
Developments in Generic Entity Resolution

Steven Euijong Whang
Stanford University

swhang@cs.stanford.edu

Hector Garcia-Molina
Stanford University

hector@cs.stanford.edu

Abstract

Entity resolution (ER) is the problem of identifying which records in a database refer to the same entity.
Although ER is a well-known problem, the rapid increase of data has made ER a challenging prob-
lem in many application areas ranging from resolving shopping items to counter-terrorism. The SERF
project at Stanford focuses on providing scalable and accurate ER techniques that can be used across
applications. We introduce generic ER and explain the recent advances made in our project.

1 Introduction

Information integration is one of the most important and challenging computer science problems: Information
from diverse sources must be combined, so that users can access and manipulate the information in a unified
way. One of the central problems in information integration is that of Entity Resolution (ER) (sometimes referred
to as deduplication). ER is the process of identifying and merging records judged to represent the same real-
world entity. ER is a well-known problem that arises in many applications. For example, mailing lists may
contain multiple entries representing the same physical address, but each record may be slightly different, e.g.,
containing different spellings or missing some information. As a second example, a comparative shopping
website may aggregate product catalogs from multiple merchants.

Identifying records that match (e.g., records that represent the same product) is challenging because there are
no unique identifiers across sources (e.g., merchant catalogs that contain the information of products). A given
record may appear in different ways in each source, and there is a fair amount of guesswork in determining
which records match. Deciding if records match is often computationally expensive, e.g., may involve finding
maximal common subsequences in two strings. How to merge records, i.e., combine records that match is
often application dependent. For example, say different prices appear in two records to be merged. In some
cases we may wish to keep both of them, while in others we may want to pick just one as the “consolidated”
price. Such ER techniques find direct use in disciplines like computer science, biology, medicine, and even
counter-terrorism.

The SERF project [7] at Stanford focuses on providing a general framework for ER that can span multiple
applications. We do not study the internal details of the functions that determine if one or more records represent
the same real-world entity. Rather, we view such functions as “black boxes”, making our solutions useful across
applications. In the initial phases of our project [1], we studied black-boxes that compared pairs of records

Copyright 2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

51



only (pair-wise matching functions). If two records matched, they were deemed to represent the same real-
world entity and were merged into a composite record (via a merge function). As we will see (Section 2),
more recently we have considered more general black-boxes that simply take as input a set of records (or an
initial partition of records) and produce a partition of the records, where records in the same output partition are
deemed to represent the same real-world entity. We call such a black-box the “core ER algorithm.” The core
algorithm could use pairwise matching as its strategy, but could use any other scheme.

After defining our model, we introduce recent developments for generic ER in the SERF project. We first
consider scaling ER on a single data type where all the records have the same schema (e.g., all records refer to
people). Many blocking techniques [3] have been proposed for scaling ER where the entire data is divided into
(possibly overlapping) blocks, and the core ER algorithm is run on one block at a time. However, the downside
is that one may miss matching records across blocks. One solution is to consider the interaction between blocks
where resolving one block may help resolve others. In Section 3, we illustrate how this approach can maintain
accuracy while providing scalability.

We also study scaling ER when resolving multiple types of data. For example, some records may refer to
papers while others refer to authors. Since papers and authors are related to each other, resolving papers may
help resolving authors and vice versa. While many ER solutions in the literature focus on resolving one type
of records, few of them study the interactions between resolving different types of records. In Section 4 we
illustrate joint ER and discuss scalable solutions.

In practice, a core ER function continuously “evolves” as the application developer has a better understand-
ing on the application and data. For instance, when comparing people records, the application developer may
at first think that comparing the names and zip codes of people is a good choice. After resolving the records,
however, the developer may realize that comparing the names and phone numbers of people produces better
ER results. (And this decision may further change as well.) When the ER algorithm logic changes, the naı̈ve
solution for ER is to simply re-run the ER algorithm from scratch, which may be prohibitively expensive when
resolving large datasets. In Section 5, we provide incremental solutions for quickly updating ER results when
the ER algorithm logic evolves.

Finally, we study a configurable and scalable quality measure for ER results. Many ER measures used in the
literature “conflict” in a sense that, depending on the measure, different ER algorithms appear to perform better
than others. However, many existing ER works tend to arbitrarily choose a measure “out of the hat” and evaluate
their algorithms. In Section 6, we illustrate how conflicts may occur and introduce a scalable and configurable
measure that can capture different qualities of ER results.

2 Core ER Model

A core ER algorithm takes as input a set of records R and groups together records that represent the same real
world entity. We represent the output of the ER process as a partition of the input. We do not assume any
particular form or data model for representing records.

To illustrate a possible core algorithm, consider the records of Table 14. Note that the structure of these
records and the way we determine if records refer to the same real-world entity (via a pair-wise comparison) are
part of the example. For this example, the core ER algorithm works as follows: A function compares the name,
phone and email values of pairs of records. If the names are very similar (above some threshold), the records
are said to match. The records also match if the phone and email are identical.

For our sample data, the ER algorithm determines that r1 and r2 match, but r3 does not match either r1 or
r2. For instance, the function finds that “John Doe” and “J. Doe” are similar, but finds “John D.” not similar to
anything (e.g., because John is a frequent first name). Thus, r1 and r2 are clustered together to form the partition
{{r1, r2}, {r3}} where the curly brackets denote the clusters in the output partition.

Since records in an output cluster represent some real world entity, the cluster can be considered a “compos-

52



Name Phone E-mail
r1 John Doe 235-2635 jdoe@yahoo
r2 J. Doe 234-4358
r3 John D. 234-4358 jdoe@yahoo

Table 14: A set of records representing persons

ite” new record. In some cases we may apply a merge function to actually generate the composite record. For
example, suppose that the ER algorithm combines the names into a “normalized” representative, and performs a
set-union on the emails and phone numbers. Then the records r1 and r2 will merge into the new records ⟨r1, r2⟩
as shown below. (Here we denote a merged record with angle brackets.)

⟨r1, r2⟩ John Doe 234-4358, 235-2635 jdoe@yahoo

In this case, the ER result is the set of records {⟨r1, r2⟩, r3}. Even if the records are merged, the lineage of
the new record can be used to identify the original records in the cluster. Notice that in this case, we can also
iteratively match ⟨r1, r2⟩ with r3 and merge them together because they now have the same phone and email.
Throughout this paper, we will either cluster or merge records depending on the given setting.

3 Iterative Blocking

We now show how a core ER algorithm can be extended to become more scalable while maintaining accuracy.
Blocking [3] is a common technique used in the ER literature where the data is divided into (possibly overlap-
ping) blocks and a core ER algorithm is used to compare records within the same block, assuming that records
in different blocks are unlikely to match. For example, we might partition a set of people records according to
the zip codes in address fields. We then only need to compare the records with the same zip code. Since a single
blocking criterion may miss matches (e.g., a person may have moved to places with different zip codes), several
blocking criteria (i.e., dividing the data in several ways) are typically used to ensure that all the likely matching
records are compared, improving the accuracy of the result.

Although many previous works focus on finding the best blocking criteria, most of them assume that all
the blocks are processed separately one at a time. In many cases, however, it is useful to exploit an ER result
of a previously processed block. First, when two records are grouped together (by the core algorithm) in one
block, their composite may then be grouped with records in other blocks. Second, an ER result of a block can
be used to reduce the processing time of another block. That is, the same record comparisons made by the
core algorithm in one block may be repeated in another block, and hence can be avoided. To address these two
points, we propose an iterative blocking framework [12] where the ER result of a block is immediately reflected
to other blocks. Unlike previous blocking techniques, there is an additional stage where newly created partitions
(i.e., groups of matching records) of a block are distributed to other blocks. Since the propagation of ER results
can generate new record matches in other blocks, the entire operation becomes iterative in the sense that we are
processing blocks (possibly the same block multiple times) until we arrive at a state where the resulting partition
of records is stable. Our work is thus focused on effectively processing the blocks given a blocking criteria.

As an example, consider the five people records shown in Table 15, and a core algorithm that works by
comparing pairs of records. We would like to merge (i.e., place in the same output partition) records that
actually refer to the same person. Suppose that records r1 and r2 match with each other because their names are
the same, but do not match with r3 because the strings differ too much. However, once r1 and r2 are merged
into a new record ⟨r1, r2⟩, the combination of the address and email information of r1 and r2 may lead us to
discover a new match with r3, therefore yielding an initially unforeseen merge ⟨r1, r2, r3⟩. Notice that, in order
to find this new merge, we need to compare the merged result of r1 and r2 with all the other records again.

53



Record Name Address(zip) Email
r1 John Doe 02139 jdoe@yahoo
r2 John Doe 94305
r3 J. Foe 94305 jdoe@yahoo
r4 Bobbie Brown 12345 bob@google
r5 Bobbie Brown 12345 bob@google

Table 15: Customer records

In reality, our dataset can be very large, and it may not be feasible to compare all pairs of the dataset. Hence,
we divide the customer records in Table 15 into blocks. We start by dividing the records by their zip codes.
As a result, we only need to compare customers that are in the same geographical region. In Table 16, the first
blocking criterion SC1 uses zip codes to divide the records. Records r2 and r3 have the same zip code and
are assigned to the block 2 (denoted as b1,2) and records r4 and r5 are assigned to b1,3 while r1 is assigned to
b1,1. Since we may miss matches for people who have moved to several places with different zip codes, say
we also divide the customer records according to the first characters of their last names. Hence, even if two
records referring to the same person have different zip codes, we will have a better chance of comparing them
because their last names might be similar. In Table 16, the matching records r1 and r2 can be compared because,
although they have different zip codes, they have the same last name. After processing all the blocks, the final
result of blocking is {⟨r1, r2⟩,r3,⟨r4, r5⟩}.

Criterion Partitions by b−,1 b−,2 b−,3

SC1 zip code r1 r2, r3 r4, r5
SC2 1st char of last name r1, r2 r3 r4, r5

Table 16: Multiple blocking

Although the blocking of Table 16 reduces the number of records to compare, it misses the iterative match
between ⟨r1, r2⟩ and r3. Iterative blocking can find this match by distributing the newly created ⟨r1, r2⟩ (found
in block b2,1) to the other blocks. Assuming that ⟨r1, r2⟩ contains the zip codes of both r1 and r2 (i.e., 02139 and
94305), ⟨r1, r2⟩ is then assigned to both blocks of SC1. In b1,2, ⟨r1, r2⟩ can then be compared with r3, generating
the record ⟨r1, r2, r3⟩. Eventually, the final iterative blocking solution becomes {⟨r1, r2, r3⟩, ⟨r4, r5⟩}. Thus,
the iterative blocking framework helps find more record matches compared to simple blocking.

Iterative blocking also provides fast convergence. For example, once the records r4 and r5 are merged in b1,3,
they do not have to be compared in b2,3. While the blocks in Table 16 are too small to show any improvements
in runtime, iterative blocking can actually run faster than blocking for large datasets when the runtime savings
exceed the overhead of iterative blocking. Intuitively, the more work we do for each block, the runtime savings
for other blocks become significant.

In reference [12], we formalize the iterative blocking model and present two iterative blocking algorithms:

• Lego: An in-memory algorithm that efficiently processes blocks within memory.

• Duplo: A scalable disk-based algorithm that processes blocks from the disk.

We also experimentally evaluate Lego and Duplo and show that iterative blocking can improve over blocking
both in accuracy and runtime.

54



4 Joint Resolution

The core ER algorithms can also be extended to jointly resolve multiple datasets of different entity types. Since
relationships between the datasets exist, the result of resolving one dataset may benefit the resolution of another
dataset. For example, the fact that two (apparently different) authors a1 and a2 have published the same papers
could be strong evidence that the two authors are in fact the same. Also, by identifying the two authors to be the
same, we can further deduce that two papers p1 and p2 written by a1 and a2, respectively, are more likely to be
the same paper as well. This reasoning can easily be extended to more than two datasets. For example, resolving
p1 and p2 can now help us resolve the two corresponding venues v1 and v2. Compared to resolving each dataset
separately, joint ER can achieve better accuracy by exploiting the relationships between datasets.

To illustrate joint ER, consider two datasets P and V (see Table 17) that contain paper records and venue
records, respectively. (Note that Table 17 is a simple example used for illustration. In practice, the datasets can
be much larger and more complex.) The P dataset has the attributes Title and Venue while V has the attributes
Name and Papers. For example, P contains record p1 that has the title “The Theory of Joins in Relational
Databases” presented at the venue v1. The Papers field of a V record contains a set of paper records because one
venue typically has more than one paper presented.

Paper Title Venue
p1 The Theory of Joins in Relational . . . v1
p2 Efficient Optimization of a Class of . . . v1
p3 The Theory of Joins in Relational . . . v2
p4 Optimizing Joins in a Map-Reduce . . . v3

Venue Name Papers
v1 ACM TODS {p1, p2}
v2 ACM Trans. Database Syst. {p3}
v3 EDBT {p4}

Table 17: Papers and Venues

Suppose that two papers are considered the same and are clustered if their titles and venues are similar while
two venues are clustered if their names and papers are similar. Say that we resolve the paper records first. Since
p1 and p3 have the exact same title, p1 and p3 are considered the same paper. We then resolve the venue records.
Since the names of v1 and v2 are significantly different, they cannot match based on name similarity alone.
Luckily, using the information that p1 and p3 are the same paper, we can infer that v1 and v2 are most likely
the same venue. (In fact “ACM TODS” and “ACM Trans. Database Syst.” stand for the same journal.) We
can then re-resolve the papers in case there are newly matching records. This time, however, none of the papers
match because of their different titles. Hence, we have arrived at a joint ER result where P was resolved into
the partition {{p1, p3}, {p2}, {p4}} while V was resolved into {{v1, v2}, {v3}}. Notice that we have followed
the sequence of resolving papers, venues, then papers again.

Given enough resources, we can improve the runtime performance by exploiting parallelism and minimizing
unnecessary record comparisons. For example, if we have two processors, then we can resolve the papers and
venues concurrently. As a result, p1 and p2 match with each other. After the papers and venues are resolved, we
resolve the venues again, but only perform the incremental work. In our example, since p1 and p2 matched in
the previous step, and p1 was published in the venue v1 while p2 was published in the venue v2, we only need
to check if v1 and v2 are the same venue and can skip any comparison involving v3. Notice that the papers do
not have to be resolved at the same time because none of the venues merged in the previous step. However,
after v1 and v2 are identified as the same venue, we resolve the papers once more. Again, we only perform the
incremental work necessary where we resolve the three records p1, p2, and p3 (because v1 and v2 matched in
the previous step), but not p4. In total, we have concurrently resolved the papers and venues, then incrementally
resolved the venues, and then incrementally resolved the papers. If the incremental work is much smaller than
resolving a dataset from the beginning, the total runtime may improve.

Among the existing works on joint ER [2], few have focused on scalability, which is crucial in resolving
large data (e.g., hundreds of millions of people records crawled from the Web). The solutions that do address

55



scalability propose custom joint ER algorithms for efficiently resolving records. However, given that there
exists ER algorithms that are optimized for specific types of records (e.g., there could be an ER algorithm that
specializes in resolving authors only and another ER algorithm that is good at resolving venues), replacing all
the ER algorithms with a single joint ER algorithm that customizes to all types of records may be challenging
for the application developer.

Instead, we propose a flexible, modular resolution framework where existing ER algorithms developed for
a given record type can be plugged in and used in concert with other ER algorithms. While many previous
joint ER works assume that all the datasets are resolved at the same time in memory using one processor, our
framework allows efficient resource management by resolving a few datasets at a time in memory using multiple
processors as illustrated above. A conceptually similar ER technique is blocking where the entire data of one
type is resolved in small subsets or blocks. Similarly, our framework resolves multiples types of data and divides
the resolution based on the data type. Our approach may especially be useful when there are many large datasets
that cannot be resolved altogether in memory. Thus one of the key challenges is determining a good sequence
for resolution. For instance, should we resolve all venues first, and then all papers and then all authors? Or
should we consider a different order? Or should we resolve some venues first, then some related papers and
authors, and then return to resolve more venues? And we may also have to resolve a type of record multiple
times, since subsequent resolutions may impact the work we did initially. These issues (and others) are explored
in a technical report [10] that describes our ongoing work in this area.

5 Incremental Resolution

We now show how certain properties of the core ER algorithm enable incremental solutions when the core ER
algorithm itself changes frequently. In practice, an entity resolution (ER) result is not produced once, but is
constantly improved based on better understandings of the data, the schema, and the logic that examines and
compares records. In particular, here we focus on changes to the logic that compares two records in the core ER
algorithm. We call this logic the rule, and it can be a Boolean function that determines if two records represent
the same entity, or a distance function that quantifies how different (or similar) the records are. Initially the core
ER algorithm starts with a set of records S, then produce a first ER result E1 based on S and a rule B1. Some
time later rule B1 is improved yielding rule B2, so we need to compute a new ER result E2 based on S and B2.
The process continues with new rules B3, B4 and so on.

A naı̈ve approach would compute each new ER result from scratch, starting from S, a potentially very
expensive proposition. Instead, we explore an incremental approach [9], where for example we compute E2

based on E1. Of course for this approach to work, we need to understand how the new rule B2 relates to the old
one B1, so we can understand what changes incrementally in E1 to obtain E2.

For example, consider the set of people records S shown in Table 18. The first rule B1 (see Table 18) says
that two records match (represent the same real world entity) if predicate pname evaluates to true. Predicates can
in general be quite complex, but for this example assume that predicates simply perform an equality check using
its attribute. The ER algorithm calls on B1 to compare records and groups together records with name “John,”
producing the result {{r1, r2, r3}, {r4}}.

Record Name Zip Phone
r1 John 54321 123-4567
r2 John 54321 987-6543
r3 John 11111 987-6543
r4 Bob null 121-1212

Comparison Rule Definition
B1 pname

B2 pname ∧ pzip
B3 pname ∧ pphone

Table 18: Records and Comparison Rules

56



Next, say users are not satisfied with this result, so a data administrator decides to refine B1 by adding a
predicate that checks zip codes. Thus, the new rule is B2 shown in Table 18. The naı̈ve option is to run the same
ER algorithm with rule B2 on set S to obtain the partition {{r1, r2}, {r3}, {r4}}. (Only records r1 and r2 have
the same name and same zip code.) This process repeats much unnecessary work: For instance, we would need
to compare r1 with r4 to see if they match on name and zip code, but we already know from the first run that
they do not match on name (B1), so they cannot match under B2.

Because the new rule B2 is “stricter” than B1 (i.e. all records that match according to B2 also match
according to B1), we can actually start the second ER from the first result {{r1, r2, r3}, {r4}}. That is, we
only need to check each cluster separately and see if it needs to split. In our example, we find that r3 does not
match the other records in its cluster, so we arrive at {{r1, r2}, {r3}, {r4}}. This approach only works if the
ER algorithm satisfies certain properties and B2 is stricter than B1. One of the properties that the ER algorithm
must satisfy is being able to resolve clusters “independent” of each other. In our example above, splitting the
cluster {r1, r2, r3} must have no affect on the cluster {r4}. If B2 is not stricter and the ER algorithm satisfies
different properties, there are other incremental techniques we can apply.

A complementary technique is to “materialize” auxiliary results during one ER run, in order to improve the
performance of future ER runs. To illustrate, say that when we process B2 = pname ∧ pzip, we concurrently
produce the results for each predicate individually. That is, we compute three separate partitions, one for the full
B2, one for rule pname and one for rule pzip. The result for pname is the same {{r1, r2, r3}, {r4}} seen earlier.
For pzip it is {{r1, r2}, {r3}, {r4}}. The cost of computing the two extra materializations can be significantly
lower than running the ER algorithm three times, as a lot of the work can be shared among the runs.

The materializations pay off when rule B2 evolves into a related rule that is not quite stricter. For example,
say that B2 evolves into B3 = pname ∧ pphone, where pphone checks for matching phone numbers. In this case,
B3 is not stricter than B2 so we cannot start from the B2 result. However, we can start from the pname result,
since B3 is stricter than pname. Thus, we examine each cluster in {{r1, r2, r3}, {r4}}, splitting the first cluster
because r2 has a different phone number. The final result is {{r1, r3}, {r2}, {r4}}. Clearly, materialization of
partial results may or may not pay off, just like materialized views and indexes may or may not help.

In reference [9], we formalize rule evolution and identify desirable properties of ER algorithms that enable
fast rule evolution and categorize existing ER algorithms based on the properties they satisfy. We then propose
efficient rule evolution techniques that use one or more of the properties. We then experimentally evaluate the
rule evolution algorithms for various ER algorithms and show that rule evolution can be significantly faster than
the naı̈ve approach with reasonable time and space overheads.

6 Quality Measure

Properly evaluating ER results is important for comparing the performances of various ER algorithms. Usually
when we compare entity resolution algorithms, we run them on a data set and compare the results to a “gold
standard.” The gold standard is an ER result that we assume to be correct. In many cases, the gold standard is
generated by a group of human experts. On large data sets where the task is too large to be handled by a human,
it is not uncommon to run an exhaustive algorithm to generate a result, and treat that result as the gold standard.
Then we can compare the results of other approximate or heuristic-based algorithms to this standard in the same
manner we would compare them to a human-generated gold standard.

A key component of this type of evaluation is a method of assigning a number to express how close a given
ER result is to the gold standard. Many ER measures have been proposed for comparing the results of ER
algorithms, but there is currently no agreed standard measure for evaluating ER results. Most works tend to
use one ER measure over another without a clear explanation of why that ER measure is most appropriate. The
pitfall of using an arbitrary measure is that different measures may disagree on which ER results are the best.

For example, consider an entity resolution problem with an input set of records I = {r1, r2, r3, r4, r5, r6, r7,

57



r8, r9, r10}. Three possible ER results are shown in Table 19, along with the gold standard.

Set ER Result
Gold Standard {{r1, r2}, {r3, r4}, {r5, r6, r7, r8, r9, r10}}

R1 {{r1}, {r2}, {r3}, {r4}, {r5, r6, r7, r8, r9, r10}}
R2 {{r1, r2}, {r3, r4}, {r5, r6, r7}, {r8, r9, r10}}
R3 {{r1, r2, r3, r4}, {r5, r6, r7, r8, r9, r10}}

Table 19: ER results and Gold Standard

Suppose we are evaluating two ER results R1 and R2, against the gold standard G. Using an ER measure
that evaluates a result based on the number of record pairs that match, R1 could be a better solution because
it found 15 correct pairs (i.e., all record pairs in {r5, r6, r7, r8, r9, r10}) while R2 only found 8 correct pairs.
On the other hand, if we use a measure that evaluates results based on correctly resolved entities in the gold
standard, R2 could be considered better than R1 because R2 contains two correctly resolved entities {r1, r2}
and {r3, r4} while R1 only has one correct entity {r5, r6, r7, r8, r9, r10}. As another example, suppose that we
compare R2 and R3. One measure could be more focused on high precision and prefer R2 over R3 because R2

has only found correctly matching records while R3 has found some non-matching records (e.g., r1 and r3 do
not match). On the other hand, another measure might consider recall to be more important and prefer R3 over
R2 because R2 has not found all the matching record pairs (unlike R3).

Surprisingly, such conflicts between ER measures can occur frequently. It is tempting to suggest that when
conflicts arise, one of the measures involved must be faulty in some way. However, since different applications
may have different criteria that define the “goodness” of a result, we cannot simply claim one measure to be
better than another.

In reference [6], we provide a survey of ER measures that have been used to date, experimentally demon-
strates the frequency of conflicts between these measures, and provides an analysis of how the measures differ.

We also propose a configurable measure inspired by the edit distance of strings. Rather than the insertions,
deletions and swaps of characters used in edit distance, our measure is based upon the elementary operations of
merging and splitting clusters. We therefore call this measure “merge distance.” A basic merge distance simply
counts the number of splits and merges. For example, R1 has a distance of 2 from G because it takes two cluster
merges to convert R1 to G. On the other hand, R3 only has a distance of 1 because one cluster split is required
to convert R3 to G. But as we have mentioned, no single ER measure is better than all the others. We thus
generalize merge distance by letting the costs of merge and split operations be determined by “cost functions,”
arriving at an intuitive, configurable measure that can support the needs of a wide variety of applications. For
example, the cost of splitting a cluster could be defined to be twice as large as the cost of merging two clusters.
Or the costs of merging and splitting clusters could be proportional to the sizes of the input clusters. While
differently configured merge distance measures may still conflict, we now have a better understanding of what
quality each configured measure is evaluating. Surprisingly, at least two state-of-the-art measures are closely
related to generalized merge distance: the Variation of Information (V I) [5] clustering measure is a special case
of generalized merge distance while the pairwise F1 [4] measure can be directly computed using generalized
merge distance. We also propose an efficient linear-time algorithm that computes generalized merge distance
for a large class of cost functions that satisfy reasonable properties.

7 Conclusion

In this paper, we have introduced the recent advances on generic ER in the SERF project. We have first explained
our basic ER model where a core ER algorithm resolves a set of records. We have then shown two methods –
iterative blocking and joint ER – that can scale ER while maintaining accuracy using the core ER algorithms. We

58



have also shown incremental ER solutions for evolving ER rules. Finally, we have proposed a configurable and
scalable quality measure for evaluating ER results. Although not covered in this paper, we have also studied the
problems of correcting inconsistencies [8] and producing good partial ER results within a limited runtime [11].

References
[1] O. Benjelloun, H. Garcia-Molina, H. Kawai, T. E. Larson, D. Menestrina, Q. Su, S. Thavisomboon, and J. Widom.

Generic entity resolution in the serf project. IEEE Data Eng. Bull., 29(2):13–20, 2006.

[2] X. Dong, A. Y. Halevy, and J. Madhavan. Reference reconciliation in complex information spaces. In SIGMOD
Conference, pages 85–96, 2005.

[3] M. A. Hernández and S. J. Stolfo. The merge/purge problem for large databases. In SIGMOD Conference, pages
127–138, 1995.

[4] C. D. Manning, P. Raghavan, and H. Schtze. Introduction to Information Retrieval. Cambridge University Press,
New York, NY, USA, 2008.

[5] M. Meila. Comparing clusterings by the variation of information. In COLT, pages 173–187, 2003.

[6] D. Menestrina, S. E. Whang, and H. Garcia-Molina. Evaluating entity resolution results. PVLDB, 3(1):208–219,
2010.

[7] Stanford Entity Resolution Framework. http://infolab.stanford.edu/serf/.

[8] S. E. Whang, O. Benjelloun, and H. Garcia-Molina. Generic entity resolution with negative rules. VLDB J.,
18(6):1261–1277, 2009.

[9] S. E. Whang and H. Garcia-Molina. Entity resolution with evolving rules. PVLDB, 3(1):1326–1337, 2010.

[10] S. E. Whang and H. Garcia-Molina. Joint entity resolution. Technical report, Stanford University, available at
http://ilpubs.stanford.edu:8090/1002/.

[11] S. E. Whang, D. Marmaros, and H. Garcia-Molina. Pay-as-you-go entity resolution. Technical report, Stanford
University, available at http://ilpubs.stanford.edu:8090/979/.

[12] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and H. Garcia-Molina. Entity resolution with iterative
blocking. In SIGMOD Conference, pages 219–232, 2009.

59


