
My Private Google Calendar and GMail

Tahmineh Sanamrad
ETH Zurich

Patrick Nick
ETH Zurich

Daniel Widmer
ETH Zurich

Donald Kossmann
ETH Zurich

Lucas Braun
ETH Zurich

Abstract

Although Cloud Applications provide users with highly available data services, they are missing privacy
as a vital non-functional requirement. In this paper we leverage modern cryptography techniques to
guarantee the user’s privacy while the inherent functionality and portability of the cloud application
remain intact. Our approach revolves on a transparent security middleware that sits between the user
and the cloud service provider on a site trusted by the user. This layer accesses the request and response
messages passed between the two parties in a fine-grained manner to preserve the functionalities. We
implemented the methods and provide a middleware that allows users to keep their calendar information
and E-Mail in an encrypted form using Google Calendar and GMail. Furthermore, we present the results
of experiments with our middleware; these experiments show that the overhead to encrypt data on top of
GMail and Google Calendar is negligible.

1 Introduction
Trust and privacy play a crucial role in today’s applications, as more and more people and companies decide

to outsource their data and IT services. There are plenty of cloud data services and web applications that help
to organize and store data for free or at a low cost. Still, for some people high availability, up to date features,
light-weight interfaces, backup, low maintenance costs and portability on the latest mobile devices seem all to
be overshadowed by privacy doubts and suspicions.

This paper presents our experience on building a middleware to enforce privacy on top of two popular Web
applications, namely Google Calendar and GMail. The goal is to use these two services without revealing any
information to an attacker who has access to the Google Cloud (e.g., a Google system administrator) or who
intercepts messages from or to the Google Cloud. We use a security middleware as a transparent encryption
layer on a site trusted by the client. The key component in the security middleware is a proxy server that inspects
and accesses the http message body, selectively encrypts/decrypts its content in a fine-grained manner, thereby
preserving the original APIs. Recently in [9] a very similar approach to this paper has been suggested. However,
the proxy server is installed on the client which restricts the portability but does not require an additional SSL
termination step.

The main advantage of our architecture is transparency of the complicated encryption mechanism and key
management for the end user. Also, given the variety of mobile devices that embed cloud data services, our

Copyright 0000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

system assures a device-independent installation and thereby portability is guaranteed. As a proof of concept,
we have developed a prototype of the calendar application for the most recent mobile devices.

To recover the missing functionality due to encryption, we compose a new scheme. The resulting scheme
is a hybrid of a semantically secure encryption scheme and a keyword hashing scheme. The scheme has been
analysed against certain adversary models. These models correspond to an honest but curious attacker that only
by looking at the encrypted data residing on the cloud tries to infer the plaintext. The performance benchmarks
show that generally the latency cost of a hybrid encryption mechanism is negligible.

Enforcing privacy and compensating the missing functionality could not have been done without a carefully
planned component orchestration on the middleware. Along the way, many interesting problems have been
addressed and new techniques have been devised. For example in order to add sender/receiver anonymization
in the GMail and Google Calendar Invitation, an additional component namely a mail transfer agent has been
added to the middleware, to offer additional privacy.

The remainder of this paper is organized as follows: In section 2 the architecture of our approach is being
discussed and compared against other possible approaches. In section 3 and 4 the methods invented to tackle the
privacy/functionality seesaw are discussed. Section 5 looks at the war stories that are still unresolved or need
further treatments. In section 6, benchmark results will show an initial comparison between different possible
encryption techniques. Finally, we conclude the paper in section 7 while discussing the related work and the
future prospects of the project.

2 Proxy Architecture
In this section we will first explore different possible approaches to provide security for the end user given

our case studies, Google calendar and GMail. The main idea is to replace the plain text content entered into
the Google calendar’s web interface with a ciphertext before submitting the request to Google. In order to
accomplish this, there are two possible approaches as shown in Figure 1:

1. Having a rich client that takes care of the replacement
2. Adding a level of indirection between the client and the service provider

2.1 Rich Client vs. Proxy Middleware
As shown in Figure 1(a), currently the users directly use the API of the cloud service provider and submit

their requests in plaintext. Although an SSL connection is established between the user and the cloud service
provider, the data stored and processed on the cloud side is all in plaintext.

To have the data encrypted before submission, there are two possible solutions. The first solution is shown
in Figure 1(b). In this approach, a new user interface is implemented on the client side. In addition to the new
user interface, the security procedures are to be taken care of on the client. In our case study, Google actually
provides a clean Calendar Data APIthat enables the users to access its calendar methods, such as create(),
edit(), and invite(), while giving them a lot of flexibility to design their own desired user interfaces.
A considerable amount of documentation has been written and dedicated to support developers who use this
API. On the other hand, given the variety of the devices and hardware architectures, implementing such a user
interface for each and every device out there is a cumbersome task with a high development cost. Additionally,
the current user interfaces already provided by the cloud service providers are efficient and friendly enough.
Another disadvantage is that the end user has to undergo a lot of installation and set up efforts on every single
device she has.

The second approach is shown in Figure 1(c). This solution adds a level of indirection between the user and
the cloud service provider. This level of indirection resides on the user’s trusted site and is a proxy server that
acts as an intermediary for requests from clients seeking resources from the cloud service provider. The first
advantage of our approach is that the client accesses the proxy server using the same API as the one provided by
the cloud service provider; this assures the transparency of the security mechanism to the end user, so the user

2

should not even be aware of the encryption process going on behind the scenes. The second advantage is the
low installation cost for the user; all that the user needs to do is to route the relevant traffic through the proxy
middleware. The third advantage is the portability of our approach. This way all the user’s devices can keep
their current well provided and maintained interface of the cloud service provider and only route their traffic
through the proxy middleware.

Web UI

Cloud

API

trusted

untrusted

(a) Traditional

UI‘

trusted

untrusted

Cloud

API

(b) Rich Client

Web UI

Proxy

Cloud

API

trusted
untrusted

(c) Proxy MW

Figure 1: Comparing different approaches

2.2 Make it Work
As already discussed in the previous subsection, there are several advantages associated with the proxy

architecture. Having a security middleware has been previously discussed in the database encryption research
area in [3], or in some works related to the Internet data storage security such as [8]. However our security
middleware consists of a proxy server that catches relevant http traffic, modifies the message content in a fine-
grained manner with the help of a content adaptation server, and sends it further. The components to build such
a system are as follows:
• Proxy server. As shown in Figure 2, the client connects to the proxy server on the middleware, requesting

some service from the cloud service provider. The proxy server evaluates the request according to its
filtering rules. If the request is validated by the filter, the proxy provides the resource by connecting to the
cloud service provider and requesting the service on behalf of the client.

• ICAP Server. ICAP stands for Internet Content Adaptation Protocol(RFC3507) which is used to extend
transparent proxy servers, as it is shown in Figure 2. This component adapts the content of the http mes-
sages by performing the particular value added service (content encryption/decryption) for the associated
client request/response.

• Mail Transfer Agent. The MTA mainly acts as a relay for email and operates independently from the
proxy and ICAP server. It will receive messages, encrypt/decrypt the message and send it further.

As mentioned in the introduction, the privacy of the users is guaranteed through encryption. However,
privacy comes in cost of functionality. Therefore, the effect of every decision in one dimension (Privacy or
Functionality) must be thoroughly examined in its counteracting dimension. In the next section, we look at
Google Calendar and GMail scenario separately. For each scenario we name the main functions, and what
does privacy imply. We devise a hybrid encryption scheme to deal with the defined privacy requirements. Two
Adversary models will be introduced to analyse the advantage of an attacker that only has access to the encrypted
data. Moreover in the GMail section we show how our approach tackles the sender/receiver anonymization
problem.

3 Google Calendar
In this section we focus on the Google Calendar case study. First, we state what functionality of the calendar

we are interested in. Then, we describe what does privacy imply in our system. After the preliminary definitions,

3

ICAP

Server

Proxy

Server
trusted zone
untrusted zone

End User

p
la

in

Cloud

en
cr

y
p

te
d

Mail Transfer

Agent

Figure 2: An overview of the architecture and components in our system

we show how the privacy is implemented and functionality is preserved.
Functionality. In the Google Calendar model the users interact with the cloud application mainly through

create(), display() and search() functions. The users can also interact with each other through
share() and invite() functions.

Privacy is defined as the inability of the adversary (e.g., an operator who has access to the Google cloud) to
infer information about the events just by looking at the encrypted data. In our model with some probability the
attacker will be able to guess some information, which is captured as the attacker’s advantage (Section 3.2). The
remainder of this section elaborates on the encryption scheme that is used to achieve this privacy and implement
the Google Calendar functionality at the same time.

3.1 Hybrid Encryption Scheme
Assume we have a user Alice who wants to create and store a calendar event using an untrusted calendar

application. The proxy server inspects Alice’s calendar traffic (with her permission) and extracts the plain text
pieces. The safest approach from this point on would be to replace the plaintext with a ciphertext generated
by a semantically secure encryption scheme, such as AES operating in CBC mode [7]. Since the proxy is
trusted by Alice, it will generate and store a key to be used for encryption. The randomized element of the
encryption, namely the initialization vector (IV) is stored along with the ciphertext on the untrusted server to
enable decryption at some point. However, if a probabilistic encryption scheme is used, one of the main calendar
functions, namely search will be disabled, since the randomized element (IV) is missing to reconstruct a query
that matches an entry in the cloud. Another challenge is that assume Alice has created an event called “Bob
Birthday”, and she wants to search for “bob”. Even if we were using a deterministic encryption scheme, we were
unable to retrieve the event because obviously EncK(“Bob Birthday”)<> EncK(“bob”). This simple example
shows the need of tokenizing and normalizing the user input plaintext as well as the search query. Therefore,
to guarantee both search and exact retrieval of Alice’s entries, we concatenate the list of normalized keywords
of the event entry to the encrypted message. However, the keywords should also not leak any information
and at the same time be searchable. There are different approaches on searchable encryption[1, 2, 4, 5], but
the experiments we have performed in Section 6 shows that hashing is more efficient than encryption. Thus,
we devise an idealized smoothing hash function. This hash function maps a keyword to a hash value. Based
on a frequency histogram of the keywords kept in the main memory of the middleware, the hash function
dynamically adjusts its assignments to perfectly smooth out the frequency of the hash values produced. Based
on the frequency distribution of the input keywords, the degree of collision and multi-hashed values (one value
has multiple hashes) in the system will be determined. Note that in order to create an idealized smoothing hash

4

function, we need a histogram that is built on the plaintext domain, D. Construction 3.1.1 and figure 3 best
describe our hybrid encryption scheme.

Construction 3.1.1: Let SSE = (IV, Enc′,Dec′) be a semantically secure encryption scheme and ISHS =
(T ok,N orm,Hash,Hist) be an idealized smoothing hash scheme on Domain, D. We define our Hybrid
scheme,HS = (K, Enc,Dec) to be the following:

• K is a random function that generates a 128-bit key for the proxy, Kp.
• IV is a random function that generates a 128-bit initialization vector for the each message, iv = IV().
• Enc gives the plaintext message m, to the Enc′ function of SSE to generate the ciphertext, c = Enc′(Kp, iv,m).

The random initialization value is first concatenated to the encrypted message, then the hashed keyword
list, kl, generated by ISHS, kl = Hash(N orm(T ok(m)),Hist(D)) is concatenated to the encrypted
message as well. The encrypted message will be cm = c∥iv∥kl.

• Dec takes the proxy key, Kp, the ciphertext and the randomized part of the encrypted message, cm; and,
by using the Dec′ function it revives the original message m = Dec′(Kp, iv, c).

User

„Bob Birthda

Proxy MW

Encryption Module

(AES CBC)

„Bob Birthda

Cloud

EncIV
key(„Bob Birt

+ Hash(„bob“) + Ha

User

„Bob Birthday“

„Bob Birthday“

Cloud

(„Bob Birthday“) + IV

+ Hash(„birthday“)

Hashing

Tokenization

Normalization

Figure 3: Hybrid Encryption Scheme

Although a semantically secure encryption scheme
encrypts the messages, the keyword list generated by the
hash function weakens the security of our hybrid scheme.
In the next section we look at two adversary models that
analyse the advantage of the adversary given our defini-
tion of privacy in the beginning of Section 3.

3.2 Adversary Models
In this section we introduce two security definitions,

Frequency Indistinguishability and Event Uncertainty.
We then analyse the advantage of the adversary in each
model.

3.2.1 Frequency Indistinguishability

A deterministic scheme leaks the frequency distribu-
tion of the underlying plaintext which is not desirable. In
order to show the resistance of our scheme against the
frequency analysis of the keywords, we introduce a new
security definition called Frequency Indistinguishability.
Frequency Indistinguishability: The advantage of an ad-
versary in distinguishing pairs of ciphertexts just by looking at the frequency distribution of the messages they
encrypt should be negligible. Let HS be our hybrid encryption scheme from Construction 3.1.1. For an adver-
sary A = (A1, A2), we define its IND-Freq advantage as:

Adv
ind-freq
HS (A) = Pr[Exp

ind-freq-1
HS (A) = 1]− Pr[Exp

ind-freq-0
HS (A) = 1]

For b ∈ {0, 1} the experiments Expind−freq−b
HS (A) can be viewed in Experiment 1 and We say that HS is

ind-freq secure if the ind-freq advantage of any adversary against HS is small.
Proof: The proof relies on two important procedures in the Experiment 1. First, Rebalance, assures that M0

and M1 have identical histograms, i.e. the histograms are formed with the same number of buckets and the
same frequency distribution. Second, the Sort sorts the result of our hashing scheme based on their frequency.
Applying Sort on the hashes will map the output of Sort to the output of Rebalance in terms of frequency
distribution. By definition the Rebalance procedure assures identical frequency distribution between the two

5

chosen frequency distributions by adversary. Hence, we can say that deciding to which frequency distribution
the output of Sort belongs, is not better than a random guess. Therefore, the advantage of adversary A, in
experiment 1 is negligible.

Corollary 1: Given the above model we can conclude that in order to be safe against frequency analysis on our
domain, D, we need toRebalance the histogram of our domain with a uniform frequency distribution. In other
words,
hist0 ← Hist(D); hist1 ← Hist(UNIFORM);Rebalance(hist0, hist1)

Algorithm 1 :Exp
ind-freq-b
HS (A)

(M0,M1)
$← A1

if |M0| ̸= |M1| then return ⊥
hist0 ← Hist(M0)
hist1 ← Hist(M1)
Rebalance(hist0, hist1)
let mj

1,m
j
2, ...,m

j
l be the elements of Mj for j ∈ {0, 1}

if ∃i : 1 ≤ i ≤ l and |m0
i | ≠ |m1

i | return ⊥
for j = 1 to l
| hj ← Hash(mb

j , histb)

| Hb
j ← hj

Hb ← Sort(Hb)
d← A2(h1, h2, ..., hl)
return d

3.2.2 Event Uncertainty

We define another adversary model that is only applicable to calendar data. This adversary takes advantage
of the repetitive pattern or length of certain event. By applying additional background knowledge, the adversary
might be able to make strong guesses about certain events that the user is likely to attend. For example a yearly
event is most likely to be an anniversary (e.g. birthdays) or adversary knows that the user is a professor and is
most likely to attend a certain conference on certain days. In order to decrease the strength of the adversary’s
guesses we add noise to our system. Therefore, we introduce a new security definition called Event Uncertainty.
Event Uncertainty. Given a time interval what is the advantage of an adversary in guessing whether an event
is real or not. Let I be the interval, Iall be the set of all events in I , and Ireal be the set of real events in I . Let
e ∈ Iall be an event, we define a function τ(e) to return the duration of an event. Hence, the advantage of the
adversary in the interval of I will be:

AdvI(A) =
∑

e∈Ireal τ(e)∑
e∈Iall τ(e)

(1)

The naive way of adding noise is by random. We believe, however that there are more clever ways to add noise
to the encrypted data to break repetition patterns or fuzzify the duration of certain events. For example in case
of a birthday event, changing it to a monthly event would conceal its yearly pattern. Nevertheless, we have not
developed a concrete model to optimally add noise to the calendar data. Creating event uncertainty could also
be done by changing date and time of an event. Unfortunately, this approach is hard to implement, because of
the prefetching procedure going on in the background of the calendar page.

6

4 GMail
In addition to Google Calendar, we studied the proxy architecture to achieve privacy on top of GMail. GMail

also provides a sophisticated API and a Web interface and it involves confidential information that we would
like to protect from honest and curious adversary that has access to the Google cloud.

Functionality. In GMail, the users interact with the cloud application mainly through compose(), send(),
search(), and receive() functions. In addition, GMail provides functionality to filter spam, group con-
versations, and to spell-check.

Privacy is again defined as the inability of the adversary to infer information just by looking at the encrypted
emails. The information we want to hide is the sender, recipient, title and message body. The message body is
encrypted using the same hybrid encryption scheme discussed in Section 3.1. Concealing sender and recipient
from the Google Mail Server undermines the main functionality of a mail server. In the next section we will
show how to resolve this issue.

4.1 Sender and Recipient Anonymization
In this section, we suggest a sender/recipient anonymization technique that reduces GMail to be solely a

storage engine and an email management interface. Our method is explained through an example. Assume
Alice is a user of our proxy’s mail service. Her gmail account is alice@gmail.com. The proxy, assigns another
email address to Alice, called alice@proxy.ethz.ch. This email address is in fact the address which Alice can
be contacted by other people. However, in order to access and operate her email account:alice@proxy.ethz.ch
she needs to login to her gmail account, alice@gmail.com. Now assume Alice wants to send an email to Bob.
Bob is not a proxy user, thus he cannot read encrypted contents. As shown in figure 4, Alice logs into her
GMail account, composes an email with Bob’s address in the recipient field and presses send. What happens in
the proxy is that the email content and recipients are extracted, the content and actual recipients are encrypted
and stored in the message body. Moreover, the recipients are replaced by a random recipient residing on the
proxy’s mail server. The message will be stored on Google servers, but now it is sent back to the proxy instead
of Bob. This time the mail transfer agent on the proxy receives the message and decides what to do with the
content. In this case since Bob is not a proxy user, the message will be decrypted. Bob’s address is extracted
from the message body and the message is sent by alice@proxy.ethz.ch. This approach guarantees recipient
anonymization.

Now let us walk through a scenario in which a plaintext message is sent by Bob to Alice. In order for Bob
to send a message to Alice, he needs to use alice@proxy.ethz.ch as her address. The mail server on the proxy
receives the message, encrypts it, and sends it to Alice’s gmail account, alice@gmail.com. Alice can simply
access her inbox by logging in to her gmail account, and the proxy guarantees that Alice sees all her emails in
plain text. This approach guarantees sender anonymization [10].

5 War Stories
In this section we look at the challenges that are still unresolved or can be more gracefully done in our

system as future work.
GMail Spam Filter. The spam filter feature of GMail inspects the sender, content and subject of an email.
Encrypting emails will disable it. A possible solution is to implement a Spam-filter by adding a content-based
filter to the mail server on the proxy middleware[10].

GMail Conversation Grouping. A very convenient feature of the Gmail web interface is that emails get
grouped into conversations if there are many emails being sent back and forth between certain people. This
feature improves the inbox organization of the user. There are two conditions for this grouping to happen: the
sender/recipient addresses must match and the subject line must be equal apart from the well-known prefixes

7

sender: alice@gmail.com

receiver: bob@bob.com

msg: plain

Cloud

sender: alice@gmail.com

receiver: random@proxy.ethz.ch

msg: encrypted

Bob

sender: alice@gmail.com

receiver: random@proxy.ethz.ch

msg: encrypted

sender: alice@proxy.ethz.ch

receiver: bob@bob.com

msg: plain

Alice

Proxy/

ICAP

Server

1

2
3

4

Mail Transfer

Agent

Figure 4: Sending an Email

like ”Re:”Our encryption scheme is designed in a probabilistic way such that two equal plaintexts will never
lead to equal ciphertexts. The consequence of this is that on the servers, the first email and the replying email
have different subjects; therefore, Gmail is unable to group them into a conversation. To solve this we need to
use a deterministic encryption for the title and recipients. Using a deterministic encryption has its own pitfalls
and is prone to frequency analysis.

SSL Interception. Google, like other secure web applications, uses SSL (Secure Socket Layer) protocol
which encrypts the segments of network connections above the Transport Layer, using asymmetric cryptography
for privacy and a keyed message authentication code for message reliability. Normally, a proxy server should not
read the content of the message as an intermediary between the Google and end user. Nevertheless, some proxy
servers offer options to decrypt SSL traffic and allow transparent SSL traffic redirection; thus, instead of having
an encrypted SSL tunnel between the end user’s browser and Google’s server, our proxy server terminates the
Google’s SSL traffic at the proxy level. Sequentially, the ICAP server extracts the content to be encrypted and
reconstructs the HTTP message on its way to the Google server. The adapted content is then sent to the end-
user, while presenting a forged SSL certificate to the user’s browser. In other words, our middleware basically
performs something similar to a Man in the middle attack, but the big difference is that the user agrees to give
our middleware the permission to access its contents. The user can give the permission by either confirming
a certificate exception on the browser for the first time visiting the Google domain, or installing our root CA
Certificate in the trusted root Certificate Authority list of the browser.

Query Log Attack To perform search and at the same time be safe against frequency attacks and have event
uncertainty, we have added collision, multi-hash values and noise to our encrypted messages. Each of them
have its own consequences. Adding collision, will cause the search result to retrieve more than expected, but
our system easily eliminates false positives on the security middleware. Having multi-hash values, however will
cause the proxy to submit a disjunctive search request, which reveals the connection between the keywords and
eventually leaking the frequency distribution. Last but not least, noise added to the encrypted data will never be
searched for; thus, it also leaks information about what events are fake. Solving these problems remains a future
challenge.

Chosen Plaintext Attack. So far we have only analysed an honest but curious attacker, that only tries to
infer the plaintext by looking at the ciphertext. A well-known adversary model that has been neglected so far, is
an attacker that can use the proxy server and has access to the encrypted data on the untrusted cloud. This strong
adversary is able to perform adaptive chosen plaintext attacks on the proxy. However, it can be easily stopped
by assigning each user its own key and hash function, instead of using a proxy-wide one.

Key Management. Using multiple keys per user adds security, but on the other hand complicates the
searchability of the calendar and again is vulnerable against query log attacks because of submitting a disjunctive
search query. In case of sharing a calendar, the middleware needs to be able to deal with giving and revoking
keys to and from other users.

8

6 Experiments
In the previous section we have shown that some level of privacy can be achieved while preserving the key

functionality of the cloud application. However, security comes with a cost. In this section we will look at
the encryption cost using different encryption and hashing methods.1 The goal of these experiments is to show
the cost of keyword extraction vs. no keyword extraction, and also hashing vs. encryption. As a baseline we
use a deterministic encryption scheme (AES ECB) and a probabilistic encryption scheme (AES CBC) without
keyword extraction. We then add the keyword extraction phase and measure the cost of hashing vs. encryption.
In several previous work such as [9, 6] a symmetric encryption of the keywords has been proposed. Therefore,
we have also included AES ECB + AES ECB encryption of the keywords to represent a pure deterministic
encryption, AES CBC + AES ECB encryption of keywords to represent the probabilistic encryption of messages
and deterministic encryption of keywords, and AES CBC + AES CBC of the keywords to represent probabilistic
encryption of both messages and keywords, to cover all the schemes proposed by previous work.

0

0.02

0.04

0.06

0.08

0.1

0.12

1 1.5 2 2.5 3 3.5 4 4.5 5

ti
m

e
 [
m

s
]

tokens

AES ECB (no search)
AES CBC (no search)
AES ECB + AES ECB of keywords
AES CBC + AES ECB of keywords
AES CBC + AES CBC of keywords
AES CBC + SHA2 of keywords

(a) Encryption Time of Events

0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500 600 700 800 900 1000

ti
m

e
 [
m

s
]

tokens

AES ECB (no search)
AES CBC (no search)
AES ECB + AES ECB of keywords
AES CBC + AES ECB of keywords
AES CBC + AES CBC of keywords
AES CBC + SHA2 of keywords

(b) Encryption Time of Documents

Figure 5: Comparison of different encryption methods

The following conclusions are to be drawn from our experiments.
Conclusion 1) By looking at figure 5 we can see that generally the latency introduced by applying security
modules is considered to be small, in order of milliseconds.
Conclusion 2) In graph 5(a) we can see that in most of the cases the latency does not scale with the small number
of tokens, whereas in graph 5(b), we clearly see that the latency increases linearly with the message size. This
fact shows that in very small documents the cost of message encryption dominates the cost of keyword extraction
and hashing (or encryption), but in bigger documents, the cost of keywords extraction overshadows the cost of
the message encryption.
Conclusion 3) In graph 5(b) we can see that deterministically encrypting the keywords in ECB mode is much
faster than having a probabilistic encryption scheme for the keywords.
Conclusion 4) Finally, in graph 5(b) we can see that hashing the keywords is much faster than symmetrically
encrypting them in any way (ECB or CBC). The security implications introduced by hashing have been discussed
in section 3.1.

Please note that these experiments are not showing the latency of our system. Given that google has unknown
flow control mechanisms, performing scalability benchmarks is a challenge and is left for future work.

1The experiments were conducted on a Lenovo Thinkpad T400 having an Intel Core Duo cpu clocked at 2.80 GHz, 4 GB of RAM
and ubuntu 12.04 as operating system.

9

7 Conclusion
This paper describes the system we have implemented to solve privacy issues in web applications by having

a transparent encryption layer. The goal is to preserve the advantages of cloud-based web services (i.e., low cost,
no administration, great user experience) without sacrificing privacy, performance, functionality and portability.
The paper showed how this goal could be achieved for the Google Calendar and GMail service. A proxy
architecture was devised and a number of new techniques were implemented in order to preserve the Google
Calendar and GMail functionality on encrypted data. In particular, a new encryption scheme was presented that
allows to search on the encrypted data. Experiments also support the fact that the proposed security scheme is
more efficient among the other suggested schemes from previous works. Additionally, Performance experiments
showed that the latency impact is tolerable.

There are several avenues for future research. First, we would like to apply our approach to other Web
Applications such as Google Contacts and Google Docs and the services provided by other providers (e.g.,
Microsoft, Yahoo, Amazon, etc.). A number of new technical challenges need to be addressed to support all the
features of these services, but the general approach and the proxy architecture should still be applicable.

7.1 Related Work
The proxy architecture has been also recently proposed by [9]. However, in their approach the proxy resides

on the client machine; therefore limiting the portability. Also in our paper we have devised a new way to perform
search on encrypted data. This topic is not new. There has been several related work in this area. In [4] they
have a very similar use case, in which the user wants to search for a keyword in her encrypted emails. Their
solution suggests that sender encrypts every keyword in her mail with the user’s public key. Another work [1]
suggests several encryption schemes to enable search on encrypted documents. In[2] they came up with secure
indexes to enable search on encrypted data, but these approaches [1, 2, 4, 5, 6] are based on the fact that the
untrusted server is programmable and can implement our search mechanism and data structure, whereas in our
case we know almost nothing about how search is implemented on the Google servers.

Another set of related work is iDataGuard [8] which is an interoperable security middleware for untrusted
Internet data storage. Their main goal is to adapt to heterogeneity of interfaces of Internet data providers and
enforce security constraints. They also allow search on encrypted data using a special indexing technique. How-
ever, they search at a file-level granularity whereas we provide fine-grained encryption to preserve privacy of
more complicated web application than just pure data storage.

References
[1] Dawn X. Song et al., Practical Techniques for Searches on Encrypted Data 2000: IEEE Symposium on Security and

Privacy.

[2] Eu-Jin Goh., Secure Indexes 2003: IACR Cryptology ePrint Archive.

[3] Ernesto Damiani et al., Balancing confidentiality and efficiency in untrusted relational DBMSs 2003: CCS.

[4] Dan Boneh et al., Public Key Encryption with keyword Search 2004: EUROCRYPT.

[5] Yan-Cheng Chang and Michael Mitzenmacher Privacy Preserving Keyword Searches on Remote Encrypted Data 2005:
ACNS.

[6] Reza Curtmola et al., Searchable symmetric encryption 2006: CCS.

[7] Jonathan Katz and Yehuda Lindell Introduction to Modern Cryptography 2007: Chapman & Hall/CRC.

[8] Ravi Jammalamadaka et al., iDataGuard: an interoperable security middleware for untrusted internet data storage
2008: USENIX.

[9] Mamadou H. Diallo et al.,CloudProtect:Managing Data Privacy in Cloud Applications 2012:IEEE Cloud.

[10] Patrick Nick Encrypting Gmail 2012: ETH Zuerich Master Thesis.

10

