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1 Introduction

Spurred by the advances in collaborative filtering, by applications that form the core business of companies such
as Amazon and Netflix, and indeed by incentives such as the famous Netflix Prize, research on recommender
systems has become quite mature and sophisticated algorithms that enjoy high prediction accuracy have been
developed [1]. Most of this research has been concerned with what we regard as first generation recommender
systems. Ever since the database community got interested in recommender systems, people have begun asking
questions related to functionality. This includes developing flexible recommender systems which can efficiently
compute top-k items within their framework [18] and using recommender systems to design packages subject
to user specified constraints [11].

Significant effort has been dedicated to improving accuracy of recommendations. Many of the recommen-
dation algorithms, while highly accurate, have scalability issues. The number of items managed by modern
information systems is growing rapidly. Therefore, scalability is one of the serious issues for future generation
recommender systems. Recommendation methods try to capture personalized patterns in user feedback data by
making assumptions and keeping dense summaries of data. User feedback is typically represented in the form
of a sparse matrix that stores existing ratings of users on items. There are two groups of methods — model-
based and memory-based [1]. Model-based methods assume there is a lower dimensional underlying parametric
model that has generated the ratings matrix. These methods aim at finding optimal parameter values for the
model, given the observed data. Memory-based methods, on the other hand, calculate similarities between users
or items and use these similarities for aggregating existing ratings and predicting unknown ratings. Thus, any
item recommendation process has two steps: (1) an off-line training phase that captures personalized profiles
(either as a model or as a similarity matrix); (2) an online recommendation generation process that uses the latest
up-to-date model or similarity matrix to return top-k recommendations for a user. Any approach for improving
scalability of item recommendation needs to pay attention to both profile building and recommendation gener-
ation. In section 2, we show how better scalability can be achieved in both aspects for one of the most popular
and practical recommendation algorithms.

In addition to efficiency and scalability, an important limitation of classical recommender systems is that they
only provide recommendations consisting of single items, e.g., books or DVDs. It has been recognized several
applications call for composite recommendations consisting of sets, lists or other collections. For example, in
trip planning, a user is interested in suggestions for a set of places to visit, or points of interest (POI). If the
recommender system only provides a ranked list of POIs, the user has to manually figure out the most suitable
set of POIs, which is often non-trivial as there may be a cost to visiting each place (time, price, etc.), and the
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user may want the overall cost of all POIs to be less than a cost budget. Furthermore, some additional package
constraints such as “no more than 3 museums in a package”, “not more than two parks”, “the total distance
covered in visiting all POIs in a package should be < 10 km.” might render the manual configuration process
even more tedious and time consuming. Another application which needs package recommendation is music
list generation [17], where the system needs to recommend users with lists of songs called playlists, and users
may have a constraint on the overall time for listening to these songs, and possibly constraints on the diversity
of songs in the list.

So in these applications, there is a natural need for top-k package recommendations which can recommend
users with high quality packages which satisfy all the constraints. Some so-called “third generation” travel
planning web sites, such as NileGuide', YourTour?, and some recent research works like [2, 3] are starting to
consider certain of these features, although in a limited form.

1.1 Our Vision for the Next Generation Recommender System

We believe that the next generation recommender system should be efficient, scalable, and flexible enough to be
tailed to different applications and users’ customization requests such as the ability to compose packages and
other collections and enforce user-specified constraints. In Figure 1, we show the architecture of our envisioned
next generation recommender system that we call TopRecs™.
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Figure 1: Next Generation Recommender System

In TopRecs™, the recommendation engine can choose to recommend either top items or top packages de-
pending on the application and user requests. The item recommendation engine can leverage the user item rating
matrix to efficiently maintain the item-item similarity matrix, then based on this similarity matrix, an efficient
and scalable top-£ item recommendation algorithm can provide users with the set of k£ most interesting items
[18]. On the other hand, based on the items generated by the item recommendation engine, combined with meta-
data information (such as price, type and etc.) associated with each item, the top-k package recommendation
engine can return top-k packages that users will be interested in [11].

2 Top-k Item Recommendation

Predicting personalized scores of individual items for users is the core task of most recommendation algorithms.
We follow item-based collaborative filtering (CF) [4], which is used widely in academia and practice [14, 5]. In
CF, input data is typically represented as a sparse n X m matrix(R?) of user ratings on items. An entry r;; shows
the existing rating of user u; on item v;. The main task is to predict the unknown ratings using the existing ones.
Item-based CF computes and maintains an item-item similarity matrix using the existing ratings in R. Pearson
correlation coefficient [12], is one of the popular choices for calculating item similarities. In item-based CF, the
unknown rating 7, of u; on vj, is predicted by taking the weighted average of ratings of «; on N most similar
items to v;. Equation 1 shows how existing ratings are aggregated to calculate 7;; where N (v;, u;) denotes the
set of [V items that are most similar to v; and are rated by ;.

1http://www.nileguide.com
2http://www.yourtour.com
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A unique challenge here in providing a score sorted list of items, is the fact that the individual scores to
be aggregated to calculate r;; come from different lists for different items. This is because each candidate
item can have a different set of /N nearest neighbors among those rated by w,;. This makes it challenging to
use traditional top-k algorithms. In fact, in [18], we theoretically show that adapting classic TA/NRA [13]
algorithms, which are known to be instance optimal, for aggregating partial scores and returning top items leads
to unpredictable performance due to this challenge. In particular, instance optimality no longer holds and there
are instances where the adaptations can perform as bad as naive algorithms. Therefore, we identify the problem
of discovering N (v;,u;) for all candidate items to be the costly step in score prediction. For this purpose, we
propose a novel algorithm, called the Two Phase Algorithm (TPH). for finding all N (v;, u;) in two steps.

2.1 Two Phase Algorithm

A naive approach for finding N nearest neighbors of a candidate item v; in u;’s profile is to retrieve similarities
of v; to all (u;) items rated by u;. Going over all y; similarity values and finding the N highest ones can be done
in O(u;logN) for one item. t The total cost of finding nearest neighbors of all candidate items in w;’s profile is
O(mu;logN'), which can be costly in practice if p; is large.

In order to design a more efficient process, we propose a new global data structure, L, rather than the
similarity matrix. Every column of L corresponds to one of the items. Items in each column are sorted using
their similarities with respect to the item indexing the column. Thus, the j** entry in the i** column of L is a
pair (item-id, sim), where item-id is the id of the jth most similar item to the 7" item. The second element of
the pair is the similarity between these two items.

The main intuition behind the two phase algorithm is the following. Assuming that some N’ < p; nearest
neighbors of a candidate item v; are known, finding /N nearest neighbors can be done more efficiently. This is
regardless of whether N’ is greater or smaller than N. Suppose we know N’ < N nearest neighbors of v;, then
finding the remaining ones can be done in O(u;log(IN — N')). If N’ = N, no further processing is needed. For
N’ > N, it again takes O(N'logN) to find the N nearest neighbors.

All of the required similarity values for finding /N nearest neighbors are in the p; columns of L that corre-
spond to rated items. Therefore, we propose our two phase algorithm as follows. In the first phase, we choose
a similarity threshold and read only those values from these columns that are above the threshold. This leads
to discovering a variable number of nearest neighbors for every candidate item. Depending on the number of
neighbors found for each item, in the second phase we find the exact N nearest neighbors. For those items that
we have managed to find some neighbors for, the process will be more efficient as described earlier.
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Figure 2: An example of running the two phase probe step using a prob threshold of § = 0.72 and comparing it
to naive algorithms

Figure 2 illustrates the process using a threshold value § = 0.72. In the first phase all of the entries above



the threshold are read as shown on the left side. In this example p; = 3. Notice that for both cases of NV =1 or
2, the process can be done more efficiently for three out of four candidate items.

2.2 Optimal Threshold 0

The cost of the two phase algorithm (C(#)) can be written as the sum of three main components: (1) Cost of
the first phase (C1(0)); (2) Cost of finding N nearest neighbors when N’ < N (C2(#)); (3) Cost of finding N
nearest neighbors when N’ > N (C3(0)).

For instance, assuming the example in Figure 2 and N = 2, vy falls in the second category and vg falls
in the third category. While for v4 and vy, we have already found their 2 nearest neighbors. Using smaller 6
results in greater C'1 and C3 and smaller C2. This is due to the fact that more similarity values will pass the
filter and make it to the second phase. On the other hand, C'2 increases if we use a larger threshold and the other
two components decrease. Therefore, there is a tradeoff between C'1 and C'3 on one hand and C2 on the other.
Optimal threshold value is one that minimizes the total cost of all components put together.

We perform a probabilistic cost-based analysis in [18], in order to find the optimal threshold value. In [18],
we fit a Gaussian probability distribution to the similarity values in the similarity matrix. Using the cumulative
density function, we calculate the probability that a particular similarity value can result in one of the N nearest
neighbors of another item. Our cost function provides an upper bound on the expected cost of both phases
together. We find the optimal similarity threshold that minimizes C'(6). Moreover, we theoretically prove that
due to the tradeoff between cost components, C'(#) always has one and only one minimum. We refer the reader
to [18] for more details, where we also empirically evaluate our algorithm. Our empirical results confirm the
reliability of our theoretical probabilistic process for finding the optimal threshold value which in turn leads to a
consistently efficient performance of the top-k recommender algorithm.

2.3 Updating the Similarity Matrix

Pearson correlation, Cosine and Jaccard are some of the popular examples of similarity measures used in CF.
Among all of these, Pearson correlation has been applied most widely in practice. It is possible to provide
guidelines in order to keep the similarity matrix updated for most of these measures. Here, we show how this
is doable for Pearson correlation measure. Equation 2 shows how similarity between two items v; and v; is
calculated using Pearson correlation coefficient. It measures the similarity between two items using only ratings
of users who have rated both items (I;;).
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Equation 3 provides the sufficient statistics that can be stored in order to be able to update the similarity
matrix incrementally.
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Keeping the similarity matrix updated requires storing four m x m matrices (A, B, D, F) and a vector of
size m (C), containing averages of values as shown in Equation 3. When a new rating becomes available, all
of the matrices in Equation 3 can be updated incrementally. Equation 4 shows how every entry of the similarity
matrix can be written based on the matrices defined in Equation 3.
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The similarity matrix can be updated incrementally with respect to a new rating in two steps: (1) all of the
entries of matrices in Equation 3 that are affected by the new rating are updated; (2) all of the entries of the
similarity matrix that are affected by the changes in step 1 are updated. Since we are keeping similarities in a
data structure L and columns of L are kept sorted by similarity, every column of L could be stored as a priority
queue. Providing efficient strategies for performing these updates in terms of computational cost, quality of
results and memory requirements is part of our ongoing work.

3 Top-k Package Recommendation

As mentioned in the introduction, many applications like trip planning and music list generation can benefit
from having packages recommended instead of a ranked list of single items. In this section, we will discuss how
the package recommendation engine can be built upon the item recommender system.

Let Z be the set of all items, for each item v € Z, we denote the value of v for the current active user
as val(v) which can be obtained as the predicted utility or rating from the underlying item recommendation
algorithms. We denote the cost of v as ¢(v). The cost may correspond to time, price, etc. For a subset of items
P C T, we define the value of P as val(P) = >, cpwval(v), and the cost of P as ¢(P) = Y cpc(v). Let
P = {P | P C 7} be the set of all possible subsets of items, and given a user defined cost budget B, a subset of
items P C 7 is feasible if ¢(P) < B. We can define our top-k package recommendation problem as follows.

Definition 1: (Top-k Package Recommendation): Given a universe of items Z and an underlying item recom-
mender system for predicting values of items for the current active user, a cost budget B, find top-k packages
P, ..., P, such that each P; is feasible and val(P) < val(P;) for all feasible packages P € P — { P, ..., P }.

As discussed in [11], when k& = 1, the top-k package recommendation problem can be viewed as a variation
of the 0/1 knapsack problem [6], where we have the restriction that items can be accessed only in the non-
increasing order of their value. This is because of the way recommendations are made by the underlying item
recommender system. Furthermore, because solving the top-k package recommendation problem optimally
is NP-hard [6], we need to consider approximate answers instead of exact ones, i.e., in Definition 1, for a
package P; in the top-k package set, instead of requiring val(P) < wval(FP;) for all feasible packages P €
P —{P,..., Py}, we aim for val(P) < a X val(F;), where « is the approximation factor.

Let ¢, be the access cost of retrieving the next highest-value item from the underlying item recommender
system and let ¢, be the access cost of obtaining the cost (time, price etc) associated with an item. It is clear that
total access cost of processing n items is n X (¢s + ¢, ). Notice that ¢, and ¢, can be large compared to the cost
of in-memory operations: for both accesses information may need to be transmitted through the Internet, and
for the sorted access, val(v) may need to be computed. So well-known algorithms for knapsack which need to
access all items [6] may not be realistic, and instead we should minimize the total number of items accessed by
the algorithm and yet ensure that high quality top-k packages are obtained.

In [11] we also show that without background knowledge about the cost distribution of items, in the worst
case, we must access all items to find top-k packages. To facilitate the pruning of item accesses, we thus assume
some simple background information BG about item costs. In [11], we assume BG is the minimum item cost for
illustrative purposes, however, more sophisticated stats like histogram can be easily incorporated.

In the rest of this section, we will first consider an algorithm which can minimize the number of items
accessed while guaranteeing the quality of the packages returned, then we will discuss a greedy algorithm which
may not be optimal w.r.t. the number of items accessed but has very good empirical performance. Handling of
additional constraints and highlights of the empirical results will be discussed at the end of this section.

3.1 Instance Optimal Algorithm

As discussed in the previous section, it is crucial for an algorithm to find high-quality solutions while minimizing
the number of items accessed.



Consider the top-1 package recommendation problem. Let S = {vy, ..., v, } be the set of items which have
been accessed so far. It is well known from previous work [6] that a pseudo-polynomial algorithm can be utilized
to get the optimal knapsack solution for S. Furthermore, as shown in [11], by utilizing the same algorithm and
the background information BG, we can also get a tight upper bound V' * on the value of the optimal solution. So
we can have an iterative algorithm which retrieves a new item in each iteration, calculate the optimal solution
Re for S and stop the algorithm once val(R°) > L x V*.

We have shown in [11] that the above algorithm can correctly return approximate top-k package recom-
mendations, and is instance optimal [13]. In particular, given any instance of the problem, and given any
«-approximation algorithm A for the problem with the same background cost information 5G and the same
access constraints, A must read at least as many items as the our algorithm.

To produce top-k package recommendations, we can apply Lawler’s procedure [19] to the above top-1
package recommendation algorithm. The idea is that instead of returning the a-approximation solution found in
the top-1 package recommendation algorithm, we enumerate at this point all possible a-approximation solutions
using Lawler’s procedure. If the number of a-approximation solutions is at least &, then we can report the top-k
packages found; otherwise, we continue accessing the next item. It can be shown that the above top-k package
recommendation algorithm is also instance optimal.

3.2 Greedy Algorithm

Although the instance optimal algorithms presented above guarantee to return top-k packages that are a-approxi-
mations of the optimal packages, they rely on an exact algorithm for the knapsack problem, which may lead to
high computational cost. To remedy this, we proposed in [11] more efficient algorithms which utilize simple
greedy heuristics to form a high quality package from the accessed itemset S.

Similar to the instance optimal algorithm, this greedy algorithm will always generate a correct a-approximation
to the optimal solution, however, it is not instance optimal among all a-approximation algorithms with the same
constraints and background information.

3.3 Highlights of the Empirical Results

To evaluate the performance of various proposed algorithms, in [11] we tested our algorithms on four datasets:
two real datasets MovieLens®, TripAdvisor*; and two synthetic datasets, one with item value correlated with
item cost, and another with item value and item cost uncorrelated.

We first tested the quality of packages generated by our proposed algorithms compared with optimal top-k
packages generated using an offline knapsack solver. It can be verified that our proposed approximation algo-
rithms can return top-k packages whose values are very close to the optimal solution. Furthermore, by comparing
the average item value from the top-k packages generated, it can be verified that our proposed approximation
algorithms often recommend packages with high average value, whereas the optimal algorithm often tries to fill
the package with small cost and small value items.

For MovieLens, TripAdvisor and the uncorrelated dataset, we have verified that on average the greedy algo-
rithm has excellent performance in terms of both running time and access cost. The instance optimal algorithm
also has low access cost, but its running time grows very quickly with k since it needs to solve exactly many
instances of knapsack, albeit restricted to the accessed items. The only dataset where both the greedy and in-
stance optimal algorithms have a high access cost is the correlated dataset (but for this case the greedy algorithm
still has good running time). The reason for this is that, for the correlated dataset, the global minimum cost
corresponds only to items which also have the least value. Thus the information it provides on the unseen items
is very coarse. In practice, an obvious solution to this is to obtain more precise background cost information.

http://www.movielens.org
4http: //www.tripadvisor.com



3.4 Handling Additional Package Constraints

For many applications of package recommendation, the users might have some additional constraints, e.g.,
for trip planning, the user may require the returned package to contain no more than 3 museums. To capture
these constraints in our algorithms, we can define a Boolean compatibility function C over the packages under
consideration. Given a package P, C(P) = true iff all constraints on items in P are satisfied. We can add
a call to C in the proposed algorithms after each candidate package has been found. If the package fails the
compatibility check, we just discard it and search for the next candidate package.

It is worth noting that many constraints studied in the previous work such as [2] and [9] are restricted classes
of boolean compatibility constraints. However, depending on the application needs, for scenarios where only
one specific type of constraint is considered, e.g., having one item from each of 3 predefined categories, more
efficient algorithms like Rank Join [16] can be leveraged.

4 Related Work

Item-based CF was first proposed in [4]. Their solution for improving scalability is storing only N (between 10
and 30) nearest neighbors of each item regardless of user profiles. This approach improves scalability for some
items but has a major drawback: for some users we may not be able to find any rated items among these [V items
and make predictions. Other works have tried to improve scalability by instance selection [7, 8]. The main idea
is finding nearest neighbors of all items from a smaller subset of items, thus the nearest neighbors are not global
nearest neighbors. It is also worth mentioning that our approach achieves scalability without deviating from
the standard item-based method, while instance selection achieves scalability at the cost of sacrificing accuracy.
Our approach is orthogonal to instance selection. Indeed, both methods can be combined for providing better
scalability when accuracy can be traded for space needed for storing all pairwise item similarities.

For package recommendation, the closest to our work is [2], where they are interested in finding top-k tuples
of entities. Examples of entities include cities, hotels and airlines, while packages are tuples of entities. A
package in their framework is of fixed size, e.g., one city, one hotel and one airline, with fixed associations
among the entities essentially indicating all possible valid packages. Instead, we allow for packages (composite
recommendations) of variable size, subject to a budget constraint. Associations between entities can be easily
captured in our framework using the notion of compatibility of sets. Another closely related work is [9] where
a novel framework is proposed to automatically generate travel itineraries from online user-generated data like
picture uploads. They formulate the problem of recommending travel itineraries of high quality where the travel
time is under a given time budget. However, in this work, the value of each POI is determined by the number
of times it is mentioned by users, whereas in our work, item value is a personalized score which comes from
an underlying recommender system and unlike their work, accessing these items is constrained to be in value-
sorted order. Finally, motivated by online shopping applications, [15] studies the problem of recommending
“satellite items” related to a given “central item” subject to a cost budget. The resulting notion of packages is
quite restricted compared to our framework, and item values are not taken into account.

S Summary and Open Problems

In this article, we have discussed our vision for the next generation recommender system which has an efficient
and scalable item recommendation engine which recommends top-k interesting items, and an efficient package
recommendation engine which recommends top-k interesting packages which satisfy all the user specified con-
straints. While we have investigated some initial efforts in realizing such a recommender system [18, 11], much
remains to be done for realizing our vision. In the following, we will point to a few interesting open problem in
this direction.

e In order to handle dynamically changing user-item ratings matrix, an efficient way of maintaining the
similarity matrix is critical. Preliminary ideas for doing this appear in [18]. Efficient algorithms for



incremental maintenance of the similarity matrix is an important open problem.

Instead of returning the exact top-k answers, for many cases, we might also be interested in providing
approximate top-k recommendations with probabilistic guarantees. Some previous work like [10] has
investigated probabilistic threshold algorithm, however, it cannot be directly utilized in a recommendation
framework. A related point is materializing and maintaining a “key”” subset of similarity entries instead of
the whole similarity matrix, thus trading accuracy for speed and storage.

For top-k item recommendation algorithms based on model-based methods such as matrix factorization
[1] is an interesting problem.

For top-k package recommendations, in [11] we have investigated the problem of recommending sets
of items. Sometimes, the order of items in the recommended package might be also critical, e.g., as
mentioned in [17], the order of songs in the recommended music list might be important for the users;
and also for trip planning, the order of visiting different POIs can be important. Thus, recommendation of
richer types of collections should be investigated.
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