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Abstract

A query, expressed in a structured query language such as SQL, describes precisely the data that should
comprise the answer and a non-empty answer is returned only if it satisfies all query criteria. However,
the Boolean database query model has limitations. A user may run into empty answers when the query
conditions are too restrictive or sift through too many results that match the query. User preferences
naturally blend into queries allowing to explore alternatives or prioritize and filter available choices. In
addition, they can be used to generate answers that are personalized to the user. In this paper, we explain
the need towards personalized and preference-aware query answering in the context of databases and
we discuss how it can be enabled. Our objective is to discuss the pros and cons of existing approaches
and the challenges and opportunities towards a truly personalized preference-aware DBMS.

1 Introduction

Database systems answer queries accurately and deterministically. A query, expressed in a structured query
language such as SQL, describes precisely the data that should comprise the answer and a non-empty answer is
returned only if it satisfies all query criteria. The DBMS guarantees that the same exact answer will be generated
every time the query is issued as long as the data does not change. This exact-match query paradigm serves well
many scenarios. When querying your bank account balance, you always expect to get the exact amount and this
amount should be the same every time a check balance request is issued as long as no deposits or withdrawals
have taken place. Or when a credit card company is preparing customer bills, it is important that the correct
amounts are computed and displayed on each bill.

However, the database query model may sometimes be very strict. For example, when accessing databases
on the web, whose schema and contents are unknown, it may be difficult to formulate accurate queries. In this
context, a user may run into either of two problems: (i) the empty-answer problem when the query conditions
are too restrictive or (if) the too-many-answers problem when too many results match the query. Furthermore,
information abundance and user heterogeneity are additional factors that make the exact-match query paradigm
often not appropriate. Due to information abundance, showing all possible information that matches a query may
be overwhelming for the user. User heterogeneity means that different users may find different things relevant
when searching because of different preferences and goals [17]. Especially on the web, it is critical to provide
the ‘right’ answer to a user rather than the exact same answer to everyone for the same query.

Introducing preferences in query answering can help cope with the issues mentioned above. The empty-
answer problem can be tackled by relaxing some of the hard constraints in the query, i.e., considering them as
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Movies Actors

movie_id title year genre actor_id | movie_id name
m, Anger Management 2003 comedy a My Adam Sandler
m; The Proposal 2009 comedy a; M Jack Nicholson
M3 The Odd couple 1968 comedy a M Sandra Bullock
My New in Town 2009 comedy a ms Walter Matau
as My Renée Zellweger

Figure 1: An example database instance

soft or as user wishes or by replacing them by constraints that capture user preferences related to the query. The
too-many-answers problem can be tackled by strengthening the query with additional conditions expressing user
preferences to restrict the results. In both cases, results can be prioritized according to how well they match the
preferences in the query.

Furthermore, incorporating user preferences in query answering can help generate answers customized to
each user. To illustrate this personalized answer paradigm, let us consider a web-based movie database. Figure
1 shows a snapshot containing new arrivals. Two users, Bob and Diana, issue the following queries on: (Q)1)
comedies released after 2000; (()2) movies with Ben Stiller; and ((03) new comedies. Based on the exact-
match database query paradigm, the same answers will be returned to both users, which are the following: (i)
{m1, ma, my} for Q1, (ii) {} for Q2 and (iii) all new arrivals for (3. On the other hand, a personalized database
query model would possibly generate a different answer for each query depending on the targeted user. For
instance, for (1, Bob could receive {m, ma} because he is not a fan of actress R. Zelweger. For ()2, showing
movies that are a close match to the movies described by the query would potentially be better than an empty
answer. For example, for Diana who also likes Adam Sandler and has liked movies where both Ben Stiller and
Adam Sandler have co-starred, m might be suggested as an alternative answer. Finally, results for ()3 can be
ordered according to a user’s preferences so that each individual can easily sift through them.

Preferences naturally relax the exact-match query model by allowing to prioritize and filter available choices
(asin Q1 and )3) or to explore alternatives (as in (J2). Moreover, embedding preferences in queries enable a shift
from ‘consensus relevancy’, where the computed relevancy for the entire population is presumed relevant for
each user, towards ‘personal relevancy’, where relevancy is computed based on each individual’s characteristics.

In this article, we review related work on preference-aware query answering in databases. We discuss
(i) how preferences are represented in the context of database queries, (ii) how the answer of a query with
preferences is defined, and (iii) how preference-aware query answering is implemented. This review aims at
showing how tightly preferences are currently coupled with database queries and sharing our vision regarding
opportunities and challenges in fully implementing preferences as first-class citizens inside the database engine
by changing both the database query model and internal code. Finally, this article highlights the challenges in
going from preference-aware query answering to personalized preference-aware query answering, where the
database automatically customizes answers taking into account user preferences.

2 Preference Representations

Understanding preferences and finding appropriate representations for them is a real challenge. Preferences have
been studied for several years in fields such as philosophy (e.g., [8]), psychology (e.g., [18]) and economics (e.g.,
[6]). In recent years, preference modeling has drawn the attention of researchers from computer science fields
including artificial intelligence (e.g., [22]) and databases.

In databases, preference representation approaches (preference models) are divided into two categories.
Qualitative preferences are specified using binary preference relations that relatively compare tuples. Prefer-
ence relations may be specified using logical formulas [4] or special preference constructors [11]. Quantitative



preferences are expressed by assigning scores to particular tuples [1] or query conditions that describe sets of
tuples (e.g., [14]), where a score expresses degree of interest.

To illustrate, let us consider the database schema of Figure 1 and assume that ¢ denotes a tuple and ¢[A]
stands for the projection of ¢ on one of its attributes, A. A preference for recent movies can be expressed in
a qualitative way as follows: movie ¢; is preferred over movie ¢; iff ¢;[year] > t;[year]. This formulation is
natural for humans and results in a partial ordering of the query results. Absolute specification of the significance
of a preference is not possible. On the other hand, using a scoring function such as f(¢) = 0.001 x t[year], the
same preference can be captured in a quantitative way. A movie ?; is preferred over movie ¢; if the score of ¢; is
higher than the score of ¢;. This formulation leads to a total ordering of the results based on user preferences.

Existing works have studied various types of preferences following a qualitative or quantitative approach in-
cluding likes and dislikes [11, 14], context-dependent preferences [20], set preferences [23], and multi-granular
preferences [13]. A survey on preference models in the context of databases can be found in [19].

3 Integrating Preferences into Queries

In the exact-match database world, the answer to a query is unanimously defined. Interestingly, there seems to
be no single definition regarding how preferences should be interpreted in the context of database queries.

One reason is that existing approaches have thought of preferences as a means of solving seemingly different
problems. Driven by the empty-answer problem, several approaches treat preferences as soft constraints that are
part of the query [4, 11]. In contrast to the classical hard constraints of the query, soft constraints may be
optionally satisfied in the final answer. Dealing with the too-many-answers problem, other approaches view
preferences as additional constraints that can be applied in conjunction with the query conditions to prioritize
and possibly restrict the query results [14, 20]. However, more importantly, the lack of a single preference-aware
query model is due to the fact that preferences can be defined either qualitatively or quantitatively and different
approaches for embedding qualitative or quantitative preferences into queries have emerged.

If preferences are expressed in a qualitative way (i.e., using preference relations), then they are embedded
into relational query languages through an operator that selects from its argument relation the set of the most
preferred tuples according to a given preference relation. This operator has been given different names such as
winnow [4], BMO [11] and skyline [2]. The set of most preferred tuples is typically defined as the set of all
tuples not dominated by any other tuple. Many variations of this definition have been proposed mainly due to the
computational complexity of the optimal answer based on the original definition. For instance, according to the
k-dominant skyline definition, a tuple ¢; k-dominates another tuple ¢; if there are £ dimensions, or preferences,
in which ¢; is better than or equal to ¢; and ¢; is better in at least one of these k£ dimensions [3]. Ranking the
whole input can be achieved by repetitive applications of this preference operator.

On the other hand, if preferences are expressed quantitatively (i.e., using scores) and there is an aggregating
function for combining the partial scoring predicates, then tuples are assigned scores, and the answer of a query
with preferences is defined as the ranked set of top-n results [5, 9]. A complementary approach is to make sure
that the query results satisfy at least some of the specified preferences [14].

There has also been a significant number of proposals for extending SQL with special preference operators.
For example, skylines were first introduced in SQL using the following clause [2]:

SKYLINE OF A; [MIN | MAX | DIFF], ..., A, [MIN | MAX | DIFF]
where a MIN (or MAX) specification following an attribute A; expresses preference of small (or large) values of
A; whereas DIFF expresses that only tuples with identical values of A; are comparable.
The top-n preference operator was introduced in SQL by adding a clause of the form:
ORDER BY [user-defined-function] STOP AFTER n
In this case, the tuples in the result are ranked according to a user-defined scoring function and the results with
the n highest scores are returned.



As yet another example, Preference SQL supports soft constraints using a special PREFERRING clause [11]:
PREFERRING [conditions] BUT ONLY [conditions]
Preference SQL follows a “best matches only” (BMO) semantics. First, it finds all perfect matches to the
conditions of PREFERRING. If this set is empty, then it considers all other best matching values excluding those
that do not satisfy the BUT ONLY conditions.

As a result of the proliferation of different interpretations of preferences in the context of database queries,
no single preference-aware query model has been widely adopted in the database world and implemented as an
alternative or an extension of the exact-match database query model. As a first step towards reaching consensus,
we need to understand that we do not try to solve two disconnected problems by integrating preferences into
queries: both the empty-answer and the too-many-answers problems are two sides of the same coin caused by
the strictness of the exact-match query model. One can go from an empty answer to too many results and vice
versa. For example, integrating preferences as additional constraints to restrict a query with too many answers
may lead to an empty answer. Bringing preferences into queries is a means to ‘relax’ the exact-match query
model and tackle both these problems in a unified way.

More importantly, a widely accepted preference-aware query model needs to transparently extend the exact-
match model with the notion of preferences. One challenge in designing such a model is to come up with new
query components that capture the main concepts of preference-aware query answering without adding too much
complexity. Ideally, these components should be oblivious to how preferences are represented or implemented
and they should naturally blend with the traditional query constructs. In addition, a preference-aware query
model should be flexible regarding how preferences are treated within a query. For instance, all preferences
could be considered optional or a lower bound on the number of preferences that should be satisfied in the
results could be provided by the user.

At a high level, we envision that a preference-aware query would contain the following parts:

e hard constraints that are exactly matched

e soft constraints (i.e., preferences) that are optionally satisfied. If a query has no soft constraints then we
roll back to the exact-match query paradigm, where the answer satisfies exactly the hard conditions.

e a preference bound that specifies how preferences should be treated: an any preference option would allow
any answer that matches the hard constraints (if exist) and any preferences (e.g., as in [11]) whereas an
at least N preferences option would restrict candidate answers to those that satisfy at least /N preferences
(e.g., as in [14]).

e a best-answer specification that describes which of the candidate answers should be output. For instance, a
best-n answer would comprise the best n tuples. If n=1, then only the tuples that are of the highest interest
to the user would be returned.

The more the new query components are sealed from the details of their actual implementation, the easier is
for users to understand and formulate queries with preferences. For instance, the best answer may vary and dif-
ferent algorithms may be required for answer computation depending on whether preferences are quantitatively
or qualitatively captured. However, when formulating a preference-aware query, a user just needs to describe
how much of the answer she is interested in seeing without caring about such details. This is also true, to some
extent, for traditional queries: for example, a user does not care how a join is executed. Finally, a transparent
preference-aware query model makes application development easier since the interface to a preference-aware
database can be standardized even if the underlying implementation of the engine may vary.

4 Implementations of Preference-Aware Query Answering

In implementing preference-aware query processing, there are three possibilities: (i) query translation, (i) spe-
cial evaluation algorithms for implementing preference operators on-top of the DBMS, and (i) native imple-
mentation, i.e., inside the database engine using specific physical operators and algorithms. We call the first two



approaches plug-in since they are implemented on top of the database engine.

The straightforward approach to preference-aware query processing is to translate queries with preferences
to conventional queries and execute them over the DBMS. Query translation conceptually involves the following
steps (e.g., [4, 12, 14]): (query rewriting) the preferences are integrated as standard query conditions in the query
producing a set of new queries, (materialization) the new queries are executed and (aggregation) the partial
results are combined into a single ranked list. This is for example the approach taken in the implementation of
Preference SQL, where preference queries are translated into standard SQL queries [12] as well as for integrating
user preferences into queries for personalizing query results (e.g., [14]).

There is a large number of special evaluation algorithms for implementing preference operators (e.g., top-n
[10] and winnow [2, 4]). For retrieving the top-n tuples of a relation, the basic idea has been captured in the
algorithm called F'A [5] and has been improved by several subsequent algorithms (e.g., [9]). These algorithms
can be thought of as operating on the aggregation phase of query translation [16]. F'A performs a sorted access
to each partial list of results until there is a set of tuples, such that each of these tuples has been seen in each
list. Then, for each tuple seen, F'A performs random accesses to retrieve its missing scores and compute an
aggregate score. Finally, the top-n tuples based on their aggregate scores are selected.

The naive way to compute the winnow of a relation is to apply a basic nested-loop method that compares each
tuple in the relation with every other tuple. This method works for every type of preference relation but requires
scanning the whole relation for each tuple, which becomes inefficient for large datasets. Several improved
algorithms have been proposed over this basic version (e.g., [2]) that employ techniques such as indexing (e.g.,
[21]) to avoid scanning the whole relation.

These special evaluation algorithms are typically implemented on top of the DBMS on the returned query
results as standalone programs. In order to facilitate the integration of any preference operator (e.g., top-n,
skyline) into the database engine with minimal effort, FlexPref is a system that allows registering preference
methods through a set of functions that define rules for determining the most preferred tuples [15]. Once a
preference method is injected into the database, it can be used for querying the database.

In the case of implementing preference operators inside the database engine, a set of algebraic rules that
characterize the interaction of winnow with the standard relational operators, such as commutativity, are pro-
vided in [4] and can be used for query optimization. However, few actual native implementations exist. The rank
operator [16] is an extension to relational algebra that enables pipelining and hence optimizing top-n queries. A
hybrid approach to implementing Preference SQL that provides support for preference-aware query processing
within the database engine has been also proposed [7].

Both native and plug-in approaches have pros and cons. Plug-in approaches rely on the existing Boolean
query model, which is preference-agnostic. Their main advantage lies in the fact that they require no modifica-
tion of the database code. They are easier to implement, and they leverage existing, invested, technology. On
the downside, treating the DBMS as a black box means that there is no access to internal database operators.
Consequently, these methods do not lend themselves to finer-grained dynamic optimization at the operator level
based on the features of the query and the preferences. This has an impact on query performance and scalability.

In particular, in query translation, the execution plan for a query with preferences is composed outside the
database engine. This external query plan is a high-level execution plan that describes the queries sent to the
database, materializations of intermediate results and how partial results are combined in order to generate the
answer to a query with preferences. Inevitably, possible query optimizations are more coarse-grained such as
reducing the number of queries sent to the DBMS or the data processed outside the DBMS engine. Implementa-
tions of preference operators as programs outside the DBMS work as a post-processing step after partial query
results have been generated, i.e., primarily improving the aggregation phase.

A fully native implementation of preference-aware query processing requires modifying the database query
engine so that queries with preferences can be directly expressed in the query model supported by the database
itself and query processing is entirely pushed inside the database engine. Native implementations of operators



best(2)

preferring (comedies)

best(2)

Oyear=2010

preferring (comedies) preferring (Adam Sandler or Jack Nicholson) Oyear=2010 preferring {(Adam Sandler or Jack Nicholson)

Movies Actors Movies Actors

(a) (b)

Figure 2: Preference-aware query plans

such as the rank operator [16] represent a significant step towards this direction. However, they mainly aim at
pushing aggregation inside the database engine while preference evaluation may be still performed externally.

To illustrate the benefits of a fully native implementation, let us assume a preference-aware DBMS. A
hypothetical internal query plan (along the lines of the query model outlined in Section 3) is shown in Fig. 2(a).
There are two preference-related operators combined with the classical relational operators. The ‘preferring’
operator applies a preference on a relation. For instance, if we have a quantitative preference that associates
comedies with a score 0.8, the ‘preferring’ operator would assign this score to comedies. The ‘best(n)’ operator
selects the n most preferred tuples. Such a query plan can be dynamically optimized taking into account the
properties of each operator. For example, we could push the filter down the tree, apply the most selective
preference first (that is the one referring to actors) or apply the ‘best(n)’ operator to each of the input relations
to restrict the size of intermediate results. Fig. 2(b) illustrates some possibilities.

Another benefit of a native implementation is that query expressivity is not restricted by having a preference-
agnostic database model hidden behind a query translation or special evaluation mechanism. Instead, queries
with preferences are precisely defined by the preference-aware query model supported by the database. An im-
portant challenge is how expressivity and performance can be balanced. Depending on whether a qualitative or
quantitative approach is followed, the new operators may have different properties enabling different optimiza-
tions. Making the operators very generic may limit the range of optimizations and may weigh down the benefits
of a generic implementation. A careful design of the query optimizer is required.

5 Personalized Queries

In a preference-aware database, queries with preferences could be explicitly issued by users. For example, we
can imagine a user interface that allows users to specify hard and soft criteria for movies they would like to
see. Querying with preferences is a more relaxed search paradigm but it does not ensure that empty or too many
answers will not be generated. To a great extent, it is still up to the user to formulate the right queries. In addition,
user preferences may be ephemeral coming along with a particular request or long-term. For example, Bob is
not a fan of R. Zelweger. This could be considered a long-term preference. A personalized preference-aware
database system would store and maintain user preferences along with data. Furthermore, given a query and an
ephemeral or long-term user profile, a personalized DBMS would dynamically decide how to best answer the
query in order to satisfy the user information need. For instance, it could dynamically decide that for query Q1
it does not make sense to show movies with actress R. Zelweger to Bob. Given the proliferation of applications
that rely on user preferences to provide a personalized experience, there is an ongoing need for such personalized
database systems that provide storage and processing of user preferences.

Dynamically modifying a query taking into account user preferences is termed query personalization [14].
Existing works implement personalized queries on top of the exact-match query model rather than a preference-



aware one. Their most important limitation is that the effect of query personalization is manually determined
(e.g., by specifying the number of preferences that the answer should satisfy [14]) and they focus on how to
retrieve these preferences from the profile and generate the expected personalized results.

However, query personalization needs to be considered from a fresh perspective as a complex dynamic
optimization problem. There are several possible queries that can be generated and executed in place of the
initial user query by applying query transformations such as: (i) some of the hard conditions of the query may
be converted to soft conditions; (ii) preferences may be added in the query; (iii) preferences may replace some of
the hard conditions. Which personalization option to follow, what preferences to consider related in the context
of a particular query and what makes the best answer to a query for a particular user are shaped by several
factors. The DBMS needs to consider the characteristics of the query and the possible effect of the preferences
on the query. For example, if a query returns just a few results (like a query about movies with Meg Ryan), then
user preferences may be applied only for result ranking. For a too broad query (e.g., a query on comedies), query
personalization may use preferences to focus the result set. However, not all preferences may be applicable. For
instance, preferences related to dramas may lead to empty answers if combined with a query about comedies.
The query context is also important. For example, when a user is browsing movies, query personalization may
be less aggressive than when the user explicitly asks for personalized suggestions.

Ideally, a personalized database system should help users find interesting answers that are natural given their
queries. Answers that cannot be justified or explained in the context of their initial query or seem random are
bound to confuse users. For example, if the user has asked for new comedies she has not watched, then if there
are no such comedies, it may make sense to show zero results than suggesting watching a drama. Finally, some
control may be given to the user at the application level in order to express the desired extent of personalization.

6 Conclusions

Querying with preferences provides a relaxed query paradigm compared to the exact-match database query
model and can help generate answers tailored to each individual. There is substantial work in this area but no
single preference-aware query model has been widely adopted in the database world. We believe that the key
to making this happen is coming up with a preference-aware query model that is simple and as transparent to
preference representation and implementation details as possible. Furthermore, in order to fully unleash the
power of a preference-aware query model and exploit query optimization opportunities in the database core,
such a model should be natively supported by the database engine. Pushing preferences inside the DBMS will
also provide a transparent unified interface to applications and make application development lighter since much
of the preference-related logic will be supported by the underlying database system.

Embedding preferences in database queries is a big step forward but alone it will not help users find the
‘right’ answers to their queries. A personalized database system would actually help by cleverly modifying
queries considering user preferences, whenever available, to generate customized answers. However, from a
traditional DBMS to a personalized preference-aware DBMS, there is a long way to go, and it goes beyond
disguising the elephant to make it look like a chameleon.
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