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Abstract

Cloud computing is a major emerging technology that is significantly changing industrial comput-
ing paradigms and business practices. However, security and privacy concerns have arisen as ob-
stacles to widespread adoption of clouds by users. While much cloud security research focuses on
enforcing standard access control policies typical of centralized systems, such policies often prove
inadequate for the highly distributed, heterogeneous, data-diverse, and dynamic computing envi-
ronment of clouds. To adequately pave the way for robust, secure cloud computing, future cloud
infrastructures must consider richer, semantics-aware policies; more flexible, distributed enforce-
ment strategies; and feedback mechanisms that provide evidence of enforcement to the users whose
data integrity and confidentiality is at stake. In this paper, we propose a framework that supports
such policies, including rule- and context-based access control and privacy preservation, through
the use of in-lined reference monitors and a trusted application programming interface that affords
enforceable policy management over heterogeneous cloud data.

1 Introduction
Cloud computing security has rapidly emerged as a significant concern for businesses and end-users over the
past few years. For example, in a 2010 survey, Fujitsu concluded that 88% of its customers have significant
concerns about data integrity and privacy in the cloud [9]. While some cloud security issues are addressable
via traditional techniques that have been used for decades to secure centralized, time-shared systems, others
are endemic to the uniquely diverse and dynamic nature of cloud environments, and therefore demand new
solutions [6].

Our prior research has identified at least three major categories of security challenges that are impeding
information assurance in clouds: (1) semantic diversity of cloud data, (2) customer-cloud negotiated mobile
computations, and (3) multi-party, cross-domain security, privacy and accountability policies.

Semantic diversity of data in clouds arises from the vast range of different datasets and data process-
ing/querying tools that production-level clouds must process. These different datasets range from structured
to unstructured data and data processing/querying frameworks range from MapReduce [7] (e.g., Hadoop [2])
to stream processing (e.g., [26]). This emerges as a security challenge because of the need to formulate pol-
icy languages that are sufficiently general to capture and relate permissible uses of security-relevant data
with diverse semantics. For example, fine grained access control policies defined for streaming data ap-
plications could be vastly different from the applications that try to support SQL-like queries on relational
data.
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Mobile computations for clouds differ from traditional time-shared systems in that cloud infrastructures
are seldom static or fully transparent to users. Further more, different cloud providers provide different in-
ternal network topology, storage model, job scheduling mechanisms, etc. These infrastructure choices often
have security-relevant implications for users. For example, different versions of Hadoop may have different
access control mechanisms that support different levels of granularity. In order to enforce their policies
efficiently, users must be afforded a flexible range of enforcement options that allow them to choose the best
enforcement strategy for each job given the (possibly evolving) constraints of the computing environment.
Dually, the security adequacy of each option should be independently verifiable by the cloud provider in
order to protect the cloud infrastructure and its other users.

Finally, the potential power of cloud computing stems in part from its ability to synergistically co-mingle
large datasets from multiple organizations, and process distributed queries over the combined data for long
periods of time. Policies for such an environment must be multi-party and history-based. For example, we
may need to support contract-style data-sharing policies where organization X is willing to share data set D
with organization Y if organization Y is willing to share data set D′ with organization X .

In what follows, we describe how our prior work on a general cloud policy enforcement frameworks
offers new, promising approaches for surmounting these challenges, and we recommend future work that
will allow practical application of these technologies to clouds.

2 Proposed Approach
A general policy enforcement framework for cloud data management1 must consider three important dimen-
sions: (1) data type (e.g., relational data, RDF data, text data, etc.), (2) computation (e.g., SQL queries,
SPARQL, Map/Reduce tasks, etc.), and (3) policy requirements (e.g., access control policies, data sharing
policies, privacy policies, etc.) Given the wide range of available choices in each dimension, a policy en-
forcement framework must be highly flexible and must support different data processing requirements. To
achieve these goals, we propose a policy-compliant data processing framework with the following modules:

• Policy-reasoning module: The main job of the policy-reasoning module is to map a policy to a
specific set of tasks that will be executed on the data along with the submitted data processing task
to enforce various policies. Based on the policy reasoning results, the policy reasoning module will
output initial data pre-processing tasks, a modified data processing task, and the post-processing tasks
for each submitted data processing task.

• Data processing task rewriting module: In some cases, using different pre-processing and post-
processing tasks might result in different computational costs. In addition, to enable efficient compu-
tation, some of the pre-processing and post-processing tasks might need to be combined or simplified
without provoking a policy violation. The data processing rewriting module can consider various
rewriting strategies for enforcing policies.

• Pre-processing module: The pre-processing module executes the pre-processing tasks on the under-
lying data. For example, a pre-processing step might require the dataset to be anonymized with some
privacy definition (e.g., l-diversity, t-closeness, k-anonymity, etc.) before any query is executed on
it. In addition, pre-processing tasks could be used to filter sensitive data. For example, fine grained
access control on relational data could be enforced by using a pre-processing task to create a view that
can be given to each user-submitted SQL query.

• Post-processing module: In some cases, it might be more efficient to process the final results to
enforce policies. For example, an accountability policy might require the creation of certain audit

1We here assume that the cloud system is trusted with enforcing given policies. Untrusted clouds are left to future work.

40



logs if the data processing task changed certain data records. Such policies could be enforced using
post-processing tasks.

To efficiently implement the above modules, we need to able to specialize them for different data types,
computation types and policy requirements. One way to achieve this goal is to create specialized modules
for common data types, computations, and policies. For example, in our previous work [28], we built the
above modules for enforcing role-based access control policies for a relational data store on the cloud that
is processed using SQL queries. In essence, we have combined the Hadoop Distributed File System [27]
with Hive [29] to provide a common storage area for storing large amounts of relational data and for run-
ning SQL like queries. Further, we have used an XACML [23] policy-based security mechanism to provide
fine-grained access controls over the stored data. In this case, the policy reasoning module uses an XACML
reasoning engine to check whether a user who submitted an SQL query has access to all the underlying
table/views. The pre-processing module runs HiveQL queries to create materialized views that are accessed
by user submitted queries. A query rewriting module can modify the submitted query based on the under-
lying view definitions for efficient query processing. In this case, post-processing may not be needed since
pre-processing and/or query rewriting may be enough for enforcing basic access control policies.

Of course, such a specialized approached will not necessarily be applicable to other types of data, com-
putations, and policies. For example, if the stored data is unstructured and computations executed on the
data are arbitrary MapReduce jobs, then we need different policy enforcement techniques. In such scenar-
ios, user submitted MapReduce jobs could be modified using in-lined reference monitoring techniques (see
Section 2.2 for more details.).

2.1 Data-aware Policy Languages for Clouds
As mentioned previously, a policy enforcement framework for cloud must support a wide range of policies.
In this section, we briefly summarize policies and policy languages previously proposed in the literature that
are potentially enforceable by our framework.

Access controls are one of the most important policy classes that must be considered. At a general level,
access control languages make assertions about users and their permissible operations [24]. Additionally,
languages have been defined for making authorization decisions for policies that have been combined from
various sources [3], as well as for supporting trust management (e.g., [32]). Furthermore, since the advent
of XML and its acceptance as a de facto standard for information exchange, a number of access control
languages based on XML have been proposed. An important example of XML-based access control is
XACML2, which provides an XML syntax for defining policies that constrain resources that may also be
expressed in XML.

There have also been access control languages that are designed in a logic-based framework (e.g., [20]).
The additional expressive power and formal, verifiable methodology offered by logic-based languages are
particularly useful in the context of access control. Finally, access control languages have also been defined
in the context of Semantic Web languages (e.g., Rei [16] and KAoS [30]). Semantic Web languages are
based on description logics, which are a decidable subset of first order logic, and hence provide benefits that
are similar to logic-based languages.

Group-Centric Secure Information Sharing (g-SIS) (e.g., [18]) is an example of a family of access con-
trol models that is tailored to suit the requirements of information sharing on the cloud. The family of
models in g-SIS is based on the notion of brining users and resources together into a group for purposes
of information sharing. In other words, this means that users and resources must be present in the system
simultaneously for the users to be able to access the resources. In addition, the family of g-SIS models is
based on the following two principles:

2http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-en.html
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Figure 1: A cloud framework with policy-enforcement based on certifying IRMs

• Share but differentiate: The sharing aspect is achieved through users joining a group and then adding
information to that group. However, the access that a user is granted to resources is based on several
factors—for example, the time at which a user is added to the group relative to the time at which the
information was posted to the group, and other user-configurable attributes.

• Multiple groups: This principle refers to the notion that various types of relationships can hold
between different groups (e.g., hierarchical, mutual exclusion, etc.) with a possibly overlapping set of
users.

Research devoted to the g-SIS family of models has included the development of a formal model for g-
SIS using linear temporal logic (LTL) [21], the specification of core properties that g-SIS models must
satisfy, as well as extensions that show how g-SIS models allow secure and agile information sharing when
compared with traditional access control techniques, and finally, the development of a “stateful” enforceable
specification of g-SIS [19].

An alternative approach to provenance-aware access control is to tailor the language to suit the require-
ments (e.g., policy enforcement based on an aggregation of applicable policies, redaction policies, etc.) [22].
This proposed language uses an XML syntax and specifies a variety of tags (viz., target, effect, condition,
and obligations) to capture various access control use-cases that arise in the domain of provenance. How-
ever, the language is not able to capture resources with arbitrary path lengths that occur within a provenance
graph. Therefore, a resource to be protected must be identified a priori, rather than being passed as a pa-
rameter at runtime. The task of identifying resources a priori might be infeasible, since there might be an
exponential number of resources in a provenance graph.

Subsequent work has addresses this path-length drawback through the use of regular expressions to
define resources requiring protection [4]. The use of regular expressions allows resources with arbitrary
path lengths to be defined and used at runtime rather than having to create resources a priori. The same
authors have also extended the notion of redaction to provenance graphs [5]. They use a graph grammar
approach [8] that rewrites a high-level specification of a redaction policy into a graph grammar rule that
transforms the original provenance graph into a redacted provenance graph.

2.2 Flexible Cloud Policy Enforcement
One way to provide cloud customers maximum flexibility with regard to policy enforcement is to permit the
enforcement mechanism to reside within the jobs, with suitable checking on the cloud side to ensure that the
job’s self-enforcement is adequate. Such a cloud framework is illustrated in Figure 1. For example, a job
expressed as a Java bytecode binary (as in typical Hadoop MapReduce clouds) can self-enforce an access
control policy by voluntarily restricting its accesses to policy-permitted resources. If the full policy is not
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known at code-generation time, the cloud can even provide a trusted system API that job code may consult
at runtime to discover policies to which it is subject and self-censor its resource accesses accordingly.

As a simple illustration of how such self-enforcement can be more efficient than cloud-implemented,
system-level enforcement, consider a job J that counts database records r ∈ D satisfying some predicate
PJ(r), and consider a policy C that prohibits J from accessing records that falsify a policy-prescribed
predicate PC(r). To enforce this policy, a system-level implementation might intercept all attempts by J
to access records r, denying those for which PC(r) is falsified. Alternatively, job J could self-enforce this
policy by implementing PC(r) within its own code, but only evaluating it on records r that have already
satisfied PJ(r). In both cases, job J satisfies the policy and counts the set of records that satisfy conjunction
PC(r)∧ PJ(r). However, if PC is more computationally expensive than PJ and few records satisfy PJ , the
self-enforcement approach could be far more efficient.

Self-enforcement need not impose an implementation burden on clients if the inclusion of the enforce-
ment mechanism into the job code can be automated. Our prior work has demonstrated that enforcement
of safety policies—including access control policies—can be in-lined into arbitrary, untrusted, Java bina-
ries fully automatically through the use of aspect-oriented in-lined reference monitors (IRMs) [10, 14, 15].
IRMs in-line the logic of traditionally system-level reference monitors into untrusted code to produce policy-
compliant, self-monitoring code [25]. The in-lining process identifies potentially security-relevant instruc-
tions in the untrusted code and surrounds them with guard code that preemptively detects impending policy
violations at runtime. When an impending violation is detected, the guard code intervenes by halting the job
prematurely or taking some other corrective action (e.g., throwing a catchable exception or rolling back to a
consistent state).

For example, a simple binary rewriter might replace all instructions read(), which read a new database
record, with a wrapper function of the form(

let r = read() in (if PC(r) then r else error)
)

(2)

The result of such a transformation is code that self-enforces policy C. More sophisticated rewriters can
in-line such guard code more intelligently, such as by shifting the check to time-of-use sites instead of
time-of-read sites when doing so improves performance, or by distributing the implementation of PC across
multiple nodes when PC is computationally expensive (e.g., when r is large).

IRM implementations and the policies they enforce can be elegantly expressed using aspect-oriented
programming (AOP) [31]. AOP has been used for over a decade to implement cross-cutting concerns in
large source codes, and there is a rich family of production-level compilers and programming languages that
support it. It extends traditional object-oriented programming with aspects, which consist of pointcuts and
advice. Pointcuts are similar to regular expressions, but match sets of program operations instead of strings.
The compiler or aspect-weaver for an AOP system in-lines the aspect-supplied advice code into the target
program at every code point that matches the pointcut. In the context of IRMs, pointcuts can be leveraged to
specify policy-relevant program operations (e.g., read), and advice can be leveraged to specify guard code
for those operations (e.g., the computation in 2).

Thus, AOP and AOP-based specification languages constitute a powerful and well-developed paradigm
for enforcing a broad class of security policies as IRMs. In such a framework, users and clouds specify poli-
cies using a declarative policy language, such as SPoX [10], from which an automated rewriter synthesizes
appropriate aspects and weaves them into the target code at the binary level. The result is binary code that
transparently self-enforces the policies without any manual intervention from the user.

The use of IRMs as a basis for enforcing policies mandated by the cloud or by other clients (e.g., owners
of shared data accessed by untrusted, third-party jobs) is only feasible if the cloud can independently verify
that submitted jobs satisfy the policies to which they are subject. While such code properties are in general
undecidable [13], recently a series of technologies has emerged that permit a broad class of powerful IRM
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implementations to be verified fully automatically via type-checking [12], contract-based certification [1],
or model-checking [11]. By implementing one of these algorithms, a trusted cloud can safely permit jobs to
self-enforce mandatory access control policies, yet statically verify that this self-enforcement is sound prior
to the job’s deployment.

The cloud framework depicted in Figure 1 combines these ideas to implement a flexible policy enforce-
ment strategy based on certifying IRMs. Jobs expressed as binary code are rewritten automatically on the
client side in accordance with both user-specified (i.e., discretionary) and cloud-specified (i.e., mandatory)
policies. The result of the rewriting is a new binary that self-enforces the desired policies. When the job is
submitted to the cloud, the cloud first verifies that the submitted code has been instrumented with security
checks sufficient to enforce the mandatory policies. Once it passes verification, the job can then be safely
dispatched to the rest of the cloud without the need for additional system-level monitoring.

3 Conclusion
In this paper, we outlined a general policy enforcement framework needed for policy-compliant cloud data
management. We discussed different policy types applicable for cloud data management ranging from data
sharing policies to traditional access control policies, and showed how various techniques such as IRMs
could be used to enforce such policies in a flexible, user-driven, but cloud-certified manner. Our proposals
assumed that the cloud infrastructure is trusted to enforce or certify the enforcement of the specified policies.
In our future work, we plan to explore how such policies could be enforced on semi-trusted and/or untrusted
cloud infrastructures (cf., [17]).
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