
Recommendation Projects at Yahoo!

Sihem Amer-Yahia,
Yahoo! Labs

1 Introduction

Recommendation is the task of providing content that is likely to interest users and enrich their online expe-
rience. At Yahoo!, the variety of user-facing applications and the nature and volume of data raise multiple
recommendation opportunities and challenges. In this paper, we provide a brief description of several projects
within Yahoo! Labs, in the context of Web Search (Section 2), interpreting users’ clicks and browsing behavior
(Section 3), and on the Social Web (Section 4).

2 In Web Search

2.1 Diversifying Presubmit Query Recommendations
Umut Ozertem, Emre Velipasasaoglu

Search assistance is an important feature in commercial search engines. Its two main flavors are presubmit and
postsubmit. In presubmit, the aim is to auto-complete a user’s partial query (referred to as prefix hereafter) to
save time. In postsubmit, the goal is to suggest relevant follow-up queries to a user query. Presubmit poses a
harder problem because (i) input from the user is a partially typed query and the user’s intent is not defined, (ii)
the algorithm needs to run at each character stroke, imposing a very strict computational complexity bound.

In Web search ranking, queries are associated with multiple intents, and when a user’s intent is unknown,
trading-off some relevance for result diversity is desirable [4, 6, 13, 32]. Presubmit is a clear case where intent is
not defined. Common solutions suggest the most popular queries that match a user’s prefix. However, mere fre-
quency sorting leads to many cases with low utility (see Table 1). Therefore, in order to minimize effort (number
of characters typed) before finding a useful suggestion, one needs to introduce diversity into the suggestion set.

The need for diversification has been studied in the context of query suggestion. There are two recent
publications on this topic: one based on random walks over the query-URL bipartite graph [30], the other based
on manifold ranking [38]. These methods define the diversification objective as “given a query, generate a
relevant but also diverse suggestion set”. Neither method is suitable for presubmit, where the query is yet to be
defined. Hence, we adapt the problem to our context and define it as “given a set of suggestions of size N, rerank
the suggestions such that the overall utility in top K rank is maximized for all K ≤ N .”

Diversity and relevance are conflicting objectives and optimizing both of them is known to be NP-hard. We
develop a greedy algorithm that picks the query with highest marginal utility at each step [31]. We define a query
utility as a function of the difference between its Web results and those of already presented query suggestions.
For example the queries “facebook login” and “facebook home” are recognized as low utility queries when the

Copyright 2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1



Table 1: Suggestions for prefixes faceb and well sorted by frequency and diversification

Frequency for faceb Diversification for faceb Frequency for well Diversification for well
facebook facebook wells fargo wells fargo
facebook login farmville facebook wells fargo bank wellsbutrin
facebook home facebook farm town wells fargo online tom welling
faceboklogin facebook layouts wellsbutrin wellpoint
facebook friends facebook ipo tom welling dawn wells

query “facebook” precedes them. We define a measure of utility based on a user browsing model, and estimate
the probability that each result can be examined in the search result page of the other query.

To build our model, we used 6 months of anonymized session logs of Yahoo! Search. We ignored queries
that appeared less than 3 times. The model takes about 2.7M unique queries and 55.6M unique URLs in total,
and builds a 2.7M × 2.7M query similarity matrix. We threshold this similarity matrix to construct a look-up
table of duplicate queries. The look-up table consists of 1.56M queries with 20 duplicates each on average.

We designed an A/B test to measure effectiveness. The search engine traffic is split into two groups: the
baseline (frequency sorting) and the control (greedy diversification algorithm) buckets. The user populations in
both groups are uniformly sampled and their query volumes and distributions, i.e., the proportion of navigational
and informational queries, are similar. If the greedy diversification algorithm changes the query suggestions we
record this event as an affected query. Over affected queries, we found that the average character savings
increased by 17%1, and the time it takes the user to click on a destination URL decreases one second on average.
A one-second time saving per search is considerable given the overall search volume. Over all the control bucket
traffic, the increase in latency due to the diversification algorithm is only 1%.

2.2 Entity Ranking for Web Search
Changsung Kang, Srinivas Vadrevu, Ruiqiang Zhang, Roelof van Zwol, Lluis Garcia Pueyo,
Nicolas Torzec, Jianzhang He, Yi Chang

A recent trend in Web search is to return structured entities. For example, a user looking for a movie can also see
the movie plot, genre, cast, review and show times at her location while displaying related news articles, images,
videos and tweets, wherever possible. The type of shown entities depends on the category of the query entity.
For example, for movie queries, the goal is to show both lateral information like related movies and faceted
information such as its cast.

In this work, the extraction of relevant entities relies on an Entity-Relationship knowledge base. The knowl-
edge base contains an Entity-Relationship graph where nodes are entities and their attributes, and edges are
semantic relationships among them. Our base consists of 4 million entities (100+ fine-grain entity types orga-
nized in a taxonomy) and 80 million relationship instances (hundreds of fine-grain relationship types, including
both first order and derived relations). The main domains covered include Yahoo! Movies, Yahoo! TV, Yahoo!
Music, Yahoo! Sports, Yahoo! OMG, and Yahoo! Travel. We have in the order of several hundreds facets for
popular entities, and a few dozens for infamous ones.

We build a framework that computes entity features from various sources, including search logs, Flickr tags,
and entity pairs detected in Twitter. From each source, we compute several probabilistic features that indicate the
strength of the relationship between two entities based on their co-occurrence in various sources. Examples of
features include atomic ones such as entity probability or entropy, symmetric features such as point-wise mutual
information, asymmetric features such as conditional probability, and compound features that combine multiple
ones. Two additional features are also computed from the graph: entity popularity based on a PageRank-like
approach, and shared connections that indicate relationship strength in the graph.

1Average query length is 22, average prefix length for a suggestion click decreases from 13.5 to 12 after diversification.

2



We cast entity ranking as a supervised machine learning problem [37] with the goal of predicting relevance
of the related entity to the query entity. We incorporate the categories of related entities into the loss function
and leverage related entities from different categories to improve relevance.

Two types of experiments were conducted to validate our algorithms. The first set evaluates the performance
of our approach on editorially judged entity pairs and the second aggregates user behavior on search results.
Our data set contained 6000 query entities and 33000 entity-facet pairs. In the first experiment, editors provided
a five-point relevance grade to indicate the match between a query entity and a facet entity. We showed that
we achieve high Discounted Cumulative Gain (DCG). In the second experiment, we used pair-wise accuracy
that reports how often users prefer a higher ranked entity over lower ranked entities in the related entity results.
Comparison with several click preference models such as Cumulative Relevance [18], Skip CTR [22] showed
the superiority of our Pair-wise Comparison Model. More details on this work can be found here [23].

3 Interpreting User Clicks and Browsing Behavior

3.1 Ad Recommendation using the Query-Ad Click Graph
Tasos Anastasakos

We address the sponsored search retrieval problem that is, the problem of finding and ranking relevant advertise-
ments to a search query. A text ad on a search results page, otherwise known as sponsored link, is treated as a
short document with a title, a short text and some keywords. We describe a technique to determine the relevance
of an ad document to a search query using click-through data. The method builds on a collaborative filtering
approach to discover and recommend new ads related to a query using a click graph. It is implemented on a
graph with several million edges and easily scales to larger sizes easily.

Major search engines typically see traffic that contains millions of queries and a correspondingly large
number of user-clicks on documents shown as results to those queries. While clicks are noisy due to click
fraud, accidental or exploratory clicks, and position-bias, they can often be interpreted as a weak indicator of
relevance. Several recent works have used click information to improve performance on various tasks. We
propose an algorithm that operates on a large bipartite graph of queries and documents, where an edge between
a query and a document is determined by whether users have clicked on the given document for the query. The
weight on the edge represents the strength of the association measured as a function of several user metrics
such as the number of clicks generated for the corresponding query and ad and the click-through-rate (CTR) of
the query ad pair. We apply a collaborative filtering approach to first determine query-query similarity on this
bipartite graph. Subsequently these query similarity scores are used to discover new documents that have not
been shown for a given query before [7, 8].

The click-graph is built from a portion of Yahoo!’s sponsored search traffic over a 2-week period. It contains
user queries and associated displayed and clicked ads. A typical graph consists of 27 million unique queries,
20 million unique ads and 51 million query-ad edges. The graph is regenerated every week in order to include
recent queries and recent changes in user activity. We implemented a collaborative filtering algorithm on Map-
Reduce and output a large lookup table of query-query and query-ad associations. (provide more brief details
on algorithm or it will be hard to understand why you are doing better than baselines)

We evaluated the ad recommendations from our work off-line using human annotators/editors and online
using live Web traffic to measure CTR improvements. We summarize our evaluation below.

Editorial Assessment : Query suggestions were labeled by trained editors who gave each ad a rating from 1 to
7, to reflect how strongly the ad meets the likely commercial intent or explicit need of the query. A rating
of 1 is reserved for cases where only one perfect ad matches the query (e.g., ). Ratings 2 to 7 represent a
decreasing degree of relevance.

3



Online Testing We ran our system live on a fraction (or “bucket”) of Yahoo!’s traffic. The online traffic was
divided so that a random subset of the user population (or a “bucket”) receives candidates retrieved by the
new algorithm. Our evaluation involved several millions users and collected statistics over a sufficiently
long period of time (specify the time period). The goal of the experiment was to evaluate the monetization
capability of the new algorithm using bucket testing measures [26].

We compared our algorithm to several baselines. We found 2-18% relative improvements in click rates, and
5-37% relative improvements in editorial judgments compared to the baseline.

Directions for future work include incorporating negative feedback and improving the performance for tail
queries.

3.2 User Action Interpretation for Personalized Content Optimization
Anlei Dong, Jiang Bian, Srihari Reddy

Content optimization for recommender system is known as the problem of selecting content items to present to
a user who is intent on browsing for information. Examples of content optimization are article publishing on
portal Websites [2, 1], news personalization [16, 27], recommendation of dynamically changing items (updates,
tweets, etc), and computational advertising [11, 33]. This work will address the variant that displays the best set
of trending queries from the search engine in a module on the portal Website. This application is different from
the task of query suggestion in Web search in the sense that it recommends popular queries to users from a certain
pool of globally trending queries while query suggestion suggests queries relevant to those just submitted.

We are interested in user engagement when visiting a page. Engagement means the user examined or at
least partly examined the content of a visited Web page. For example, when a user visits Yahoo! front page,
it is possible she totally ignores the displayed Trending Now module content as she may be attracted to other
modules such as the Today module, or goes to other services such as Search and E-mail. For a recommendation
module, accurate Click-Through-Rate (CTR) estimation should be based on the events where users were really
engaged, instead of all the events where the content of this module were displayed to users. We identify two
categories of events regarding user engagement: click event and non-click event. In click events, it is obvious
that the user likes the item she clicked, it also implies that other non-clicked items inside this module are not so
interesting to the user compared to the clicked item. In contrast, non-click events are less informative because
the user might not have examined the related module at all and the system cannot infer whether or not she is
interested in the items belonging to the module. In this work, we only use click events as user feedback for
online CTR estimation.

To validate our argument, we conduct experiments on real data from Trending Now on Yahoo! homepage.
All data is anonymized in accordance with Yahoo!’s policy. We collected events in terms of views and clicks
from a random learning bucket ([15]) during ten days from November 30th, 2010 to December 9th, 2010. This
resulted in hundreds of millions of events with many millions unique users. Queries are randomly and displayed
to users. An event records a user’s action on the served queries on Trending Now (“view” is encoded as -1,
“click” as 1). Specifically, we represent each event e as a set of tuples:

e = ⟨u, t, p, qp, a⟩, p = 1, 2, . . . , 10

where u denotes the user, t represents the time stamp for this event, q is the served query, p is the position at
which q is displayed (there are totally ten positions on Trending Now), a is either view or click.

Users are assigned to groups according to a segmentation model. In this model, the system serves users in
a group with models updated using feedback from users belonging to the group. User grouping is determined
based on their demographics (e.g., age, gender) and other behavior and preference features [15]. To evaluate the
recommendation model for Trending Now, we use the model to predict ranking scores for all candidate queries at
a certain time stamp of each event, and rank them in descending order. For click events, we measure the ranking

4



position of the query that has actually been clicked by the user. More formally, for those clicks that actually
happened at Position 1, we define precisioni as the number of these clicks whose corresponding clicked items
are ranked at Position up to i by the prediction of the model. This evaluation metrics has been proved to be
unbiased towards online result [28].

We compare the modeling results using both all events and click events, where the model using all events
is the baseline model. We observe from Table 2 that only using click events can significantly improve CTR
estimation.

Table 2: Relative precision gain when training using click events over training on all events
Model prec1 prec2 prec3 prec4 prec10

Use click events 11.11% 7.05% 8.22% 7.70% 6.67%

Much research on user action interpretation has been conducted in the context of Web search. In particular,
online user behavior modeling has been attracting much attention in recent years. Some work uncovered user
behavior models based on controlled user studies [21, 35], while other studies focused on large-scale log analy-
sis [36, 17]. Recently, some research [20, 19] has used eye-tracking studies to understand in detail how searchers
examine search results, meanwhile dwell time interpretation has also attracted significant attention [25, 24] and
has been extensively used for various information retrieval tasks [12, 29, 3]. However, user action interpretation
has not been paid much attention in the studies of content optimization. Our work proposes to take deep anal-
ysis on user action interpretation in recommender system. In particular, we leverage user behavior information
to sample training examples in order to remove those with little benefit for learning the model. To our best
knowledge, none previous work has studied interpreting user actions in the context of content optimization.

4 On the Social Web

4.1 Recommending Travel Itineraries from Flickr Photos
Sihem Amer-Yahia, Nadav Golbandi, Ronny Lempel

Vacation planning is one of the frequent—but nonetheless laborious—tasks that people engage themselves
with online; requiring skilled interaction with a multitude of resources. This paper constructs intra-city travel
itineraries automatically by tapping a latent source reflecting geo-temporal breadcrumbs left by millions of
tourists. For example, the popular rich media sharing site, Flickr, allows photos to be stamped by the time of
when they were taken and be mapped to Points Of Interests (POIs) by geographical (i.e. latitude-longitude) and
semantic (e.g., tags) metadata.

Leveraging this information, we construct itineraries following a two-step approach. Given a city, we first
extract photo streams of individual users. Each photo stream provides estimates on where the user was, how
long he stayed at each place, and what was the transit time between places. In the second step, we aggregate all
user photo streams into a POI graph. Itineraries are then automatically constructed from the graph based on the
popularity of the POIs and subject to the user’s time and destination constraints [14].

We evaluated our approach by constructing itineraries for several major cities and comparing them, through
a “crowd-sourcing” marketplace (Amazon Mechanical Turk), against itineraries constructed from popular bus
tours that are professionally generated. Our extensive survey-based user studies over about 450 workers on AMT
indicate that high quality itineraries can be automatically constructed from Flickr data.

This work is being integrated into Yahoo! Travel for suggesting intra-city itineraries of different time lengths.
In particular, it is leveraged on mobile devices forinteractive itinerary planning as in [34].

5



4.2 Centralized and Distributed Query Personalization on Delicious
Sihem Amer-Yahia, Xiao Bai

Collaborative tagging systems represent huge mines of information. Yet, exploring these mines is challenging
because of the unstructured nature of tagging and the lack of any fixed ontology. An appealing way to reduce the
exploration space in collaborative tagging systems is to personalize the search by exploiting information from
the social acquaintances of the seeker, typically users that exhibit similar tagging behaviors.

Given a user and a so-called user’s network, composed of her social acquaintances, the relevance of an item
to the user’s query is a function of its popularity in that network, weighted by social distance. This challenge has
been explored in both centralized and peer-to-peer environments. In [5], it was shown that scalable and efficient
network-aware search must leverage user behavior to balance storage volume and response time. While search
over information popular in a seeker’s network can be achieved efficiently with straightforward adaptations of
well-known algorithms, the storage volume of indexing every (seeker, keyword) pair, is daunting. Two space-
saving solutions were explored: network clustering and behavior clustering.

In a centralized environment, it is expensive to maintain the inverted lists up-to-date in highly dynamic
collaborative tagging systems where users frequently change their profiles by tagging new items. One possibility
to circumvent this problem and improve the scalability is to personalize the search in a decentralized way.
Besides being scalable and able to cope with dynamics, decentralized solutions inherently circumvent the danger
of central authorities abusing the information at their disposal.

A natural, fully decentralized solution would consist for each user in a peer-to-peer system to locally store
and maintain her network, enabling thereby efficient top-k query processing. The experiment on a 10,000-user
delicious trace [9] confirms that the same result quality and query response time, as the most time efficient
but storage consuming centralized approach, can be achieved with 0.011% of the total data stored at each user.
Storage is no longer a severe issue in a decentralized setting. Yet, this requires each user to store all the profiles
of her social acquaintances: these would then be massively replicated and hence hard to maintain. At the other
extreme, a storage-effective strategy would consist for each user to store and maintain only her own profile and
seek other profiles whenever a query is to be processed. Clearly, this optimizes the storage and maintenance
issues but might induce a large number of messages and a large latency if profiles of acquaintances are to be
consulted at query time. In addition, the profiles of temporarily disconnected users would be unavailable which,
in turn, might significantly hamper the accuracy of the query processing.

A pragmatic solution [10], which we call P3Q (Peer-to-Peer Personalized Query processing), is a bimodal,
gossip-based protocol to personalize the query processing in peer-to-peer systems. Users in P3Q periodically
maintain their networks of social acquaintances by gossiping among each other and computing the proximity
between tagging profiles. Each user maintains her network, namely a set of IDs of her social acquaintances. A
user however only locally stores a limited subset of profiles, according to her storage capability. This removes
on the one hand the bottleneck of a central server when the system keeps growing, and avoids on the other hand
burdening any individual user in terms of storage. The maintenance of the network is performed in a lazy gossip
mode, at a fairly low frequency to avoid overloading the network.

The querying scheme itself is based on an eager mode of the gossip protocol, i.e., with an increased fre-
quency, and is biased towards social acquaintances. Each query is first computed locally by the querier, based
on the set of stored profiles, providing an immediate partial result. Then the query, together with the list of
profiles needed to compute it, is gossiped and computed collaboratively. The results are iteratively refined ac-
cordingly. Gossiping the query avoids saturating the network by contacting all the users in the personal network
at the same time, and refreshes the part of the network originating from the querier, generating a specific wave
of refreshments in the personalization process.

The analysis shows that the storage at each user only depends on her storage capability and does not increase
with the system scale. The query processing time in gossip cycles can be approximated with O(log2L), where
L is the number of profiles in a user’s network that contribute to the query processing but are not stored by

6



her. The experimental evaluation in a 10,000-user delicious trace confirms the scalability of P3Q: even if each
user stores only 10 profiles out of thousands of social acquaintances in her network, corresponding to 12.5M
bytes without any compression technique, the top-k queries can be accurately satisfied within 10 gossip cycles.
Running the lazy mode every minute, even if all users simultaneously change their profiles, in half an hour, 95%
of the stored profiles are updated, ensuring the freshness of the query results. Meanwhile, P3Q incurs acceptable
overload in terms of bandwidth consumption: 13.4 Kbps are sufficient for maintaining the network and 91 Kbps
are sufficient to compute a query. More adequate bandwidth, allowing both modes to run in higher frequency,
would significantly decrease the network maintenance time as well as the query processing time.

References
[1] D. Agarwal, B.-C. Chen, and P. Elango. Fast online learning through offline initialization for time-sensitive recom-

mendation. In Proc. of KDD, 2010.

[2] D. Agarwal, B.-C. Chen, P. Elango, N. Motgi, S.-T. Park, R. Ramakrishnan, S. Roy, and J. Zachariah. Online models
for content optimization. In NIPS, 2008.

[3] E. Agichtein, E. Brill, and S. Dumais. Improving web search ranking by incorporating user behavior information. In
Proc. of SIGIR, 2006.

[4] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying search results. In WSDM ’09, pages 5–14, New
York, NY, USA, 2009. ACM.

[5] S. Amer-Yahia, M. Benedikt, L. V. S. Lakshmanan, and J. Stoyanovich. Efficient network aware search in collabora-
tive tagging sites. PVLDB, 1(1):710–721, 2008.

[6] A. Anagnostopoulos, A. Z. Broder, and D. Carmel. Sampling search-engine results. In WWW ’05, pages 245–256,
New York, NY, USA, 2005. ACM.

[7] T. Anastasakos, D. Hillard, S. Kshetramade, and H. Raghavan. A collaborative filtering approach to ad recommen-
dation using the query-ad click graph. In CIKM ’09: Proceeding of the 18th ACM Conference on Information and
Knowledge Management, pages 1927–1930, New York, NY, USA, 2009. ACM.

[8] T. Anastasakos, D. Hillard, S. Kshetramade, and H. Raghavan. A collaborative filtering approach to sponsored search.
Technical Report YL-2009-006, Yahoo! Labs, Aug 2009.

[9] X. Bai, M. Bertier, R. Guerraoui, and A.-M. Kermarrec. Toward personalized peer-to-peer top-k pprocessing. In
Workshop on Social Network Systems (SNS), 2009.

[10] X. Bai, M. Bertier, R. Guerraoui, A.-M. Kermarrec, and V. Leroy. Gossiping personalized queries. In I. Manolescu,
S. Spaccapietra, J. Teubner, M. Kitsuregawa, A. Léger, F. Naumann, A. Ailamaki, and F. Özcan, editors, EDBT,
volume 426 of ACM International Conference Proceeding Series, pages 87–98. ACM, 2010.

[11] A. Broder. Computational advertising and recommender systems. In Proc. of the 2nd ACM International Conference
on Recommender Systems (RecSys), 2008.

[12] G. Buscher, L. van Elst, and A. Dengel. Segmentation-level display time as implicit feedback: a comparison to eye
tracking. In Proc. of SIGIR, 2009.

[13] J. Carbonell and J. Goldstein. The use of mmr, diversity-based reranking for reordering documents and producing
summaries. In SIGIR ’98, pages 335–336, New York, NY, USA, 1998. ACM.

[14] M. D. Choudhury, M. Feldman, S. Amer-Yahia, N. Golbandi, R. Lempel, and C. Yu. Automatic construction of travel
itineraries using social breadcrumbs. In 21st ACM Conference on Hypertext and Hypermedia (HT), 2010.

[15] W. Chu, S. T. Park, T. Beaupre, N. Motgi, and A. Phadke. A case study of behavior-driven conjoint analysis on
yahoo! front page today module. In Proc. of KDD, 2009.

[16] A. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: scalable online collaborative filtering. In
Proc. of the 16th International World Wide Web Conference (WWW), 2007.

7



[17] D. Downey, S. Dumais, D. Liebling, and E. Horvitz. Understanding the relationship between searchers’ queries and
information goals. In Proc. of CIKM, 2008.

[18] G. Dupret and C. Liao. Cumulated relevance: A model to estimate intrinsic document relevance from the clickthrough
logs of a web search engine. In Proceedings of the third International ACM Conference on Web Search and Data
Mining (WSDM), 2010.

[19] L. A. Granka, T. Joachims, and G. Gay. Eye-tracking analysis of user behavior in www search. In Proc. of SIGIR,
2004.

[20] Z. Guan and E. Cutrell. An eye tracking study of the effect of target rank on web search. In Proc. of CHI, 2007.

[21] T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. Accurately interpreting clickthrough data as implicit
feedback. In Proc. of SIGIR, 2005.

[22] T. Joachims, L. Granka, B. Pan, H. Hembrooke, F. Radlinski, and G. Gay. Evaluating the accuracy of implicit
feedback from clicks and query reformulations in web search. ACM Transactions on Information Systems (TOIS),
25(2), 2007.

[23] C. Kang, S. Vadrevu, R. Zhang, R. van Zwol, L. G. Pueyo, N. Torzec, J. He, and Y. Chang. Ranking related entities
for web search queries. In S. Srinivasan, K. Ramamritham, A. Kumar, M. P. Ravindra, E. Bertino, and R. Kumar,
editors, WWW (Companion Volume), pages 67–68. ACM, 2011.

[24] D. Kelly and N. J. Belkin. Reading time, scrolling and interaction: exploring implicit sources of user preferences for
relevance feedback. In Proc. of SIGIR, 2001.

[25] D. Kelly and N. J. Belkin. Display time as implicit feedback: understanding task effects. In Proc. of SIGIR, 2004.

[26] R. Kohavi, R. M. Henne, and D. Sommerfield. Practical guide to controlled experiments on the web: listen to your
customers not to the hippo. In KDD, pages 959–967, 2007.

[27] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized news article recom-
mendation. In Proc. of the 19th International World Wide Web Conference (WWW), 2010.

[28] L. Li, W. Chu, J. Langford, and X. Wang. Unbiased offline evaluation of contextual-bandit-based news article
recommendation algorithms. In Proc. of WSDM, 2011.

[29] C. Liu, R. W. White, and S. Dumais. Understanding web browsing behaviors through weibull analysis of dwell time.
In Proc. of SIGIR, 2010.

[30] H. Ma, M. R. Lyu, and I. King. Diversifying query suggestion results. In M. Fox and D. Poole, editors, AAAI ’10.
AAAI Press, 2010.

[31] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing submodular set
functions. i. Math. Programming, 14(3):265–294, 1978.

[32] F. Radlinski and S. Dumais. Improving personalized web search using result diversification. In SIGIR ’06, pages
691–692, New York, NY, USA, 2006. ACM.

[33] M. Richardson, E. Dominowska, and R. Ragno. Predicting clicks: estimating the click-through rate for new ads. In
Proc. of the 16th International World Wide Web Conference (WWW), 2007.

[34] S. B. Roy, G. Das, S. Amer-Yahia, and C. Yu. Interactive itinerary planning. In ICDE, 2011.

[35] J. Teevan, C. Alvarado, M. S. Ackerman, and D. R. Karger. The perfect search engine is not enough: a study of
orienteering behavior in directed search. In Proc. of CHI, 2004.

[36] R. W. White and S. M. Drucker. Investigating behavioral variability in web search. In Proc. of WWW, 2007.

[37] Z. Zheng, H. Zha, T. Zhang, O. Chapelle, K. Chen, and G. Sun. A general boosting method and its application
to learning ranking functions for web search. In Advances in Neural Information Processing Systems 20, pages
1697–1704. MIT Press, 2008.

[38] X. Zhu, J. Guo, and X. Cheng. Recommending diverse and relevant queries with a manifold ranking based approach.
In SIGIR ’10 Workshop on Query Representation and Understanding, 2010.

8


