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Abstract

The notion of preference plays an increasing role in today’s information systems. In particular, prefer-
ences are used to specify which query answers are the best from the user’s point of view. In this article, we
discuss the work done over the last 10 years in the context of preference queries to relational database
systems. We focus on preferences that are specified logically. We show how such preferences can be
embedded into relational query languages. By separating the preferences from the query, preference-
specific query evaluation and optimization techniques can be formulated and preference modification
studied. We conclude with an outline of future prospects for preference research.

1 Introduction

Preference is one of the dimensions of personalization. Two different users querying a database using the same
query may expect different answers because they may use different, implicit criteria of which answers are the
best and the most preferred. For example, when purchasing a book online one user may be primarily interested
in obtaining the lowest price available, while another may be concerned with the reliability of the vendor.

We discuss here a formal framework in which user preferences are formulated explicitly using first-order
logic. Relying on that representation, many issues germane to preferences like composition, elicitation, or
revision have been studied independently of queries. Moreover, it has been shown that preferences and queries
can be combined in a clean fashion, yielding preference queries. In the context of such queries, classical database
issues like query evaluation and optimization have been revisited, yielding new, preference-specific techniques.

Preferences have been studied for a long time in decision theory and philosophy [11, 14]. The interest in
preferences in artificial intelligence [4] and databases [24] is more recent.

The following mock car-shopping dialogue illustrates some aspects of preferences and preference queries
addressed in this paper:

Maggie (salesperson): What kind of car do you prefer?

Fred (customer): The newer the better, if it is the same make. And cheap, too.

Maggie: Which is more important for you: the age or the price?

Fred: The age, definitely.

Maggie: Those are the best cars, according to your preferences, that we have in stock.

Fred: Wait...it better be a BMW.
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First, Maggie elicits Fred’s preferences involving age and price. Second, she gets Fred to commit to a
prioritized composition of those preferences (age more important than price). Third, Maggie runs a preference
query returning the best cars, according to Fred’s preferences. Fourth, Fred changes his mind and revises his
preferences.

2 Preference relations

We view preferences as binary relations between objects of the same kind. Attribute preference relations relate
attribute values (typically, constants), tuple preference relations relate tuples in the same relation. To refer to the
former we use the symbol ′′ >′′, to the latter, the symbol ′′ ≻′′, both with subscripts if necessary. If x ≻ y, we
say that x is is preferred to y (x is better than y, x dominates y).

Finite preference relations are defined by enumerating their elements. To define infinite preference relations
– common in the presence of infinite domains – we use first-order logic formulas.

Example 1: Throughout this paper, we will repeatedly use the database relation Car(Make, Y ear, Price) and
the following preference relations:

p >price p
′ ≡ p < p′

y >age y
′ ≡ y > y′

(m, y, p) ≻C1 (m′, y′, p′) ≡ m = m′ ∧ (y > y′ ∧ p ≤ p′ ∨ y ≥ y′ ∧ p < p′).

The first two are attribute preference relations, the third, a tuple preference relation.

Typically, logic formulas defining preferences (preference formulas) contain constants, variables, compari-
son operators (like ′′ >′′) and Boolean connectives. Thus, it is possible to check whether one tuple is preferred
to another by substituting tuple attribute values into the preference formula and computing the truth value of
the resulting formula. Such preferences – based only on the contents of the tuples being compared – are called
intrinsic [8], in contrast to extrinsic preferences which may also refer to the contents of database relations.
Also, intrinsic preference formulas usually admit quantifier elimination, and thus quantifiers are not needed in
preference specification.

We also make use of several derived binary relations:

• non-strict attribute preference: x ≥A x′ ≡ x >A x′ ∨ x = x′;

• non-strict tuple preference: t ≽C t′ ≡ t ≻C t′ ∨ t = t′;

• tuple indifference: t ∼C t′ ≡ t �C t′ ∧ t′ �C t.

2.1 Strict partial orders

Here we list some typical properties of binary relations. A binary relation R is

• irreflexive if ∀x (¬R(x, x)),

• transitive if ∀x, y, z (R(x, y) ∧R(y, z) → R(x, z)),

• connected if ∀x, y (R(x, y) ∨R(y, x) ∨ x = y),

• a strict partial order (SPO) if it is irreflexive and transitive,
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• a weak order (WO) if it is an SPO such that ∀x, y, z (R(x, y) → R(x, z) ∨R(z, y)),

• a total order if it is a connected SPO.

Commonly, preference relations are required to be SPOs. It is obvious that irreflexivity should hold: prefer-
ring an object over itself seems to violate the basic intuitions behind preference. But transitivity is debatable.
On one hand, it captures the rationality of preferences [11, 12]. On the other, transitivity is sometimes violated
by preference aggregation in voting scenarios [25]. We note that quantifier elimination provides procedures for
checking whether a binary relation satisfies the desirable order properties.

Preferences are often captured using numeric-valued scoring functions. Such functions constitute special
cases of preference relations. Indeed, a scoring function f represents a preference relation ≻f such that

x ≻f y ≡ f(x) > f(y).

It is easy to see that preference relations represented by scoring functions are weak orders. Suppose x ≻f y.
Then f(x) > f(y). So for every z, f(x) > f(z) or f(z) > f(y), and thus x ≻f z or z ≻f y. The WO property
has an important consequence: preference relations that are SPOs but not weak orders cannot be represented
using scoring functions. Such preferences are common: the preference relation ≻C1 in Example 1, which is a
skyline preference relation, falls into that category.

2.2 Combining preferences

There are many different ways in which preferences can be combined. We discuss preference composition and
preference accumulation. Both of them are defined logically: if the preference relations being combined are
defined by logic formulas, so is the resulting preference relation.

Preference composition combines preference relations about objects of the same kind: constants or tuples
from the same database relation. The result is a preference relation of that kind. Therefore, the “dimensionality”
of preference is not increased. The most common composition operators 1 are:

• union: x ≻ y ≡ x ≻1 y ∨ x ≻2 y, similarly intersection;

• prioritized composition: x ≻ y ≡ x ≻1 y ∨ (y �1 x ∧ x ≻2 y);

• Pareto composition: x ≻ y ≡ (x ≻1 y ∧ y �2 x) ∨ (x ≻2 y ∧ y �1 x).

One of the potential applications of preference composition is preference revision [9]. This is further described
in Section 6.

Example 2: The notation X ≻ Y means that ∀x ∈ X, y ∈ Y (x ≻ y). Consider two preference relations ≻1

and ≻2: wine ≻1 {tea, coffee} ≻1 juice and {tea, juice} ≻2 coffee ≻2 wine. Then the prioritized composition
≻3 of ≻1 and ≻2 is wine ≻3 tea ≻3 coffee ≻3 juice and the Pareto composition ≻4 of ≻1 and ≻2 is tea ≻4

{coffee, juice}. According to the indifference relation corresponding to ≻4, wine and all the other drinks are
mutually indifferent.

Preference accumulation combines preferences over objects to yield preferences over Cartesian products of
objects. In this way, the “dimensionality” of preference is increased. The most common accumulation operators
are:

• prioritized accumulation ≻=≻1 & ≻2: (x1, x2) ≻ (y1, y2) ≡ x1 ≻1 y1 ∨ (x1 = y1 ∧ x2 ≻2 y2), and

• Pareto accumulation ≻=≻1 ⊗ ≻2: (x1, x2) ≻ (y1, y2) ≡ (x1 ≻1 y1 ∧ x2 ≽2 y2) ∨ (x1 ≽1 y1 ∧ x2 ≻2

y2).

We note that both prioritized and Pareto accumulation are associative (Pareto is also commutative).
1The preference relation which is the result of the composition will be denoted by ≻.
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3 Skylines

Among all preference relations, skyline preference relations, defined using Pareto accumulation, have been the
most extensively studied [6]. Given attribute preference relations >A1 , . . . , >An , the skyline preference relation
≻ is defined as:

≻ = >A1 ⊗ >A2 ⊗ · · ·⊗ >An .

Unfolding the definition of Pareto accumulation:

(x1, . . . , xn) ≻ (y1, . . . , yn) ≡
∧
i

xi ≥Ai yi ∧
∨
i

xi >Ai yi. (1)

If we fix the attribute preferences to be the standard orderings of the reals, then we get a Euclidean skyline
preference relation.

Example 3: Given a two-dimensional Euclidean skyline preference relation ≻:

(x1, x2) ≻ (y1, y2) ≡ x1 ≥ y1 ∧ x2 > y2 ∨ x1 > y1 ∧ x2 ≥ y2

and a finite set of points S in the 2-dimensional space, the skyline consists of ≻-maximal elements of S. Figure
1 shows an example skyline (the skyline points are solid black).

1

Figure 1: Two-dimensional skyline

Skyline preference relations and skylines enjoy several properties that make them attractive in the context of
preference queries:

• invariance: a skyline preference relation is unaffacted by scaling or shifting in any dimension;

• universality: a skyline consists of maxima of monotonic scoring functions.

We note that usually skyline preference relations are not weak orders.

Example 4: In two-dimensional Euclidean space:

(3, 0) ≻ (2, 0), (3, 0) � (1, 1), (1, 1) � (2, 0).

Actually, the skyline preference relations in [6] admit a form slightly more general than the formula in
Equation 1. The preference relation is defined not only in terms of attribute preference relations but also attribute
equality. This achieves the effect of GROUP-BY and can be conceptually viewed as defining multiple skylines.
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Example 5: Considering Example 1, the preference relation ≻C1 is defined as

(m, y, p) ≻C1 (m′, y′, p′) ≡ m = m′ ∧ (y > y′ ∧ p ≤ p′ ∨ y ≥ y′ ∧ p < p′).

Only the cars of the same make can be compared (are in the same group). In the SQL extension proposed in [6],
the above preference relation is expressed as

SKYLINE Make DIFF, Year MAX, Price MIN

Skylines have also been generalized to p-skylines, defined using not only Pareto but also prioritized accumu-
lation [21]. In this way priorities between different attribute preferences are captured.

We conclude this section by noting that all the preferences that can be expressed in the framework of Kießling
[18] can also be expressed using intrinsic first-order logic formulas.

4 Preference queries

The most common kind of preference query has been formalized as the winnow operator ω [8], also called BMO
[18] and Best [26]. The operator retrieves all the best (undominated) tuples from a given relation.

Formally, given a preference relation ≻ and a database relation r:

ω≻(r) = {t ∈ r | ¬∃t′ ∈ r. t′ ≻ t}.

If a preference relation ≻C is defined using a formula C, then we write ωC(r), instead of ω≻C (r).
It is clear that a skyline is the result of computing winnow under the skyline preference relation. This

simple observation has important consequences: the techniques for evaluating and optimizing winnow apply
immediately to skylines.

Winnow seamlessly integrates with the operators of the relational algebra. In fact, winnow can be expressed
in relational algebra and provides the nonmonotonic functionality equivalent to that of set difference [8].

Example 6: Consider the preference relation ≻C1 from Example 1, and the following relation instance {t1 :
(mazda, 2009, 20K), t2 : (ford, 2008, 15K), t3 : (ford, 2007, 15K)} Winnow returns the tuples t1 and t2.
The tuple t3 is dominated by t2.

There are two algorithms that compute winnow for arbitrary SPO preference relations: BNL [6] and SFS
[7]. Those algorithms were first proposed in the context of skylines but they only require irreflexivity and
transitivity of preferences [8]. Many algorithms for computing skylines and their variants have been proposed
in the literature: we mention three influential ones: BBS [23], LESS [13], and Salsa [2].

5 Query optimization

A major advantage of the logic-based approach to preference queries is that rewrite-based query optimization is
done in a natural and clean way. For example, the algebraic laws involving winnow are formulated analogously
to the well-known laws of relational algebra [18, 8, 15]. However, often the laws do not hold unconditionally.
Consider commuting winnow and selection. We have σC(ωγ(r)) = ωγ(σC(r)) for every r if the formula
∀t1, t2.[C(t2) ∧ γ(t1, t2) ⇒ C(t1) is valid.

Example 7: Under the preference relation ≻C1 from Example 1, the selection σPrice<20K commutes with ωC1

but σPrice>20K does not.

5



Other laws involving winnow were studied in [8, 15].
Semantic query optimization (query optimization using integrity constraints) also fits in very well here. As

shown in [10], the information about integrity constraints can be used to eliminate redundant occurrences of
winnow and make more efficient computation of winnow possible. We say that ωC is redundant w.r.t. a set of
integrity constraints F if wC(r) = r for all r satisfying F . Now ωC is redundant w.r.t. F iff F implies the
formula ∀t1, t2. R(t1) ∧ R(t2) ⇒ t1 ∼C t2. The latter formula is a constraint-generating dependency. The
properties of such dependencies were studied in [3].

6 Prospects for preferences

Preference modification Preferences are rarely static. Desires and needs fluctuate, priorities change. Several
different preference modifications operators have been considered in the literature. In preference revision [9], a
revising preference relation ≻0 is composed with the original preference relation ≻ using one of the composition
operators: union, prioritized or Pareto composition. Under certain restrictions on preference relations, the com-
position eliminates preference conflicts. Moreover, to guarantee SPO properties the result of the composition is
transitively closed. Preference revision is suitable in scenarios where new preference information augmenting
or contradicting the existing one comes to light. In preference contraction [20], the new information consists of
a contractor relation CON . The revised preference relation is now a maximal SPO subset of ≻ disjoint with
CON . Contraction is appropriate if preferences are being cancelled or withdrawn. In substitution [5], the new
information is a set of indifference pairs. The paired objects are supposed to become mutually substitutable.
This is possible if additional preferences are added so that the paired objects have the same sets of dominating
and dominated objects. Clearly, having a general framework encompassing the above approaches (and other that
can be envisioned) would be useful.

Preference elicitation. While preference formulas concisely and precisely capture preferences, they are not
easy to construct. Instead of requiring that the user build a preference formula from scratch, one could imagine
a step-by-step preference specification process in which the user could provide additional feedback. Recent
work suggests that the feedback in the form of good or bad objects may be used in a variety of ways. In [16],
the user analyzes the result of a skyline query and labels some of the skyline objects as superior (should be
in the skyline) or inferior (should not be in the skyline). Then the attribute preference relations are revised in
such a way that the revised skyline query is guaranteed to return the superior objects and not to return inferior
objects. Under the same model, [21] propose that it is the skyline query expression that needs to be revised by
replacing some occurrences of Pareto accumulation operators by the occurrences of prioritized accumulation.
In this way relative priorities of attribute preference relations are captured. It would be natural to consider
other kinds of user feedback, for example answers to dominance queries: “does a dominate b?” In general, it
is a considerable challenge to uncover the preferences underlying the kinds of preference-related information
available, for example, in social networks.

Preference and uncertainty. Several papers have studied the evaluation of skyline queries over uncertain
(probabilistic) data [22]. It would be interesting to consider the same problem for more general variants of
skyline queries. [19] study the problem of skyline querying in the presence of nulls. There, a tuple t1 dominates
a tuple t2 if t1 is known to be better than t2 in some dimension and not known to be worse in any other dimension.
What is the right logic for defining such preference relations?

Preferences over sets. In some applications it is natural to consider preferences over sets of objects. Those sets
may be homogenous (consisting of objects of the same type) or heterogenous (consisting of objects of different
types). Preferences over homogenous sets arise, for example, in committee selection, or employee or student
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recruiting. To address this topic, [28] (generalizing the approach of [1]) propose a two-layered approach. In the
first layer, set profiles, which are tuples of features, are defined. An example feature is an aggregate value of
some attribute of the set, e.g., SUM. In the second layer, tuple preferences among profiles are specified. Queries
return the best profiles – such profiles correspond to the best subsets of a given set. The algorithmic challenge is
to improve on the brute-force enumeration of all the subsets. Preferences over heterogenous sets arise in product
configuration. An example product is a vacation package, consisting of hotel, plane, and rental reservations.
The best products are computed using the skyline semantics [27]. The algorithmic challenge is to avoid the
materialization of all possible products.

Preference networks. We note that an influential approach to preference queries and personalization [17] is
based on the notion of preference network in which numeric scores are associated with query conditions to
capture their degree of satisfaction. It would be interesting to develop logical semantics for that approach.
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