Scheme
The cloud computing model considered in this work consists of three main components as illustrated in
Figure 1: (i) a data owner that can be an individual or an organization originally possessing sensitive data
to be stored in the cloud; (ii) a CSP who manages cloud servers and provides paid storage space on its
infrastructure to store the owner’s files and (iii) authorized users - a set of owner’s clients who have the right
to access the remote data and share some keys with the data owner.

Figure 1: Cloud Computing Data Storage Model.
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3.1 Problem Definition and Design Goals
More recently, many data owners relieve their burden of local data storage and maintenance by outsourcing
their data to a CSP. CSP undertakes the data replication task in order to increase the data availability, dura-
bility and reliability but the customers have to pay for using the CSPs storage infrastructure. On the other
hand, cloud customers should be convinced that the (1) CSP actually possesses all the data copies as agreed
upon, (2) integrity of these data copies are maintained, and (3) the customers are receiving the service that
they are paying for. Therefore, in this paper, we address the problem of securely and efficiently creating
multiple replicas of the data file of the owner to be stored over untrusted CSP and then auditing all these
copies to verify their completeness and correctness. Our design goals are summarized below:

1. Dynamic Multi-Replica Provable Data Possession (DMR-PDP) protocols should efficiently and se-
curely provide the owner with strong evidence that the CSP is in possession of all the data copies as
agreed upon and that these copies are intact.

2. Allowing the users authorized by the data owner to seamlessly access a file copy from the CSP.

3. Using only a single set of metadata/tags for all the file replicas for verification purposes.

4. Allowing dynamic data operation support to enable the data owner to perform block-level operations
on the data files while maintaining the same level of data correctness assurance.

5. Enabling both probabilistic and deterministic verification guarantees.

3.2 Preliminaries and Notations
In this section, we provide details of the Bilinear mapping and Paillier Encryption schemes used in our
present work.

1. Assume that F, a data file to be outsourced, is composed of a sequence of m blocks, i.e., F = {b1,
b2,..,bm}.

2. Fi = {bi1, bi2,....,bim} represents the file copy i.

3. Bilinear Map/Pairing: Let G1, G2, and GT be cyclic groups of prime order a. Let u and v be
generators of G1 and G2, respectively. A bilinear pairing is a map e : G1 x G2 → GT with the
following properties:

• Bilinear: e(u1u2, v1) = e(u1, v1) . e(u2, v1), e(u1, v1v2) = e(u1, v1) . e(u1,v2) ∀ u1, u2 ∈ G1 and
v1, v2 ∈ G2

• Non-degenerate: e(u, v) ̸= 1

• There exists an efficient algorithm for computing e

• e(u1x, v1y) = e(u1, v1)xy ∀ u1 ∈ G1; v1 ∈ G2, and x, y ∈ Za

4. H(.) is a map-to-point hash function: {0, 1}∗→ G1.

5. Homomorphic Encryption: A homomorphic encryption scheme has the following properties.

• E(m1+ m2) = E(m1) +h E(m2) where +h is a homomorphic addition operation.

• E(k*m) = E(m)k.

where E(.) represents a homomorphic encryption scheme and m, m1, m2 are messages that are en-
crypted and k is some random number.
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Figure 2: DMR-PDP Scheme

6. Paillier Encryption: Paillier cryptosystem is a homomorphic probabilistic encryption scheme. The
steps are as follows.

• Compute N = p * q and λ = LCM (p-1, q-1), where p, q are two prime numbers.

• Select a random number g such that its order is a multiple of N and g ∈ ZN
2∗.

• Public key is (N, g) and secret key is λ, where N = p*q.

• Cipher text for a message m is computed as c = gm rN mod N2 where r is a random number and
r ∈ ZN

∗, c ∈ ZN
2∗ and m ∈ ZN .

• Plain text is obtained by m = L(cλ mod N2) * (L(gλ mod N2))−1 mod N.

7. Properties of public key g in Paillier Scheme

• g ∈ ZN
2∗.

• If g = (1 + N) mod N2, it has few interesting properties

(a) Order of the value (1 + N) is N.
(b) (1 + N)m ≡ (1 + mN) mod N2. (1 + mN) can be used directly instead of calculating (1 +

N)m. This avoids the costly exponential operation during data encryption.

3.3 DMR-PDP Construction
In our approach, the data owner creates multiple encrypted replicas and uploads them on to the cloud. The
CSP stores them on one or multiple servers located at various geographic locations. The data owner shares
the decryption key with a set of authorized users. In order to access the data, an authorized user sends a data
request to the CSP and receives a data copy in an encrypted form that can be decrypted using a secret key
shared with the owner. The proposed scheme consists of seven algorithms: KeyGen, ReplicaGen, TagGen,
Prove, Verify, PrepareUpdate and ExecUpdate. The overview of the communication involved in our scheme
is shown in 2.

1. (pk, sk) ← KeyGen(). This algorithm is run by the data owner to generate a public key pk and a
private key sk. The data owner generates three sets of keys.

(a) Keys for data tags : This key is used for generating tags for the data. The data owner selects a
bilinear map e and selects a private key l ∈ Za. Public key is calculated as y = vl ∈ G2.
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(b) Keys for data : This key is used for encrypting the data and thereby creating multiple data copies.
The data owner selects paillier public keys (N, g) with g = (1 + N) mod N2 and secret key λ.

(c) PRF key : The data owner generates a PRF key KeyPRF which generates s numbers. These
s numbers are used in creating s copies of the data. Each number is used in creating one data
copy. Let {k1, k2,..,ks} ∈ ZN

∗ be the numbers generated by the PRF key. KeyPRF is maintained
confidentially by the data owner and hence the s numbers used in creating multiple copies are
not known to the cloud.

2. {Fi}1≤i≤s ← ReplicaGen (s, F). This algorithm is run by the data owner. It takes the number of
replicas s and the file F as input and generates s unique differentiable copies {Fi}1≤i≤s. This algo-
rithm is run only once. Unique copies of each file block of file F is created by encrypting it using a
probabilistic encryption scheme, e.g., Paillier encryption scheme.

Through probabilistic encryption, encrypting a file block s times yields s distinct cipher texts. For
a file F = {b1, b2,..,bm} multiple data copies are generated using Paillier encryption scheme as Fi =
{(1+N)b1(kiri1)N , (1+N)b2(kiri2)N ,.., (1+N)bm(kirim)N }1≤i≤m. Using Paillier’s properties the above
result can be rewritten as Fi = {(1+b1N)(kiri1)N , (1+b2N)(kiri2)N ,.., (1+bmN)(kirim)N}1≤i≤m, where
i represents the file copy number, ki represents the numbers generated from PRF key KeyPRF and rij
represents any random number used in Paillier encryption scheme. ki is multiplied by a random
number rij and the product is used for encryption. The presence of ki in a file block identifies which
file copy the file block belongs to. All these file copies yield the original file when decrypted . This
allows the users authorized by the data owner to seamlessly access the file copy received from the
CSP.

3. ϕ← TagGen (sk, F). This algorithm is run by the data owner. It takes the private key sk and the file
F as input and outputs the tags ϕ. We use BLS signature scheme to create tags on the data. BLS
signatures are short and homomorphic in nature and allow concurrent data verification, which means
multiple data blocks can be verified at the same time. In our scheme, tags are generated on each file
block bi as ϕi = (H(F) . ubiN )l ∈G1 where u ∈G1 and H(.) ∈G1 represents hash value which uniquely
represents the file F. The data owner sends the tag set ϕ = {ϕi}1≤i≤m to the cloud.

4. P← Prove (F, ϕ, challenge). This algorithm is run by the CSP. It takes the file replicas of file F, the
tags ϕ and challenge vector sent by the data owner as input and returns a proof P which guarantees
that the CSP is actually storing s copies of the file F and all these copies are intact. The data owner
uses the proof P to verify the data integrity. There are two phases in this algorithm:

(a) Challenge: In this phase the data owner challenges the cloud to verify the integrity of all out-
sourced copies. There are two types of verification schemes:

i. Deterministic - here all the file blocks from all the copies are used for verification.
ii. Probabilistic - only a few blocks from all the copies are used for verification. A Pseudo

Random Function key (PRF) is used to generate random indices ranging between 1 and m.
The file blocks from these indices are used for verification. In each verification a percentage
of the file is verified and it accounts for the verification of the entire file.

At each challenge, the data owner chooses the type of verification scheme he wishes to use. If
the owner chooses the deterministic verification scheme, he generates one PRF key, Key1. If
he chooses the probabilistic scheme he generates two PRF keys, Key1 and Key2. PRF keyed
with Key1 generates c (1 ≤ c ≤ m) random file indices which indicates the file blocks that CSP
should use for verification. PRF keyed with Key2 generates s random values and the CSP should
use each of these random numbers for each file copy while computing the response. The data
owner sends the generated keys to the CSP.
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(b) Response: This phase is executed by the CSP when a challenge for data integrity verification is
received from the data owner. Here, we show the proof for probabilistic verification scheme (the
deterministic verification scheme also follows the same procedure). The CSP receives two PRF
keys, Key1 and Key2 from the data owner. Using Key1, CSP generates a set {C} with c (1≤
c ≤ m) random file indices ({C} ∈ {1, 2,..,m}), which indicate the file blocks that CSP should
use for verification. Using Key2, CSP generates ’s’ random values T = {t1, t2,..,ts}. The cloud
performs two operations. One on the tags and the other on the file blocks.

i. Operation on the tags: Cloud multiplies the file tags corresponding to the file indices gener-
ated by PRF key Key1.

σ =
∏
j∈C

(H(F ).ubjN )l

=
∏
j∈C

H(F )l.
∏
j∈C

ubjNl

= H(F )cl.u
Nl

∑
j∈C

(bj)

ii. Operation on the file blocks: The cloud first takes each file copy and multiplies all the file
blocks corresponding to the file indices generated by PRF key Key1. The product of each
copy is raised to the power the random number generated for that copy by the PRF key Key2.
The result of the above operation for each file copy i is given by (

∏
j∈C

(1 +N)bj (kirij)
N )ti

mod N2. The CSP then multiplies the result of each copy to get the result

µ =
s∏

i=1

(
∏
j∈C

(1 +N)bj (kirij)
N )ti

=
s∏

i=1

(
∏
j∈C

(1 +N)bjti
∏
j∈C

(kirij)
Nti)

=

s∏
i=1

((1 +N)
ti

∑
j∈C

bj ∏
j∈C

(kirij)
Nti)

= (

s∏
i=1

(1 +N)
ti

∑
j∈C

bj
)(

s∏
i=1

((ki)
ctiN

∏
j∈C

(rij)
Nti))

= ((1 +N)

s∑
i=1

ti
∑
j∈C

bj
)(

s∏
i=1

(ki)
ctiN )(

s∏
i=1

∏
j∈C

(rij)
Nti)

Using properties of Paillier scheme, the above equation can be rewritten as

µ = (1 +N

s∑
i=1

(ti)
∑
j∈C

(bj))(

s∏
i=1

(ki)
Ncti)(

s∏
i=1

(
∏
j∈C

(rij)
tiN ))

The CSP sends σ and µ mod N2 values to the data owner.

5. {1, 0}←Verify (pk, P). This algorithm is run by the data owner. It takes as input the public key pk and
the proof P returned from the CSP, and outputs 1 if the integrity of all file copies is correctly verified
or 0 otherwise. After receiving σ and µ values from the CSP, the data owner does the following:
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Owner CSP
1. Calculates ∆bj = bj’ - bj .
2. Encrypts ∆bj using Paillier encryption.

E(∆bj) = (1 + ∆bjN) rN , where r is some random number.
3. Calculates the new file tag for bj’, ϕ’ = (H(F) ub

′
jN )l.

4. Generates PRF keys Key1, Key2 to verify the correctness
of modify operation.

<IdF , modify, j, E(∆bj), ϕ’> , Key1, Key2
-

5. Performs homomorphic addition operation
E(bj’) = E(∆bj) * E(bj) on all the file copies.

6. Deletes the old tag and replaces it with the new tag ϕ’.
7. Calculates a response µ, σ.

µ, σ
�

8. Calculates v and d
9. Verifies if µ mod v ≡ 0 and checks if (H(F)c udN )l = σ.

Figure 3: Block modification operation in the DMR-PDP scheme

(a) calculates v = (
s∏

i=1
(ki)ticN ) and d = Decrypt(µ)/(

s∑
i=1

ki). This can be calculated from the values

generated from KeyPRF and c.

(b) checks if µ mod v ≡ 0. This ensures that the cloud has used all the file copies while computing
the response.

(c) checks if (H(F)c udN )l = σ. This ensures that the CSP has used all the file blocks while comput-
ing the response. If options b and c are satisfied, it indicates that the data stored by the owner in
the cloud is intact and the cloud has stored multiple copies of the data as agreed in the service
level agreement.

6. Update← PrepareUpdate (). This algorithm is run by the data owner to perform any operation on the
outsourced file copies stored by the remote CSP. The output of this algorithm is an Update request.
The data owner sends the Update request to the cloud and will be of the form <IdF , BlockOp, j, bi’,
ϕ’>, where IdF is the file identifier, BlockOp corresponds to block operation, j denotes the index of
the file block, bi’ represents the updated file blocks and ϕ’ is the updated tag. BlockOp can be data
modification, insertion or delete operation.

7. (F’, ϕ’)← ExecUpdate (F, ϕ, Update). This algorithm is run by the CSP where the input parameters
are the file copies F, the tags ϕ, and Update request (sent from the owner). It outputs an updated
version of all the file copies F’ along with updated signatures ϕ’. After any block operation, the data
owner runs the challenge protocol to ensure that the cloud has executed the operations correctly. The
operation in Update request can be modifying a file block, inserting a new file block or deleting a file
block.

(a) Modification: Data modification is one of the most frequently used dynamic operations. The
data modification operation in DMR-PDP scheme is shown in Figure 3.

(b) Insertion: In the block insertion operation, the owner inserts a new block after position j in a
file. If the file F had m blocks initially, the file will have m+1 blocks after the insert operation.
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The file block insertion operation is shown in Figure 4.

(c) Deletion: Block deletion operation is the opposite of the insertion operation. When one block is
deleted, indices of all subsequent blocks are moved one step forward. To delete a specific data
block at position j from all copies, the owner sends a delete request <IdF , delete, j, null, null>
to the cloud. Upon receiving the request, the cloud deletes the tag and the file block at index j in
all the file copies.

Owner CSP
1. Encrypts the new file block s times
2. Creates tag ϕ for the new file block
3. Generates PRF keys Key1, Key2 to verify the correctness

of insert operation.
<IdF , insert, j, s file blocks, ϕ> , Key1, Key2

-

4. Inserts the new file block at location j
5. Stores the new tag ϕ.
6. Calculates a response µ, σ.

µ, σ
�

7. Calculates v and d
8. Verifies if µ mod v ≡ 0 and checks if (H(F)c udN )l = σ.

Figure 4: Block insertion operation in the DMR-PDP scheme

4 Conclusions and Future Work
In this paper, we have discussed work related to the replicated data integrity preservation in a cloud environ-
ment and presented a Dynamic Multi-Replica Provable Data Possession scheme (DMR-PDP) to periodically
verify the correctness and completeness of multiple data copies stored in the cloud. Our scheme also sup-
ports dynamic data update operations. All the data copies can be decrypted using a single decryption key,
thus providing a seamless access to the data’s authorized users. This scheme can be extended for multiple
versions where only deltas can be stored in the cloud and owner can save on storage cost. Currently, we are
implementing the proposed scheme for evaluating it in a real cloud platform using different performance
metrics and comparing it with some of the existing methods. We also plan to extend this scheme for secure
multi-version data where only one original and multiple deltas can be stored in the cloud.

References
[1] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “MR-PDP: Multiple-Replica Provable Data Posses-

sion,” in 28th IEEE ICDCS, 2008, pp. 411-420.
[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song, “Provable data

possession at untrusted stores,” in CCS ’07: Proceedings of the 14th ACM Conference on Computer
and Communications Security, New York, NY, USA, 2007, pp. 598-609.

[3] G. Ateniese, R. D. Pietro, L. V. Mancin, and G. Tsudik, “Scalable and efficient provable data possession,”
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