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Abstract

Data Auditor is a system for analyzing data quality via exploring data semantics. Given a user-supplied
constraint, such as a functional dependency or an inclusion dependency, the system computes pattern
tableaux, which are concise summaries of subsets of the data that satisfy (or fail) the constraint. The
engine of Data Auditor is an efficient algorithm for finding these patterns, which defers expensive compu-
tation on patterns until needed during search, thereby pruning wasted effort. We demonstrate the utility
of our approach on a variety of data as well as the performance gain from employing this algorithm.

1 Introduction

Recently, a constraint-based approach has shown promise in detecting and correcting data quality problems;
some specific examples of constraints employed include Conditional Functional Dependencies (CFDs) [7],
Conditional Inclusion Dependencies (CINDs) [2], and Conditional Sequential Dependencies (CSDs) [10]. A
key idea behind this approach is to use conditioning, that is, to allow different (but possibly overlapping) subsets
of the data to satisfy a supplied constraint locally, rather than forcing the entire data to satisfy the constraint
globally. This is especially useful when the data evolve over time or have been integrated from multiple sources
and, thus, exhibit heterogeneity with locally shared characteristics.

We have developed a system—Data Auditor—that employs this approach as follows (see [9] for more de-
tails). The user first hypothesizes a constraint, either based on expertise and intuition, or one that is automatically
derived (algorithms for doing so are outside the scope of this paper). What Data Auditor provides is a platform
for testing such hypotheses, performing multidimensional analysis to discover and parsimoniously summarize
which portions of the data fit (or fail) the given constraint. That is, users can “try out” a constraint to see if (and
where) it holds or fails.

Discovering and summarizing which subsets of the data satisfy a supplied constraint is useful for under-
standing the semantics of data. This, in turn, is useful not only for making sense of analysis results, but also
for detecting quality problems, which may be indicated by violations of these semantics. As a caveat, violations
of a user-specified constraint do not always indicate data quality problems but could be naturally occuring (and
perhaps interesting) phenomena in the data that were unknown to the user; it is up to the domain expert to make
this inference.
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There are two crucial observations to make this approach effective on real world data. The first is that the
notions of satisfaction and violation of a constraint should be robust to outliers. For example, a single spurious
tuple should not cause a certain portion of the data to be eliminated from consideration. Therefore, a small
number of exceptions are allowed before declaring failure of constraint satisfaction; this relaxation is quantified
as the confidence of a constraint. The other observation is that the reported summary of semantics should not
overfit the data. On the one hand, satisfaction of the constraint should be pervasive enough in the data to be
considered a legitimate rule. At the same time, the constraint should not be applied to regions of the data having
poor quality. Therefore, we do not require all the data to be captured in the summary but only a minimum
fraction, denoted by the support. This flexibility enables the constraint to “snap” to the portion of best fit.

The mechanism by which the (satisfaction or violation of a) constraint is concisely summarized is a special
kind of relation called a tableau, which we define in the next section. Briefly, a tableau consists of patterns,
each of which lists the attribute values that most (but not necessarily all) satisfying or violating tuples have in
common. Effectively and efficiently finding such tableaux is the subject of this paper. Previous work assumed
that the attributes used to construct subsets of the data on which to test the given constraint are shared with
those specified in the constraint itself [11]; this assumption was made for the purpose of efficiency, as the so-
called “on-demand” algorithm [11] for tableau discovery exploited this fact. In this paper, we decouple the
conditioning attributes from those in the constraint and discuss a more general on-demand algorithm. As a
result, more powerful tableaux analyses are possible and can be done efficiently.

The remainder of this paper is organized as follows. Section 2.1 gives examples of two constraints that
are common in Data Auditor. Section 2.2 defines patterns and tableaux. Section 2.2 presents the tableau gen-
eration problem and summarizes the on-demand algorithm. Section 2.4 illustrates specification within Data
Auditor using the two examples. Section 3 gives a few case studies to demonstrate the utility of generalized
pattern tableaux and reports the performance improvements of the on-demand algorithm over straightforward
computation. Section 4 discusses related work and Section 5 concludes the paper.

2 Overview of Pattern Tableau Discovery

2.1 Supported Constraints

The supported constraints assert some property between two sets of attributes, X (corresponding to the LHS)
and Y (corresponding to the RHS), from either the same or different relations. These attribute sets can be used
in a variety of constraints, such as Equality-Generating Dependencies (EGDs) [6] to impose consistency and
Tuple-Generating Dependencies (TGDs) [6] to impose completeness. We can define views corresponding to
an arbitrary conjunction of atomic formulas on the LHS (for EGDs and TGDs) and the RHS (for TGDs), in
which case simple constraints can be defined over these view tables. The requirements for these constraints will
become clear in Section 2.2.

A common EGD constraint, which we highlight in this paper, is the functional dependency. Let R be a
relation, tk be a tuple and tk[Z] be the value(s) of its attribute(s) Z. A functional dependency X → Y is said to
hold when ∀i, j, if ti[X] = tj [X] then ti[Y ] = tj [Y ]. X ⊆ R is a set of attributes referred to as the antecedent
and Y ⊆ R is a set of attributes referred to as the consequent.

A common TGD constraint is the inclusion dependency R1.X ⊆ R2.Y , for two relation schemas, R1 and
R2. It is said to hold when for all tuples r1 in the domain of R1, there exists a tuple r2 in the domain of R2 with
r1[X] = r2[Y ].

2.2 Pattern Tableaux

Real data are heterogeneous. Hence, in addition to reporting the confidence (i.e., the extent to which the con-
straint holds) on the entire relation, it is useful to identify parts of the relation that satisfy the constraint (i.e.,
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have high confidence) and parts that violate it (i.e., have low confidence).
Following [7], we use pattern tableaux to encode subsets of a relation. Consider a schema R =

A1, A2, . . . , Ak. A tableau consists of a set of patterns over the selected conditioning attributes Xp ⊆ R,
where each attribute in Xp contains a symbol. A symbol is either a value in the corresponding attribute’s domain
or a special “wildcard” symbol ‘*’. Let pi[Aj ] denote the symbol corresponding to the jth conditioning attribute
of the ith pattern, and let t[Aj ] be the value of the jth attribute of a tuple t. A tuple t is said to match a pattern pi
if, for eachAj inXp, either pi[Aj ] = ‘*’ or t[Aj ] = pi[Aj ]. We denote this matching operator as t[Aj ] ≍ pi[Aj ].
The confidence of a pattern pi is defined as the confidence of a sub-relation containing only those tuples that
match pi; its support is defined as the relative size of said sub-relation as compared to the whole relation. Note
that the pattern consisting of all ‘*’ symbols matches the entire relation.

2.3 Tableau Generation

The input to Data Auditor is:

• a pair of schemas R1 and R2 (which optionally can refer to the same relation);

• a constraint involving two sets of attributes, X ⊆ R1 and Y ⊆ R2, encoded as User-Defined Functions
(UDFs) for incrementally computing the confidence of this constraint over a set of tuples;

• a set of conditioning attributes Xp ⊆ R1;

• confidence threshold ĉ (which is either a lower- or upper-bound on the confidence of each pattern)

• minimum support threshold ŝ.

The output is a tableau Tp over attributesXp, each of whose patterns has confidence of at least (or at most1) ĉ, all
of whose patterns collectively cover at least ŝ|dom(R1)| tuples, where dom(R1) denotes the instance of relation
R1. Applying Occam’s Razor, the goal is for |Tp| to be as small as possible while satisfying these constraints.
This was formulated as an instance of PARTIAL SET COVER in [11], for which a greedy set cover heuristic
attempts to produce the smallest possible tableau (having the fewest patterns) matching the largest possible
fraction of the relation. Thus, general patterns with wildcards are more likely to be included (provided they have
the appropriate confidence) than specific patterns matching a small fraction of the data. Tableau construction for
more general constraints extends the on-demand algorithm from [11], which was originally proposed to generate
tableaux for CFDs where the conditioning attributes,Xp, and FD antecedent attributes,X , are the same (see [11]
for a detailed explanation). The only requirement for the generalization in this paper is that the confidence of
any pattern can be computed in a single scan after sorting the data lexicographically on X ∪ Y .

Starting from the all-wildcards pattern, the algorithm traverses the different patterns in top-down fashion,
along the way inserting into the tableau patterns that meet the required confidence threshold and match the most
tuples that have not already been matched. For each pattern p encountered, its support set (the subset of the
tuples fromR1 matching p) is scanned for computing confidence. Therefore, the key is to associate a list of each
pattern p’s support set in the order visited, so that the confidence of any other pattern contained within p can be
generated by scanning this list, rather than re-scanning the tuples in R1.

An essential part of this algorithm is the computation of confidence for a given pattern. The API for spec-
ifying the confidence function of any pattern, given the pattern’s support set as input, involves supplying six
user-defined functions: declare, init, update, closeXY, closeX and output. These functions are
used, respectively, to declare relations and attribute sets used by the constraint; initialize counter variables used
in confidence computation; maintain these counters incrementally for each tuple t ofR1; “close” a sub-aggregate

1As in [11], we refer to the former as a hold tableau, since it summarizes subsets on which the constraint holds, and the latter as a
fail tableau, which detects subsets on which the constraint fails.
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when a new value of t[XY ] is encountered; “close” a super-aggregate when a new value of t[X] is encountered;
and report the final confidence. The output is a confidence value betwen 0 and 1 for the given pattern.

The choice of conditioning attributes is crucial to obtaining concise and informative tableaux—some at-
tributes may be irrelevant to the constraint at hand. Fortunately, in many cases, useful attributes are self-evident.
In future work, we plan to study automatic selection of conditioning attributes in more detail, e.g., by exploiting
attribute correlations.

2.4 Examples

Define S(p,R) as the support set of pattern p over R, that is, the set of tuples from relation R matching p:

S(p,R) = {t : t ∈ dom(R) ∧ t[Xp] ≍ p}.

A Conditional Functional Dependency (CFD) ϕ onR is a pair (R : X → Y, Tp), where (1)X → Y is a standard
FD, referred to as the embedded FD; and (2) Tp is a pattern tableau conditioned over attributes Xp, where for
each row tp ∈ Tp and each attribute A ∈ Xp, tp[A] = a, for some a ∈ dom(A), or tp[A] = ‘*’. One way to
define the confidence of a pattern p over R with respect to the embedded FD is to compute the size of the largest
“consistent” subset of S(p,R). Formally, given a CFD ϕ = (R : X → Y, Tp), let Q(p,R) denote the set of
tuples from S(p,R) that remains after removing the fewest tuples needed to eliminate all violations. Then the
confidence of pattern p is |Q(p,R)|

|S(p,R)| .
2 Table 7(a) shows UDFs based on this definition of confidence for the CFD

R : {A,B} → C conditioned on {A,E, F}. Note that we find |Q(p,R)| by partitioning the support set on the
antecedent attribute(s) X , and, for each distinct value of X , finding the most frequently occurring value of the
consequent attribute(s) Y .

A Conditional Inclusion Dependency (CIND) ψ on R1 and R2 is a pair (R1.X ⊆ R2.Y, Tp), where (1)
R1.X ⊆ R2.Y is a standard IND, referred to as the embedded IND; and (2) Tp is a pattern tableau conditioned
over attributes R1.Xp, where for each row tp ∈ Tp and each attribute A ∈ R1.Xp, tp[A] = a, for some
a ∈ dom(A), or tp[A] = ‘*’. Given a CIND ψ = (R1.X ⊆ R2.Y, Tp), let Q(p,R1) denote the tuples from
S(p,R1) having a match in dom(R2). Then one way to define the confidence of pattern p is |Q(p,R1)|

|S(p,R1)| . Table 7(b)
shows UDFs based on this definition of confidence for the CIND R1.B ⊆ R2.C conditioned on {A,E, F}.

3 Case Studies

Here we consider both CFDs and CINDs where the attributes participating in the dependencies are decoupled
from the conditioning attributes used for the tableau. In addition to illustrating the utility of discovering tableaux
based on these dependencies (for the purposes of data exploration and data cleaning), we demonstrate the per-
formance improvement that comes from employing the on-demand algorithm.

We used 60K records of sales data from an online retailer containing attributes type, itemid, title,
price, vat, quantity, userid, street, city, region, country, zip. The first six
attributes describe the item being purchased, including the tax rate (vat) and the quantity purchased in each
order. The remaining attributes describe the client (keyed by userid) who purchased these items. Using the
FD {title}→ {price,vat} and conditioning attributes {type,region,country}, we obtained the
tableau in Table 8 with ĉ = 0.99 (only the first six rows are displayed, yielding 0.379 cumulative support).

Since VAT typically applies to the country level, one might expect each separate country to require a separate
row in the tableau. Indeed, there was such a partitioning based on uniformity of VAT (many of the individual
countries are not shown in Table 8). An even more interesting characteristic captured in this tableau is that the

2This is the definition of confidence used in [11]; note that other definitions of confidence (see [13]) can easily be written as UDFs
in our framework.
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declare()
R1 : A,B,C,D,E,F;
R2 : A,B,C,D,E,F;
X : A,B;
Y : C;
Xp : A,E,F;

init()
ntuples = 0;
freq = 0;
maxfreq = 0;
sumfreq = 0;

update()
ntuples++;
freq++;

closeXY()
if (freq > maxfreq)
maxfreq = freq;
freq = 0;

close X()
sumfreq += maxfreq;
maxfreq = 0;

output()
return sumfreq/ntuples;

declare()
R1 : A,B,E,F;
R2 : C;
X : B;
Y : C;
Xp : A,E,F;

init()
ntuples = 0;
sumfreq = 0;

update(Tuple t)
ntuples++;
if (t[X] in Y) sumfreq++;

closeXY()
/* do nothing */

close X()
/* do nothing */

output()
return sumfreq/ntuples;

(a) CFD confidence (b) CIND confidence

Table 7: UDFs for two different constraints

type region country conf cumSupp
music * GBR 0.99 0.111
book * GBR 0.99 0.221

* TX * 0.99 0.274
* CA * 0.99 0.318
* NY * 0.99 0.351
* PA * 0.99 0.379

Table 8: Hold Tableau from Retailer data (ĉ = 0.99)

same title may be shared by different forms of media (and have different prices across the different media),
which is the reason why music and book items from Britain (GBR) were separated into separate patterns. Note
the absence of the tableau row (dvd,*,GBR), indicating that the FD didn’t hold for the only other media
type (DVDs). After inspecting the data, this turned out to be due to a greater variety of prices for the same
item among DVDs than among other media types. Since, unlike Britain, VATs are not uniform throughout the
country but vary per region in the United States, the individual states (listed by volume of purchases) needed
to form separate patterns to achieve high enough confidence. Here the effect of common titles among different
media types did not play as significant a role, since fewer records in each USA state, compared to all of GBR,
resulted in almost no conflicts. We also compared the running time of generating this tableau using the on-
demand algorithm against that of a standard greedy set cover algorithm that does not employ our optimizations.
The performance improvement from computing on-demand was about two-fold, from 550 milliseconds down to
310 milliseconds.

Using 3,601,434 packet traces of IP network attack traffic obtained from the 1999 ACM KDD Cup, in-
cluding attributes such as service, protocol, flag, attack name, bytes, we postulated the
FD {attack_name} → {flag} and conditioned on {service,protocol,attack_name}, which
generated the tableau in Table 9 with ĉ = 0.99 and ŝ = 0.7. This revealed the homogeneity of icmp traffic
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service protocol attack_name conf cumSupp
icmp * * 0.99 0.626

* private * 1 0.783

Table 9: Hold Tableau from KDDcup data (ĉ = 0.99)

img_bits img_media_type img_user_text conf cumSupp
* * ProteinBoxBot 0.971 0.0334
* AUDIO * 0.884 0.0407
7 * * 0.88 0.047
5 * * 0.885 0.0525
6 * * 0.875 0.0576
* * Blofeld of SPECTRE 0.986 0.0609
* * Melesse 0.991 0.0636

Table 10: Hold Tableau from Wikipedia data (ĉ = 0.85)

which, after examining the data corresponding to pattern (icmp,*,*), was apparently dominated with echo
requests (ecr_i) and very few other protocols. While some of these packets were normal traffic, more than
99% of these ecr_i requests were used for so-called smurf denial-of-service attacks. Examining the data
matching pattern (*,private,*) revealed that the private protocol almost always occurred as a result of
the neptune SYN flooding attack, which accounted for almost 93% of private traffic. Once again, the running
time of on-demand was cut in half over the unoptimized greedy set cover algorithm, from 13 seconds to 6.3
seconds.

For discovering CINDs, we used two tables from Wikipedia data: the Image table, containing
777,828 records of multimedia objects with attributes such as img name, img size, img bits,
img media type, img user text; and the Imagelinks table, containing 15,532,084 records of pages
containing those objects, with attributes il from and il to (denoting links from webpages to image files,
respectively). We asserted the IND {Image.img_name} ⊆ {Imagelinks.il_to} to identify images
that appeared on web pages, and generated the tableau in Table 10 with ĉ = 0.85 (only the first 7 rows are
displayed, collectively giving 0.0636 support). This tableau reveals that audio content submitted to Wikipedia
generally “made it to press” (appeared on a web page), as did 5-, 6- and 7-bit content (note: almost 95% of
the content in Image is 8-bit). It also revealed some high-frequency users whose multimedia content gener-
ally made it to press such as ProteinBoxBot, which is a well known bot for creating and amending a large
number of Wikipedia pages corresponding to mammalian genes (and by far the largest contributor to Image).
A fail tableau with ĉ = 0.2 (not shown) revealed that content created using MS-Office tools (pdf, xls, etc.) was
generally rejected, as well as some high-frequency users who provided much content that was not linked from
any page. The performance improvement on this data was not as dramatic (18 seconds for on-demand compared
to 19 for unoptimized greedy set cover), perhaps due to the overhead in reading the primary keys into a hash
table.

We also used Caltrans automobile traffic data polled every 30 seconds from road sensors over
the span of a day. Here the tables are Polls, containing fields time, id, district,
sensor type, route, road name, and StationsTimes, containing the entire cross-product of
1K stations and 2880 times during the day that should have been polled. We asserted the IND
{StationsTimes.time,StationsTimes.id} ⊆ {Polls.time,Polls.id} and generated the 8-
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district sensor type route street name conf cumSupp
5 * * * 0.934 0.165

80 * 3 * 0.904 0.264
51 * * * 0.907 0.341
80 * 1 * 0.916 0.412
99 * 1 * 0.914 0.48
50 OR 2 * 0.912 0.501
99 OR * * 0.952 0.518

113 ML * * 0.945 0.534

Table 11: Hold Tableau from RoadTraffic data (ĉ = 0.9)

district sensor type route street name conf cumSupp
* * * Iron Point Rd 0 0.004

· · ·
* * * Saw Mill Rd 0 0.057
5 OR * Elk Grove Blvd 0 0.058

· · ·
* ML * 15th St 0.097 0.062

· · ·

Table 12: Fail Tableau from RoadTraffic data (ĉ = 0.1)

row tableau in Table 11 with ĉ = 0.9. It reveals some districts and streets where the measurement quality was
best, as well as route and sensor-type combinations. The fail tableau using ĉ = 0.1 in Table 12 revealed that
most of the missing measurements occur along the same street, and gives many examples of these. For some of
these streets, it is only certain sensor-types or along certain routes for which the problems occurred. There were
also some patterns specifying no street at all but rather that the problem occurred along multiple streets. The
on-demand algorithm took 2m7s whereas the unoptimized greedy set cover heuristic algorithm took 6m45s.

4 Related Work

A great deal of work exists on data quality analysis and data cleaning; see, e.g., [15] for a survey. In particular,
various integrity constraints have recently been proposed to enforce data quality, including Conditional Func-
tional Dependencies (CFDs) [7], Conditional Inclusion Dependencies (CINDs) [2] and Conditional Sequential
Dependencies (CSDs) [10]. The key concept behind these constraints is the notion of conditioning: rather than
requiring the constraint to hold over the entire relation, it need only be satisfied over conditioned subsets of the
data summarized by a pattern tableau.

The problem of automatically discovering tableaux for a CFD, given an embedded FD, was first studied
in [11, 3]. [3, 8] considered variations of CFD discovery, using different frameworks and optimization criteria,
where the focus was on discovering individual patterns; [5] considered CIND discovery using their framework.

Here we extend the on-demand algorithm originally proposed in [11] to allow for several generalizations
including arbitrary conditioning attributes (as well as other constraints besides CFDs). The notion of decoupling
conditioning attributes from those used in the constraint was employed in [1] and [2].
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Finally, we point out the orthogonal problem of discovering which integrity constraints hold on a given
relation (in contrast to our goal to discover a tableau for a known constraint). Discovering FDs has been studied
in [12, 13]; discovering CFDs in [3, 8]; and discovering INDs has been studied in [14].

5 Conclusions

We demonstrated the approach for data quality analysis employed in Data Auditor: hypothesizing a constraint
and then discovering (hold and fail) tableaux which capture the data semantics (and violations of them) by
conditioning on the supplied multidimensional attributes. The generalized on-demand algorithm for efficiently
finding such tableaux enables a more powerful analysis than was previously available on large data sets. We
are considering several directions for future work, among them UDF query optimization, applying our tableau
discovery framework to other types of constraints, and discovering the underlying constraints in addition to
constructing tableaux for them.
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