
An Overview of the CareDB Context and Preference-Aware
Database System

Justin J. Levandoski Mohamed E. Khalefa Mohamed F. Mokbel

Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN
{justin,khalefa,mokbel}@cs.umn.edu

Abstract

This article provides an overview of the CareDB context and preference-aware database system. CareDB
provides efficient and scalable personalized query answers to users based on their preferences and cur-
rent surrounding context. CareDB moves beyond the rigid query processing semantics of traditional
relational database systems, which employ a boolean “all or nothing” query model, and addresses sup-
port for ”preference-aware” query processing methods. Specifically, CareDB supports a plethora of
multi-objective preference methods capable of finding the “best alternatives” according to users’ given
preference objectives. This article describes the architecture of the CareDB system and describes the
details for three of its novel query processing characteristics: (1) a generic and extensible preference-
aware query processing engine, (2) a framework to gracefully handle contextual attributes that are
expensive to retrieve, and (3) a framework to efficiently process queries over uncertain contextual data.

1 Introduction

Currently, database systems are extremely rigid: a user submits a query with a set of constraints to the database,
and the system returns a set of answers that are exact matches for the constraints. In the worst case, the database
may return no answers if the given constraints are too restrictive. For many application scenarios (e.g., location-
based services, point-of-interest finders), users want from the database only a few “best” answers according to
their personal preferences and context (e.g., location, weather). For instance, when searching for a restaurant, a
user may want the database to return only five restaurants that present the best trade-off between minimizing the
price and travel time to the restaurant, while maximizing the restaurant rating.

In the database literature, a number of multi-objective preference methods have been proposed that are capa-
ble of evaluating a set of user preference constraints. Examples of these methods include top-k [5], skylines [2],
hybrid multi-object methods [1], k-dominance [3], k-frequency [4], and top-k dominance [13]. In general, the
point of proposing new preference methods is to challenge the notion of “best” answers. Given the large number
of preference methods already proposed, and likely to be created in the future, a fundamental research issue has
become how to embed the semantics of each preference method within a database management system that may
execute arbitrary queries composed of relational operators (e.g., selection, joins).

Copyright 2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

41

Another important consideration is how to integrate dynamic contextual data into preference query pro-
cessing. Contextual data refers to any interesting data about the user or her environment that can help refine
a preference answer. Currently, such data is readily available through third-party web services. For instance,
when searching for restaurants, a user may want to take into account travel time (e.g., using the Bing Maps web
service) or restaurant reviews (e.g., using the Yelp web service). While useful, this contextual data poses two
main problems when integrated with preference query processing: (1) the contextual attributes are expensive to
derive relative to static data stored locally in a database (e.g., retrieved from a third party over a network) and
(2) contextual data may contain uncertainty (e.g., restaurant prices reported as a range).

Toward the goal of embedding support for context and preference within a DBMS, this article describes
CareDB: a context and preference-aware database system. CareDB addressees two fundamental core sys-
tems challenges: (1) support for various multi-objective preference evaluation methods (e.g., skyline, top-k,
k-dominance) within the query processor and (2) integration of surrounding contextual data (e.g., current traffic,
weather) within the query processing, calling for support for gracefully handling expensive attributes and uncer-
tain data. CareDB is a complete database system, meaning all ideas discussed in this article have been realized
and experimentally evaluated in the PostgreSQL [12] open-source database system.

In the rest of this article, we describe how CareDB addresses the core systems research challenges behind
embedding context and preference within the database query processor. Section 2 provides an overview of the
CareDB architecture. Section 3 describes the novel technical features of CareDB. Finally, Section 4 describes a
CareDB prototype.

2 CareDB Overview

This section provides an overview of the CareDB context and preference-aware database system, depicted in
Figure 1.

User

Result

Data Sources

CareDB

Building

Preference− and

and Optimization

.
.
.
.

Query Processing

. . . .

. . . .

. . . .

. . . .

.
.
.
.

Queries

Query

DB−specific

. . . .

m
Data

2
Data

1
Data

Query

Context

Context−Aware

n
User

2
User

1
User

and Context

User Preferences
Environmental

Context

Figure 1: CareDB Architecture

Input. Besides queries expressed in SQL, CareDB
takes preference and contextual data as input. Prefer-
ences are specified by a user and stored in a profile. In
CareDB, a single user preference maps to single data at-
tribute. The structure of a preference is (Attribute,
Preference, [Value]), where attribute is a sin-
gle data attribute, preference describes a user “wish”
for that attribute, and value (numeric, categorical, or
boolean) is optional determined by the type of prefer-
ence. Preferences for a user are stored in their preference
profile. The available preferences are based on the the-
oretical foundation of PreferenceSQL [8]. Preferences

can be hard (e.g., equals) or soft (e.g., highest, lowest), and specified over numeric or categorical attributes.
Furthermore, the user may specify a ranking function (either user-defined or built-in) over multiple attributes in
order to perform top-k preference evaluation.

In addition, CareDB has three input context types, each context can be either static (rarely changed) or
dynamic (frequently changing). (1) User context. User context is any extra information about a user. Examples
of static user context data include income, profession, and age while dynamic attributes include current user
location or status (e.g., “at home”, “in meeting”). (2) Database context. Database context refers to data sources
(e.g., restaurant, hotel, and taxi databases) that are registered with CareDB, representing data in the domain a
user wishes to query. As an example, for a restaurant database, static context data includes price, rating, and
operating hours while dynamic context includes current waiting time. (3) Environment context. Environment
context is any information about the user’s surrounding environment, assumed to be stored at a third party and

42

consulted by the query processor. A dynamic environmental context includes road traffic, while a relatively
static context includes weather information.

Query Building Module and Preference Queries. The purpose of the query building module (rounded
square in Figure 1) is to personalize queries for each user such that the best answers are returned. The user
submits simple SQL queries without constraints (e.g., “Find me a restaurant”). The query building module
creates preference queries by augmenting the submitted query with the preference constraints stored in the
user’s preference profile. Preference queries contain traditional relational constraints (e.g., selection conditions),
as well as new preference constraints added to a preferring clause. In general, hard preference constraints are
added to the where clause while soft preference constraints are specified in the preferring clause. Meanwhile, a
using clause specifies what preference method will be used to evaluate the preference constraints to produce an
answer. An example preference query for restaurants is given in Figure 2 that employs the skyline method in the
using clause to produce a preference answer.

Context

Catalog

User Query: “Find me a Restaurant”

SELECT R.Name, R.Location

FROM Restaurant

Query Building

User Preference Profile

Attr Pref [Val]

Rating Highest

Groups Equals “Yes”

Travel Time Lowest

Price Lowest

SELECT R.Name, R.Location

FROM Restaurant R, Review RV

WHERE R.id=RV.id AND R.Groups = “Yes”

PREFERRING R.Price d1, RV.Rating d1

 TravelFn(R.Location, User_Location,

 Road_Network, Traffic) d3

USING Skyline Min d1, Min d2, Min d3

Figure 2: Preference queries in CareDB

Query Processor. The preference and context-
aware query processing and optimization engine
is responsible for executing preference queries in
CareDB. The main novelty of CareDB lies in this
query processing engine. The main responsibilities
of this module are as follows. (1) Embed various
types of preference-aware query processing within a
relational database engine. Specifically, we aim to
support various types of multi-objective preference
methods, e.g., skylines [2], k-dominance [3], top-k
dominance [13]. Each method accepts preference ob-
jectives like those specified in the preferring clause of

the query in Figure 2. However, given the same constraints, each method may produce a different preference
answer for a given data set. (2) Support the integration of context-aware query processing. Contextual data (e.g.,
traffic and weather information) is assumed to be retrieved from a third-party source and expensive to derive
relative to data stored locally in the database. (3) Support preference and context-aware query evaluation that
involves uncertain data.

3 CareDB Technical Features

A distinguishing feature of CareDB is its integration of preference and context concepts inside the database
query processor. In this section, we describe the details of three novel systems features of CareDB: (1) FlexPref:
the generic and extensible preference query processing engine of CareDB that includes an efficient preference-
aware join operator, (2) a preference query processing framework for efficiently handling computationally-bound
contextual data, and (3) a framework for efficiently answering preference queries for uncertain data.

3.1 FlexPref: An Extensible Preference Query Processing Framework

CareDB queries can be evaluated using any number of preference methods (e.g., skyline, top-k, k-dominance)
based on the constraints given in the preferring clause. Thus, the query processor must be aware of how to
evaluate any of these methods. One approach is to create a user-defined-function that evaluates preference
on-top of a query plan. A second approach is to create a custom implementation for each preference method
that can be integrated with query operators. CareDB takes a third approach by implementing FlexPref [9], a
general and extensible framework for implementing preference evaluation methods inside the query processor.
Figure 3 relates the main idea of FlexPref. The framework is built into the PostgreSQL query processor, and

43

only FlexPref touches the query processor. Each new preference method added to the system is “plugged into”
FlexPref by registering only three functions: (1) PairwiseCompare: given two data objects P and Q, update the
score of P and return whether P or Q can never be a preferred object based on a pairwise comparison of objects.
(2) IsPreferredObject: given a data object P and a set of preferred objects S, return true if P is a preferred object
and can be added to S, false otherwise. (3) AddPreferredToSet: given a data object P and a preference set S, add
P to S and remove or rearrange objects from S, if necessary.

Figure 3: FlexPref

The main idea behind FlexPref is separation of duties. (1) The registered func-
tions, specific to each preference method, define the semantics of the preference cri-
teria. These functions define how one object is qualitatively better than the other.
These functions are not aware of the internals of the query processor. (2) The gener-
alized framework is responsible for efficient preference query processing by injecting
preference evaluation as close to the native data operators as possible (i.e., selections,
joins). The generalized framework uses the registered functions to evaluate the se-
mantics of the specific preference method. With FlexPref, a preference evaluation
method can “live” inside the query processor with minimal implementation effort
compared to a custom approach. FlexPref consists of a set of generic, extensible
relational operators. The basic idea is that each operator is written in terms of the
extensible functions. The operator implements the common query processing functionality common across all
supported multi-objective preference methods. During query runtime, the appropriate plugin functions for a spe-
cific preference method are used by the operators to evaluate the semantics of that method. Currently, FlexPref
consists of the following three operators.

Selection. The selection operator produces the preference answer from data stored in a single table. The ba-
sic idea of the selection operator is to implement a block-nested loop algorithm to execute single-table preference
evaluation (assuming data is not indexed). The operator compares tuples pairwise, using the plugin functions to
evaluate the specific preference semantics, and incrementally builds a preference answer set.

SELECT R.id, H.id

FROM Restaurants R, Hotels H

WHERE R.city=H.city, R.groups=”yes”

PREFERRING R.price rp, H.rating hr,

 R.rating rr

USING KFrequency min rp, max hr,

 max rr with k=2;

select
groups=yes

Preference

Join

Restaurant R

R.price, R.rating

Hotel H

H.rating

Figure 4: Preference join

Join. FlexPref integrates preference evaluation with the join operation,
resulting in an operator named PrefJoin [7, 9]. For example, the preference
query depicted in Figure 4 involves a join between the Restaurant and Review
relations, where preference evaluation is performed using attributes from both
relations. A naive method to implement a preference-aware join would be
join all necessary data and perform preference evaluation afterward. PrefJoin
improves upon this naive strategy by using the extensible plugin functions to
prune tuples before the join that have no chance of contributing to the final
preference answer. The PrefJoin algorithm consists of four phases, namely,
local pruning, metadata preparation, join, and refinement. The local pruning
phase filters out, from each input relation those tuples that are guaranteed not
to be in the final preference set. The metadata preparation phase associates
metadata with each remaining tuple used to optimize the join. The join phase
uses the metadata to decide on which tuples should be joined together. Finally,
the refinement phase finds the final preference set from the output of the join

phase. These steps enhance join performance as joins are usually non-reductive, thus pruning tuples early
reduces the output of the join, which in turn means less data must be processed in subsequent operations after
the join.

3.2 Query Processing with Expensive Contextual Data

In CareDB, it is assumed that some attribute values will be expensive to derive, as the derived value may require
extensive computations (e.g., road network travel time), or must be retrieved from a third party (e.g., remote web

44

service). Figure 5 gives an example query (and plan) to find a preferred restaurant using the top-k domination
method [13], where attributes price and rating are stored in a local relation, while the travel time attribute is
requested from the Microsoft MapPoint [11] web service based on the restaurant and user locations. Under
these circumstances, computational overhead is dominated by deriving the expensive travel time attribute, thus
the preference query processing operator should avoid computing these expensive attributes whenever possible.

SELECT R.id, R.Location

FROM Restaurants R,

 MapPoint M

PREFERRING R.price p, R.rating r,

 M.travelTime(R.Location,

 User.Location) t

USING TopKDomination min p, min t,

 max r with k=10;

Preference

Evaluation

Restaurant R

R.price, R.rating

M.travelTime(R.Location,

User.Location)

Figure 5: Expensive attribute query

The CareDB query processor is designed to take these challenges into
account. CareDB employs a preference evaluation operator that com-
putes the preference answer by retrieving as few expensive data attributes
as possible [10]. The main idea is to first perform preference evaluation
over local data attributes, forming a local answer set LA using “plug-in”
functions to determine the semantics of the specific preference method
used to execute the query (e.g., top-k domination). The operator then
selectively requests expensive attributes for objects in LA guaranteed to
be preference answers, and prunes objects that are guaranteed not to be
preference answers. CareDB then attempts to make the minimum num-
ber of expensive attribute requests necessary to completely and correctly
answer the preference query.

3.3 Handling Data Uncertainty in CareDB

Given the growing number of applications that generate uncertain data
(e.g., e.g., sensors, human entry errors), it is likely that some data registered with CareDB will contain uncer-
tainty. Thus, CareDB employs a query processing framework, named UPref [6], capable of answering preference
queries over data containing a mix of certain and uncertain attributes. UPref assumes uncertain attributes are
represented as a continuous range of values, common in many real-life applications (e.g., biological data, spatial
databases, sensor monitoring, and location-based services). UPref associates a probability P with each object O,
that represents the chance that P is an answer to the preference query.

Figure 6: CareDB Demo Application

To process queries, UPref assumes two system
parameters: (1) A tolerance value ∆ that specifies the
maximum error allowed in calculating probability P,
and (2) a Threshold value H, that each object proba-
bility must exceed in order to be a preference answer.
UPref employs a two-phase filter-refine approach to
processing preference queries over uncertain data.
Phase I calculates an estimated upper-bound prefer-
ence probability for each object, and filters objects
on-the-fly that have an upper-bound probability that
falls below the threshold H. Phase II computes a fi-
nal preference probability for each candidate answer
within a user-given tolerance ∆. Phase II employs
a novel, efficient probability calculation method that
performs only as much computation as is needed to
guarantee the final preference probability for an ob-
ject falls within ∆. Much like FlexPref and the ex-
pensive attribute framework, UPref is designed to be
generic and extensible, capable of supporting many well-known preference methods within a single framework.

45

4 CareDB Prototype

To demonstrate the usefulness and functionality of CareDB, we implemented a location-based restaurant and
hotel finding application using the Google Maps API, depicted in Figure 6, which interacts with the CareDB
server implemented within PostgreSQL [12]. In the application, users can set their CareDB preference profile
explicitly using a profile editor window. The editor allows the user to specify their preference objectives, as
well as the preference method used to evaluate these objectives. Since the CareDB query processing framework
(i.e., FlexPref) is generic and extensible, we provide a number of different preference methods to the user (e.g.,
skyline [2], top-k [5], top-k domination [13]). To process queries, the application forwards a simple query
to CareDB (e.g., “find me a restaurant”) where it is injected with preference and context constraints based
on the users’s preference profile. CareDB returns (1) the personalized preference SQL query that was run on
the database, which can be displayed the application using a drop-down menu, and (2) the personalized query
answers that are displayed on an embedded Google Maps interface.

References
[1] W.-T. Balke and U. Güntzer. Multi-objective Query Processing for Database Systems. In Proceedings of the Interna-

tional Conference on Very Large Data Bases, VLDB, 2004.

[2] S. Börzsönyi, D. Kossmann, and K. Stocker. The Skyline Operator. In Proceedings of the International Conference
on Data Engineering, ICDE, 2001.

[3] C.-Y. Chan, H. Jagadish, K.-L. Tan, A. K. Tung, and Z. Zhang. Finding k-Dominant Skylines in High Dimensional
Space. In Proceedings of the ACM International Conference on Management of Data, SIGMOD, 2006.

[4] C.-Y. Chan, H. Jagadish, K.-L. Tan, A. K. Tung, and Z. Zhang. On High Dimensional Skylines. In Proceedings of
the International Conference on Extending Database Technology, EDBT, 2006.

[5] S. Chaudhuri and L. Gravano. Evaluating Top-K Selection Queries. In Proceedings of the International Conference
on Very Large Data Bases, VLDB, 1999.

[6] M. E. Khalefa, M. F. Mokbel, and J. J. Levandoski. Skyline Query Processing for Uncertain Data. In Proceedings of
the International Conference on Information and Knowledge Managemen, CIKM, 2010.

[7] M. E. Khalefa, M. F. Mokbel, and J. J. Levandoski. PrefJoin: An Efficient Preference-Aware Join Operator. In
Proceedings of the International Conference on Data Engineering, ICDE, 2011.

[8] W. Kießling. Foundations of Preferences in Database Systems. In Proceedings of the International Conference on
Very Large Data Bases, VLDB, 2002.

[9] J. J. Levandoski, M. F. Mokbel, and M. E. Khalefa. FlexPref: A Framework for Extensible Preference Evaluation in
Database Systems. In Proceedings of the International Conference on Data Engineering, ICDE, 2010.

[10] J. J. Levandoski, M. F. Mokbel, and M. E. Khalefa. Preference Query Evaluation over Expensive Attributes. In
Proceedings of the International Conference on Information and Knowledge Managemen, CIKM, 2010.

[11] Microsoft MapPoint: http://www.microsoft.com/mappoint/.

[12] PostgreSQL: http://www.postgresql.org.

[13] M. L. Yiu and N. Mamoulis. Efficient Processing of Top-k Dominating Queries on Multi-Dimensional Data. In
Proceedings of the International Conference on Very Large Data Bases, VLDB, 2007.

46

