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Letter from the Editor-in-Chief

TCDE Activities

Those of you who read my Bulletin letters know that I was recently elected as Chair of the Technical Committee
on Data Engineering (TCDE). One of my first responsibilities is to form an Executive committee. My overall
approach in this has been to seek a combination of new members plus experienced members, to try to ensure that
all geographic regions are represented, and to maintain a strong connection with the ICDE Steering Committee.
The end result is that the new Executive Committee has a mix of new and prior members, and retains ties
to the Steering Committee. The people I am appointing all have been involved with the TCDE, mostly via
ICDE involvement. They are Calton Pu (Vice Chair), Thomas Risse (Secretary/Treasurer), Malu Castelanos,
Paul Larson, Erich Neuhold, and Kyu-Young Whang (members), Guy Lohman (Chair DEW: Self Managing
Database Sys.), and Christian Jensen (SIGMOD Liason). I want to thank Calton Pu and Karl Aberer for having
served on the Executive Committee. Their thoughtful and careful examination of issues sets a high standard for
the new committee.

The Current Issue

How does our industry become “green”. While there are many aspects to being “green”, in the immortal words
of Kermit the Frog, “it is hard being green”. The high tech industry has, for many years now, employed some
very good practices to enable resources to be recycled or, at a minimum, disposed of safely. For example, I
regularly mail back to the printer manufacturer my used printer cartridges. The industry has also paid attention
to energy use in terms of battery charge duration, where how many hours you can use your laptop or your cell
phone without a power cord directly impacts the usability of the device. But the study of and minimization of
energy use will only grow in importance. It may be “hard being green” but it will be unavoidable before long.

While it is not true that energy consumption of desktop and server machines has been ignored, it is true that
this has not been a major consideration, as power from the electrical grid was on hand to provide as much as
was needed. But times are changing. Our industry is such a large part of the world economy now, that how
effectively our industry uses power now shows up on charts describing the entire economy.

The current issue focuses on energy management for “Big Data Processing”. One of the remarkable arti-
facts of our age is the number and size of huge data centers, and their significant power consumption. Energy
consumption is not just a “green” aspiration, it is a “nuts and bolts” economic issue. Those companies building
large data centers, especially those who intend to compete in the cloud services market, now see energy cost and
consumption as a major factor. Further, the electrical grid will not become “smart” without the application of
data intensive analysis to the problem.

The current issue draws on work and research done by both university and industrial technologists. This is
very much in the Bulletin tradition of bringing these parts of the database community together for information
interchange. Brian Cooper has assembled an issue that accomplishes just that, providing a broad perspective
on this area. I want to thank Brian for his fine job of handling this issue. Even now, a focus on energy is not
mainstream. But this issue is a good start on raising awareness of the technical challenges in this area.

David Lomet
Microsoft Corporation
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Letter from the Special Issue Editor

One thing that I have always found fascinating about computer science is how a relatively technical discipline,
with arcana not understood by the majority of the world’s population, can relatively quickly produce inventions
that impact the lives of large portions of that population. Big data processing is an example - it was big data
processing, among other things, that helped the internet grow from a technical curiousity to a daily essential part
of billions of people’s lives. Big data processing enables the planning and tracking of the movement of products
around the globe, manages the financial records of the world’s economy, and impacts the world in myriad other
ways.

However, we have begun to see that big data processing has the potential to impact the world in another, less
desirable way. Its insatiable desire for more CPU cycles, more disk accesses, and more network bits means that
ever-increasing energy resources are needed to power and cool the massive arrays of servers that actually do the
work. This appetite for energy has driven the creation of new types of datacenters, server hardware and cooling
technologies. But more work is needed to control energy usage that continues to grow.

Luckily for computer science researchers, there is an opportunity to do interesting research on this problem
while helping the world as a whole. In this issue, we highlight four efforts that illustrate the challenges, and the
opportunities, for energy-aware big data processing.

• The real electric grid is not just a smooth, unending stream of electrons, and renewable energy sources in
particular provide varying amounts of power based on the current wind or solar radiation. Krioukov et al
explore how batched analytic workloads are well suited to become “supply-following” - doing more work
when clean renewable energy is available, and drawing less power when the only supplies are from dirty,
non-renewable sources.

• Often, computing query results “as fast as possible” is not strictly required. Lang, Kandhan and Patel
suggest that query processors can pick the most energy efficient plan that is still “fast enough” to meet
SLA requirements.

• Recent batched data architectures, such as Dryad or MapReduce, are explicitly designed to use whatever
resources are available. In reality, however, different jobs have different needs for CPU, disk and memory.
Xiong and Kansal describe how batch systems can schedule work at a fine grain to use only necessary
server resources, allowing unneeded resources to be used for other jobs or not to be used at all.

• Of course, most efforts to reduce energy usage are moot if we cannot effectively measure the usage!
While TPC is popular for measuring performance, energy aware versions of TPC can be used to measure
consumption. Poess and Nambiar describe techniques to analyze TPC results and estimate the associated
power usage.

The first three articles share a common motivation of adapting query scheduling and planning to minimize
usage of dirty, wasteful energy. The fourth article demonstrates how mature, well-used benchmarking techniques
can be extended to evaluate the effectiveness of these query scheduling and planning techniques. It is my hope
that these works, in addition to standing in their own right, will spark discussion and further research in how to
manage energy consumption even as we continue to process ever larger amounts of data.

I would like to thank the issue authors for contributing and revising their work. I would also like to thank
Dave Lomet for his advice and assistance throughout this process.

Brian Cooper
Google, Inc.

Mountain View, California, USA
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Integrating Renewable Energy Using Data Analytics Systems:
Challenges and Opportunities

Andrew Krioukov, Christoph Goebel†, Sara Alspaugh, Yanpei Chen, David Culler, Randy Katz
Department of Electrical Engineering and Computer Science

University of California, Berkeley
International Computer Science Institute†

{krioukov,alspaugh,ychen2,culler,randy}@eecs.berkeley.edu
goebel@icsi.berkeley.edu

Abstract

The variable and intermittent nature of many renewable energy sources makes integrating them into
the electric grid challenging and limits their penetration. The current grid requires expensive, large-
scale energy storage and peaker plants to match such supplies to conventional loads. We present an
alternative solution, in which supply-following loads adjust their power consumption to match the avail-
able renewable energy supply. We show Internet data centers running batched, data analytic workloads
are well suited to be such supply-following loads. They are large energy consumers, highly instrumented,
agile, and contain much scheduling slack in their workloads. We explore the problem of scheduling the
workload to align with the time-varying available wind power. Using simulations driven by real life
batch workloads and wind power traces, we demonstrate that simple, supply-following job schedulers
yield 40-60% better renewable energy penetration than supply-oblivious schedulers.

1 Introduction

A major challenge for the future electric grid is to integrate renewable power sources such as wind and solar [26].
Such sources are variable and intermittent, unlike traditional sources that provide a controllable, steady stream
of power. Integrating a substantial fraction of renewable sources into the energy mix typically requires extensive
backup generation or energy storage capacity to remove the variable and intermittent nature of such sources [11].
Given technological and economic limitations in current energy storage techniques, it will be difficult to meet
even the current mandates for renewable energy integration [6, 18, 26].

Some have proposed creating supply-following electric loads from home appliances, lighting, and electric
vehicles [5, 10]. This approach would schedule or sculpt the electric load such that it is synchronized with
power availability from renewable sources, e.g., charge electric vehicles only when sufficient wind or solar
power is available. This dispatchable demand approach represents an advance over traditional demand response
techniques, which focus only on shedding load during times of high demand. However, home appliances,
lighting, and electric vehicles all directly interact with humans. Such human dependencies can limit when, how

Copyright 2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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much, and how quickly such loads can be re-scheduled or sculpted. Subjective aspects of human comfort and
perception can make it challenging to quantify and to compare alternate systems.

Recent green computing efforts have addressed components of a solution to this problem: energy effi-
ciency [2, 8, 13, 15, 27], power proportionality [4, 14, 17, 21, 25], and service migration to geographic areas
of lower real-time electricity prices [19]. These efforts are only components because even if we have energy
efficient, power proportional systems that minimize energy bills, we will still have the problem of matching
variable and intermittent energy sources with so-far less variable and continuous energy demand.

However, we show natural extensions of these techniques that address the matching problem on data ana-
lytics computer clusters. These clusters exhibit several properties. First, such clusters have varying levels of
utilization [4], with the serviced workload having significant scheduling slack [10]. Second, the automatic and
batch processing nature of computations on these clusters partially remove human limitations on when and how
much the workload can be re-scheduled or sculpted. Third, the highly engineered and networked nature of such
clusters allow rapid response to control signals from renewable sources. Taken together, these properties make
data analytics computer clusters a compelling building block for supply-following loads.

This paper shows how to build supply-following loads using data analytics computer clusters.

• We make the case that data analytics workloads presenting a unique opportunity to implement supply-
following mechanisms to help address the problem of integrating renewable energy.

• We introduce a quantitative metric to measure the degree renewable energy integration.

• We describe a simple supply-following job scheduler, evaluate it using realistic wind power and data
analytic workload traces, and attain 40-60% improvement in the level of renewable energy integration.

The rest of the paper is organized as follows. Section 2 surveys the technical landscape to explain why
the techniques we present are not in use today. Section 3 formalizes the problem of integrating renewable
energy and introduces a metric for quantifying the degree of integration. Section 4 describes our simulation-
based methodology, and the particular wind power traces and data analytic workloads we considered. Section 5
describes our supply-following scheduling algorithms. Section 6 presents the results of our simulations, which
show that our algorithm yields significant improvement in renewable energy integration. Lastly, we discuss in
Section 7 the key opportunities and challenges for future research in the area.

2 Technical Landscape

The intermittent and variable nature of renewable sources of energy, such as wind and solar, pose a problem for
electric grid operators, who face increasing pressure to enlarge their renewable generation capacity. The current
model of electric grid operation predicts the load in advance and then schedules the supply portfolio to service the
load. The baseline generation capacity comes from sources that output constant, relatively inexpensive power,
such as large coal and nuclear power plants. A portfolio of smaller, rapid-response, but more expensive and
intermittent peaker plants track variation in demand and bridge any transient discrepancies between predicted
and actual loads. This represents a model of load-following supplies, in which the electric loads are oblivious to
the amount or type of supply, and supplies must track the electric load. Increasing the proportion of renewable
supplies severely disrupts this model because renewable sources simply cannot be scheduled on demand.

One approach is to compensate for the variance in renewable supply using energy storage or additional
peaker plants. This is an expensive proposition using current technologies - the energy storage and peaker
plants must meet the full peak-to-zero swing in supply, instead of just meeting the small gap between predicted
and actual load. An alternate solution is to flip the relationship and schedule the loads, thus creating supply-
following loads. In this approach, loads must be prepared to consume electricity when supply is available and
not otherwise. Only some loads form appropriate building blocks for supply-following loads.
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Data analytics clusters represent a good example of electricity consumers with inherent scheduling flexi-
bility in their workload. In a data analytics or batch processing cluster, users submit jobs in a non-interactive
fashion. Unlike interactive web service clusters, these clusters do not have short, strict deadlines for servicing
submitted jobs. Job completion deadlines typically create slack for a scheduler to shift the workload in time and
consequently adjust energy consumption to, for instance, the amount of renewable energy available, or when
electricity is cheaper.

If this is the case, why aren’t such techniques in common practice? Part of the answer is that green computing
remains an emerging field, with existing research focused on “low-hanging-fruits”. Only recently has renewable
energy integration been recognized as an unsolved problem. We briefly illustrate this transition in research focus.
Early efforts in green computing included the Power Utilization Efficiency (PUE) of large scale data centers.
PUE is defined as the ratio of total data center consumption to that consumed by the computing equipment, with
typical values of 2 or greater [9,24], i.e., to deliver 1 unit of energy to the computers, the data center wastes 1 or
more units of energy in the power distribution and cooling infrastructure [3]. This revealed huge inefficiencies
in the physical designs of data centers, and intense design efforts removed this overhead and reduced PUE to
1.2-1.4, much close to the ideal value of 1.0 [20, 22].

Once PUE values became more acceptable, data center operators recognized that real measure of effective-
ness is not the power ratio between servers and the power distribution/cooling facilities, but the actual work
accomplished on the servers per unit energy. In fact, servers in data centers are actively doing work typically
only about 25% of the time [4]. Such low utilization levels naturally follow from the gap between peak and
average requests rates, amplified by overprovisioning to accommodate transient workload bursts. Consequently,
data center designers identified the need for power proportionality, i.e., that systems should consume power
proportional to the dynamically serviced load and not to the static overprovisioning [4, 14, 17, 21, 25].

Power proportionality is a prerequisite for successfully turning data analytics clusters into supply-following
loads. Otherwise, the cluster consumes approximately the same amount of energy regardless of the work it
is doing. Unfortunately, modern server platforms are far from power proportional despite substantial improve-
ments in power efficiency of the microprocessor, including Dynamic Voltage/Frequency Scaling (DVFS) and the
introduction of a family of sophisticated power states. Even for specially engineered platforms [4], the power
consumed when completely idle is over 50% of that when fully active, and idle consumption often over 80% of
peak for commodity products [7].

Recently, we demonstrated the design and implementation of power proportional clustered services con-
structed out of non-power proportional systems. The basic approach is fairly obvious – put idle servers to sleep
and wake them up when they are needed, keeping just enough extra active capacity to cover the time to respond
to changes [12]. Thus, the stage is set for creating supply-following loads from data analytic compute clusters.

3 Problem Formulation

Our high-level goal is to use increase renewable energy use by turning data analytics clusters into supply-
following electric loads. We consider a specific scenario where are data centers located near sources of clean
electricity seek to maximize the use of local, directly attached wind turbines (or solar panels). In addition to the
local intermittent power source, we can also draw energy from traditional sources in the grid. We observe the
available renewable power at a given time and respond accordingly by sculpting the data analytics workload.
If our data center is truly supply-following, it would draw most of its energy from the local, directly attached
renewably supply, and very little energy from the rest of the grid.

Key idea: Measure the degree of renewable integration by the fraction of total energy that comes
from the renewable source, i.e., wind energy used divided by the total energy used. Better wind
integration corresponds to a higher percentage.
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Alternate problem formulations include optimizing a grid supply “blend” using remote control signals from
grid operators, or responding to real time energy price, with the price being a function of the renewable and
conventional power blend. These formulations assume that renewable sources have already been integrated
in the grid signaling/pricing structures, and complicates validating the quality of such integration. Thus, we
choose the strict formulation in which the data center operators directly contribute quantifiable improvements in
integrating renewable sources.

A key feature of data analytics clusters is that jobs often do not need to be executed immediately. We use the
term slack to describe the leeway that allows computational loads to be shifted in time. Slack is the number of
time units that a job can be delayed, i.e., the slack for job j with submission time bj , deadline dj , that executes
for tj units of time is sj = dj − bj − tj .

Slack allows scheduling mechanisms to align job execution with the highly variable renewable power sup-
plies. The quality of alignment, measured by the ratio of renewable to total energy used, depends on both the
slack in the data analytic workload and the variability in the available renewable power. To obtain realistic re-
sults, we used batch job workload from a natural language processing cluster at UC Berkeley (Section 4.1), and
wind power traces from the National Renewable Energy Laboratory (NREL) (Section 4.2).

We make several simplifying assumptions. We assume the cluster is power proportional. Otherwise, the
cluster consumes roughly the same power all the time, making it incompatible with variable and intermittent
sources. Also, we consider only data analytics applications that are inelastic, i.e., they cannot adjust the amount
of consumed resources at runtime. An example of inelastic application is Torque [23], and an example of elastic
applications is Hadoop [1]. Further, the application is “interruptible”, meaning it can stop and resume as needed.
At job submission time, we know the job deadline, run time, and resource requirements. We also assume that
all the data needed by the application resides on a SAN that is under separate power management – it remains
an open question to effectively power manage systems that co-locate computation and storage.

Slack is a key enabler for supply-following scheduling algorithms, in conjunction with power proportional-
ity. Unlike traditional batch schedulers that try to maximize job throughput or minimize response time, supply-
following schedulers seeks to find a good tradeoff between throughput, response time, and running jobs only
when renewable energy is available.

4 Methodology

Two key components of our evaluation of supply-following scheduling are the input cluster workload and the
input wind power traces. The degree of renewable integration depends on the slack in the particular cluster
workload and the ability of the workload to align with particular wind traces.

4.1 Data Analytics Traces

We use batch job traces collected from a natural language processing cluster of 576 servers at UC Berkeley.
Natural language processing involves CPU-intensive signal processing and model fitting computations. These
jobs execute in a parallelized and distributed fashion on many processors. The completion deadlines are rarely
critical. The cluster job management system is Torque [23], a widely used, open source resource manager
providing control over batch jobs and distributed compute nodes. When submitting jobs to Torque, users specify
the amount of processors and memory to be allocated, as well as the maximum running time. During job
execution, the scheduler keeps track of the remaining running time of each job.

We collect job execution traces using Torque’s showq command to sample the cluster state at 1 minute
intervals. We collected a one month trace of 128,914 jobs and extracted job start times, end times and user-
specified maximum running times. Deadlines are defined as the start time plus the maximum running time.

Figure 1(a) shows the CDF of the extracted job execution times. Figure 1(b) provides the CDF of execution
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(a) CDF of execution times (b) CDF of execution time slack (c) Execution time window versus
slack

Figure 1: Characteristics of batch job traces

time slack. The CDF shows that most of the jobs extracted from the cluster logs have a significant amount of
execution time slack, generally ranging from 40 to 80 minutes of slack. Figure 1(c) shows the joint distribution
of the job execution times and the execution time slack. The plot shows accumulations at certain execution
time intervals (vertical lines), indicating different amounts of slack associated with jobs with the same execution
times.

4.2 Wind Traces

We used the wind speed and power data from the National Renewable Energy Laboratory (NREL) database [16].
This database contains time series data in 10 minute intervals from more than 30,000 measurement points in the
Western Interconnection, which includes California. The measurement points in the NREL database are wind
farms that hold 30 MW of installed capacity each. This capacity roughly equals 10 Vestas V-90 3MW wind
turbines. For our experiments we picked one measurement point out of each major wind region in California.

Using wind output data from different regions is equivalent to considering data centers located in near
different wind supplies. Our intention is to evaluate how well the the supply-following schedulers perform in
range of possible locations. Figure 2(a) shows the cumulative distribution functions of wind power output at
the different sites, suggesting considerable variation. Interestingly, some regions, such as Monterey, exhibit no
power generation at all for large fractions of the time. Zero wind power generation results from either no wind
or heavy storms causing the turbines to shut down.

Figure 2(b) shows the wind power output of a single wind farm during one day in the Altamont region. Wind
power production can decline from maximum to zero output quickly, as indicated by the power drop at the right
of the graph. Such steep rises and declines occur often in the traces. These fast transitions are arguably too short
for re-scheduling human-facing loads such as home appliances and lighting.

4.3 Simulation Setup

The simulation takes as input the job submission times, job deadlines, required number of processors, and wind
power availability over time. The simulation runs the candidate scheduler, and outputs the job execution order
and power consumed over time. From these outputs, we then compute the percentage of total energy consumed
that comes from wind. For the results in this paper, we run the simulation using one month of cluster jobs and
wind power traces.
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(a) CDFs of wind power output (b) Altamont wind power output over
time

Figure 2: Characteristics of wind traces5 Algorithms

We compare two scheduling algorithms. The supply-oblivious, run-immediately algorithm executes jobs as
soon as enough processors become available. Jobs that do not complete by their deadline are killed. The run-
immediately algorithm represents the default scheduling behavior of Torque.

The supply-following algorithm attempts to align power consumption with the amount of wind power avail-
able, while minimizing the amount time by which jobs exceed their deadlines. It makes scheduling decisions
at regular time intervals. At each interval, it schedules jobs that require immediate execution, beginning with
jobs that have exceeded their deadlines the most, through jobs that will exceed their deadlines in the next time
interval if left idled. If there are no such jobs that need immediate execution, the scheduler checks the wind
power level. If some wind power is available, the scheduler executes the remaining jobs in order of increasing
remaining slack, until either wind power or processors are fully used, or there are no more jobs on queue.

We use the heuristic of scheduling jobs in order of increasing slack, since jobs with a lot of slack can
wait longer until more wind power becomes available. Thus, in the absence of accurate wind power or cluster
workload predictors, this execution order increases the likelihood that we exploit all the available slack to align
cluster workload and wind power availability.

One complication is that deferring jobs with slack can potentially aggravate resource bottlenecks. For ex-
ample, if all jobs on the queue have slack and no wind power is available, the supply-following algorithm defers
all jobs, while the run-immediately algorithm runs some of them. Thus, if periods of low wind are followed by
periods of increased job submission, the slack of the delayed jobs may expire at the same time as new jobs that
require immediate execution arrive. How often such situations occur depends on the particular mix of cluster
workloads and wind power behavior, making it vitally important to use realistic wind traces and cluster work-
loads to quantify tradeoffs between renewable integration and performance metrics such as deadline violations.

Neither of these algorithms guarantees optimal job scheduling, i.e., always yield the highest possible per-
centage of wind energy to total energy used. Optimal job scheduling is impractical because it requires advance
knowledge of cluster workload and wind availability, even though accurate, long-term workload predictors and
wind forecasts remain elusive. Even if we have a workload and wind oracle, it is computationally infeasible to
search for an optimal schedule out of all all possible job execution orders. Thus, the heuristic in the supply-
following algorithm represents a compromise between optimality and practicality.
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(a) Percentage of wind power usage (b) Percentage improvement (c) Percentage of delayed jobs

Figure 3: Evaluation of supply-following job scheduling

6 Evaluation

The scaling of the wind resource plays a crucial role in performance. Our raw wind traces vary between 0 and
30 MW, compared with our maximum cluster power consumption of 57.6 kW. A poor scaling factor would give
trivial results. For example, if available wind power is orders of magnitude larger than what is needed by the
cluster, under any scheduling algorithm 100% of energy used comes from wind. Conversely, if available wind
power is orders of magnitude smaller, any scheduling algorithm would result in nearly 0% of energy coming
from wind. We considered a range of scaling factors, such that the total available wind energy ranges from 0.1
to 10 times the total energy required by the cluster over the month long trace.

Figure 3(a) shows changes in the fraction of energy use that comes from wind for the two scheduling algo-
rithms and a measure of the maximum usable wind energy given the fixed size of our cluster. Using the Pacheco
wind trace, we scale the wind energy from 0.01 to 10 times the cluster’s energy needs. The supply-following
scheduler significantly out performs the run-immediately algorithm for all scale factors. The more wind avail-
able, the larger the performance gap. The supply-following algorithm undergoes a phase change around a wind
scaling factor of 1 and exhibits diminishing returns for larger scale factors. This is likely due to the fact that
as wind energy is scaled up, less of it can be used by a fixed size cluster – power spikes exceed the maximum
cluster power.

Figure 3(b) shows the improvement of the supply-following versus the run-immediately algorithm for dif-
ferent wind traces. We compute improvement as:

% energy from wind for supply-following algorithm − % energy from wind for run-immediately algorithm
% energy from wind for run-immediately algorithm

We observe a range of improvements. At scaling factors of 1 and above, the supply-following scheduling yields
a roughly 40-60% improvement.

Key observation: The degree of renewable energy integration depends on renewable source vari-
ability and intermittence, as well as scheduling slack in the data analytic workload. Our supply-
following scheduler attains a 40-60% improvement for realistic wind power and workload profiles.

To quantify how frequently the supply-following scheduling algorithm may cause jobs to exceed their dead-
lines, Figure 3(c) shows the percentage of all jobs that exceeded their deadlines, quantified at different wind
scaling factors for the Pacheco wind trace. The percentage is very low and decreasing as the wind scaling factor
increases. Also, job deadlines are never exceeded by more than one time interval, i.e. 10 minutes in our sim-
ulations. Compared with the 100s of minutes of execution time and slack shown in Figures 1(a) and 1(b), 10
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minutes represents a very small amount. Thus, even though we can easily construct pathological wind traces and
cluster workloads that lead to unacceptable deadline violation, for realistic wind traces and cluster workloads,
deadline violations occur infrequently and have small impact.

7 Call to Arms

We must address the problem of integrating intermittent and variable renewable energy sources into the elec-
tric grid to have any hope of meeting legislative targets for renewable penetration. Current technologies and
economic limits make it unlikely that we can construct load-following renewable supplies using large scale
energy storage and peaker plants. We advocate for the alternative approach of constructing supply-following
loads and we argue that server clusters are good candidates for tracking supplies. We have shown that simple,
supply-aware scheduling algorithms can drastically increase the fraction of renewable energy consumed by data
analytics clusters.

Future work includes exploring whether additional information regarding cluster workloads and wind traces
can significantly improve the performance of the schedulers described in this paper. Ideally, we would like to
construct a scheduling algorithm that is provably optimal and show how close to this bound practical schedulers
can perform. Additionally, we want to extend our scheduler to support non-interruptible jobs and jobs with a
minimum running time.

Looking forward, many opportunities and unanswered questions remain. We invite researchers and industry
collaborators to implement the infrastructure for extensively tracing both cluster workloads and wind power
profiles, and making such traces available. As we have shown in this paper, the level of renewable integration
is highly dependent on workload and wind characteristics. Thus, having access to more cluster workloads is
crucial.

Other open problems include supporting traditional DBMS or data-warehouse systems which would poten-
tially require a different architecture. It remains an open and challenging problem to achieve power proportion-
ality on systems that co-locate compute and storage on the same servers. We also want to consider tradeoffs
between distributed supply-aware decisions made at each load, versus centralized decisions made by the electric
grid operator. In this study we have assumed a data center with local, directly attached wind sources, independent
of other loads. A more general scenario would consider a set of such loads.

We believe creating the information-centric energy infrastructure represents an interdisciplinary, society-
wide enterprise. Computer scientists and engineers have much to contribute because of the exponentially grow-
ing energy foot-print of the technology industry, and our expertise in design, construction, and integration of
large scale communication systems. Our paper demonstrates that another reason to contribute comes from the
unique properties of electric loads caused by large scale computations. Consequently, data engineers in particu-
lar may end up leading the efforts to integrate renewable energy into the electric grid. We hope this paper serves
as a first step in addressing this important challenge, and we invite our colleagues to join us in exploring the
broader problem space.
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Abstract

The biggest change in the TPC benchmarks in over two decades is now well underway – namely
the addition of an energy efficiency metric along with traditional performance metrics. This change
is fueled by the growing, real, and urgent demand for energy-efficient database processing. Database
query processing engines must now consider becoming energy-aware, else they risk missing many op-
portunities for significant energy savings. While other recent work has focused on solely optimizing for
energy efficiency, we recognize that such methods are only practical if they also consider performance
requirements specified in SLAs. The focus of this paper is on the design and evaluation of a general
framework for query optimization that considers both performance constraints and energy consumption
as first-class optimization criteria. Our method recognizes and exploits the evolution of modern comput-
ing hardware that allows hardware components to operate in different energy and performance states.
Our optimization framework considers these states and uses an energy consumption model for database
query operations. We have also built a model for an actual commercial DBMS. Using our model the
query optimizer can pick query plans that meet traditional performance goals (e.g., specified by SLAs),
but result in lower energy consumption. Our experimental evaluations show that our system-wide en-
ergy savings can be significant and point toward greater opportunities with upcoming energy-aware
technologies on the horizon.

1 Introduction

Energy management has become a critical aspect in the design and operation of database management systems
(DBMSs). The emergence of this new paradigm as an optimization goal is driven by the following facts: a)
Servers consume tremendous amounts of energy – 61B kiloWatt-hours in 2006 alone and doubling by 2011 [3];
b) The energy component of the total cost of ownership (TCO) for servers is already high, and growing rapidly.
The server energy component of the three-year TCO is expected to dwarf its initial purchase cost [9]. A big
contributing factor to this trend is that processors are expected to continue doubling in the number of cores every
18 months, but the performance per Watt doubles at a slower rate of once every two years [8]; c) To make matters
worse, typical servers are over provisioned to meet peak demands, and as a result, they are idle or underutilized
most of the time. Barroso and Hölzle [7] have reported average server utilization in the 20–30% range; d)

Copyright 2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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Unfortunately, when servers are idle, or nearly idle, they tend to consume energy that is disproportional to their
utilization – for example, an idle server can consume more than 50% of its peak power [7].

With these rising energy costs and energy-inefficient server deployments, it is clear that there is a need
for DBMSs to consider energy efficiency as a first class operational goal. In fact, driven by requests from its
customers, the Transaction Processing Performance Council (TPC) has moved in this direction, and all TPC
benchmarks now have a component for reporting the energy consumed when running the benchmarks.

The challenge here is to reduce the energy consumption of a DBMS while maintaining the performance
levels that are typically expected and accepted by the end users. Thus, there is huge opportunity for the database
community to take on this challenge head-on and find methods to make DBMSs more energy-efficient. In
this paper, we tackle the query processing component, and develop a framework for energy-efficient query
processing.

To begin, one might think that perhaps doing business as usual might work for energy-aware query pro-
cessing. Specifically, we already know how to optimize queries for response time/throughput metrics. So it is
natural to pose the following question: Is processing (optimizing and executing) the query as fast as possible
always the most energy-efficient way to operate a DBMS? As we show in this paper, the answer to this ques-
tion is no. The reason for this negative answer has to do with typical server operational characteristics and the
power/performance characteristics of hardware components in modern servers.

First, typical servers often run at low utilization. This means that a server has many opportunities to execute
the query slower, if the additional delay is acceptable. For example, this situation may occur if the Service Level
Agreement (SLA) permits the additional response time penalty. Since typical SLAs are written to meet peak or
near peak demand, SLAs often have some slack in the frequent low utilization periods, which could be exploited
by the DBMS. (The incentive for doing this is particularly high when the DBMS server is running as a hosted
cloud service, and any cost savings that do not violate the SLAs, directly adds to the bottom line.)

Second, components on modern server motherboards offer various power/performance states that can be
manipulated from software. Of these components, the CPU is currently the most amenable for transitioning
between such power/performance states, but nearly every power–hungry component connected to the server
motherboard (e.g., memory chips and network cards) is moving towards providing multiple power/performance
states for more energy-efficient operation. For instance, recent research has shown that ‘hot’ power-down (park-
ing) of physical memory DIMMs may save upwards of 40% of system energy consumption [6, 29].

This paper proposes a new way of thinking about processing and optimizing queries. In our framework,
we assume that queries have some response time goal, potentially driven by an SLA. The query optimization
problem now becomes: Find and execute the most energy-efficient plan that meets the SLA.

A crucial aspect of our work that distinguishes it from previous work [31, 32] is our focus on the slack
available in performance between the optimal performance and the SLA goal, and leveraging this slack to reduce
the energy consumption (and thereby overall operating cost). To the best of our knowledge this is the first paper
that proposes looking at query optimization and evaluation in a DBMS from this new perspective.

To enable this framework, we propose extending existing query optimizers with an energy consumption
model, in addition to the traditional response time model. With these two models, the enhanced query optimizer
can now generate what we call an Energy Response Time Profile (ERP). The ERP is a structure that details the
energy and response time cost of executing each query plan at every possible power/performance setting under
consideration. The ERP of a query can then be used to select the appropriate “energy-enhanced” strategy to
execute the query.

Notice that the framework proposed in this paper is not limited to the single node database environments
that were studied by [31, 32], as it can be applied to optimizers for parallel DBMSs as well. Such parallel
DBMSs also have system settings that include cluster configuration as well as server configuration [20, 21].
Such considerations for parallel DBMSs is part of future work.

To show the potential and validity of this approach, in Figure 1 we show an actual ERP for a single equijoin
query on two Wisconsin Benchmark relations [11]. The plot shows the system energy consumption and response
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Figure 1: Energy Response Time Profile (ERP) for an equijoin query on two 50M tuple (5GB) Wisconsin
Benchmark relations, on the attribute four, and a 0.01% selection on both relations. The energy and response
time values are scaled relative to the stock settings (HJ, S) that is currently used by DBMSs.

time measurements for executing the query using two different query plans – hash join (HJ) and sort-merge join
(MJ) at two different system settings (labeled ‘S’, ‘M’), on an actual commercial DBMS. System setting ‘S’ cor-
responds to the “stock” (high power/performance) system settings. System setting ‘M’ is the power/performance
setting that can save energy by reducing the memory capacity [6,29]. (Details about the experimental setup and
systems setting for this experiment is presented in more detail in Section 4.) The energy measurement is the
actual energy that is drawn by the entire server box – i.e., we measure the energy drawn from the wall socket by
the entire system. In this figure, we have plotted all the other data points proportionally relative to (HJ, S), for
both the energy consumption (on the y-axis), and the response time (on the x-axis). Traditional query optimizers
often incorporate response time into their primary metric so they would choose HJ and system setting S to exe-
cute the query, since this is the fastest query plan. However, by choosing the sort-merge (MJ) plan and system
setting M, we can reduce the energy consumption by 13% for only a 5% increase in response time.

However, it may not always be possible to choose a lower energy setting to run the query due to some
performance constraint. For example, let us say an SLA exists between the client and the server, which only
allows for an additional 4% delay over the optimal response time (HJ, S). This SLA is represented in Figure 1
as a vertically dotted line. Now the most energy-efficient choice is MJ and system setting S, which reduces the
energy consumption by 9% and still meets the SLA! In this case, changing the join algorithm while holding the
system settings constant reduces the energy consumption. This ability to optimize for energy while maintaining
performance constraints makes our framework particularly attractive for DBMSs.

To keep the scope of this work limited to a single paper, we focus on the following important class of queries:
single join queries with selection and projections. However, our framework can be extended for more complex
query processing, using the single join queries as essential building blocks. As the reader will see, our research
points to many open research problems in this emerging field of energy-aware data management, only a small
part of which we can address in this paper (details in Section 4.3).

This paper makes the following contributions:

• We present a new design for query optimizers that uses both energy and performance as optimization
criteria while adhering to performance constraints.
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• We present the notion of an Energy Response Time Profile (ERP) that can be used by our query optimiza-
tion framework to explore all the combinations of system power/performance settings that the hardware
provides. The ERP can then be used by the optimizer in picking an “energy-enhanced” query plan that
meets any existing response time targets.

• We validate the energy model using an actual commercial DBMS and demonstrate the end-to-end benefit
of our approach, which can result in significant energy savings.

The remainder of this paper is organized as follows: Section 2 presents our new optimizer framework,
Section 3 describes our energy cost models. The experimental results are presented in Section 4. Related work
and conclusions are described in Section 5 and 6 respectively.

2 Framework

In this section we present a general query processing framework that uses both energy and response time as the
optimization criteria. The questions we tackle are: (1) How to redefine the job of the query optimizer in light of
its additional responsibility to optimize for energy consumption? (2) Given this new role, how do we design a
query optimizer? We discuss answers to these questions below.

2.1 New Role of the Query Optimizer

The traditional query optimizer is primarily concerned with maximizing the query performance. The optimizer’s
new goal now is to find query plans that have acceptable performance, but consume as little energy as possible.
As shown in Figure 1, we want the query optimizer to return an energy-enhanced query plan that is to the left of
the SLA-dictated performance requirement, and as low as possible along the y-axis. (We note that performance
SLAs are often not rigid and violating SLAs could be compensated by other mechanisms – e.g., some financial
compensation. There are potential business decisions to be made about when violating SLAs are okay, but these
considerations are beyond the scope of this study.)

The main task here is to generate ERP plots like that shown in Figure 1. To generate these plots, the query
optimizer needs to quickly and accurately estimate both the response time and the energy consumption for
each query plan. Query optimizers today are fairly good at predicting the response time, but doing so while
accounting for varying hardware configuration is a new challenge. Of course, this challenge of predicting the
energy consumption of a given query plan for a specific system setting also requires that the query optimizer
understands the power/performance settings that the hardware offers.

2.2 System States, Optimization, and ERP

Driven by the need for energy-efficient computing, hardware components such as CPU [19], memory [29], and
NIC [12] are increasingly becoming energy-aware, and offer multiple power/performance settings that can be
manipulated directly from software at runtime. Many studies have looked at CPU power/ performance control
by capping the maximum CPU frequency [19,31,32] and so we do not focus on system states based on this type
of control. We have performed our own CPU studies on a manufacturer-provided instrumented NUMA server
(which none of the prior works have studied) that gave direct on-motherboard measurements of the CPU, mem-
ory, and northbridge energy consumption. For an in-memory clustered index scan on a commercial DBMS, with
this server we found that dropping the maximum CPU frequency by 25% using standard Microsoft Windows
Server CPU controls can save 12% in the three component aggregate consumption while being penalized 2% in
response time. The reason for this result was that capping the maximum frequency increases CPU utilization
and energy efficiency. (We omit these results here in the interest of space.)
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Figure 2: An overview of the framework that optimizes for both energy and response time. The energy cost
estimator is described in more detail in Figure 3.

While we saw interesting wins with CPU capping, as mentioned above, this paper focuses on memory-based
system configurations, since database query working sets are increasingly completely or nearly fully resident in
main memory. In this setting, most of the database processing costs are outside the traditional IO subsystem,
which in turn makes memory a significant source of energy consumption (up to 45% and 30% as has been
discussed in [29] and [6] respectively). The specific memory mechanism we are exploiting is the ability to
“park” main memory DIMMs similar to how CPU cores can currently be “parked”. Major manufacturers like
Intel have begun developing these mechanisms and methods for exploiting these mechanisms are been actively
explored [6,29]. Our idea for using this mechanism is that if the current query does not require all of the available
main memory, then some of the DIMM banks can be powered down to save energy. This new ability requires
research on issues like physical DIMM-aware buffer pools and the impact this will have on join algorithm
selection. (We note that we are simply scratching the surface of various research problems in this space – for
example, instead of memory parking one can think of freeing up memory for use by other concurrent task, or
considering both memory and CPU power performance states and expanding that scope to consider networking
components in a parallel or cluster data processing system. Further discussion can be found in Section 4.3.)

The “energy-enhanced” query optimizer must be provided with a set of system operating settings, where
each system operating state is a combination of different individual hardware component operating settings.
The optimizer then uses an energy prediction model along with its current response time model to produce an
ERP for that query, like the example shown in Figure 1.

Given a query Q with a set of possible plans P = {P1, ..., Pn} that is to be executed on a machine with
system operating settings H = {H1, ..., Hm}, the ERP contains one point for every plan for every system
operating setting (and hence an ERP has n × m points). Note that heuristics could be developed to prune the
logical plans P so that only a small subset of the n plans are explored for specific queries – e.g., plans for where
the ‘stock’ setting does not meet the performance requirement may be assumed to not meet the requirement in
all other system settings. (An interesting direction for future work is to explore this option.)

Several methods can be envisioned to predict the energy cost of a query plan. One simple method is to
assume some constant power drawn by the system for any specific query such that Energy α Response Time.
But, we have found in our analysis that such simple models are not very accurate. Note that an accurate energy
estimation model is essential so that the optimizer does not make a wrong choice – such as choosing query plan
HJ and system setting M in Figure 1, which incurs penalties in response time that lie beyond the SLA and does
not save enough energy to make this choice attractive.

To enable this new query optimizing framework, we develop an accurate analytical model to estimate the
energy consumption cost for evaluating a query plan. We discuss this model in Section 3.
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Figure 3: An overview of the energy cost model. The operator model estimates the query parameters required
by the hardware abstraction model for each query plan from the database statistics available. The hardware
abstraction model uses the query parameters estimated and the system parameters learnt to accurately estimate
the energy cost.

2.3 Our Implementation

In this section we discuss our implementation of the framework described above. We had two implementation
options – the first one was to integrate this framework into an existing query optimizer in a open-source DBMS
like MySQL, and the other to implement it as an external module for a commercial DBMS. We have found that
the commercial DBMS that we are using is appreciably faster than the open-source alternative – as much as a
factor of 10 in many cases. Consequently, we decided to use the commercial DBMS for our implementation.
This choice also forced us to think of a design that is generic and likely to be more portable across other systems,
as we have to build the framework using only the high level interfaces that the DBMS provides. (Besides, if
one is concerned about energy efficiency, starting with a system that is significantly faster is likely to be a better
choice from the energy efficiency perspective.)

Figure 2 gives an overview of our implementation. The query is supplied as input to the query plan generator
in the commercial DBMS, which is then requested to list all the promising query plans that the optimizer has
identified. These query plans along with the information about available system settings is provided as input
to the Energy Cost Estimator, which generates the ERP using an analytical model for predicting the energy
consumption (see Section 3). The generated ERP is then used by the combined energy-enhanced query optimizer
to choose the most energy-efficient plan that meets SLA constraints. Then, a command to switch to the chosen
system operating state is sent to the hardware, followed by sending the optimal query plan to the execution
engine.

3 Energy Cost Model

In this section, we briefly describe an analytical model that estimates the energy cost of executing a query at a
particular power/ performance system setting. Our model abstracts away the energy cost of a query in terms of
system parameters that can be learnt through a “training” procedure, and query parameters (CPU instructions,
memory fetches, etc.) that can be estimated from available database statistics.
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3.1 Model Overview

We want to develop a simple, portable, practical, and accurate method to estimate the energy cost of a query
plan. Unfortunately, prior techniques used to estimate energy consumption fail to satisfy one or more of these
goals. For example a circuit-level model of hardware components [1, 2, 13] can accurately predict the energy
consumption, but these models also have a high computational overhead which make them impractical for query
optimization. On the other hand, a higher level model that treats the entire system as a black box, though simple
and portable, is not very accurate.

In our approach, we use an analytical model that offers a balance between these two extremes. In our
models, the power drawn by different hardware components are abstracted into learn-able system parameters
that are combined with a simple operator model. Figure 3 gives an overview of the energy cost model that we
have designed.

The operator model takes as input the query plan and uses the database statistics to estimate the query param-
eters that is required by the hardware abstraction model to estimate the energy cost. The hardware abstraction
model that we describe below required estimations of four query parameters from the operator model: the num-
ber of CPU instructions, the number of memory accesses, the number of disk read and write requests anticipated
during query execution. Our operator model provided estimates for these four query parameters for three basic
operations: selection, projection, and joins. (See [18] for details.) The hardware abstraction model then uses
these four query parameters and the response time model (since response time is dependent on system settings)
to estimate the energy cost of evaluating a query using a particular query plan at a particular power/performance
system setting, essentially computing the ERP.

While we have considered various hardware abstraction models, in the interest of space, we describe the
model that we found to be the most accurate. Equation 1 shows the model for average system power during a
query as defined by three types of variables:

1. time (T )

2. query parameters for query Q: CPU instructions - IQ, disk page reads - RQ, disk page writes - WQ, and
memory page accesses - MQ

3. train-able system parameters: CPU - Ccpu, disk read - CR, disk write - CW , memory access - Cmm,
remaining system - Cother). These parameters quantify the component power properties.

The intuition behind this power model is to sum of the average CPU power (Ccpu∗
IQ
T ), read power (CR∗

RQ

T ),
write power (CW ∗ WQ

T ), memory power (Cmm ∗ MQ

T ), and remaining system power (Cother) during the duration
of the query.

Pav = Ccpu ∗ IQ
T

+ CR ∗ RQ

T
+ CW ∗ WQ

T
+ Cmm ∗ MQ

T
+ Cother (1)

In the interest of space, we omit the details of deriving the query parameters in this paper. One can model
these query parameters using the work of [24, 28] to provide accurate component power draw.

The key features of our energy cost model are:

• Simplicity: The models require no additional database statistics other than those used in traditional query
optimizers for response time cost estimation. Also, minimal overhead is incurred by the query optimizer
in calculating the most energy efficient power/performance operating setting and query plan. The compu-
tational complexity is O(|H| ∗ |P |) where H is the set of valid power/performance system settings and P
is the set of query plans for the query.
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Figure 4: ERPs of two equijoin query classes: (a) Low memory requirement (b) Low memory and I/O heavy.
Two join algorithms are used: hash join (HJ) and sort-merge join (MJ); along with ‘stock’ (S) and low memory
(M).

• Portability: The model makes few assumptions about the underlying hardware or the database engine
internals and can be ported across many DBMSs and machines. In fact, we have been able to implement
this model on top of a commercial DBMS, treating it as a black box, and the model still achieves high
accuracy.

• Practical: Detailed system simulators like DRAMSim [1] and Sim-Panalyzer [2] model hardware compo-
nents at the circuit level to estimate power consumption. This process though accurate is computationally
very expensive, and is hence not practical for use in a query optimizer. In our model we abstract the power
drawn by different components into learn-able system parameters.

• Accuracy: In our tests, our models have an average error rate of around 3% and a peak error rate of 8%.

4 Evaluation and Discussion

In this section we will present results demonstrating the potential benefit of our optimization framework on a
commercial DBMS using end-to-end measurements.

4.1 System Under Test

The system that we use in this paper has the following main components: ASUS P5Q3 Deluxe Wifi-AP moth-
erboard (which has inbuilt mechanisms for component-level power measurements), Intel Core2 Duo E8500,
4x1GB Kingston DDR3 main memory, ASUS GeForce 8400GS 256M, and a 32G Intel X25-E SSD. The power
supply unit (PSU) is Corsair VX450W. System power draw was measured by a Yokogawa WT210 unit (as sug-
gested by SPEC and TPC energy benchmarks) connected to a client measuring system. Energy consumption
was measured by tapping into the line that supplied power to the entire box, so our measurements and results
below are real end-to-end gains. The operating system used was Microsoft Windows Server 2008, and we use a
leading commercial DBMS. Note that we use an SSD-based IO system as many studies have shown that SSD-
based configurations are more energy efficient [31] and also provide a better total cost of ownership because of
their higher performance-per-$ [4].
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Table 1: Both queries have the template (SELECT * FROM R, S WHERE <predicate>). These queries are used
for the ERP plotted in Figure 4. All relations are modified (100 byte tuples) Wisconsin Benchmark relations.

Query Predicate Size of R, S
A R.unique2 < 0.1*||R|| AND

R.unique1 = S.unique2 1GB, 1GB
B R.unique2 = S.unique2 5GB, 5GB

4.2 End-to-End Results: ERP Effectiveness

We now present end-to-end results using the techniques that we have proposed in this paper. We use the two
system settings described in Section 1; namely, (1) S – the default stock settings of our system, and (2) M – a
reduced memory setting where the memory is reduced from 4GB to 2GB.

In the interest of space, here we present results with only the two queries shown in Table 1. Both queries are
join queries on two modified Wisconsin Benchmark [11] tables, where the tuple length has been reduced to 100
bytes. Query A is a 10% selectivity join on two small 1GB tables while Query B is a full join on the sorted keys
of two 5GB tables.

First, let us examine the scenario when switching to a lower power/performance state has little effect on the
response time. With only 2GB of memory, we expect that a query whose peak main memory requirement is
less than 2GB will take approximately the same amount of time to execute, and hence will provide significant
energy savings. Figure 4 (a) shows the ERP of query A in Table 1. As we can see, retaining the same hash join
plan but using system setting ‘M’ reduces the energy consumption by 18% but increases the query response time
by only 1%. In comparison, changing the join algorithm to sort-merge incurs significantly higher response time
penalties.

Query B in Table 1, is an equijoin on two tables that are clustered on the join attribute ‘unique2’. The
two 5GB tables are relatively large compared to the amount of available main memory, but since the tables
are already sorted on the join attribute the inputs do not need to be sorted before joining using a merge join
operation. Query B is I/O-intensive, requires minimal computation, and has a low peak memory requirement.
For this query, as shown in Figure 4 (b), using the sort-merge join along with reducing the memory requirement
produces a win of 12% energy savings for less than 1% performance penalty. The response times for the hash
join plans are far greater than sort-merge for Query A, and are therefore left out of Figure 4 (b).

4.3 Summary

Our preliminary results described above shows that significant (>10% for the queries above) energy savings can
be attained by careful optimization of both query plans and system settings in a commercial DBMS based on
end-to-end measurements. We now summarize key takeaways messages from our study.

Energy-Aware Query Optimization: Current DBMS query optimizers can be made energy aware using
our modular optimization framework. By introducing a Hardware Abstraction Model (Figure 3) in addition to
the traditional Operator Model, we are able to create Energy Response Time Profiles – ERPs (Figure 1). The
Hardware Abstraction Model is a train-able model for estimating both the query response time and the query
energy consumption. ERPs allow us to maximize the query’s energy efficiency while adhering to performance
SLAs.

SLA-Driven Resource Allocation: The main concept behind the ERP is that by analyzing the relationship
between different query plans and different hardware power/ performance settings, we can trade decreased
query performance for increased energy efficiency in the presence of slack in SLAs. In some cases, this trade-
off is disproportionate, and in some cases, this trade-off can be highly favorable for energy efficiency. By
plotting the SLA performance limit on the ERP, we can easily discover the most energy-efficient combination
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of query execution plan and hardware system settings while still adhering to the SLA limit. Figures 4 (a,b)
show preliminary results where only two plans with two system settings can provide very interesting execution
options.

Exploring New Hardware Mechanisms: Traditionally, CPU has been the first target of studies in server
energy management [19]. In these results, we have shown that emerging hardware mechanisms such as memory
DIMM parking [6, 29] can provide significant energy savings for DBMSs. Other hardware parts such as the
networking components [5, 12] are also becoming energy-aware, which will further increase the number of
system settings that comprise the ERP in cluster database environments. In addition, other parameters such as
cluster size [20] and cluster heterogeneity may also impact the sizd of the ERP space that must be considered.

Complex Queries and Concurrent Queries: The preliminary results presented here point to interesting
opportunities for energy savings with simple queries, and it would be interesting to extend this study to more
complex queries, and query workloads (e.g., concurrent queries).

5 Related Work

Interest in the area of energy management for DBMSs has begun to grow since the early database publications
on this subject [14–16, 19, 27]. Much of the drive has come because of the observation that the energy costs is a
big and growing component in the total cost of ownership (TCO) for large server clusters [17, 22, 25].

There are many data center-wide methods for energy management. One popular method is consolidation
which forces cluster nodes to be highly utilized and thus, as energy-efficient as possible [10, 26, 30]. Other
mechanisms of powering down cluster nodes have been explored in [20, 21, 23]. Cluster level methods can also
benefit from the optimization framework we have presented here since our energy optimization module neatly
fits in with traditional performance-based optimizers. Cluster level methods can result in improvements in the
energy efficiency of data centers and can largely be used orthogonally to “local-level” methods (that work on
single nodes) for reducing energy consumption.

Local-level results found in [32] also showed that opportunities for energy-based query optimization exist
in PostgreSQL. However, they primarily focused on energy efficiency as the only goal, while our work targets
energy efficiency along with SLA constraints. This consideration of SLAs is also a key difference between
our work and another recent study [31]. Furthermore, the conclusions from that work suggested that based
on traditional server configurations, no new energy-based optimization is necessary because energy efficiency
directly follows performance. However, our work shows that when considering SLAs, energy optimal and
performance optimal are not always the same operating points.

In summary, we believe that this is the first work to cast energy efficiency as a first-class goal that works
in conjunction with performance-based SLA constraints for DBMS query processing. With the move towards
cloud computing, we believe this setting is more appropriate and interesting from the perspective of hosted
DBMS deployments.

6 Conclusions and Future Work

This paper presents a new framework for energy-aware query processing. The framework augments query plans
produced by traditional query optimizers with an energy consumption prediction to produce an Energy Response
Time Profile (ERP) for a query. These ERPs can then be used by the DBMS in various interesting ways,
including finding the most energy-efficient query plan that meets certain performance constraints (dictated by
SLAs). To enable the above framework, a DBMS needs an energy consumption model for queries, and we have
developed a simple, portable, practical, and accurate model for an important subset of database operations and
algorithms. We have used our framework to augment a commercial DBMS using actual energy measurements,
and demonstrated that significant energy savings are possible in some cases.
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This area of energy-aware data processing is in its inception, and there are many directions for future work.
Some of these directions include extending our framework to more query operations/algorithms, considering
more complex/concurrent queries, and considering breaking down “complex” operations such like hash join into
smaller components (the build and the probe phase) while also switching between hardware power/performance
states. Other promising directions include designing new DBMS techniques to deal with new and evolving
power-related hardware mechanisms, studying the application to parallel query optimizers, and working and
influencing the development of new hardware features (e.g. memory) to make it more amenable for DBMS to
exploit for energy-aware query processing.
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Abstract

Many practically important problems involve processing very large data sets, such as for web scale data
mining and indexing. An efficient method to manage such problems is to use data intensive distributed
programming paradigms such as MapReduce and Dryad, that allow programmers to easily parallelize
the processing of large data sets where parallelism arises naturally by operating on different parts of
the data. Such data intensive computing infrastructures are now deployed at scales where the resource
costs, especially the energy costs of operating these infrastructures, have become a significant concern.
Many opportunities exist for optimizing the energy costs for data intensive computing and this paper
addresses one of them. We dynamically right size the resource allocations to the parallelized tasks such
that the effective hardware configuration matches the requirements of each task. This allows our system
to amortize the idle power usage of the servers across a larger amount of workload, increasing energy
efficiency as well as throughput. This paper describes why such dynamic resource allocation is useful
and presents the key techniques used in our solution.

1 Introduction

Data intensive distributed computing platforms such as MapReduce [4], Dryad [7], and Hadoop [5], offer an
effective and convenient approach to solve many problems involving very large data sets, such as those in web-
scale data mining, text data indexing, trace data analysis for networks and large systems, machine learning,
clustering, machine translation, and graph processing. Their usefulness has lead to widespread adoption of such
data intensive computing systems for data analysis in many large enterprises, and server clusters consisting of
tens of thousands of servers now host these platforms. At these scales, the cost of resources consumed by the data
parallel computing system becomes very significant. Both the operational costs such as energy consumption,
and the capital expense of procuring the servers and supporting infrastructure are thus crucial to optimize.

Several opportunities exist in data intensive distributed computing systems to maximize the amount of work
performed by a given set of resources and to reduce the energy consumed for performing a given amount of
work. A first opportunity is to schedule the processing jobs in a manner that is best suited to the data place-
ment and network requirements of each job, resulting in improved utilization of the infrastructure [8]. Another
possibility is to reduce the amount of energy spent on storage. While redundant copies of data are required for
reliability, machines hosting some of the redundant copies can be shut down if the throughput requirement and
data consistency constraints permit [9]. A third opportunity arises in adapting the resource configuration to the
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resource needs of the currently processing jobs. In this paper we consider this last opportunity in detail and show
how energy use can be reduced and throughput increased for a given set of tasks and cluster size.

If the server cluster was to always run a single, pre-specified, data processing job, then it would be straight-
forward, though possibly tedious, to configure the server hardware to match the requirements of that processing
task efficiently. However, in practice a single cluster is set up for multiple data analysis jobs. In fact, sharing
the cluster yields significant advantages in efficient resource utilization since one job is unlikely to always have
sufficient workload to justify a dedicated cluster. The complication that arises due to sharing is that the server
configuration is not optimized to meet the resource requirements of any single job. At run time, depending on the
characteristics of the job, certain resources such as the number of disks spinning or active servers, would be left
unused, wasting valuable power and also the capital expense of the infrastructure itself. Since it is impractical to
change the hardware dynamically, we explore software mechanism to optimize resource utilization and improve
overall throughput, using Dryad as the underlying data intensive computing platform.

Specifically, we introduce a mechanism, referred to here as Energy Efficient Dryad (e-Dryad, for short),
for fine grained allocation of cluster resources to incoming jobs that right-sizes the resource configuration to
a job’s requirements. Current job schedulers for data intensive distributed computing platforms allocate a set
of servers (sometimes referred to as nodes) to each job. The number of servers allocated depends on the job’s
requirements, its priority, and the number of currently unallocated servers. However, the hardware configuration
of the servers may not be matched to the processing demands of the job. Our proposed mechanism divides the
server resources among jobs to match their hardware resource usage characteristics, leading to a more efficient
and better balanced resource configuration for each job.

While e-Dryad improves the overall throughput compared to existing schedulers, the amount of instanta-
neous resources allocated to a job may in fact be smaller in our proposed approach. This does cause the latency
of processing to to be higher in certain situations. However, the increased throughput implies that the jobs spend
less time waiting for their turn in the queue and hence the overall completion time can in fact still be lower
depending on the position in the queue.

We describe the design of e-Dryad, along with the challenges addressed and mechanisms used, in Section 2.
The proposed system is evaluated with real workloads on an experimental server cluster, and the evaluation
results are presented in Section 3. Section 4 discusses related problems and possible extensions. Section 5
summarizes the prior works in the area and Section 6 concludes.

2 Resource Allocation System Design

The problem of inefficient resource utilization arises because the hardware is not configured to match the re-
source requirement of every job. We explain this problem in more detail below and then present a solution to
address it.

2.1 Problem Description

We describe the problem in the context of Dryad, since that is the platform used in our prototype, but the
problem conceptually exists in most data intensive computing platforms. A common operational aspect of such
platforms includes a scheduler that accepts computing jobs and assigns them to servers. A job here refers to a
data processing program that includes at least one processing phase that can be massively parallelized. It may be
followed by additional processing stages that further process or integrate the results from the parallelized phase
or phases. In Dryad, each job is comprised of a root task that manages the actual processing tasks, referred to
as worker tasks. The worker tasks accesses data stored on the server cluster’s constituent computers themselves.
The scheduler queues incoming jobs and as servers become available after finishing previously running jobs,
they are assigned to new jobs from the queue. A good scheduler will assign servers to a job’s worker tasks such
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that the data they access from storage is on the assigned server itself or relatively close by within the network
topology [8].

The parallelized phase is the one that requires the most resources and we primarily focus on the worker
tasks comprising this phase. The worker tasks within a job are largely homogeneous in terms of computational
resource requirement but the worker tasks from different jobs can be very different. Consider the following two
examples of real world applications that are well suited to parallelized data intensive computation:

Word Statistics. This application computes the number of times different words occur in a very large corpus of
text, such as a large number of web pages, stored across multiple machines [11]. Such tasks are commonly
required for web scale indexing.

Terasort. The Terasort application sorts a very large number (billions) of records using case insensitive string
comparisons on a 10-byte key [10]. This is a benchmark used for parallel computing.

Figure 1 shows the resource utilization for CPU, averaged across multiple servers, for a job from each of the
above applications.

(a) Word Statistics. (b) Terasort.

Figure 1: Resource usage of two Dryad jobs, averaged across multiple machines allocated during the job’s
execution.

It is clear from the figure that the Word Statistics job has a significantly higher CPU utilization. A similar
figure may be plotted for IO bandwidth usage and that would show that the Terasort job has a higher IO usage and
is not bottlenecked on CPU. Each job thus leaves some resource wasted. This is a problem due to two reasons.
Firstly, the cost of the infrastructure directly depends on the number of servers required, and hence if the servers
are left unused, that results in wasted resources. In the above example, the unused CPU could potentially have
been used by other jobs waiting in the queue. Secondly, the above usage causes energy wastage. A large fraction
of the power usage of a server, often as high as 60%, is spent to simply power on a server, and is referred to
as idle power. This power is spent even if the CPU or other resources are not used by any job. Clearly, if the
CPU resource left unused by Terasort were to be used by another job, the idle energy use will not increase and
only a small amount of additional energy would be required. When resource utilization is high, the idle energy
is amortized over greater amount of work done, resulting in more efficient operation.

Our goal in building e-Dryad is to address precisely the above two problems by improving resource utiliza-
tion leading to better amortization of idle energy, and higher throughput from the given number of servers.
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2.2 Resource Allocation Methodology

The basic idea for resource allocation in e-Dryad is to place worker tasks from multiple jobs on each machine,
in a manner that improves the resource utilization. This implies that the worker tasks placed together must be
carefully chosen. If two worker tasks are both bottlenecked on the resource, such as CPU, then placing them
together would simply increase the run time of each task without improving resource utilization significantly.
Instead, if two worker tasks with complimentary resource utilizations are placed on the same server, then the
overall resource utilization would improve. Suppose one task is bottlenecked on CPU, while another is bottle-
necked on the storage bandwidth, then placed together, they could utilize both resources maximally, leading to
better amortization of the idle power. An important consideration here is that each task needs both storage and
CPU resource. The CPU intensive task is also ultimately a data intensive program and would need some storage
bandwidth and the storage intensive task obviously needs some CPU capacity to perform its work. This implies
that the resource allocation mechanism should ensure that each task gets resources in its desired proportion. This
may be viewed as re-balancing the hardware configuration to match the job requirements.

The e-Dryad resource allocation mechanism, based on the above basic idea, is shown in Figure 2, and
described below.

Figure 2: e-Dryad resource allocation block diagram

All incoming job requests are accepted through the job submission system as usual. In Dryad, jobs are often
submitted through a web interface provided for the Dryad cluster, by uploading a job specification.

2.2.1 Job Matching

The first crucial step for e-Dryad is matching job resource usage characteristics to determine complementary
jobs that are well suited to be placed together. In data intensive computing clusters, while new jobs are submit-
ted everyday to process new data sets, the nature of the jobs themselves does not change as frequently. Rather,
a slowly evolving set of applications is hosted by the cluster. We assume that repeat instances of the same
application each have a unique job ID but are labeled with an application ID that allows identifying them as dif-
ferent instances of the same application. The e-Dryad resource allocation system maintains a set of application
characteristics, shown as an input to the job matching block in the figure.

The application characteristics are acquired by monitoring the resource usage of multiple jobs belonging to
the same application. The characteristics may be initialized based on the first instance, and updated over time
as additional jobs from that application are observed. Monitoring of job resource usage is performed by the job
resource monitoring block shown in the figure. This block itself is a distributed monitoring system that uses the
Dryad infrastructure to correctly track the distributed resource usage of each job across multiple machines. The
implementation of this system in our prototype is discussed in Section 2.3.
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Based on the application characteristics, the job matching block identifies the resource for each application
that shows the heaviest usage. This resource is likely the bottleneck for this application and hence the other
resources on a machine running this application jobs would have spare capacity. Note that the determination of
the bottleneck is only an estimate since the heavy resource usage may be an effect of data placement and network
topology that may change based on job placement. The estimate improves over time as a well designed scheduler
attempts to place each job’s tasks efficiently in terms of data placement and the application characteristics are
then dominated by the true bottlenecks. Matched jobs are ones that have a different bottleneck resource, and can
hence be placed together to reduce the idle power consumption per unit work.

2.2.2 Job Placement

Placement of jobs determines the actual allocation of resources to the worker tasks of the jobs. Once the job
matching block has determined which jobs are suitable to be placed together to optimize resource utilization,
the job placement block assigns the worker tasks to the servers in the cluster based on the current state of the
cluster in terms of server availability and other scheduling considerations. The cluster configuration and state
information is directly measured from the cluster management interfaces.

Multiple different job placement heuristics may be employed based on the nature of jobs and desired perfor-
mance and energy optimization objectives. We assume that the scheduling mechanism is the same as followed in
Dryad and abstract it out, focusing only on the placement. A key resource allocation decision for placement after
matching jobs are identified, is to determine how the resources of the server should be divided among the tasks.
In our prototype we focus on the two resources that affect throughput the most for data intensive computation in
a well scheduled system: processor time and storage bandwidth. The following two heuristics are employed for
resource allocation:

Equal Sharing. In the equal sharing approach, two tasks from different jobs that are placed on a common
server, are each assigned an equal share of the CPU time. One of these tasks is CPU intensive and leaves
significant storage bandwidth unused. The other task being storage intensive, uses up a large fraction of
the storage bandwidth even with half its usual CPU allocation since it is not bottlenecked on the CPU. The
overall amount of work performed increases leading to improved amortization of idle energy.

Proportional Sharing. In the proportional sharing approach, rather than dividing the CPU resource equally, it
is divided in a ratio proportional to the average CPU utilization known for the two jobs. While the CPU
usage can vary across tasks and over the run time of a job, the division in proportion to the average usage
captures the resource requirements better than equal sharing. In this case, resource utilization is further
improved since the tasks bottlenecked on CPU can use up a greater portion of the CPU while the other
task can likely get a sufficient amount of storage bandwidth even with a smaller share of the CPU. The
proportional sharing does not guarantee that resource will be maximally utilized since it is unlikely that
the resource requirements of different tasks are matched exactly in different resource dimensions to use
each resource to a 100%.

The relative performance of the two approaches is studied experimentally in Section 3.

2.3 Implementation

The implementation of e-Dryad is based on a Dryad cluster installed on Windows Server 2008 systems. The
operation of e-Dryad requires detailed resource usage tracing for job characterization as well as experimental
verification. The job resource monitoring component, referred to in Figure 2 earlier, is implemented as follows.
Tracking the resource usage of a single job requires understanding the placement of the tasks comprising the
job on various servers, and then tracking the resource utilization of each task on each of those servers. The
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Figure 3: e-Dryad job resource monitoring.

monitoring system in e-Dryad is implemented as shown in Figure 3. The cluster manager in Dryad produces
an XML formatted description of job layout across the servers. e-Dryad fetches that description to infer the
servers allocated to each job at each time step. Resource usage at each server is monitored for the Dryad
processes using Windows kernel provided performance counters. Windows system management enables these
performance counters to be remotely accessed and e-Dryad accesses the counters for each of the processes from
multiple remote servers. Based on the job to server mapping, it accounts for the resource usage of each job.

The system mechanism used to assign the right amount of resource is based on server virtualization. We
create virtual machines on each server and divide the physical resources among virtual machines in a proportion
that suits the job placement across servers. For instance, going back to the example shown in Figure 1, suppose
quad core servers were used, one virtual machine could be assigned three processor cores and allocated to Word
Statistics job, while the other one could be given one processor core and allocated to the Terasort job. Clearly,
the bandwidth on the machine would also get split among the two VMs. Terasort may use a greater share
of the bandwidth based on its needs. The virtualization based mechanism integrates seamlessly with the Dryad
scheduler since from the perspective of the scheduler, each virtual machine is a different server to be assigned to a
job. However, virtualization is only one of the options to allocate resources in the correct proportion. Equivalent
functionality could also be achieved by simultaneously assigning the same server to multiple jobs and creating
separate processes to host each job. The Dryad scheduler may be modified to incorporate e-Dryad based job
characteristics in determining the job allocations across servers. The operating system on each allocated server
could then be informed to allocate resources in the correct proportion to the different processes running the
worker tasks from different jobs on each server.

3 Evaluation

We evaluate e-Dryad on a 32 node cluster, with Intel Xeon 2.5GHz processors. We use data intensive applica-
tions found in Dryad literature [11], including the two applications mentioned in Section 2.1, that are generally
representative of data indexing tasks. The jobs are specified using DryadLINQ [10].

The energy use and savings for the equal and proportional sharing policies is shown in Table 1, and also
compared to that of placement without e-Dryad. The improved job placement leads to significant energy savings,
that for large scale data intensive computing clusters result in significant cost savings.

While the energy savings are definitely a desirable feature of e-Dryad and come along with increased overall
throughput, they are also associated with a potential increase in latency, in terms of job execution time measured
from the instant that a job is allocated on the cluster. The overall latency, including the queuing delay and
processing delay may not be increased for most jobs. However, high priority jobs, that were not subject to
significant queuing delays in the default design, could suffer increased latency. This is illustrated in Figure 4
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Placement Energy Use (J) Energy Saving (%)
Dryad-default 35295 –
Equal Sharing 29303 17.01
Proportional Sharing 28282 20.40

Table 1: Energy Savings achieved by e-Dryad in experimental tests.

taking two jobs, one from the word statistics application and the other from the Terasort application. The figure

Figure 4: Illustration of effect on job latency with e-Dryad resource allocation. The “Prop.” label refers to the
proportional sharing approach.

shows the execution of these two jobs along the time line. The top segment shows how execution proceeds in
the default system and the lower two segments show how execution proceeds with e-Dryad policies. Each job
consumes a shorter processing time in the default system but the total execution time on the system is longer. For
the first job the latency is smaller but the second job suffers a longer latency due to longer queuing delay. The
simultaneous execution in the other two approaches allows the two jobs to exit the system sooner, leading to a
lower total energy cost and higher throughput. The latency of the Terasort job has however increased by 34.9%
in the equal sharing case and 54.2% in the proportional sharing case, due to reduced instantaneous resources
granted.

The resource utilization also improves in the system. Taking the above run as an example, the CPU utilization
is plotted in Figure 5. The utilizations shown are averaged across the 8 worker tasks comprising each job. As
seen, the utilization is higher during the run with e-Dryad, and the jobs finish sooner (at 39s instead of 52s).

4 Discussion

The e-Dryad approach for resource allocation in data intensive computing highlights an important opportunity
for improving energy costs and infrastructure expense. However, there are several additional features and design
extensions that may be considered to the initial design presented above. We discuss some of these extensions
below.

Temporal Profiling: In e-Dryad, we considered job level characteristics. A job has multiple stages of pro-
cessing. The worker tasks perform different types of computation in each stage and more accurate resource
utilization characteristics would emerge if the worker tasks of different stages were characterized individually.
Further, even among the homogeneous parallel tasks of a single stage, resource usage may differ because of
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Figure 5: Resource utilization with and without e-Dryad.

placement. Some tasks may be accessing only local data, some could be fetching their data from remote ma-
chines, and some could be using a mix of local and remote data. Differences in network data rates available to
different tasks will lead to differences in each task’s server resource usage and considering such effects can help
further optimize the e-Dryad resource allocation. However, in pactice, acquiring such detailed characteristics,
some of which depend on run time placement, is often difficult.

Latency Constraints: Joint placement of jobs for improved resource efficiency sometimes requires reducing
the instantaneous resource allocation for a job, and we showed in evaluations that the processing latency of a
job, measured from the time it is allocated on the cluster, may be increased. This may happen for instance, when
the storage bandwidth on the machines containing a job’s data is shared with another job to improve the CPU
utilization. In certain scenarios, we may wish the first job to have the entire storage bandwidth to minimize its
latency. To address such scenarios, e-Dryad resource allocation may be modified to incorporate priorities and
the high priority jobs may be allocated greater resources, at the cost of overall cluster efficiency.

Throughput Trade-off: We saw for the experimental system configurations and resource allocation policies
that energy efficiency also improved throughput, though sometimes at the cost of higher latency. There are
resource allocation policies when energy efficiency may be improved further by reducing the throughput. Given
that the idle power of keeping a server powered on is high, we optimized energy efficiency by maximally utilizing
available disk throughput. However, consider a policy where some of the servers are turned off, to ensure that
all data is available but multiple redundant copies may not be on line. This will allow for reducing the idle
energy costs but also reduce the available IO bandwidth. If all the jobs are processor intensive (IO bandwidth
was not the bottleneck) and the reduced IO bandwidth does not cause the processors on powered on servers to
stall on data access, then this reduced server configuration will be better aligned to job resource requirements
and hence more energy efficient. In such a policy, that exploits additional resource management knobs such as
server shutdown, both throughput and latency may be traded-off for improved energy efficiency.

Dynamic Allocations: The job allocation policy discussed in our prototype assumes that the resource al-
location is static for each job. This is reasonable when the job queues are typically never empty and jobs are
served in the order received. However, in cases where high prioity jobs require pre-emption of currently allo-
cated jobs, or the arrival of a new job opens up opportunities for more efficient resource allocations than the
current allocation, it becomes worthwile to consider dynamic resource allocations. If the tasks corresponding to
a running job are stopped, the work performed until that time would be wasted. Dynamic allocation would thus
require the capability to suspend a running task by saving the intermediate results and task state.

Multiple Resources: The heuristics presented for job matching and placement considered only two re-
sources and shared a server among at most two worker tasks from matched jobs. The design may be extended to
additional resources and may place more than two tasks on the shared server to further improve resource usage
in even more dimensions leading to lower energy use per unit throughput.
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5 Related Work

The problem of energy efficiency in data intensive computing platforms is a relatively new area of research.
Another work directly addressing this problem, though through a different approach is presented in [9]. The
placement of data among the servers is optimized such that certain servers may be placed in low power states
when feasible.

Simultaneous placement of multiple workloads on the same servers is also considered in several works
focused on virtual machine consolidation, such as [1,6]. However, the key problem addressed in virtual machine
consolidation is efficient packing along pre-specified resource dimensions such as CPU time and memory space.
The bottleneck resources of data intensive computing tasks, such as storage bandwidth, are not considered.
Also, the resource requirements are assumed specified, while in our work we employ distributed monitoring to
characterize the relevant resource characteristics of applications. The e-Dryad method also trades off latency for
energy efficiency while virtual machine consolidation typically focuses on optimizing performance.

Another set of related works is found in optimizing the performance of data intensive computing platforms
such as by improving the schedulers for Dryad or MapReduce [3, 8, 12] for addressing various challenges such
as efficient handling of failed tasks, adaptation to data and network topology, and better utilization of cache
hierarchy. The optimization of the jobs themselves through static analysis was proposed in [2]. Our work is
complementary to the above works and could potentially be added on as a resource re-configuration layer with
many of their scheduling policies. e-Dryad improves resource efficiency by matching the resource allocation to
the resource configurations best suited to the computational tasks.

6 Conclusions

We described an important opportunity for improving the energy efficiency of data intensive computing plat-
forms. Hardware configurations are rigid and cannot be right sized for the characteristics of each application
that may be executed on the platform. We introduced a software mechanism to dynamically right size the hard-
ware configuration by modifying the resource allocations made to each of the worker tasks of the jobs. The
resource allocation method learns the characteristics of the jobs and determines the appropriate allocations to
efficiently utilize the resources. This results in both lower energy consumption as well as higher throughput,
and we saw through evaluations that the savings were significant. The changes in resource allocation do affect
the latency performance of the jobs and we illustrated this trade-off with an example execution. The proposed
methods demonstrate an important opportunity to improve energy efficiency and help reveal several additional
challenges and extensions that may help improve data intensive computing infrastructures.
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Abstract

Historically, the performance and purchase price of enterprise information systems have been the key
arguments in purchasing decisions. With rising energy costs and increasing power use due to the ever-
growing demand for compute capacity (servers, storage, networks etc.), electricity bills have become
a significant expense for todays data centers. In the very near future, energy efficiency is expected
to be one of the key purchasing arguments. Having realized this trend, the Transaction Processing
Performance Council has developed the TPC-Energy specification. It defines a standard methodology
for measuring, reporting and fairly comparing power consumption of enterprise information systems.
Wide industry adaption of TPC-Energy requires a large body of benchmark publications across multiple
software and hardware platforms, which could take several years. Meanwhile, we believe that analytical
power estimates based on nameplate power is a useful tool for estimating power consumption of TPC
benchmark configurations as well as enterprise information systems. This paper presents enhancements
to previously published energy estimation models based on the TPC-C and TPC-H benchmarks from the
same authors and a new model, based on the TPC-E benchmark. The models can be applied to estimate
power consumption of enterprise OLTP and Decision Support systems.

1 Introduction

In the last decades, performance and purchase price of hardware and software were the dominant concerns of
data center managers. Even though the performance of hardware and software have improved substantially, and
their price have dropped significantly over the years, the competitive business environment continued to demand
more and more performance and compute capacity. Consequently, over the last few years, especially due to the
increase in energy prices, the cost of owning and maintaining large data centers has become a serious concern
for data center managers.

Hardware and software vendors have been investing in the development of energy efficient versions of their
systems. Low power versions of system components have been developed or made power aware, such as pro-
cessors that are equipped with demand-driven clock speed adjustments. Reducing power consumption is also
at the top of the priority list of government agencies as they challenge data center managers and system de-
velopers to reduce power consumption globally. The U.S. Environmental Protection Agency (EPA) has been
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Table 1: Adaption Rate of Energy Reporting in TPC Results.
Benchmark Total number of results Results since December 2009 Results with energy Information Adaption Rate

TPC-C 7501 10 3 1.3 %
TPC-E 42 14 2 14 %
TPC-H 168 10 4 40 %

1. This includes benchmark results from revisions 1, 2, 3 and 5.

working with various organizations to identify ways in which energy efficiency can be measured, documented,
and implemented, not only in data centers, but also in the equipment they house [3]. Furthermore, standard
organizations have responded to the growing demand for energy benchmarks such as the Transaction Processing
Performance Council (TPC), the Standard Performance Evaluation Corporation (SPEC) and the Storage Perfor-
mance Council (SPC) [18]. All major computer and system vendors are members of these organizations. Each
of these consortia addresses different, often unique aspects of computer system performance. While SPEC and
SPCs benchmarks focus on subsets of large enterprise information systems, TPCs benchmarks address com-
plex On Line Transaction Processing (OLTP) and Decision Support (DS) systems, often involving hundreds of
processors and thousands of disk drives.

The TPC offers currently two benchmarks to measure OLTP systems, namely TPC-C [23] and TPC-E [9],
and one to measure DS performance, TPC-H [18]. TPC benchmarks are widely accepted in the industry for
disseminating objective and verifiable performance data using well designed, long lasting benchmarks. In the
last 18 years over 750 TPC-C benchmark results were published across a wide range of hardware and software
platforms, representing the evolution of transaction processing systems [15]. TPC-C results were published by
over two dozen unique vendors and over a dozen database platforms. In its first three years 42 TPC-E were
published. In the last eight years 168 TPC-H results were published. System vendors publishing benchmark
results are referred to as benchmark sponsors.

In 2009 the TPCs step to add an optional power measurement methodology (TPC-Energy [5]) uniformly to
all its benchmarks marked a significant milestone towards designing and deploying standards to measure energy
efficiency in servers and storage sub-systems. So far three TPC-C, two TPC-E and four TPC-H results have
been published with power consumption information (see Table 1). Depending on the benchmark specification
the adaption rate of benchmark publications, which include energy measurements, varies between 1.3 % and 40
%. It is expected that the adaption rate will increase over the next years, as seen with previous benchmarks.

As of now, however, the majority of TPC-C, TPC-E and TPC-H benchmark results are still published with-
out any energy consumption information. This is not surprising because it usually takes several years for system
vendors to implement and tune their systems for new benchmarks. Wide industry adaption of TPC-Energy
requires a large number of benchmark publications across multiple software and hardware platforms. Mean-
while, the authors believe that previously published analytical power estimation models for x86 based systems
[14],[13], which are based on nameplate power consumption, are useful tools for TPC-C and TPC-H benchmark
publications, whose full disclosure report (FDR) supplies all necessary information for these models.

Each server and storage sub-system is tagged with a nameplate power rating, which is typically estimated
by its manufacturer simply by adding up the worst case power, drawn by all components in a fully configured
system. The purpose of nameplate rating is to aid the buyer of a particular component in provisioning the power
infrastructure for it. In general, the nameplate rating is a very conservative number that is guaranteed not to be
reached. Because of safety and economic reasons components commonly use only a percentage of the power
reported in their nameplate specification during maximum load. Estimates of this percentage vary, but 20 %
to 30 % are not uncommon. Personal computers are even reported to use two to four times less power than
specified in their nameplates. Hence, provisioning power based solely on the nameplate specification results in
drastically over sizing power infrastructure and supporting systems [11].

In this paper we present updated versions of our analytical power estimation models for OLTP and DS sys-
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Figure 1: Hierarchy of System Components of the Analytical Power Estimation Model

tems, which are based on TPC-C and TPC-H benchmarks. Recent trends, such as the use of solid state memory
technologies and in-memory database technologies due to the deployment of very large memory configurations
require some modifications to our models, which were previously published in [14] and [13]. Additionally, we
extend our suite of analytical power estimation models with one that is based on the TPC-E benchmark. We
verify our models with measurements taken from fully scaled, optimized and published TPC-C, TPC-H and
TPC-E configurations, including client systems, database server, and storage sub-system. Although estimated,
the numbers obtained from our models are very close to those of the measured configurations. Hence, they
can be applied to historical TPC data to perform power consumption trend analysis, they can help identifying
the most power intensive system components, they can enhance dozens of performance and sizing tools that
are based on TPC workloads and, to some extent, they can also be applied by data center designers to estimate
power consumption of OLTP and DS systems that show system utilizations similar to those of TPC-C/E and
TPC-H.

The remainder of this paper is structured as follows. Section 2 introduces a generalized power consumption
model that can be applied to all current TPC benchmarks. This model generalizes and refines the previously
published power estimation models [14] and [13]. Section 3 shows how this model can be applied to OLTP
workloads and Section 4 shows how it can be applied to decision support workloads. Section 5 validates the
power estimation models using TPC benchmark publications. The paper is summarized in Section 6.

2 Power Estimation Using Nameplate Information

Our analytical power consumption models, presented in [14] and [13], are based on the assumption that the
peak power consumption of an entire system during steady state can be derived from the aggregate of the name-
plate power consumptions of its individual components. Each model follows the same general approach: The
nameplate power information of major system components, such as processor (CPU), volatile storage, internal
non-volatile storage devices, i.e. rotational disks and solid state memory, and external storage sub-systems,
i.e. enclosures with non-volatile storage devices, are aggregated discounting the nameplate overhead. Addi-
tional power of supporting components, such as motherboards and fans, is calculated with a combination of a
fixed overhead and a percentage of the power consumption of the components they support. The models do not
account for the power necessary for the air conditioning systems of data centers.

Figure 1 shows the hierarchy of system components that are used in our power estimation models. Each
component in this hierarchy is abbreviated with up to three capital letters, as indicated in parenthesis. TPC
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systems may consist of two types of sub-systems, namely compute sub-systems (C) and storage sub-systems (S).
In case of a clustered system and systems that have multi-tier architectures, there can be multiple compute sub-
systems. We also refer to the compute sub-systems as servers. Each server consists of one or more compute units
(CP), i.e. processors/CPUs, a number of storage controllers to connect to external storage enclosures (CH), some
sort of volatile storage, usually memory DRAM DIMMs (CM), some non-volatile memory (CS), traditionally
rotational devices (CSR), but recently also Solid State Devices (CSS) and supporting components, such as
the main board and cooling fans. We also refer to the supporting devices of servers as chassis. The storage
sub-system (S), which is used to store data persistently, consists of non-volatile storage devices, traditionally
rotational devices (SR), but recently also Solid State Devices (SS). We also refer to the storage sub-systems as
storage enclosures.

Each of these components may occur multiple times in a system and each occurrence may have different
nameplate characteristics. Hence, we enumerate them with an index on each level. For instance, the second CPU
in the first compute sub-system is labeled CP1,2. The 5th rotational device in the second supporting component
of the first storage sub-system is labeled SSR1,2,5. We refer to the quantities and power consumptions of these
components with Q and P respectively. E.g., the number of CPUs in the first compute sub-system is Q(C,P )
and the power consumption of the second CPU in the first compute sub-system is P (CP1,2).

There are two key requirements that need to be met for our power models to correctly estimate power
consumption. Firstly, only workloads that observe steady state can be used. The second requirement is system
balance. Depending on the application and system, an optimal component ratio has to be maintained to keep all
components (CPU, disks, controllers etc.) utilized during the measurement interval. If a system does not have
the optimal ratio between these components, the power consumption model will not produce accurate estimates
for the same reason that the system needs to be fully utilized. For each of the components listed in Figure 1 we
determine its peak power consumption as follows.

2.1 Power Consumption of Compute Units

We obtain the peak power consumption of compute units, i.e. processors/CPUs, from their manufacturers spec-
ifications [10]. The power consumption is usually specified as Thermal Design Power (TDP). Table 2 shows
the peak power consumption of selected CPUs. They range from 50W to 150W. The power consumption of all
processors in compute sub-system i can be calculated with the aggregate of the nameplate power consumption
of all individual CPUs:

P (CPi) =

Q(CPi)∑
j=1

Q(CPi,j)

2.2 Power Consumption of Storage Controllers

The power consumption of all storage controllers can be estimated using the maximum power consumption as
defined in the Peripheral Component Interconnect (PCI) standard. It specifies that a PCI card draws at most 25
W of power. The power consumption of all storage controllers in compute sub-system i can then be calculated
multiplying the number of storage controllers by 25:

P (CHi) = Q(CHi) ∗ 25

2.3 Power Consumption of Volatile Storage

Similarly to the compute node nameplate power consumption, we obtain the peak power consumption of volatile
storage, usually DRAM memory DIMMs, from the manufacturers website. 3 shows the power consumption for
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CPU Description TDP [W]
Intel Pentium III Xeon - 900 MHz 50
Intel E5420 50
Intel Pentium Xeon MP - 1.6 GHz 55
Intel Xeon MP - 1.6 GHz 55
Intel Xeon MP - 2.0 GHz 57
Intel E5506 60
Intel E5530 60
Intel Xeon MP - 2.8 GHz 72
Intel Xeon MP - 2.7 GHz 80
AMD Opteron - 2.2 GHz 85
AMD Opteron - 2.4 GHz 85
Intel Xeon MP - 3.0 GHz 85
AMD 8220SE 2.8 GHz 93
AMD Opteron - 2.6 GHz 93
AMD Opteron - 2.8 GHz 93

CPU Description TDP [W]
AMD Opteron 2.2GHz Dual Core - 2.2 GHz 93
AMD Opteron Dual Core 1 MB L2 - 2.4 GHz 95
Intel Xeon X5650 95
Intel Itanium2 - 1 GHz 100
Opteron 6176 105
Intel Itanium 2 Processor 6M - 1.5 GHz 107
Intel DC Itanium2 Processor 9050 - 1.6 GHz 130
Intel Dual-Core Itanium2 1.6Ghz 130
Intel Itanium2 - 1.6 GHz 130
Intel Xeon 7350 2.93GHz 130
Intel Xeon X5680 130
Intel Xeon X5670 130
Intel Xeon X5560 130
Intel X7560 130
Intel Xeon 7140 3.4GHz 150

Table 2: Thermal Design Power (TDP) of x86 CPUs (Intel and AMD)

DDR Size [GByte] Density [GByte] TDP [W]
2 4 1 9.3
2 4 2 5.4
2 8 2 5.5
3 8 2 5.6
3 16 1 8

Table 3: Power Consumption of Volatile Storage (Memory)

various types of DRAM used in TPC benchmarks. The power consumption of the entire volatile storage in
compute sub-system i can be calculated as the aggregate power consumption of all individual memory DIMMs
as follows:

P (CMi) =

Q(CMi)∑
j=1

Q(CMi,j)

2.4 Power Consumption of Non-Volatile Storage

We distinguish non-volatile storage between rotational storage, i.e. disk drives, and solid state storage, i.e. SSDs.
Peak power consumption levels of disk drives vary widely with the disks form factor, size, and rotational speed.
5 summarizes the peak power consumption of disk drives used in TPC benchmark publications. The energy
consumption of SSDs depends on the underlying technology. Most SSDs use NAND-based flash memory,
a non-volatile chip that can be electrically erased and reprogrammed. There are two different types of SSDs:
Single-level cell (SLC) and multi-level cell (MLC). One major difference between these technologies is that SLC
hold one data bit while MLC hold two data bits. SLC provides higher write performance and reliability while
MLC allow for higher storage density and lower cost. Most of todays SSDs use the same interface as traditional
hard disk drives, namely SAS or SATA, so supported in traditional SAS/SATA storage arrays. Another type
of SSDs that is becoming popular is PCI Express-based flash storage card (e.g. ioDrive from Fusion-io and
WrapDrive from LSI. Todays PCI Express-based flash storage cards can hold between 160 GByte to 1.2 TByte.
Their nameplate power consumption is 25 Watts, equal to the nameplate power consumption of the PCI slot. The
nameplate power of SSDs used in TPC benchmarks are listed in Table 4. They are obtained from manufacturers
web sites [20]. FF refers to the form factor of the drive. The power consumption of the entire non-volatile
storage in compute sub-system i can be calculated as the aggregate power consumption of its rotational devices
and solid state devices:
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Type of Device Size [GByte] Power [W]
SATA 2.5 inch Form Factor Solid State Drive 60 2
SATA 2.5 inch Form Factor Solid State Drive 120 2
PCI Express-based flash storage cards 160-1200 25

Table 4: Power Consumption of Solid State Devices

FF=2.5 FF=2.5 FF=3.5 FF=3.5 FF=3.5
RPM=10K RPM=15K RPM=7.2K RPM=10K RPM=15K

GByte] [W] [GByte] [W] [GByte] [W] [GByte] [W] [GByte] [W]
36 17 36 10.0 240 11.35 9 9.7 18 13.2
36 7.2 36 9.2 465 13 9 10.0 18 10.0
72 8.4 72 9.2 500 3.5 36 12.5 18.2 9.7
73 10.5 146 5.7 36 10.0 32 10.0
146 10.0 72 12.6 36 14.5
146 9.0 73 11.0 36 15
300 4.8 146 14.2 72 13.2

146 11.4 73 16.2
160 12.8 146 14.2
250 11.35 146 19.0
300 16.4 300 17.6

300 14.4

Table 5: Power Consumption of Rotational Devices

P (CSi) =

Q(CSRi)∑
j=1

P (CSRi,j) +

Q(CSSi)∑
j=1

P (CSSi,j)

Similarly, the power consumption of the entire non-volatile storage in storage sub-system i can be calculated
as the aggregate power consumption of all disk drive devices and solid state devices in all storage enclosures:

P (SSi) =

Q(CSRi)∑
j=1

P (CSRi,j) +

Q(CSSi)∑
j=1

P (CSSi,j)

2.5 Power Consumption of Compute Sub-System (servers)

In addition to compute units, storage controllers, volatile and non-volatile memory, we need to account for
the supporting components of the compute sub-system to estimate their total power consumption. Supporting
components are the main board, cooling fans, caches etc. They are also referred to as the Server Chassis. Recent
studies [7] and [21] suggest that the power consumption of the server chassis can be expressed as a percentage
(30 %) of the nameplate power consumption of its main components plus a fixed overhead (100W). Hence, we
compute the power consumption of the entire compute sub-system i as follows:

P (Ci) = [P (CPi) + P (CMi) + P (CSi)] ∗ 1.3 + 100

2.6 Power Consumption of Storage Sub-Systems (Enclosure)

Similar to the power estimate of the compute sub-systems chassis case, we approximate the power consumption
of the disks enclosures as a percentage of the nameplate power consumption of its main components. In our
model we express it as 20 percent of the aggregate power consumption of all non-volatile storage devices. [7] and
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[21] assume that the enclosures are fully populated. This is true for the majority of TPC results. Consequently
the power consumption of an entire storage sub-system that contains only fully populated enclosures can be
calculated as follows:

P (Si) = [P (SSi)] ∗ 1.2

With the introduction of solid state drive technologies the above assumption is not true anymore and the
power overhead of storage sub-systems might be under estimated using Formula 6. This is due to the increased
performance of SSDs compared to rotational devices. Benchmark sponsors are able to substitute up to 12
rotational devices with one SSD using existing disk enclosures. Since the bandwidth of disk enclosures is
limited by their controllers, only few of their slots are filled. Still the power infrastructure of these storage
enclosures has been sized for many more devices. In order to accurately estimate the overhead of disk these
enclosures, we need to assume that each enclosure is fully populated (Qmax) with rotational devices using the
maximum allowable power for this storage device (Pmax). The power consumption of storage enclosures that
use some or only SSDs, can be estimated as:

P (Si) = P (SSi) + 0.2 ∗
Qmax(SSi)∑

j=1

Pmax(SSi)

2.7 Power Consumption of the Entire System

Finally, the total power consumption of the entire system (PS) can be estimated as the aggregated power con-
sumption of the compute and storage sub-systems discounted by a factor of 0.2, which has also been validated
in [14] and [13].

P = [

Q(C)∑
i=1

P (Ci) +

Q(S)∑
i=0

P (Si)] ∗ 0.2

3 Energy Consumption of On Line Processing Systems

Online Transaction Processing (OLTP) systems facilitate and manage transaction-oriented applications, typically
for data entry and retrieval systems, used in industries such as banking, airlines, mail-order, supermarkets, and
manufacturing. While some understand a transaction in the context of computer or database transactions, the
TPC defines it as a business or commercial transactions. The TPC defines two benchmarks, TPC-C and TPC-E
to measure the performance of large scale transactional systems.

3.1 The TPC-C Benchmark

TPC Benchmark C (TPC-C) [23] models an On Line Transaction Processing (OLTP) workload. In order to keep
up to date with technology and system requirements in general, TPC-C has undergone three major revisions
since its establishment in 1992. The first two revisions, published in the first 18 month were comparable due to
their minimal effect on existing results. While revision 4 failed to get the necessary support revision 5 of TPC-C
was approved in October 2000. This revision contained substantial changes with a large impact on existing
results, which made it non-comparable to previous revisions under the rigid TPC rules. However, all revisions
fulfill the requirements of the power consumption model. During its tenure each revision has been accepted
in the industry as the most credible transaction processing benchmark with a large body of results across all
major hardware and database platforms. Modeled after actual production applications and environments, it
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Figure 2: Typical TPC-C System Setup

Figure 3: Throughput versus Time: TPC-C Publication 107111201

evaluates key performance factors such as user interface, communications, disk I/Os, data storage, and backup
and recovery using a mixture of read-only and update-intensive transactions.

The typical TPC-C system is designed in three tiers: Tier 1, Driver System, Tier 2 Client and Tier 3 Database
Server (see Figure 2). The Driver System emulates the user load.

The TPC-C performance reported in a benchmark publication is the transaction throughput of new orders
during steady state condition [tmpC]. The performance is measured during the measurement interval, which
must begin after the system reaches steady state, be long enough to generate reproducible throughput results
that would be representative of the performance that would be achieves during a sustained eight hour period and
extend uninterrupted for a minimum of 120 minutes. Another important metric of TPC-C benchmarks is price-
performance. The price-performance metric [$/tpmC] is calculated by dividing the three-year cost of ownership
of all components by the tpmC. See TPCs pricing specification [22] for how the three-year TCO is calculated.

Figure 3 graphs the number of new order transaction [tpmC] during the measurement interval as achieves by
the current2 performance leader.

2as of 1/4/2011 (see http://www.tpc.org/tpcc/results/tpcc perf results.asp)
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3.2 The TPC-E Benchmark

TPC-E [30], approved in February 2007, is the next generation OLTP benchmark in TPCs benchmark suite. It
implements a database-centric benchmark that:

1. Provides comparable performance. That is, performance from different vendors can be compared.

2. Implements an easy to understand business model.

3. Reduces the cost and complexity of running the benchmark, compared to the TPC-C benchmark.

4. Implements a complex database schema

5. Encourages database uses that are representative of client environments.

6. Leads to realistic benchmark implementations. That is, the software and hardware configuration used in
the benchmark are similar to those actual end-users would use.

The TPC-E benchmark simulates the OLTP workload of a brokerage firm. Like TPC-C, the focus of TPC-E
is the performance measurement of the central database that executes transactions related to the firms customer
accounts. Although the underlying business model of TPC-E is a brokerage firm, the database schema, data
population, transactions, and implementation rules have been designed to be broadly representative of modern
OLTP systems.

TPC-E is similar to TPC-C in the following ways. The TPC-E configuration is a 3-tier model similar to
TPC-C, with similar configuration and run rules (see 2). The primary metrics for TPC-E are tpsE, $/tpsE
and availability date, which correspond to TPC-Cs tpmC, $/tpmC, and availability date. As in TPC-C the
performance of TPC-E is measured during the measurement interval, which must begin after the system reaches
steady state. TPC-C and TPC-E use a continuous scaling model and portions of the database scale in a linear
fashion while the transaction profile is held constant.

Figure 4 graphs the throughput versus elapsed wall clock time of the current3 performance leader of TPC-E
[29].

3.3 Power Consumption Models for TPC-C and TPC-E

The general power estimation model, described in Section 2, can be applied to TPC-C and TPC-E benchmark
publications because their measurement intervals are taken during steady state performance and because all com-
ponents are fully utilized. The typical business objective of any TPC benchmark publication is to demonstrate
performance and price-performance. Hence all TPC publications maintain optimal component ratios. This is be-
cause no vendor can afford to over-configure one part of the system because all parts that are used in a benchmark
publication need to be disclosed and priced. And price-performance is widely being used by system vendors to
showcase their advantages over those of their competitors. For instance, if a vendor over-configures a database
server with 50 % more CPUs, those CPUs need to be priced, and, since the number of CPUs is disclosed, the
result will be used by competitors to show that they can achieve the same performance with fewer CPUs. Lastly,
some database vendors tie their pricing model to the number of CPUs, while some tie it to the number of disks.
This inconsistency makes it even more unattractive to publish unbalanced TPC performance results.

In order to apply the power estimation model of Section 2 to TPC-C and TPC-E systems, we need to assign
the different parts of TPC-Cs and TPC-Es three tier architectures (see 2) to the components of our power esti-
mation model (see 1). Users of todays transaction systems are most often connected through the Internet rather
than through closed circuit systems. Hence, in most cases, the deployment of a transaction system does not

3as of 1/4/2011 (see http://www.tpc.org/tpce/results/tpce perf results.asp)
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Figure 4: Throughput versus Time: TPC-E Publication 110092401

include the driver systems (Tier 1). In benchmark publications, the load imposed by users of the Tier 1 systems
are emulated with far viewer systems than used in real life. Consequently, we only need to map Tier 2 and Tier
3 systems to our model. In TPC terminology, Tier 2 and Tier 3 systems are referred to as the System Under Test
(SUT). This is true for TPC-C and TPC-C.

Systems that implement Tier 2 and Tier 3 can be mapped directly to the compute sub-systems of our model.
The storage sub-system, which is usually connected to the database server, is mapped to the storage sub-system
of our model.

4 Energy Consumption of Decision Support Systems

Generally, Decision Support (DS) workloads can be subcategorized into three distinct types of operations: Ini-
tial load, incremental load, and queries. They can be run in single- and multi-user modes. The single-user
mode stresses a systems ability to parallelize operations such that the answer for a given request can be obtained
in the least amount of time, as desired for overnight batch job processing. The multi-user mode stresses the
systems ability to schedule concurrent requests from multiple users to increase overall system throughput. Fur-
thermore DS workloads differ in the degree to which the queries are known in advanced (ad-hoc vs. reporting
queries). The TPC currently has one decision support benchmark, called TPC-H. It is an ad-hoc benchmark,
which executes each of the operations, initial load, incremental load, and queries in both single and multi-user
mode.

4.1 The TPC-H Benchmark

TPC-H uses a 3rd normal form schema of eight base tables, which are populated with uniform data, i.e. without
any data skew. Each TPC-H result is obtained on a database with a specific size, indicated by the scale factor
(SF). The scale factor, specified in GByte, equals the raw data outside the database. The TPC rules prohibit com-
paring benchmark results between scale factors. The primary performance metric is the composite performance
metric (QphH). It equally weights the contribution of the single-user and the multi-user runs by calculating the
geometric mean of the single- and multi-user performances. With SF being the scale factor, T(qi) the elapsed
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Figure 5: Oscillating Nature of the Resource Utilization During Decision Support Queries

time of Query i and T(ui) the elapsed time of Update Operation I , S the number of emulated users and Ts
the elapsed time of the multi user run, the single user performance PSingleUser and multi-user performances
PMultiUser are defined as follows:

PSingleUser =
3600 ∗ SF

24
√
Π22

i=1T (qi) ∗Π2
i=1T (ui)

PMultiUser =
22 ∗ S ∗ 3600 ∗ SF

Ts

PComposite =
√
PSingleUser ∗ PMultiUser

TPC-H 3rd Normal Form allows query execution of various execution paths. They are often dominated by
large hash or sort-merge joins, but conventional index driven joins are also common. Large aggregations, which
often include large sort operations, are widespread. This diversity imposes challenges both on hardware and
software systems. High sequential I/O-throughput of large I/O operations is critical to excel in large hash-join
operations. At the same time, index driven queries stress the I/O sub-systems ability to perform small random
I/O operations. Due to the complex nature of the TPC-H queries, not all system resources, e.g. I/O, CPU,
and Memory, are exhausted at any given point during query execution of the single user test. For instance, a
hash join is typically CPU bound during the build phase of its hash table and, usually, I/O bound during its
probe phase. Consequently, a system consumes more power in the storage sub-system during some time of
the single user test and more CPU power during other times of the single user test. However, the magnitude
of oscillating resources is alleviated during the multi-user mode because operations across users are usually
not synchronized and, therefore, resource consumptions of concurrent queries do not align. For instance when
multiple user issue queries performing hash-join operations one query might be in the build phase while another
query is in the probe phase. Figure 5 shows the resource consumption of processor (CPU), I/O throughput and
memory during a multi-user execution of typical decision support queries of 8 concurrent users. The CPU, I/O
and memory resources are normalized by percent of their theoretical maximum value that can be achieved in
this configuration. The graphs show that on average each resource is utilized about 80 percent.
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Figure 6: Typical TPC-H Configuration (source: TPC-H Specification 2.13.0)

4.2 Typical TPC-H Systems

The TPC-H specification allows two types of configurations, a host-based configuration in which the query
execution and database access happens on the same system and a client/server configuration in which the query
execution and database access happen on two systems that are connected via a network.

Figure 6 illustrates these two options. Figure 6a depicts the host-based solution and Figure 6b depicts the
client/server solution. In both figures the driver is shown in the shaded area. The System Under Test (SUT)
consists of the following components:

• The host and server systems (hardware and software)

• Client processing units

• Communication systems (hardware and software)

• Data storage

4.3 Power Consumption Model TPC-H

TPC-H fulfills both requirements of the power estimation model. The multi-user test of TPC-H is in a steady
state. As shown in Figure 4 resources in a typical TPC-H system are used about 80 percent during the entire
measurement interval. Additionally, as with TPC-C and TPC-E benchmark publications, the business objective
of a TPC-H benchmark publication is to demonstrate performance and price-performance. Therefore, TPC-H
systems are very well balanced.

Our generalized power estimation model can be used for both, the host-based and the client/server solutions
of TPC H. For the host-based solution we only need to account for one compute systems, or multiple compute
subsystems in case of clustered solutions, and one storage subsystems. In case of a client/server based solution,
we have to distinguish between compute notes for the clients and server plus the storage subsystem.
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Result [26] [25] [24]
Measured tpmC 1,807,347 290,040 1,193,472
Measured Watts per ktpmC 2.46 4.22 5.93
Measured Power [W] 4,441.0 1,223.9 7,077.0
Estimated Power [W] 4,356.3 1,137.4 7,412.7
Total Difference [W] -84.7 -86.5 335.7
Relative Difference [%] -1.9 -7.1 4.7

Table 6: Power Consumption: Measured vs. Estimated values. Watts per ktpmC is a metric required by TPC-
Energy. It shows how much energy is needed to run 1000 TPC-C transactions.

Result [28] [27]
Measured tpsE 2,001.12 1,400.14
Measured Watts per tpsE 5.84 6.72
Measured Power [W] 11683 9403
Estimated Power [W] 12065.7 9414.5
Total Difference [W] 382.7 11.5
Relative Difference [%] 3.3 0.1

Table 7: Power Consumption: Measured vs Estimated Values

5 Verification of Analytical Power Consumption Models With Fully Config-
ured TPC-C/E and H Systems

The analytical power consumption models are verified against all TPC benchmark publications with energy
metrics as of 1/21/2011: three TPC-C results, [26], [25], and [24], two TPC-E results, [28] and [27], and four
TPC-H, [32],[33],[31] and [34]. Tables 6, 7 and 8 summarize the measured and reported power consumption of
the entire SUT of the above nine TPC publications. Details of each benchmark configuration are summarized
below.

The benchmark configuration of result [26] achieves 1,807,347 tpmC with one database server, populated
with four Intel Xeon X7560 processors, 64 16 GByte memory modules, four internal disk drives, 18 disk en-
closures with a total of 132 disk drives and 256 SSDs. The middle tier consists of four servers, each with two
Intel Xeon X5670 processors, twelve 2 GByte memory modules and two internal disk drives. The benchmark
configuration of result [25] achieves 290,040 tpmC with one database server, populated with one Intel Xeon
X5650 processors, 16 16 GByte memory modules, 16 internal SSDs, three disk enclosures with a total of 25
disk drives and eight SSDs. The middle tier consists of three servers, each with one Intel Xeon E5506 proces-
sors, two 1 GByte memory modules and one internal disk drive. The benchmark configuration of result [24]
achieves 1,193,472 tpmC with one database server, populated with two AMD Opteron 6167 SE processors, 16
16GByte and 32 8 GByte memory modules, two internal disk drives, 13 disk enclosures with a total of 166 disk
drives and 120 SSDs. The middle tier consists of 24 servers, each with one Intel Xeon E5530 processors, two 1
GByte memory modules and 1 internal disk drive.

Each result uses a combination of rotational storage devices and SSD devices in their storage sub-system.
Interestingly, although result [25] uses the least number of rotational devices compared to the others, it is not the
most energy efficient result. Result [26], which is the most energy effective system with 2.46 Watts per ktpmC,
uses 132 rotational devices, more than 5 times the number of rotational devices of result [25].

The power consumptions calculated with the power estimation model for TPC-C are within -7.1 % to 4.7 %
of the reported power numbers.

The benchmark configuration of result [28] achieves 2,001.12 ptsE with one database server populated with
four Intel Xeon X7560 processors, 64 16 GByte memory modules, four internal disk drives, 40 disk enclosures
with a total of 990 disk drives. The middle tier consists of four servers, each with one Intel Xeon X5420

46



Result [32] [33] [31] [34]
SF=100 SF=100 SF=300 SF=300

QphH 73,975 71,438 107,561 121,346
Watts per QphH 5.93 6.48 9.58 10.33
Measured Power [W] 438 463 1031 1254
Estimated Power [W] 476.9 514.72 992.7 1141.8
Total Difference [W] 38.9 51.7 -38.3 -112.2
Relative Difference [%] 8.9 11.2 -3.7 -8.9

Table 8: TPC-H Power Consumption: Measured vs Estimated Values

processors, 12 x 2 GByte memory modules and four internal disk drives. The benchmark configuration of result
[27] achieves 1,400.14 tpsE with one database server, populated with two AMD Opteron 6167 SE processors,
32 8 GByte memory modules, two internal disk drives, 28 disk enclosures with a total of 700 disk drives. The
middle tier consists of four servers, each with one Intel Xeon E5420 processors, two 1 GByte memory modules
and four disk drives. Result [28], which uses about 20 percent more energy (2280 Watts) than Result [27], is
more energy efficient, because it achieves about 30 percent higher performance. Hence, its Watts per transaction
metric is 0.88 Watts less. Overall the estimated power is very close compared to the measured power. Result
[28] is 3.3 percent off (382.7 Watt), while Result [27] is 0.1 percent off (11.5).

For TPC-H we have the most number of published results available, namely four. The benchmark config-
uration of result [32] achieves 74,975 QphH with one database server populated with two Intel Xeon X5680
processors, 12 x 16 GByte memory modules, two internal disk drives and four SSDs. The benchmark config-
uration of result [33] consists of a database server populated with two AMD Opteron 6167 SE processors, 24
8 GByte memory modules three internal disk drives and four SSDs. It achieves 71,438 QphH. The benchmark
configuration of result [31] achieves 107,561 QphH with one database server populated with four AMD Opteron
6167 SE processors, 16 16 GByte and 32 8 GByte memory modules, ten internal disk drives, and four PCI based
flash devices. The benchmark configuration of result [34] achieves 121,346 QphH with one database server pop-
ulated with four Intel X5670 processors, 16 16GByte and 48 8 GByte memory modules and eight internal disk
drives. Even for TPC-H the power estimations are very close to the measured values. The relative difference
ranges between -8.9 and 11.2 percent (-112.2 Watts to 38.9 Watts). The relative error margins for TPC-H seem
to be higher compared to those of TPC-C and TPC-E. However, the TPC-H systems are far small compared to
those of TPC-C and TPC-E. In most cases they are 10 times larger. Looking at the absolute difference rather
than the relative difference the estimates of the TPC-H systems are small compared to those of the TPC-C and
TPC-E systems. The estimates of TPC-C and TPC-E systems are between -86.5 and 382.7 Watts off while the
estimates of the TPC-H systems are only -112.2 to 51.7 Watts off.

6 Conclusion

Historically vendors have optimized computer systems for performance and cost of ownership to be competitive
in the market place. The TPC benchmarks have played a vital role by providing architecture and platform neutral
metric and methodologies to measure these aspects. Recently announced TPC-Energy benchmark specification
enables measurement and reporting of energy impact of performance and cost. While this new specification is
expected to take several years to mature with publications across vendors and platform, we believe that analytical
power estimation models based on nameplate data, presented in this paper are a useful tool for estimating and
sizing TPC configurations and similar enterprise database systems.

As shown in 6 and 7 the power consumption estimates for OLTP benchmarks (TPC-C and TPC-E) are within
10 % of actual published numbers. For larger configurations, i.e. larger than 4kW peak power consumption,
estimates are within 5 %. Power consumption estimates for TPC-H benchmarks are within 10 % of their mea-
sured power consumption, accept for one result (result [33]), which is 11.2 % larger than its measured power
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consumption (8). The authors believe that estimates within 10 % of actual power consumption meet most esti-
mation requirements. The authors plan to keep a close eye of future benchmark publications and enhance the
estimation model.
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federal state of Lower Saxony (Niedersachsen), Germany. Hannover is known as a trade fair city (e.g. CeBIT) but also 

for their Royal Gardens of Herrenhausen and many other places of interest.  

 

For more information please regular visit the conference web site: 

http://www.icde2011.org/ 
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