
Rethinking Query Processing for Energy Efficiency: Slowing
Down to Win the Race

Willis Lang, Ramakrishnan Kandhan, Jignesh M. Patel
Computer Sciences Department

University of Wisconsin – Madison

Abstract

The biggest change in the TPC benchmarks in over two decades is now well underway – namely
the addition of an energy efficiency metric along with traditional performance metrics. This change
is fueled by the growing, real, and urgent demand for energy-efficient database processing. Database
query processing engines must now consider becoming energy-aware, else they risk missing many op-
portunities for significant energy savings. While other recent work has focused on solely optimizing for
energy efficiency, we recognize that such methods are only practical if they also consider performance
requirements specified in SLAs. The focus of this paper is on the design and evaluation of a general
framework for query optimization that considers both performance constraints and energy consumption
as first-class optimization criteria. Our method recognizes and exploits the evolution of modern comput-
ing hardware that allows hardware components to operate in different energy and performance states.
Our optimization framework considers these states and uses an energy consumption model for database
query operations. We have also built a model for an actual commercial DBMS. Using our model the
query optimizer can pick query plans that meet traditional performance goals (e.g., specified by SLAs),
but result in lower energy consumption. Our experimental evaluations show that our system-wide en-
ergy savings can be significant and point toward greater opportunities with upcoming energy-aware
technologies on the horizon.

1 Introduction

Energy management has become a critical aspect in the design and operation of database management systems
(DBMSs). The emergence of this new paradigm as an optimization goal is driven by the following facts: a)
Servers consume tremendous amounts of energy – 61B kiloWatt-hours in 2006 alone and doubling by 2011 [3];
b) The energy component of the total cost of ownership (TCO) for servers is already high, and growing rapidly.
The server energy component of the three-year TCO is expected to dwarf its initial purchase cost [9]. A big
contributing factor to this trend is that processors are expected to continue doubling in the number of cores every
18 months, but the performance per Watt doubles at a slower rate of once every two years [8]; c) To make matters
worse, typical servers are over provisioned to meet peak demands, and as a result, they are idle or underutilized
most of the time. Barroso and Hölzle [7] have reported average server utilization in the 20–30% range; d)
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Unfortunately, when servers are idle, or nearly idle, they tend to consume energy that is disproportional to their
utilization – for example, an idle server can consume more than 50% of its peak power [7].

With these rising energy costs and energy-inefficient server deployments, it is clear that there is a need
for DBMSs to consider energy efficiency as a first class operational goal. In fact, driven by requests from its
customers, the Transaction Processing Performance Council (TPC) has moved in this direction, and all TPC
benchmarks now have a component for reporting the energy consumed when running the benchmarks.

The challenge here is to reduce the energy consumption of a DBMS while maintaining the performance
levels that are typically expected and accepted by the end users. Thus, there is huge opportunity for the database
community to take on this challenge head-on and find methods to make DBMSs more energy-efficient. In
this paper, we tackle the query processing component, and develop a framework for energy-efficient query
processing.

To begin, one might think that perhaps doing business as usual might work for energy-aware query pro-
cessing. Specifically, we already know how to optimize queries for response time/throughput metrics. So it is
natural to pose the following question: Is processing (optimizing and executing) the query as fast as possible
always the most energy-efficient way to operate a DBMS? As we show in this paper, the answer to this ques-
tion is no. The reason for this negative answer has to do with typical server operational characteristics and the
power/performance characteristics of hardware components in modern servers.

First, typical servers often run at low utilization. This means that a server has many opportunities to execute
the query slower, if the additional delay is acceptable. For example, this situation may occur if the Service Level
Agreement (SLA) permits the additional response time penalty. Since typical SLAs are written to meet peak or
near peak demand, SLAs often have some slack in the frequent low utilization periods, which could be exploited
by the DBMS. (The incentive for doing this is particularly high when the DBMS server is running as a hosted
cloud service, and any cost savings that do not violate the SLAs, directly adds to the bottom line.)

Second, components on modern server motherboards offer various power/performance states that can be
manipulated from software. Of these components, the CPU is currently the most amenable for transitioning
between such power/performance states, but nearly every power–hungry component connected to the server
motherboard (e.g., memory chips and network cards) is moving towards providing multiple power/performance
states for more energy-efficient operation. For instance, recent research has shown that ‘hot’ power-down (park-
ing) of physical memory DIMMs may save upwards of 40% of system energy consumption [6, 29].

This paper proposes a new way of thinking about processing and optimizing queries. In our framework,
we assume that queries have some response time goal, potentially driven by an SLA. The query optimization
problem now becomes: Find and execute the most energy-efficient plan that meets the SLA.

A crucial aspect of our work that distinguishes it from previous work [31, 32] is our focus on the slack
available in performance between the optimal performance and the SLA goal, and leveraging this slack to reduce
the energy consumption (and thereby overall operating cost). To the best of our knowledge this is the first paper
that proposes looking at query optimization and evaluation in a DBMS from this new perspective.

To enable this framework, we propose extending existing query optimizers with an energy consumption
model, in addition to the traditional response time model. With these two models, the enhanced query optimizer
can now generate what we call an Energy Response Time Profile (ERP). The ERP is a structure that details the
energy and response time cost of executing each query plan at every possible power/performance setting under
consideration. The ERP of a query can then be used to select the appropriate “energy-enhanced” strategy to
execute the query.

Notice that the framework proposed in this paper is not limited to the single node database environments
that were studied by [31, 32], as it can be applied to optimizers for parallel DBMSs as well. Such parallel
DBMSs also have system settings that include cluster configuration as well as server configuration [20, 21].
Such considerations for parallel DBMSs is part of future work.

To show the potential and validity of this approach, in Figure 1 we show an actual ERP for a single equijoin
query on two Wisconsin Benchmark relations [11]. The plot shows the system energy consumption and response
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Figure 1: Energy Response Time Profile (ERP) for an equijoin query on two 50M tuple (5GB) Wisconsin
Benchmark relations, on the attribute four, and a 0.01% selection on both relations. The energy and response
time values are scaled relative to the stock settings (HJ, S) that is currently used by DBMSs.

time measurements for executing the query using two different query plans – hash join (HJ) and sort-merge join
(MJ) at two different system settings (labeled ‘S’, ‘M’), on an actual commercial DBMS. System setting ‘S’ cor-
responds to the “stock” (high power/performance) system settings. System setting ‘M’ is the power/performance
setting that can save energy by reducing the memory capacity [6,29]. (Details about the experimental setup and
systems setting for this experiment is presented in more detail in Section 4.) The energy measurement is the
actual energy that is drawn by the entire server box – i.e., we measure the energy drawn from the wall socket by
the entire system. In this figure, we have plotted all the other data points proportionally relative to (HJ, S), for
both the energy consumption (on the y-axis), and the response time (on the x-axis). Traditional query optimizers
often incorporate response time into their primary metric so they would choose HJ and system setting S to exe-
cute the query, since this is the fastest query plan. However, by choosing the sort-merge (MJ) plan and system
setting M, we can reduce the energy consumption by 13% for only a 5% increase in response time.

However, it may not always be possible to choose a lower energy setting to run the query due to some
performance constraint. For example, let us say an SLA exists between the client and the server, which only
allows for an additional 4% delay over the optimal response time (HJ, S). This SLA is represented in Figure 1
as a vertically dotted line. Now the most energy-efficient choice is MJ and system setting S, which reduces the
energy consumption by 9% and still meets the SLA! In this case, changing the join algorithm while holding the
system settings constant reduces the energy consumption. This ability to optimize for energy while maintaining
performance constraints makes our framework particularly attractive for DBMSs.

To keep the scope of this work limited to a single paper, we focus on the following important class of queries:
single join queries with selection and projections. However, our framework can be extended for more complex
query processing, using the single join queries as essential building blocks. As the reader will see, our research
points to many open research problems in this emerging field of energy-aware data management, only a small
part of which we can address in this paper (details in Section 4.3).

This paper makes the following contributions:

• We present a new design for query optimizers that uses both energy and performance as optimization
criteria while adhering to performance constraints.
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• We present the notion of an Energy Response Time Profile (ERP) that can be used by our query optimiza-
tion framework to explore all the combinations of system power/performance settings that the hardware
provides. The ERP can then be used by the optimizer in picking an “energy-enhanced” query plan that
meets any existing response time targets.

• We validate the energy model using an actual commercial DBMS and demonstrate the end-to-end benefit
of our approach, which can result in significant energy savings.

The remainder of this paper is organized as follows: Section 2 presents our new optimizer framework,
Section 3 describes our energy cost models. The experimental results are presented in Section 4. Related work
and conclusions are described in Section 5 and 6 respectively.

2 Framework

In this section we present a general query processing framework that uses both energy and response time as the
optimization criteria. The questions we tackle are: (1) How to redefine the job of the query optimizer in light of
its additional responsibility to optimize for energy consumption? (2) Given this new role, how do we design a
query optimizer? We discuss answers to these questions below.

2.1 New Role of the Query Optimizer

The traditional query optimizer is primarily concerned with maximizing the query performance. The optimizer’s
new goal now is to find query plans that have acceptable performance, but consume as little energy as possible.
As shown in Figure 1, we want the query optimizer to return an energy-enhanced query plan that is to the left of
the SLA-dictated performance requirement, and as low as possible along the y-axis. (We note that performance
SLAs are often not rigid and violating SLAs could be compensated by other mechanisms – e.g., some financial
compensation. There are potential business decisions to be made about when violating SLAs are okay, but these
considerations are beyond the scope of this study.)

The main task here is to generate ERP plots like that shown in Figure 1. To generate these plots, the query
optimizer needs to quickly and accurately estimate both the response time and the energy consumption for
each query plan. Query optimizers today are fairly good at predicting the response time, but doing so while
accounting for varying hardware configuration is a new challenge. Of course, this challenge of predicting the
energy consumption of a given query plan for a specific system setting also requires that the query optimizer
understands the power/performance settings that the hardware offers.

2.2 System States, Optimization, and ERP

Driven by the need for energy-efficient computing, hardware components such as CPU [19], memory [29], and
NIC [12] are increasingly becoming energy-aware, and offer multiple power/performance settings that can be
manipulated directly from software at runtime. Many studies have looked at CPU power/ performance control
by capping the maximum CPU frequency [19,31,32] and so we do not focus on system states based on this type
of control. We have performed our own CPU studies on a manufacturer-provided instrumented NUMA server
(which none of the prior works have studied) that gave direct on-motherboard measurements of the CPU, mem-
ory, and northbridge energy consumption. For an in-memory clustered index scan on a commercial DBMS, with
this server we found that dropping the maximum CPU frequency by 25% using standard Microsoft Windows
Server CPU controls can save 12% in the three component aggregate consumption while being penalized 2% in
response time. The reason for this result was that capping the maximum frequency increases CPU utilization
and energy efficiency. (We omit these results here in the interest of space.)
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Figure 2: An overview of the framework that optimizes for both energy and response time. The energy cost
estimator is described in more detail in Figure 3.

While we saw interesting wins with CPU capping, as mentioned above, this paper focuses on memory-based
system configurations, since database query working sets are increasingly completely or nearly fully resident in
main memory. In this setting, most of the database processing costs are outside the traditional IO subsystem,
which in turn makes memory a significant source of energy consumption (up to 45% and 30% as has been
discussed in [29] and [6] respectively). The specific memory mechanism we are exploiting is the ability to
“park” main memory DIMMs similar to how CPU cores can currently be “parked”. Major manufacturers like
Intel have begun developing these mechanisms and methods for exploiting these mechanisms are been actively
explored [6,29]. Our idea for using this mechanism is that if the current query does not require all of the available
main memory, then some of the DIMM banks can be powered down to save energy. This new ability requires
research on issues like physical DIMM-aware buffer pools and the impact this will have on join algorithm
selection. (We note that we are simply scratching the surface of various research problems in this space – for
example, instead of memory parking one can think of freeing up memory for use by other concurrent task, or
considering both memory and CPU power performance states and expanding that scope to consider networking
components in a parallel or cluster data processing system. Further discussion can be found in Section 4.3.)

The “energy-enhanced” query optimizer must be provided with a set of system operating settings, where
each system operating state is a combination of different individual hardware component operating settings.
The optimizer then uses an energy prediction model along with its current response time model to produce an
ERP for that query, like the example shown in Figure 1.

Given a query Q with a set of possible plans P = {P1, ..., Pn} that is to be executed on a machine with
system operating settings H = {H1, ..., Hm}, the ERP contains one point for every plan for every system
operating setting (and hence an ERP has n × m points). Note that heuristics could be developed to prune the
logical plans P so that only a small subset of the n plans are explored for specific queries – e.g., plans for where
the ‘stock’ setting does not meet the performance requirement may be assumed to not meet the requirement in
all other system settings. (An interesting direction for future work is to explore this option.)

Several methods can be envisioned to predict the energy cost of a query plan. One simple method is to
assume some constant power drawn by the system for any specific query such that Energy α Response Time.
But, we have found in our analysis that such simple models are not very accurate. Note that an accurate energy
estimation model is essential so that the optimizer does not make a wrong choice – such as choosing query plan
HJ and system setting M in Figure 1, which incurs penalties in response time that lie beyond the SLA and does
not save enough energy to make this choice attractive.

To enable this new query optimizing framework, we develop an accurate analytical model to estimate the
energy consumption cost for evaluating a query plan. We discuss this model in Section 3.
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Figure 3: An overview of the energy cost model. The operator model estimates the query parameters required
by the hardware abstraction model for each query plan from the database statistics available. The hardware
abstraction model uses the query parameters estimated and the system parameters learnt to accurately estimate
the energy cost.

2.3 Our Implementation

In this section we discuss our implementation of the framework described above. We had two implementation
options – the first one was to integrate this framework into an existing query optimizer in a open-source DBMS
like MySQL, and the other to implement it as an external module for a commercial DBMS. We have found that
the commercial DBMS that we are using is appreciably faster than the open-source alternative – as much as a
factor of 10 in many cases. Consequently, we decided to use the commercial DBMS for our implementation.
This choice also forced us to think of a design that is generic and likely to be more portable across other systems,
as we have to build the framework using only the high level interfaces that the DBMS provides. (Besides, if
one is concerned about energy efficiency, starting with a system that is significantly faster is likely to be a better
choice from the energy efficiency perspective.)

Figure 2 gives an overview of our implementation. The query is supplied as input to the query plan generator
in the commercial DBMS, which is then requested to list all the promising query plans that the optimizer has
identified. These query plans along with the information about available system settings is provided as input
to the Energy Cost Estimator, which generates the ERP using an analytical model for predicting the energy
consumption (see Section 3). The generated ERP is then used by the combined energy-enhanced query optimizer
to choose the most energy-efficient plan that meets SLA constraints. Then, a command to switch to the chosen
system operating state is sent to the hardware, followed by sending the optimal query plan to the execution
engine.

3 Energy Cost Model

In this section, we briefly describe an analytical model that estimates the energy cost of executing a query at a
particular power/ performance system setting. Our model abstracts away the energy cost of a query in terms of
system parameters that can be learnt through a “training” procedure, and query parameters (CPU instructions,
memory fetches, etc.) that can be estimated from available database statistics.
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3.1 Model Overview

We want to develop a simple, portable, practical, and accurate method to estimate the energy cost of a query
plan. Unfortunately, prior techniques used to estimate energy consumption fail to satisfy one or more of these
goals. For example a circuit-level model of hardware components [1, 2, 13] can accurately predict the energy
consumption, but these models also have a high computational overhead which make them impractical for query
optimization. On the other hand, a higher level model that treats the entire system as a black box, though simple
and portable, is not very accurate.

In our approach, we use an analytical model that offers a balance between these two extremes. In our
models, the power drawn by different hardware components are abstracted into learn-able system parameters
that are combined with a simple operator model. Figure 3 gives an overview of the energy cost model that we
have designed.

The operator model takes as input the query plan and uses the database statistics to estimate the query param-
eters that is required by the hardware abstraction model to estimate the energy cost. The hardware abstraction
model that we describe below required estimations of four query parameters from the operator model: the num-
ber of CPU instructions, the number of memory accesses, the number of disk read and write requests anticipated
during query execution. Our operator model provided estimates for these four query parameters for three basic
operations: selection, projection, and joins. (See [18] for details.) The hardware abstraction model then uses
these four query parameters and the response time model (since response time is dependent on system settings)
to estimate the energy cost of evaluating a query using a particular query plan at a particular power/performance
system setting, essentially computing the ERP.

While we have considered various hardware abstraction models, in the interest of space, we describe the
model that we found to be the most accurate. Equation 1 shows the model for average system power during a
query as defined by three types of variables:

1. time (T )

2. query parameters for query Q: CPU instructions - IQ, disk page reads - RQ, disk page writes - WQ, and
memory page accesses - MQ

3. train-able system parameters: CPU - Ccpu, disk read - CR, disk write - CW , memory access - Cmm,
remaining system - Cother). These parameters quantify the component power properties.

The intuition behind this power model is to sum of the average CPU power (Ccpu∗
IQ
T ), read power (CR∗

RQ

T ),
write power (CW ∗ WQ

T ), memory power (Cmm ∗ MQ

T ), and remaining system power (Cother) during the duration
of the query.

Pav = Ccpu ∗ IQ
T

+ CR ∗ RQ

T
+ CW ∗ WQ

T
+ Cmm ∗ MQ

T
+ Cother (1)

In the interest of space, we omit the details of deriving the query parameters in this paper. One can model
these query parameters using the work of [24, 28] to provide accurate component power draw.

The key features of our energy cost model are:

• Simplicity: The models require no additional database statistics other than those used in traditional query
optimizers for response time cost estimation. Also, minimal overhead is incurred by the query optimizer
in calculating the most energy efficient power/performance operating setting and query plan. The compu-
tational complexity is O(|H| ∗ |P |) where H is the set of valid power/performance system settings and P
is the set of query plans for the query.
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Figure 4: ERPs of two equijoin query classes: (a) Low memory requirement (b) Low memory and I/O heavy.
Two join algorithms are used: hash join (HJ) and sort-merge join (MJ); along with ‘stock’ (S) and low memory
(M).

• Portability: The model makes few assumptions about the underlying hardware or the database engine
internals and can be ported across many DBMSs and machines. In fact, we have been able to implement
this model on top of a commercial DBMS, treating it as a black box, and the model still achieves high
accuracy.

• Practical: Detailed system simulators like DRAMSim [1] and Sim-Panalyzer [2] model hardware compo-
nents at the circuit level to estimate power consumption. This process though accurate is computationally
very expensive, and is hence not practical for use in a query optimizer. In our model we abstract the power
drawn by different components into learn-able system parameters.

• Accuracy: In our tests, our models have an average error rate of around 3% and a peak error rate of 8%.

4 Evaluation and Discussion

In this section we will present results demonstrating the potential benefit of our optimization framework on a
commercial DBMS using end-to-end measurements.

4.1 System Under Test

The system that we use in this paper has the following main components: ASUS P5Q3 Deluxe Wifi-AP moth-
erboard (which has inbuilt mechanisms for component-level power measurements), Intel Core2 Duo E8500,
4x1GB Kingston DDR3 main memory, ASUS GeForce 8400GS 256M, and a 32G Intel X25-E SSD. The power
supply unit (PSU) is Corsair VX450W. System power draw was measured by a Yokogawa WT210 unit (as sug-
gested by SPEC and TPC energy benchmarks) connected to a client measuring system. Energy consumption
was measured by tapping into the line that supplied power to the entire box, so our measurements and results
below are real end-to-end gains. The operating system used was Microsoft Windows Server 2008, and we use a
leading commercial DBMS. Note that we use an SSD-based IO system as many studies have shown that SSD-
based configurations are more energy efficient [31] and also provide a better total cost of ownership because of
their higher performance-per-$ [4].
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Table 1: Both queries have the template (SELECT * FROM R, S WHERE <predicate>). These queries are used
for the ERP plotted in Figure 4. All relations are modified (100 byte tuples) Wisconsin Benchmark relations.

Query Predicate Size of R, S
A R.unique2 < 0.1*||R|| AND

R.unique1 = S.unique2 1GB, 1GB
B R.unique2 = S.unique2 5GB, 5GB

4.2 End-to-End Results: ERP Effectiveness

We now present end-to-end results using the techniques that we have proposed in this paper. We use the two
system settings described in Section 1; namely, (1) S – the default stock settings of our system, and (2) M – a
reduced memory setting where the memory is reduced from 4GB to 2GB.

In the interest of space, here we present results with only the two queries shown in Table 1. Both queries are
join queries on two modified Wisconsin Benchmark [11] tables, where the tuple length has been reduced to 100
bytes. Query A is a 10% selectivity join on two small 1GB tables while Query B is a full join on the sorted keys
of two 5GB tables.

First, let us examine the scenario when switching to a lower power/performance state has little effect on the
response time. With only 2GB of memory, we expect that a query whose peak main memory requirement is
less than 2GB will take approximately the same amount of time to execute, and hence will provide significant
energy savings. Figure 4 (a) shows the ERP of query A in Table 1. As we can see, retaining the same hash join
plan but using system setting ‘M’ reduces the energy consumption by 18% but increases the query response time
by only 1%. In comparison, changing the join algorithm to sort-merge incurs significantly higher response time
penalties.

Query B in Table 1, is an equijoin on two tables that are clustered on the join attribute ‘unique2’. The
two 5GB tables are relatively large compared to the amount of available main memory, but since the tables
are already sorted on the join attribute the inputs do not need to be sorted before joining using a merge join
operation. Query B is I/O-intensive, requires minimal computation, and has a low peak memory requirement.
For this query, as shown in Figure 4 (b), using the sort-merge join along with reducing the memory requirement
produces a win of 12% energy savings for less than 1% performance penalty. The response times for the hash
join plans are far greater than sort-merge for Query A, and are therefore left out of Figure 4 (b).

4.3 Summary

Our preliminary results described above shows that significant (>10% for the queries above) energy savings can
be attained by careful optimization of both query plans and system settings in a commercial DBMS based on
end-to-end measurements. We now summarize key takeaways messages from our study.

Energy-Aware Query Optimization: Current DBMS query optimizers can be made energy aware using
our modular optimization framework. By introducing a Hardware Abstraction Model (Figure 3) in addition to
the traditional Operator Model, we are able to create Energy Response Time Profiles – ERPs (Figure 1). The
Hardware Abstraction Model is a train-able model for estimating both the query response time and the query
energy consumption. ERPs allow us to maximize the query’s energy efficiency while adhering to performance
SLAs.

SLA-Driven Resource Allocation: The main concept behind the ERP is that by analyzing the relationship
between different query plans and different hardware power/ performance settings, we can trade decreased
query performance for increased energy efficiency in the presence of slack in SLAs. In some cases, this trade-
off is disproportionate, and in some cases, this trade-off can be highly favorable for energy efficiency. By
plotting the SLA performance limit on the ERP, we can easily discover the most energy-efficient combination
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of query execution plan and hardware system settings while still adhering to the SLA limit. Figures 4 (a,b)
show preliminary results where only two plans with two system settings can provide very interesting execution
options.

Exploring New Hardware Mechanisms: Traditionally, CPU has been the first target of studies in server
energy management [19]. In these results, we have shown that emerging hardware mechanisms such as memory
DIMM parking [6, 29] can provide significant energy savings for DBMSs. Other hardware parts such as the
networking components [5, 12] are also becoming energy-aware, which will further increase the number of
system settings that comprise the ERP in cluster database environments. In addition, other parameters such as
cluster size [20] and cluster heterogeneity may also impact the sizd of the ERP space that must be considered.

Complex Queries and Concurrent Queries: The preliminary results presented here point to interesting
opportunities for energy savings with simple queries, and it would be interesting to extend this study to more
complex queries, and query workloads (e.g., concurrent queries).

5 Related Work

Interest in the area of energy management for DBMSs has begun to grow since the early database publications
on this subject [14–16, 19, 27]. Much of the drive has come because of the observation that the energy costs is a
big and growing component in the total cost of ownership (TCO) for large server clusters [17, 22, 25].

There are many data center-wide methods for energy management. One popular method is consolidation
which forces cluster nodes to be highly utilized and thus, as energy-efficient as possible [10, 26, 30]. Other
mechanisms of powering down cluster nodes have been explored in [20, 21, 23]. Cluster level methods can also
benefit from the optimization framework we have presented here since our energy optimization module neatly
fits in with traditional performance-based optimizers. Cluster level methods can result in improvements in the
energy efficiency of data centers and can largely be used orthogonally to “local-level” methods (that work on
single nodes) for reducing energy consumption.

Local-level results found in [32] also showed that opportunities for energy-based query optimization exist
in PostgreSQL. However, they primarily focused on energy efficiency as the only goal, while our work targets
energy efficiency along with SLA constraints. This consideration of SLAs is also a key difference between
our work and another recent study [31]. Furthermore, the conclusions from that work suggested that based
on traditional server configurations, no new energy-based optimization is necessary because energy efficiency
directly follows performance. However, our work shows that when considering SLAs, energy optimal and
performance optimal are not always the same operating points.

In summary, we believe that this is the first work to cast energy efficiency as a first-class goal that works
in conjunction with performance-based SLA constraints for DBMS query processing. With the move towards
cloud computing, we believe this setting is more appropriate and interesting from the perspective of hosted
DBMS deployments.

6 Conclusions and Future Work

This paper presents a new framework for energy-aware query processing. The framework augments query plans
produced by traditional query optimizers with an energy consumption prediction to produce an Energy Response
Time Profile (ERP) for a query. These ERPs can then be used by the DBMS in various interesting ways,
including finding the most energy-efficient query plan that meets certain performance constraints (dictated by
SLAs). To enable the above framework, a DBMS needs an energy consumption model for queries, and we have
developed a simple, portable, practical, and accurate model for an important subset of database operations and
algorithms. We have used our framework to augment a commercial DBMS using actual energy measurements,
and demonstrated that significant energy savings are possible in some cases.
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This area of energy-aware data processing is in its inception, and there are many directions for future work.
Some of these directions include extending our framework to more query operations/algorithms, considering
more complex/concurrent queries, and considering breaking down “complex” operations such like hash join into
smaller components (the build and the probe phase) while also switching between hardware power/performance
states. Other promising directions include designing new DBMS techniques to deal with new and evolving
power-related hardware mechanisms, studying the application to parallel query optimizers, and working and
influencing the development of new hardware features (e.g. memory) to make it more amenable for DBMS to
exploit for energy-aware query processing.
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