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Abstract

We present a domain independent platform for data cleaning developed as part of the Data Cleaning
project at Microsoft Research. Our platform consists of a set of core primitives and design tools that
allow a programmer to develop sophisticated data cleaning solutions with minimal programming ef-
fort. Our primitives are designed to allow rich domain and application specific customizations and can
efficiently handle large inputs. Our data cleaning technology has had significant impact on Microsoft
products and services and has been successfully used in several real-world data cleaning applications.

1 Introduction

Modern enterprises rely on sophisticated data-driven Business Intelligence (BI) technologies [6] for their deci-
sion making. An integral component of the BI architecture is the data warehouse, where data from a variety of
sources is aggregated prior to analysis. Similar data aggregation also occurs in offline data processing pipelines
of search verticals such as Bing Maps and Bing Shopping [5]. The data provided by sources can have data
quality issues; for example, the data can have missing values and typographical errors. Further, different sources
can use different representations for the same real-world entity. For example, the state Washington can be rep-
resented using Washington in one source and WA in another. It is important to fix such errors and reconcile
representational inconsistencies since they can adversely affect the quality of data analysis (in BI) and search
(in verticals such as Bing Maps). The process of fixing errors and inconsistencies in data is often referred to as
data cleaning. Since integration into a warehouse typically involves large data volumes, performance and scale
are important considerations in data cleaning.

Data cleaning encompasses a variety of high-level tasks such as record matching, deduplication, segmenta-
tion, and null-filling [16, 11]. The goal of record matching and deduplication is to identify matching records,
defined to be records that correspond to the same real-world entity. The output of record matching is pairs of
matching records while the output of deduplication is clusters of matching records. The goal of segmentation is
to extract structured records from unstructured text, e.g., extracting details such as street name, city, and postal
code from an address string. The goal of null-filling is to identify missing values in records, e.g., identifying a
missing postal code using information from city and state. As we describe later, these data cleaning tasks are
related to each other; e.g., an implementation of record matching might use segmentation as a sub-module.

Data cleaning is applicable in a wide variety of domains such as addresses, products, health records, publica-
tions and citations, and music meta-data. Most current commercial solutions can be viewed as verticals and cater
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to a single domain. For example, Trillium [18] provides data cleaning functionality only for address domain.
The aspirational goal of our Data Cleaning project at Microsoft Research [17] (which has been ongoing since
2000) is to design and develop a domain independent, horizontal platform for data cleaning, such that vertical
solutions such as the functionality provided by Trillium can be developed over the platform with little program-
ming effort. The basis for this goal is the observation that some fundamental concepts such as textual similarity
are part of most data cleaning solutions across different domains, and our platform is designed to capture and
support these concepts.

Our current platform, shown in Figure 1, consists of a set of core primitives and a set of design tools. A
programmer develops a data cleaning solution on our platform by composing and customizing one or more prim-
itives, and she can leverage the design tools to identify a good way to customize and compose the primitives. Our
primitives include a customizable notion of textual similarity along with an efficient lookup operation based on
this similarity called Fuzzy Lookup, a clustering primitive called Fuzzy Grouping, and a parsing (segmentation)
primitive. We have designed our primitives so that they can be customized to a specific domain—e.g., we can
customize Fuzzy Lookup to recognize that Bob and Robert are synonymous while matching people names.
Further, our primitives have been designed for high performance and can handle large inputs and complex cus-
tomizations efficiently. While other research efforts have focused on horizontal approaches to data cleaning (see
[11] for a survey), one important differentiator of our approach is the focus on customizability and performance.

Our design tools include a suite of learning tools to help a programmer configure and customize a data
cleaning solution using the primitives available in our platform. The learning tools rely mostly on labeled
examples to navigate the space of possible configurations. Our platform also includes a Data Profiling tool that
assesses data quality of a source and identifies properties such as keys and functional dependencies satisfied by
data. As noted earlier, functional dependencies can be useful for null-filling.

Our data cleaning technology has had significant product impact within and outside of Microsoft [17]: (1)
Fuzzy Lookup and Fuzzy Grouping were shipped as part of SQL Server Integration Services (SSIS), Microsoft
SQL Server ETL system, in 2005, and they were the first data cleaning technology to appear in SSIS. (2) In the
aftermath of Hurricane Katrina, Fuzzy Lookup was used to develop a matching solution that allowed matching
the Government’s evacuee database with the database of missing people, thereby helping with the search and
identification of missing people. Similar solutions have been developed in recent years, e.g., by Google [13].
(3) Data Profiling tool was shipped as part of SSIS 2008. (4) The Bing maps service currently uses Fuzzy
Lookup to match a user query against a large database (containing tens of millions of records) of landmarks
and locations. Bing maps service has stringent performance requirements and Fuzzy Lookup currently has an
average latency of 3 ms per match query. (5) The group within Microsoft that performs master data management
of the Microsoft’s customers currently uses a solution based on Fuzzy Lookup for record matching over customer
data. This solution replaced an earlier commercial third party solution after their evaluations showed that it had
better performance and quality. (6) The Bing shopping team currently uses the segmentation primitive as part
of its offline data cleaning pipeline before product data from various sources is loaded into its warehouse. (7)
Fuzzy lookup is also available as an add-in for Microsoft Excel [12].

This paper provides an overview of our data cleaning primitives and design tools and highlights key design
decisions. In particular, we focus on Fuzzy Lookup (Section 2) and provide a brief overview of segmentation
(Section 3) and design tools (Section 4). We emphasize that this paper is not a general overview of data cleaning
and we refer the reader to [11] for an extensive survey. An overview of our project as of 2006 appears in [8].

2 Fuzzy Lookup

The same real world entity could be represented in different ways, e.g., due to typographical errors, differences in
conventions, and missing attributes. For example, the real world organization Microsoft could be represented
both as ⟨Microsoft Corp, 1 Microsoft Way, Redmond, WA, 98052⟩ and ⟨Microsoft
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Figure 1: Data cleaning primitives and design tools.

Corporation, One Microsoft Way, Redmnd, Wash, 98052⟩. The goal of a record matching
task is to identify pairs of matching records that represent the same real-world entity.

At the core of record matching is the notion of a similarity function that given two strings returns a numeric
value (typically between 0 and 1) quantifying their similarity, a higher value indicating greater similarity. We
describe our similarity function in Section 2.1. Fuzzy Lookup supports the following functionality—given a
reference table R of strings, a query string s, and a threshold parameter θ, find all strings in R whose similarity
with s is greater than or equal to θ. To support efficient lookups, Fuzzy Lookup builds an index over R. The
index structure and lookup algorithm are discussed in Section 2.2.

2.1 Similarity Function

The standard way in which similarity is computed is to use the textual similarity between strings using functions
such as edit distance, Hamming distance, and Jaccard similarity [11]. Textual similarity is a strong indicator
of string similarity. Indeed, the first version of our Fuzzy Lookup primitive [7] relied exclusively on textual
similarity. However, in course of our experience in using Fuzzy Lookup with various scenarios including the
Hurricane Katrina scenario described above, we discovered the need for customizing the similarity function.
For example, there are many cases where strings that are syntactically far apart can still represent the same
real-world object. This happens in a variety of settings—street names (the street name SW 154th Ave is also
known as Lacosta Dr E in the postal area corresponding to zipcode 33027), the first names of individuals
(Robert can also be referred to as Bob), conversion from strings to numbers (second to 2nd) and abbre-
viations (Internal Revenue Service being represented as IRS). Therefore we modified the design of
our similarity function to start with a textual similarity function and extended it to allow a rich customization
that enables it to match strings that are syntactically far apart. The current version of Fuzzy Lookup which is
used, e.g., in Bing Maps, supports such customizations. We first discuss the core measure of textual similarity
followed by the various customizations we expose.

2.1.1 Set Similarity

As our core measure of textual similarity, we use Jaccard similarity. We model a string as a set of tokens.
The Jaccard similarity between two sets is the size of their intersection as a fraction of the size of the union.
The Jaccard Similarity between the two strings University Avenue, Seattle, WA and University
Ave, Seattle, WA tokenized at word boundaries is 3/5. Our rationale for choosing Jaccard similarity is
that in addition to being an interesting similarity function in its own right, we can also reduce other similarity
functions such as edit distance to it. The intuition is as follows: consider tokenizing a string into it’s q-grams.
All q-grams that are “far away” from the place where the edits take place must be identical. Hence, a small
edit distance implies large Jaccard similarity between the sets of q-grams. For example, consider the strings
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Microsoft and Mcrosoft; their edit distance is 1 and the Jaccard similarity between their 1-grams is 8/9.
The above relationship between edit distance and Jaccard similarity has been formalized in prior work [14].

In general, we can customize Jaccard similarity by specifying how we tokenize a string. For example, we
could tokenize a string into a set of words or a set of q-grams or design language specific tokenizations. We
also draw upon the notion of token weighting present in previous work on Information Retrieval (IR). Jaccard
similarity can be extended to handle token weights by computing a weighted intersection and union. We can use
token weights to further customize Jaccard similarity. For example, by assigning higher weights to the tokens
Microsoft and Oracle and lower weights to Corporation and Corp, we can ensure that the similarity
between the pair (Microsoft Corporation, Microsoft Corp) is greater than that between the pair
(Microsoft Corporation, Oracle Corporation). Intuitive weights could be assigned using the IR
notion of inverse document frequency (idf).

2.1.2 Transformation Rules

As noted above, there are many cases (e.g., the first names of individuals where Robert can also be referred
to as Bob) where strings that are syntactically far apart represent the same real-world object. We posit that it
is impractical to expect a generic similarity function to be cognizant of variations such as those of the above
examples since they are highly domain-dependent. Rather the matching framework has to be customizable to
take the variations as an explicit input. Prior work addresses this issue primarily using token standardization
[16, 11]. The idea is to pre-process the input data so that all variations of a string are converted into a uniform
(standard) format. Thus, for example, the input could be pre-processed so that all occurrences of Bob are
converted to Robert. However, this approach is inadequate since it does not capture variations that are not
equivalences; for example a first initial (such as J) can be expanded in multiple ways (John, Jeff, etc.) that
are clearly not equivalent [1].

We therefore introduce the notion of transformation rules (transformations). A transformation rule consists
of a triplet (context , lhs → rhs) where each of context, lhs, and rhs is a string. (Transformations with empty
context are represented lhs → rhs .) Examples of transformations are: (Bob → Robert) and (33027,
SW 154th Ave → Lacosta Dr E). We now describe how a string s can be transformed given a set of
transformation rules T . A rule (context , lhs → rhs) can be applied to s if both context and lhs are substrings of
s; the result of applying the rule is the string s′ obtained by replacing the substring matching lhs with rhs. We
can apply any number of transformations one after another. However, a token that is generated as the result of
applying a transformation cannot participate in any subsequent transformation.

Example 1: We can use the transformation (Drive → Dr) to generate the string Lacosta Dr E from the
string Lacosta Drive E. However, we cannot further convert Lacosta Dr E to Lacosta Doctor E
using the transformation (Dr→ Doctor).

The set of strings generated by s is the set of all strings obtained by applying zero or more transformations
to s. We combine set similarity with transformations to obtain an overall similarity function. Given a set of
transformations T , the similarity between strings s1 and s2 under T is defined to be the maximum Jaccard
similarity among all pairs s′1 and s′2 respectively generated by s1 and s2 using T . We illustrate the above
definition through the following example.

Example 2: Consider the strings SW 154th Ave Florida 33027 and Lacosta Dr E FL 33027
and the transformations (FL → Florida) and (33027, SW 154th Ave → Lacosta Dr E). Each
of the strings derives two strings as shown in Figure 2. The overall similarity is the maximum Jaccard similarity
among the four pairs of derived strings which in this instance is 1 since both of the above strings generate the
same string Lacosta Dr E Florida 33027.
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Figure 2: Combining Set Similarity With Transformations.

In general, we allow different sets of the transformations for the reference table and to the input query.
Although we assume that the set of transformations is an input, they need not be provided in the form of a ta-
ble. For example, we could handle transformations obtained by concatenating words (e.g., Disney Land →
DisneyLand) programmatically by generating them dynamically at query time. Since the number of possi-
ble word concatenations is large, generating them dynamically may be preferable to materializing them ahead
of time. Similarly, we could programmatically capture word level edits (e.g., Mcrosoft→Microsoft) and
abbreviations (e.g., J→Jeff). Fuzzy lookup provides an interface where we can plug in user-defined transfor-
mations. We next discuss how we address the efficiency challenges posed by our notion of similarity.

2.2 Efficient Lookups under the similarity function

Recall that Fuzzy Lookup provides the following functionality—given a reference table of strings, R, a set
of transformation rules, T , a query string s, and a threshold parameter θ, find all strings in R whose Jaccard
similarity under T with s is ≥ θ. To support efficient lookups, Fuzzy Lookup builds an index over R. The
indexing algorithm is based on the idea of signature schemes [3]. A signature scheme, given a string, generates
a set of signatures with the property that: if the Jaccard similarity between r and s is greater than or equal to θ,
then they share a common signature. A signature based algorithm operates as follows. It generates signatures
for each record in the reference table R which are indexed using an inverted index. Given a query string s, the
lookup algorithm finds candidate strings r such that the signatures of r and s overlap. In a post-filtering step,
the similarity predicate is checked and the matching records are returned.

Several signature schemes have been proposed in the literature for Jaccard similarity (without transforma-
tions) [16] including signature schemes developed by us [3, 9]. We now briefly discuss a signature scheme
developed by us [9] called prefix filtering. Consider a total ordering over all tokens. Given a weighted set of
tokens r and 0 ≤ β ≤ 1, define prefixβ(r) as follows: sort the elements in r by the global token ordering and
find the shortest prefix such that the sum of the weights of the tokens in the prefix exceeds β times the weight of
r. We have the following result [9]: if the jaccard similarity between strings r and s is greater than or equal to θ,
then prefix 1−θ(r) ∩ prefix 1−θ(s) ̸= ϕ. Fuzzy Lookup supports the signature schemes developed by us as well
as the well-known locality sensitive hashing (LSH) which is a probabilistically approximate signature scheme.
Multiple signature schemes enable Fuzzy Lookup to operate under different precision performance trade-offs.

In the presence of transformations, a naive adaptation of the above algorithms is as follows. Consider the
expanded relation ExpandR obtained by applying the transformations to each string in R. Given a query string
s, we can similarly generate an expanded set of strings, look up each against ExpandR and return the distinct
matching rows. One problem with this approach is that the size of the expanded sets can be prohibitively high
when we have a large number of transformations.
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Id ProductName
1 ThinkPad T43 Centrino PM 750 1.8GHz/512MB/40GB/14.1”TFT
2 ThinkPad T43 Centrino PM 740 1.7GHz/512MB/40GB/14.1”TFT
3 Lenovo ThinkPad T43 Notebook (1.7GHz Pentium M Centrino 740, 512MB, 40 GB, 14.1TFT)

(a)

Id Brand Line Model Processor Processor Model ...
1 ThinkPad T43 Centrino PM 750 ...
2 ThinkPad T43 Centrino PM 740 ...
3 Lenovo ThinkPad T43 Pentium M Centrino 740 ...

(b)

Figure 3: Sample Product Records

Example 3: Consider the citation: “N Koudas, S Sarawagi, D Srivastava. Record linkage: Similarity Measures
and Algorithms. Proceedings of the 2006 ACM SIGMOD International Conference. Chicago, IL, USA.” Sup-
pose that we consider the set of rules {N→Nick, S→Sunita, D→Divesh, SIGMOD→“Special Interest Group on
Management of Data”, ACM→“Association for Computing Machinery”, IL→Illinois}. The number of strings
generated by this citation under these rules is 26 = 64.

Since each lookup of a derived string in turn generates signatures that are then looked up, we can improve the
performance by only looking up the distinct signatures over all the derived strings.

Example 4: Consider Example 3. Suppose the set (of last names) {Koudas, Sarawagi, Srivastava} is a signature
generated by all the 64 generated records. This signature need not be replicated 64 times; one copy suffices.

Similarly, in the presence of transformations, even computing the similarity function becomes challenging.
The straightforward method is to enumerate all generated strings which is worst-case exponential. For the large
class of single-token transformations where both the lhs and rhs are single tokens (e.g., St→Street), we
show that it is possible to compute the Jaccard similarity between two strings (under the transformations) effi-
ciently (in polynomial time) by reducing this problem to bipartite matching [1]. Using the above optimizations
and additional optimizations proposed in our previous work [1], we are able to support highly efficient record
matching. For example, over a database of 10 million US landmarks used by Bing Maps, in the presence of a
total of 24 million transformations, the average response time per lookup is less than 3 ms.

3 Segmentation

In this section, we discuss another primitive called segmentation (parsing). The segmentation primitive takes
as input unstructured text and produces as output a structured record obtained by assigning labels to various
segments of the text. Figure 3(a) shows a set of sample laptop product names and Figure 3(b) shows the desired
output of segmenting the product names. Segmentation is a useful data cleaning (transformation) primitive
since structured records enable richer search compared to unstructured text. Further, segmentation primitive can
be useful for record matching. Consider record matching directly over the records in Figure 3(a). Here, textual
similarity is very misleading: The records with id 1 and 2 are textually very similar but are not matches since they
have different processor models. Conversely, records 1 and 3 are textually dissimilar but correspond to the same
laptop configuration. The segmented records of Figure 3(b) let us overcome the limitations of textual similarity.
We can design sophisticated record matching logic that, for example, checks if two processor models are equal
before classifying the corresponding records as matches. More generally, segmentation can be used as a pre-
processing step before using primitives such as Fuzzy Lookup in the design of record matching packages. Our
current implementation of the segmentation operator involves parsing an input string using a regular expression
and using the parse to identify segments and assign labels. The regular expression can reference dictionaries
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which encode domain knowledge. As an illustrative (and highly simplified) example, we can segment address
strings (e.g., “123 Main St Seattle WA 12345”) using the regular expression:

[digit]+︸ ︷︷ ︸
Street Num

[letter]+ “St”︸ ︷︷ ︸
Street Name

[City]︸ ︷︷ ︸
City

[State]︸ ︷︷ ︸
State

[digit]+︸ ︷︷ ︸
PostalCode

where [digit] and [letter] represent digits and letters, and [City] and [State] refer to dictionaries of city and state
names. We note that dictionaries are a form of customization input similar to transformations for Fuzzy Lookup.

4 Design Tools

Recall from Section 1 that designing a data cleaning solution in our platform involves composing various primi-
tives into a package (or program) and customizing each primitive in the package for the domain of interest. For
complex data cleaning tasks, manually identifying the best way to compose and customize primitives can be
difficult, motivating the need for design tools that reduce the manual effort involved.

Customizing Fuzzy Lookup involves specifying a tokenization scheme, token weights, and transformation
rules. For most record matching scenarios, whitespace-based tokenization and IDF-based token weights are
reasonable defaults. Identifying a useful set of transformations is more challenging. We have recently developed
a tool [2] that automatically identifies candidate transformations from examples of matching records. The basic
idea is to identify a concise set of transformations that explain textual “differences” between the example records.
For example, the two matching addresses 123 Main St and 123 Main Street suggest the transformation
St→Street. Similarly, customizing the segmentation primitive involves identifying appropriate dictionaries.
We recently developed techniques to automatically identify dictionaries (e.g., list of cities) given a few examples
(e.g., San Francisco, New York) using Web data [15]. The technique uses the observation that many lists
on the web contain members of a concept, e.g., names of cities. In the example above, other strings that occur
in the same lists as San Francisco and New York are likely to be cities, and can therefore be identified.
Developing a general tool to automatically identify the best way to combine primitives for a given data cleaning
task is challenging since the space of possible compositions is quite large. We have taken some initial steps
in this direction, and have a tool that identifies a good record matching package that uses only Fuzzy Lookup
primitive [4]. Ideally, it is desirable to have a single design tool for both customizing primitives and combining
them; developing such a tool would be an interesting avenue for future work.

When integrating data from various sources into a warehouse, it is useful to be able to assess the quality
of data being integrated, and we have developed a Data Profiling tool for this purpose. The Data Profiling tool
efficiently identifies various properties of a dataset such as value distributions, (approximate) keys, functional
dependencies, foreign keys, and regular expression patterns in data [10]. These properties can help identify data
quality issues and also serve as input for subsequent data cleaning steps. For example, functional dependencies
can be exploited for filling missing values and regular expressions can be used for segmentation (see Section 3).

5 Conclusions

In this paper, we provided a brief overview of the data cleaning project at Microsoft Research where we have
developed primitives and design tools that allow a programmer to develop data cleaning solutions with minimal
programming effort. In particular, we presented two primitives for data cleaning, namely, Fuzzy Lookup and
segmentation. While our primitives are generic, they allow rich customizations that can be domain or application
specific and can efficiently handle large datasets. Our primitives have been successfully used in several large
real-world data cleaning applications.
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