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Letter from the Editor-in-Chief

TCDE Activities

It has become a recent tradition that the vice chair of the technical committee be the chair of the ICDE Steering
Committee. This is a worthwhile “tradition” that ensures continuing close collaboration between the technical
committee and the steering committee. In continuance of this tradition, I have appointed Masaru Kitsuregawa as
the technical committee vice chair. Masaru is the current steering committee chair and was present at ICDE in
Hanover, chairing the steering committee meeting as it considered venues for future conferences. I would like to
thank Calton Pu for having served as vice chair of the technical committee, and for his leading role in chairing
the ICDE steering committee. His steering committee role required much more just recently as Calton coped
with a conference planning crisis. His efforts ensured that ICDE would continue to prosper.

I also want to report on my first attendance at the IEEE Computer Society Technical Activities Committee
(TAC) meeting last month in Los Alamitos, California. There was wide recognition that Technical Committees
are very valuable to the Computer Society, both in providing much of the technical content of the Digital Li-
brary, and in bringing in conference revenue. Thus, TC’s help maintain the technical stature of the Computer
Society and contribute financially as the Computer Society struggles with the shift from hardcopy to electronic
publication.

Despite this recognition and importance, the technical committees have little say in the governance of the
Computer Society. A modest beginning in an effort to change that situation began in Los Alamitos. Under the
leadership of Hilarie Orman, chair of the Technical Committee on Security and Privacy, a subcommittee was
formed to propose changes that would enable TC chairs to elect the chair of the TAC. The TAC chair currently
represents technical committees on the Computer Society Board of Governors, so this change should enable
views from the technical committees to be better represented at this next higher organizational level.

The Current Issue

What could be better than a database system that answers your queries on the topic of your interest? The answer
to this is contained in part of the question itself. The system would be more useful if it knew your interests and
could take them into account when answering your question. That, in a sentence, is the goal of the “preference
aware databases” research area, and how to do this, and what it means, is the subject of the current issue. Like
much of the database area, this is a technical area that is grounded in strong commercial interest. And the
newness of the area represents a wonderful opportunity for research with real impact.

Mohamed Mokbel, the editor for this issue, is active in the preference database area, having multiple publi-
cations in the area with colleagues at Minnesota. He knows both the area and the researchers working in it. The
current issue is, of course, a snapshot of the area, which will undoubtedly evolve fairly rapidly. But it captures
a broad cross section of the work going on. In addition, the issue demonstrates the diversity of the community
engaged in this effort, with authors from both academia and industry, with a very wide geographic distribution.
I want to thank Mohamed for the fine job he has done in assembing the issue. The issue is, I think, a successful
answer our “preference query” as to what is new in database research, where we have a preference for exciting
areas.

David Lomet
Microsoft Corporation



Letter from the Special Issue Editor

Personalization takes data management to a new frontier where each user is able to get a tailored service accord-
ing to his/her personal preferences, behavior, and surrounding context. This special issue includes ten articles
that address various aspects of personalization, namely, preference queries, context-aware data management,
and recommender systems.

The issue starts with two articles that lay out the foundation of preference queries in relational database
systems. Preference queries present a major component in personalized data management where two different
users querying a database using the same query may receive different results based on their personal preferences.
The first article, by Jan Chomicki, gives a formal framework in which user preferences are formulated using first-
order logic. The article also discusses the use of that logic in preference query evaluation and optimization in
relational database systems. The second article, by Werner KieBling et al., gives an overview of the Preference
SQL system; a declarative extension of standard SQL by strict partial order preferences. Preference SQL enables
a seamless integration of preference application with SQL back-end systems.

The following article, by Evaggelia Pitoura et al., calls for enhancing preference queries by considering
contextual information. Context may express conditions on situations external to the database or related to the
data stored in the database. The article goes on outlining a model for expressing preferences and context to
provide a more personalized query answer.

The fourth article in this issue, by Georgia Koutrika, identifies the differences between plug-in and native
realization of preference queries in database management systems. This article aims at showing how tightly
preferences are currently coupled with database queries and sharing a vision regarding opportunities and chal-
lenges in fully implementing preferences as first-class citizens inside the database engine by changing both the
database query model and internal code.

The issue then continues with three articles presenting system prototypes for preference and context-aware
systems. Yannis loannidis er al. presents the PAROS system, which offers personalized services to its users
through a user model, profiling strategies, which create instances of personalized user models, and adaptation
strategies, which adapt the system behavior based on the user profiles. Justin Levandoski et al. presents the
CareDB system, a context and preference-aware database system that includes a generic and extensible query
processing engine, a framework for handling expensive attributes, and a framework for supporting uncertain
data. Cristiana Bolchini et al. gives an overview of various research work related to context modeling and
awareness within the Context-ADDICT project.

The last part of this issue includes three articles about recommender systems, which mainly aim to provide
content that is likely to interest users, based on current and/or past user behavior. Gloria Chatzopoulou et al.
presents the QueRIE system, which recommends to its users a set of queries that can be posed to the underlying
database system. Such a system is mostly useful to those users who lack SQL expertise or familiarity with the
database schema, e.g., users from the scientific community. Mohammad Khabbaz et al. presents the TopRecs™
system, which extends current recommender systems from only recommending a single item to recommend
package of items and to consider user-specified constraints. The issue then concludes with an article from
Sihem Amer-Yahia giving an overview of various projects at Yahoo! Labs in the context of recommendations
within web search.

I sincerely hope that you will enjoy reading this issue and find it interesting and thought-provoking.

Mohamed F. Mokbel

Department of Computer Science and Engineering,
University of Minnesota

Minneapolis, MN, USA



Logical Foundations of Preference Queries

Jan Chomicki
University at Buffalo
chomicki @buffalo.edu

Abstract

The notion of preference plays an increasing role in today’s information systems. In particular, prefer-
ences are used to specify which query answers are the best from the user’s point of view. In this article, we
discuss the work done over the last 10 years in the context of preference queries to relational database
systems. We focus on preferences that are specified logically. We show how such preferences can be
embedded into relational query languages. By separating the preferences from the query, preference-
specific query evaluation and optimization techniques can be formulated and preference modification
studied. We conclude with an outline of future prospects for preference research.

1 Introduction

Preference is one of the dimensions of personalization. Two different users querying a database using the same
query may expect different answers because they may use different, implicit criteria of which answers are the
best and the most preferred. For example, when purchasing a book online one user may be primarily interested
in obtaining the lowest price available, while another may be concerned with the reliability of the vendor.

We discuss here a formal framework in which user preferences are formulated explicitly using first-order
logic. Relying on that representation, many issues germane to preferences like composition, elicitation, or
revision have been studied independently of queries. Moreover, it has been shown that preferences and queries
can be combined in a clean fashion, yielding preference queries. In the context of such queries, classical database
issues like query evaluation and optimization have been revisited, yielding new, preference-specific techniques.

Preferences have been studied for a long time in decision theory and philosophy [11, 14]. The interest in
preferences in artificial intelligence [4] and databases [24] is more recent.

The following mock car-shopping dialogue illustrates some aspects of preferences and preference queries
addressed in this paper:

Maggie (salesperson): What kind of car do you prefer?

Fred (customer): The newer the better, if it is the same make. And cheap, too.
Maggie: Which is more important for you: the age or the price?

Fred: The age, definitely.

Maggie: Those are the best cars, according to your preferences, that we have in stock.
Fred: Wait...it better be a BMW.

Copyright 2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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First, Maggie elicits Fred’s preferences involving age and price. Second, she gets Fred to commit to a
prioritized composition of those preferences (age more important than price). Third, Maggie runs a preference
query returning the best cars, according to Fred’s preferences. Fourth, Fred changes his mind and revises his
preferences.

2 Preference relations

We view preferences as binary relations between objects of the same kind. Attribute preference relations relate
attribute values (typically, constants), tuple preference relations relate tuples in the same relation. To refer to the
former we use the symbol ” >", to the latter, the symbol ” ", both with subscripts if necessary. If x > y, we say
that x is is preferred to y (x is better than y, x dominates ).

Finite preference relations are defined by enumerating their elements. To define infinite preference relations
— common in the presence of infinite domains — we use first-order logic formulas.

Example 1: Throughout this paper, we will repeatedly use the database relation Car(Make,Year, Price) and the
following preference relations:

P>price P =p<p'
y>agey/ Ey>yl
(m,y,p) =c, (m' .y, p'y=m=m'AN(y>y Ap<p'vVy>yAp<p).

The first two are attribute preference relations, the third, a tuple preference relation.

Typically, logic formulas defining preferences (preference formulas) contain constants, variables, compari-
son operators (like ” >"") and Boolean connectives. Thus, it is possible to check whether one tuple is preferred
to another by substituting tuple attribute values into the preference formula and computing the truth value of
the resulting formula. Such preferences — based only on the contents of the tuples being compared — are called
intrinsic [8], in contrast to extrinsic preferences which may also refer to the contents of database relations.
Also, intrinsic preference formulas usually admit quantifier elimination, and thus quantifiers are not needed in
preference specification.

We also make use of several derived binary relations:

e non-strict attribute preference: x >4 X’ =x >4 X' Vx =x/;
e non-strict tuple preference: t =ct' =t >ct' Vi =1,

e tuple indifference: t ~ct' =t #ct' At ¥t

2.1 Strict partial orders

Here we list some typical properties of binary relations. A binary relation R is
o irreflexive if Vx (—R(x,x)),
e transitive if Vx,y,z (R(x,y) AR(y,z) — R(x,z2)),
o connected if Vx,y (R(x,y) VR(y,x) Vx=y),

e a strict partial order (SPO) if it is irreflexive and transitive,



e a weak order (WO) if it is an SPO such that Vx,y,z (R(x,y) = R(x,z) VR(z,y)),
e « total order if it is a connected SPO.

Commonly, preference relations are required to be SPOs. It is obvious that irreflexivity should hold: prefer-
ring an object over itself seems to violate the basic intuitions behind preference. But transitivity is debatable.
On one hand, it captures the rationality of preferences [11, 12]. On the other, transitivity is sometimes violated
by preference aggregation in voting scenarios [25]. We note that quantifier elimination provides procedures for
checking whether a binary relation satisfies the desirable order properties.

Preferences are often captured using numeric-valued scoring functions. Such functions constitute special
cases of preference relations. Indeed, a scoring function f represents a preference relation > ¢ such that

x=ry=flx) > f(y)-

It is easy to see that preference relations represented by scoring functions are weak orders. Suppose x > y.
Then f(x) > f(y). So for every z, f(x) > f(z) or f(z) > f(v), and thus x > z or z > y. The WO property has
an important consequence: preference relations that are SPOs but not weak orders cannot be represented using
scoring functions. Such preferences are common: the preference relation >¢, in Example 1, which is a skyline
preference relation, falls into that category.

2.2 Combining preferences

There are many different ways in which preferences can be combined. We discuss preference composition and
preference accumulation. Both of them are defined logically: if the preference relations being combined are
defined by logic formulas, so is the resulting preference relation.

Preference composition combines preference relations about objects of the same kind: constants or tuples
from the same database relation. The result is a preference relation of that kind. Therefore, the “dimensionality”
of preference is not increased. The most common composition operators ! are:

e union: x > y=x>1y V x >3y, similarly intersection;
e prioritized composition: x = y=x =1 yV (y #1 XAx >=2Y);
e Pareto composition: x =y = (x =] yAY ¥#2x) V (x =2 YAy ¥#1 x).

One of the potential applications of preference composition is preference revision [9]. This is further described
in Section 6.

Example 2: The notation X > Y means that Vx € X,y € Y (x > y). Consider two preference relations > and >;:
wine = {tea,coffee} + juice and {tea,juice} =, coffee =, wine. Then the prioritized composition >3 of >
and -, is wine >3 tea =3 coffee =3 juice and the Pareto composition -4 of > and >, is tea >4 {coffee, juice}.
According to the indifference relation corresponding to >4, wine and all the other drinks are mutually indifferent.

Preference accumulation combines preferences over objects to yield preferences over Cartesian products of
objects. In this way, the “dimensionality” of preference is increased. The most common accumulation operators
are:

e prioritized accumulation > => & >=2: (x1,x2) = (y1,02) =x1 =11 V (x1 =y1 Ax2 >2 y2), and
e Pareto accumulation = =>1 ® >=»: (xl,xz) - (yl,yz) = (x1 =1 Y1 A\x3 =2 yz) Vv (x1 =1 Y1 A\Xx3 > yz).

We note that both prioritized and Pareto accumulation are associative (Pareto is also commutative).

I'The preference relation which is the result of the composition will be denoted by .



3 Skylines

Among all preference relations, skyline preference relations, defined using Pareto accumulation, have been the
most extensively studied [6]. Given attribute preference relations >4,,...,>4,, the skyline preference relation
> is defined as:

=oAL Q >4, QR >y,

Unfolding the definition of Pareto accumulation:

(xl, .. .,xn) - (yl,. .. ,y,,) = /\xl- ZAI' yi/\\/xi >4; Vi (D)

l l

If we fix the attribute preferences to be the standard orderings of the reals, then we get a Euclidean skyline
preference relation.

Example 3: Given a two-dimensional Euclidean skyline preference relation >:

(x1,22) = (V1,02) =x1 > Y1 Ax2 >y VX >y Ax2 >y

and a finite set of points S in the 2-dimensional space, the skyline consists of >-maximal elements of S. Figure
1 shows an example skyline (the skyline points are solid black).

Figure 1: Two-dimensional skyline

Skyline preference relations and skylines enjoy several properties that make them attractive in the context of
preference queries:

e invariance: a skyline preference relation is unaffacted by scaling or shifting in any dimension;
e universality: a skyline consists of maxima of monotonic scoring functions.
We note that usually skyline preference relations are not weak orders.

Example 4: In two-dimensional Euclidean space:

(3,0) > (2,0),(3,0) 3 (1,1),(1,1) 3 (2,0).

Actually, the skyline preference relations in [6] admit a form slightly more general than the formula in
Equation 1. The preference relation is defined not only in terms of attribute preference relations but also attribute
equality. This achieves the effect of GROUP-BY and can be conceptually viewed as defining multiple skylines.



Example 5: Considering Example 1, the preference relation >, is defined as
(m,y,p) =c, (m',y",p)=m=m'A(y>YAp<p'Vy=yAp<p').

Only the cars of the same make can be compared (are in the same group). In the SQL extension proposed in [6],
the above preference relation is expressed as

SKYLINE Make DIFF, Year MAX, Price MIN

Skylines have also been generalized to p-skylines, defined using not only Pareto but also prioritized accumu-
lation [21]. In this way priorities between different attribute preferences are captured.

We conclude this section by noting that all the preferences that can be expressed in the framework of KieBling
[8] can also be expressed using intrinsic first-order logic formulas.

4 Preference queries

The most common kind of preference query has been formalized as the winnow operator ® [8], also called BMO
[8] and Best [26]. The operator retrieves all the best (undominated) tuples from a given relation.
Formally, given a preference relation > and a database relation r:

o.(r)={tcr|-3t crt 1t}

If a preference relation ¢ is defined using a formula C, then we write w¢(r), instead of @, .(r).

It is clear that a skyline is the result of computing winnow under the skyline preference relation. This
simple observation has important consequences: the techniques for evaluating and optimizing winnow apply
immediately to skylines.

Winnow seamlessly integrates with the operators of the relational algebra. In fact, winnow can be expressed
in relational algebra and provides the nonmonotonic functionality equivalent to that of set difference [8].

Example 6: Consider the preference relation ¢, from Example 1, and the following relation instance {#; :
(mazda,2009,20K),1, : (ford,2008,15K),t3 : (ford,2007,15K)} Winnow returns the tuples #; and #,. The
tuple #3 is dominated by #,.

There are two algorithms that compute winnow for arbitrary SPO preference relations: BNL [6] and SFS
[7]. Those algorithms were first proposed in the context of skylines but they only require irreflexivity and
transitivity of preferences [8]. Many algorithms for computing skylines and their variants have been proposed
in the literature: we mention three influential ones: BBS [23], LESS [13], and Salsa [2].

5 Query optimization

A major advantage of the logic-based approach to preference queries is that rewrite-based query optimization is
done in a natural and clean way. For example, the algebraic laws involving winnow are formulated analogously
to the well-known laws of relational algebra [8, 8, 15]. However, often the laws do not hold uncondition-
ally. Consider commuting winnow and selection. We have 6¢(wy(r)) = wy(c¢(r)) for every r if the formula
Vv ,tz.[C(l‘z) /\'Y(t1 ,tz) = C(t1) is valid.

Example 7: Under the preference relation >¢, from Example 1, the selection Gpice<20x commutes with W,
but Gp,ice>20x does not.



Other laws involving winnow were studied in [8, 15].

Semantic query optimization (query optimization using integrity constraints) also fits in very well here. As
shown in [10], the information about integrity constraints can be used to eliminate redundant occurrences of
winnow and make more efficient computation of winnow possible. We say that ¢ is redundant w.r.t. a set of
integrity constraints F if we(r) = r for all r satisfying F. Now ¢ is redundant w.r.t. F iff F implies the formula
Vt1,t2. R(t1) AR(t2) = t; ~c tp. The latter formula is a constraint-generating dependency. The properties of
such dependencies were studied in [3].

6 Prospects for preferences

Preference modification Preferences are rarely static. Desires and needs fluctuate, priorities change. Several
different preference modifications operators have been considered in the literature. In preference revision [9], a
revising preference relation g is composed with the original preference relation > using one of the composition
operators: union, prioritized or Pareto composition. Under certain restrictions on preference relations, the com-
position eliminates preference conflicts. Moreover, to guarantee SPO properties the result of the composition is
transitively closed. Preference revision is suitable in scenarios where new preference information augmenting
or contradicting the existing one comes to light. In preference contraction [20], the new information consists
of a contractor relation CON. The revised preference relation is now a maximal SPO subset of > disjoint with
CON. Contraction is appropriate if preferences are being cancelled or withdrawn. In substitution [5], the new
information is a set of indifference pairs. The paired objects are supposed to become mutually substitutable.
This is possible if additional preferences are added so that the paired objects have the same sets of dominating
and dominated objects. Clearly, having a general framework encompassing the above approaches (and other that
can be envisioned) would be useful.

Preference elicitation. While preference formulas concisely and precisely capture preferences, they are not
easy to construct. Instead of requiring that the user build a preference formula from scratch, one could imagine
a step-by-step preference specification process in which the user could provide additional feedback. Recent
work suggests that the feedback in the form of good or bad objects may be used in a variety of ways. In [16],
the user analyzes the result of a skyline query and labels some of the skyline objects as superior (should be
in the skyline) or inferior (should not be in the skyline). Then the attribute preference relations are revised in
such a way that the revised skyline query is guaranteed to return the superior objects and not to return inferior
objects. Under the same model, [21] propose that it is the skyline query expression that needs to be revised by
replacing some occurrences of Pareto accumulation operators by the occurrences of prioritized accumulation.
In this way relative priorities of attribute preference relations are captured. It would be natural to consider
other kinds of user feedback, for example answers to dominance queries: “does a dominate b?” In general, it
is a considerable challenge to uncover the preferences underlying the kinds of preference-related information
available, for example, in social networks.

Preference and uncertainty. Several papers have studied the evaluation of skyline queries over uncertain
(probabilistic) data [22]. It would be interesting to consider the same problem for more general variants of
skyline queries. [19] study the problem of skyline querying in the presence of nulls. There, a tuple ¢#; dominates
atuple 1, if ¢1 is known to be better than , in some dimension and not known to be worse in any other dimension.
What is the right logic for defining such preference relations?

Preferences over sets. In some applications it is natural to consider preferences over sets of objects. Those sets
may be homogenous (consisting of objects of the same type) or heterogenous (consisting of objects of different
types). Preferences over homogenous sets arise, for example, in committee selection, or employee or student



recruiting. To address this topic, [28] (generalizing the approach of [1]) propose a two-layered approach. In the
first layer, set profiles, which are tuples of features, are defined. An example feature is an aggregate value of
some attribute of the set, e.g., SUM. In the second layer, tuple preferences among profiles are specified. Queries
return the best profiles — such profiles correspond to the best subsets of a given set. The algorithmic challenge is
to improve on the brute-force enumeration of all the subsets. Preferences over heterogenous sets arise in product
configuration. An example product is a vacation package, consisting of hotel, plane, and rental reservations.
The best products are computed using the skyline semantics [27]. The algorithmic challenge is to avoid the
materialization of all possible products.

Preference networks. We note that an influential approach to preference queries and personalization [17] is
based on the notion of preference network in which numeric scores are associated with query conditions to
capture their degree of satisfaction. It would be interesting to develop logical semantics for that approach.
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Abstract

Preference SQL is a declarative extension of standard SQL by strict partial order preferences, behaving
like soft constraints under the BMO query model. Preference queries can be formulated intuitively
following an inductive constructor-based approach. Both qualitative methods like e.g. Pareto / skyline
and quantative methods like numerical ranking, definable over categorical as well as numerical attribute
domains can be used. The Preference SQL System is implemented as a middleware component, enabling
a seamless application integration with standard SQL back-end systems. The preference query optimizer
performs algebraic transformations of preference relational algebra as well as cost-based algorithm
selection e.g. for efficient Pareto / skyline evaluation. Ongoing work extends Preference SQL towards
efficient support for personalized location-based mobile geo-services and social networks.

1 Introduction

After years of intensive experiences in particular through the Internet, search engine technology has improved
considerably. However, more often than desirable it still does not meet the user’s expectations. Prominent
deficiencies which probably all search engine users have suffered are the infamous “empty-result” effect (i.e.,
getting no query results) and its opposite companion the notorious “flooding effect” (i.e., getting far too many
query results). Thus a typical user search session requires several trial-and-error style query attempts, until
eventually something suitable has been found, or the user quits frustratedly. Ad hoc attempts to remedy this
unpleasant situation such as parametric search can achieve some relief, but do not solve the intrinsic problems.
Focusing on search engines based on SQL databases, the cause for these difficulties is easily identified: SQL only
supports hard constraints with an exact-match semantics. In contrast, mostly people also include preferences in
their decisions, both in their daily lives as well as in business. But the very nature of preferences is different from
hard constraints. Preferences are like soft constraints, requiring a match-making process instead: If my favorite
choice is available in the database, I will take it. Otherwise, instead of getting nothing, I am open to alternatives,
but show me only the best ones available in the database. Therefore, improving SQL-based search capabilities
asks for extending SQL query technology towards a preference model, which of course should be powerful,
flexible and intuitive for the user, but simultaneously query performance must be fast enough. However, the
question of “what is the right preference model” is far from being trivial. In fact, the complexity of preferences
has challenged researchers from diverse disciplines. During the past fifty years preferences have traditionally

Copyright 2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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been studied in fields such as Economic Decision Making, Social Choice Theory, Operations Research and
Artificial Intelligence (see [3] for an overview). In recent years preferences have found steadily increasing
interest in databases as well. A survey on the state of the art in databases can be found in [15].

In this paper we adopt the preference model introduced by [8], suggesting preferences to be strict partial
orders (SPO). A similar approach has been proposed by [4]. SPO preferences can be interpreted in a very
intuitive manner as personalized wishes in the form of “I like A more than B”. Formally, a preference P on a
set of attributes A is defined as P := (A, <p), where <p C dom(A) x dom(A) is a strict partial order. x <py
is interpreted as “I like y more than x”. Note that the preference order <p is irreflexive and transitive. An
important subclass of preferences are weak order preferences (WOP), i.e., SPOs for which negative transitivity
holds: Vx,y,z € dom(A): —(x <py) N —(y <pz) = —(x <pz). For a WOP P = (A,<p) the dominance
test can be efficiently performed by a numerical utility function f : dom(A) — Rg which depends on the type
of preference. Dominated tuples have higher function values, i.e., x <py <= f(x) > f(y). Note that this
preference definition does not explicitly take the user’s situation or context into account (see [12] for a discussion
on context-awareness). Instead, preference-driven applications are supposed to maintain a persistent preference
repository in order to automatically retrieve proper preferences for context-dependent query composition (see
[7] for details).

Based on this preference model a first version of Preference SQL, extending SQL queries by preferences,
has been described in [12]. An early commercial implementation of Preference SQL was available already in
1999. For the sake of rapid prototyping and quick time to market this version implemented loose coupling to
a standard SQL database together with a query re-writing approach. Since then state of the art for preference
handling in database systems has advanced considerably (see [15]). Here we provide an overview on the recent
version of Preference SQL developed at the University of Augsburg.

2 The Preference Query Model

2.1 Preference Constructors

For the design of the declarative preference query language in [8] an inductive, constructor-based approach
was used to formally specify a preference. For this purpose, a choice of intuitive base preference constructors
together with some complex preference constructors has been defined, all being SPOs.

Base Preferences Preferences on single attributes are called Base preferences. There are base preference con-
structors for continuous and for discrete (categorical) domains. Figure 1 shows the taxonomic “ISA”-hierarchy
of several frequently occuring base preference constructors.

SCORE,
EXPLICIT
LAYERED,, CONTAINS BETWEEN,
POS/POS POS/NEG AROUND,
POS NEG LOWEST, HIGHEST,

Figure 1: Taxonomy of base preference constructors

Definition 1 (SCORE, Preference): Given a scoring function f; : dom(A) — R, and some d > 0. Then P is
called a SCORE, preference, iff for x,y € dom(A): x <py <= fui(x) > fs(y) where f;(v),v € dom(A), is
defined as: f;(v) = [ f(v)/d]. Note that f(v) is a numerical utility function.
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When dealing with numerical values, it is a common practice to group ranges of scores together. Such a
real-world behavior can be modeled using a d-parameter. It maps different function values to a single number
which therefore maybe become substitutable with other values.

Since SCORE,; specifies a WOP, all sub-constructors of SCORE, in Figure 1 are WOPs, too. However,
EXPLICIT is not a WOP, hence not a sub-constructor of SCORE,. EXPLICIT is used to create any preference
that can be expressed by a finite set of “A is better than B” relationships. The continuous preference constructor
BETWEEN, expresses the wish for a value between a lower and an upper bound.

Definition 2 (BETWEEN, Preference): The BETWEEN,(A, [low, up]) preference is a SCORE, preference
with the following scoring function for low,up € dom(A):

low—v ,if v < low
fv):= 0 ,if low < v < up
v—up ,if up < v

Specifying low = up (=: z) in BETWEEN, we get the AROUND,(A, z) preference constructor. In the
AROUNDy(A, z) preference the desired value should be z. If this is infeasible, values within a distance of
d are acceptable. Furthermore, specializing z = inf4 and z = sup, yield the constructors LOWEST,;(A) and
HIGHEST,(A), resp., where infy / sup, are the infimum / supremum of dom(A). HIGHEST,; and LOWEST,
allow users to express easily their desire for values as high or as low as possible.

Definition 3 (LAYERED,, Preference): LetL=(L;,---,L,+1) (m > 0)be an ordered list of m+-1 sets forming
a partition of dom(A) for an attribute A. The preference P is a LAYERED,, preference if it is a SCORE,
preference with the following scoring function:  f(x) :=i—1 <= x € L;. For convenience, one of the L; may
be named “others”, representing the set dom(A) without the elements of the other subsets.

All categorical base preferences are sub-constructors of LAYERED,,, e.g. POS(A, POS-set) is equal to
LAYERED (A, POS-set, others), and expresses that a user has a set of preferred values, the POS-set, in the
domain of A. There is also a NEG-preference NEG(A, NEG-set). Moreover, it is possible to combine these
preferences to POS/POS or POS/NEG. For the POS/POS(A, POS1-set, POS2-set) preference a desired value
should be amongst a finite set POS1-set. Otherwise it should be from a disjoint finite set of alternatives POS2-
set. If this is also not feasible, better than getting nothing any other value is acceptable. In addition to the
discussed preferences we support the base preference CONTAINS which works on text attributes and currently
supports simple full-text search. For details on all preferences we refer to [8, 10].

Complex Preferences If one wants to combine several preferences into an overall preference, one has to de-
cide the relative importance of these given preferences. Intuitively, people speak of “this preference is more im-
portant to me than that one” or “these preferences are all equally important to me”. We model equal importance
of preferences by the so-called Pareto preference, whereas for ordered importance we introduce prioritization.
A generalization to more than two preferences is straightforward, cp. [10].

Definition 4 (Pareto Preference): Assume preferences P, = (A1, <p,), P» = (A2,<p,), and x = (x1,x2), y =
(y1,y2) € dom(A), then the Pareto preference constructor denoted by P := P; ® P, is defined as:

(x1,x2) <p (y1,y2) iff (x1 <py1 A(x2<p,y2 VX2 =y2)) V (x2<p, y2 A (x1 <p, y1 V X1 =Y1))

Definition 5 (Prioritization): Assume two preferences P, = (A1, <p,) and P, = (A3, <p,), then prioritization
denoted by P := Py & P, is defined as:  (x1,x2) <p (y1,y2) iff x; <py1 V (x1 =y1 A x2 <p, ¥2).
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Generalizing above definitions for Pareto and prioritization to capture the semantics of “equally good” without
violating the SPO property is a non-trivial issue. The substitutable values (SV) semantics [10] provides the
most general way to achieve this goal by characterizing, which domain values can be considered as “equally
good”, hence being “substitutable”. Using trivial SV-semantics only equal values are considered as equally
good (Definition 4 and Definition 5 are examples for trivial SV-semantics), whereas for regular SV-semantics
values that are indifferent are considered as equally good. However, regular SV-semantics is only valid for
WOPs, otherwise SPO is violated.

Another form of preference combination is by associating numerical scores to each individual preference
and then applying a combining function to compute a single score, which decides the “better-than” relationship.
Such weighted importance between preferences is realized by the numerical ranking preference, cf. [8, 10].

Definition 6 (Numerical Ranking Preference): Given weak order preferences Pi,...,P, with scoring func-
tions fi, ..., fu. Then the numerical ranking preference RANKf, (d > 0) with an m-ary combining function
F :R™ — Nj is defined as:

F(fi (xl)a'”an(xm))—‘ < [F(fl()’l)v---afm(J’m))-‘

(Xla--~7xm)<P<y17---7)’m)<:> ’V d d

Note that RANKF; yields a WOP again. On the other hand Pareto and prioritization are not WOP preserving.

2.2 The BMO Query Model

The declarative query model for relational databases relies on relational calculus, which is equivalent to rela-
tional algebra. Queries under this model implement the semantics of hard constraints. All retrieved elements
exactly satisfy the specified constraints. Therefore this model is prone to the empty-result effect mentioned ear-
lier. When trying to overcome it by applying tedious parametric search, Boolean expert search or similar ad-hoc
remedies, often the opposite effect of flooding the user with too many, mostly irrelevant results occurs. All of
this can be avoided by supporting the BMO query model for preferences as follows.

Definition 7 (Preference Selection, BMO-set): Let P = (A, <p) be a preference and R(Ay,-- ,A,,) be a database
relation with A C {A;,---,A, }. Then the preference selection operator is defined by:

o[P](R) :={t € R| -3t € R:t[A] <p{'[A]}
The result of preference selection (also named “winnow”-operator in [4]) is called BMO-set.

Preference selection is defined by means of negations, hence it defines a form of non-monotonic reasoning.
It offers a cooperative query answering behavior by automatic matchmaking: The BMO query result adapts
to the quality of the data in the database, defeating the empty result effect and reducing the flooding effect by
filtering off worse results. Thus preferences are treated as soft constraints. Note that Pareto preference queries
form a superset of the skyline operator [2]. However, the skyline operator only allows LOWEST and HIGHEST
preferences. In contrast, a Pareto preference can be constructed from any preferences presented in Section 2.

3 The Preference SQL Query Language

Before illustrating the syntax of Preference SQL we shortly address the formal semantics of Preference SQL,
which extends standard SQL with its exact match semantics by SPO preferences under the BMO query model.
The declarative reasoning paradigm of SQL for relational databases is founded on the familiar model theory
based on relational calculus, its operational equivalent being relational algebra. It is known that this can be
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extended towards recursive relational databases. For preference queries with BMO semantics, subsumption
models [13] can serve as a theoretical foundation for the declarative semantics, with an equivalent operational
semantics expressed by the preference selection operator. Our current version of Preference SQL is an extension
to SQL-92 compliant (i.e., non-recursive) relational databases.

Syntactically, Preference SQL [12, 6] extends the SELECT statement of SQL by an optional PREFERRING
clause. A preference query selects all interesting tuples, i.e., tuples that are not dominated by other tuples.
Preference SQL currently supports most of the SQL-92 standard as well as all previously mentioned base pref-
erences together with the constructors for Pareto, prioritization and Rank. A Preference SQL query block has
the following schematic design:

SELECT ... <selection>

FROM ... <table _reference>

WHERE ... <hard _conditions>
PREFERRING ... <soft _conditions>
GROUPING ... <attribute _list>
BUT ONLY ... <but _only _condition>

GROUP BY ... <attribute _list>

HAVING ... <hard _conditions>

ORDER BY ... <attribute _list>

Figure 2: Preference SQL query block.

The keywords SELECT, FROM, WHERE, GROUP BY, HAVING, and ORDER BY are treated as the stan-
dard SQL query keywords. The other keywords are explained subsequently. For further syntax details of Pref-
erence SQL we refer to [1] and [12].

> PREFERRING: The PREFERRING clause specifies a (possibly very complex) preference P by means of the
preference constructors stated in Section 2. P is evaluated on the result 7' of the hard conditions stated
in the WHERE clause, returning the BMO-set of P. Note that in this way Preference SQL implements a
generalization of constrained skyline queries [16, 5]. Empty result sets can only occur when the WHERE
clause returns an empty result 7. Note that all WOPs can be specified with either trivial or regular SV-
semantics omitting or using the keyword REGULAR after the preference definition.

D> GROUPING: Instead of evaluating P on the entire intermediate relation 7', the GROUPING clause partitions
T w.r.t. the given attribute list. Then P is evaluated on each partition of T separately.

D> BUT ONLY: There are cases, where the BMO-set returned by the PREFERRING / GROUPING clause is
too large for a given application scenario. Note that his tends to hold in particular for high-dimensional
Pareto / skyline queries. Then within the BUT ONLY clause one can specifiy hard conditions similar to the
WHERE clause. BUT ONLY is evaluated on the result of PREFERRING / GROUPING, hence implementing
a generalization of skyline queries with constraints, cp. [16].

Example 1: We want to find all cars with their owners and address who live in Augsburg or Munich. The
average fuel consumption on highway and city driving must be equal or less than 6 liter / 100 km. The cars
should have a mileage between 40.000 km and 50.000 km, and a price around 12.000 Euro. A difference of
2.000 Euro does not matter. This Pareto preference is more important than the make being a BMW or an Audi.
The full-text description of the car should contain “ABS brake”. This is equally important to the make. The
preference is combined with a RANK preference on the age and the price of the car. Furthermore, only cars with
a horsepower less than 100 hp should be presented after preference evaluation (BUT ONLY). The result has to
be ordered by the registration date of the cars. This Preference SQL query is depicted in Figure 3.
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SELECT o.id, a.id, c.id
FROM owner o, address a, car c
WHERE a.city = ’"Augsburg’ OR a.city = ’'Munich’ AND
a.id = o.idaddress AND o.id = c.idowner AND
(c.city_consumption + c.highway_consumption) / 2 <= 6
PREFERRING (c.mileage BETWEEN (40000 AND 50000) AND

c.price AROUND 12000, 2000) PRIOR TO
(c. price HIGHEST AND c.make IN ('BMW’, ’Audi’) REGULAR AND

c.description CONTAINS ’ABS brake’ AND
(c.age SCORE 'age_function’, c. price SCORE ’'price_function’)

RANK age_price_function)
BUT ONLY c.hp < 100 ORDER BY c.reg_date;

Figure 3: A sample complex Preference SQL query.

The WHERE clause states the join conditions. In Preference SQL syntax, Pareto preferences are stated as
“AND” in the PREFERRING clause, while prioritization is expressed by the keyword “PRIOR TO”. The key-
words “IN” represents a POS preference, “CONTAINS” expresses the full-text search. The RANK preference
consists of score functions which must be implemented in Preference SQL itself. After the evaluation of the
preferences the BUT ONLY clause filters out all result tuples which do not fulfill the horsepower condition.

Note that it is possible to specify several preferences on the same attribute. In the query above there are
three preferences on the price of the car, which might for example come from different persons. We call such
preferences social group preferences because one important application is to use them to model group decisions
and group formations depending on individual group member preferences.

4 Preference Query Evaluation

4.1 The Preference SQL System Architecture

Extending existing SQL database systems towards Preference SQL requires some crucial design decisions. The
current University version of Preference SQL adopts a (Java 1.6-based) middleware approach as depicted in
Figure 4.

Preference-SQL

Preference SQL _| Co— Standard SQL-Database

SQL Client
JDBC ‘ Query Optimization JDBC Management

Algorithms System

Figure 4: System architecture of Preference SQL

For a seamless application integration we have extended standard JDBC technology towards a Preference
SQL / JDBC package. This enables the client application to submit Preference SQL queries through familiar
SQL clients. The Preference SQL middleware parses the query and performs preference query optimization as
described subsequently. Those parts of an optimized query execution plan, which directly correspond to SQL-
92, are retranslated into SQL-92 and handed over to the attached SQL database system for evaluation. The new
preference selection operator together with novel algebraic and cost-based query optimization methods are dealt
with in the Preference SQL middleware. This approach has proven its flexibility and performance in various
prototype applications conducted so far, see [11] for example.
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4.2 Preference Query Optimization

Being an extension of standard SQL, Preference SQL can inherit the accumulated vast query optimization
knowhow from relational databases. Moreover, additional optimization techniques are required to cope with
the challenges posted by the preference selection operator for complex strict partial order preferences. Since
Preference SQL always works with a standard SQL database system as back-end, another design goal for the
preference query optimizer has been to offload parts of the query evaluation work to this back-end. Basically, in
its current version a Preference SQL query is processed as follows:

1) The query gets parsed and transformed into an initial operator tree for preference relational algebra, which
comprises classical relational algebra plus the preference selection operator.

2) Then heuristics for algebraic operator tree transformation are applied. For this purpose, the familiar principles
known from standard relational databases had to be augmented by new transformation laws for preference
relational algebra (see [6, 4, 5] for details).

3) For efficient evaluation of the preference selection operator in our middleware, special efficient algorithms
had to be implemented. For instance, for Pareto / skyline queries this repertoire includes the Hexagon algo-
rithm [14] and LESS [8]. The algorithm selection is guided by a cost-based query execution model.

4) Likewise guided by a cost-based model, the Preference query optimizer determines suitable sub-trees of
the final optimized operator tree for offloading them to the back-end SQL system. Those sub-trees are re-
translated into SQL and sent via JDBC to the attached back-end afterwards.

5) The entire result of the Preference SQL query is assembled in our middleware and returned to the requesting
client by Preference SQL JDBC.

It has to be pointed out that many optimization methods applied above would become invalid if transitivity
of preferences would get violated.

S Summary and Outlook

We have presented an overview on the Preference SQL system, which extends standard SQL by preferences.
Preference evaluation follows the BMO paradigm, treating preferences as soft constraints. For ease of use a va-
riety of preference constructors on categorical as well as on numerical domains are available. Since preferences
are always strict partial orders, by means of composition complex preferences can be formulated inductively.
This includes Pareto preferences, prioritization and also numerical ranking. Seamless application integration is
supported by a Preference SQL extension to JDBC, enabling easy access to standard SQL systems like, e.g.,
Oracle, MySQL or PostgresSQL. By this means, standard SQL clients like e.g. Squirrel or DB Visualizer, or
even mobile iPhone or Android clients, can execute Preference SQL queries immediately. Our preference query
optimization implements algebraic methods as well as cost-based approaches, including specialized evaluation
methods like, e.g., the Hexagon algorithm for Pareto queries. A demo of Preference SQL is available at [1].

An enhancement is concerning a new Top-k interface for preference queries on top of the already established
BMO evaluation. Also we are planning to advance existing text search capabilities to a more powerful preference
based full-text search. Finally, the use of ontologies in combination with preferences is of interest. Besides
these changes to the core functionality, current research efforts target the special support of Preference SQL for
innovative application areas such as location-based services, mobile geo-services and social networking sites.
Hence, the development of preference constructors on geospatial data that is e.g. stored in a PostGIS system
as well as possibilities to extend context-awareness are ongoing research. Personalized routing problems will
also ask for extensions towards recursive Preference SQL. In social networks, aspects of social matching, social
group preferences and group recommendations are driving further developments of Preference SQL.
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Abstract

As both the volume of data and the diversity of users accessing them increase, user preferences offer a
useful means towards improving the relevance of the query results to the information needs of the specific
user posing the query. In this article, we focus on enhancing preferences with context. Context may
express conditions on situations external to the database or related to the data stored in the database.
We outline models for expressing both types of preferences. Then, given a user query and its surrounding
context, we consider the problem of selecting related preferences to personalize the query.

1 Introduction

Personalization in databases aims at addressing the explosion of the amount of data currently available to an
increasingly wider spectrum of users by presenting to users only those items that are of interest to them. Pref-
erences have been used as a means to address this challenge through supporting the expression of user interests,
likes and dislikes [15]. Most often preferences depend on the surrounding context. For instance, the choice of
which movie to see or which place to visit may depend on the current weather, location or the people accompa-
nying the user. In this respect, user preferences are context-dependent.

Context is a general term used in several domains [3, 4, 7]. We differentiate between two general context
types: (i) internal and (ii) external context. Internal context captures conditions that involve the data items stored
in the database for which preferences are expressed. External context involves conditions outside the database.
Common types of external context include the computing context (e.g., network connectivity, nearby resources),
the user context (e.g., profile, location), the physical context (e.g., noise levels, temperature) and time [5].

In this paper, we focus on specifying contextual preferences and on selecting appropriate preferences for
personalizing a user query. In general, a contextual preference specification has two parts: a preference part that
specifies the preference and a context part that specifies the conditions under which the given preference holds.
We present a multidimensional model for expressing conditions regarding the external context that allows the
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mid | Title Year | Director Genre Language | Duration
| my Casablanca 1942 | M. Curtiz drama English 102
t | mp Psycho 1960 | A. Hitchcock | horror English 109
t3 | m3 Happy-Go-Lucky | 2006 | M. Leigh comedy | English 118

Figure 1: Example database relation.

expression of contextual preferences at various level of detail, for example both at the level of a city or a country
[16, 17]. We also consider the preference selection problem, that is, given a set of contextual preferences and
a query, determining which preferences are the most relevant to the query. We focus on context aspects and
consider as relevant those preferences whose context is more general of that of the query. We call this problem
context resolution. Finally, we present two data structures, the preference graph and the profile tree, to support
efficient context resolution.

2 A Contextual Preference Model

Preferences express user interests, likes or dislikes. In its most general form, a contextual preference specifi-
cation CP = (C, P) is a pair, where the context specification part C expresses the conditions under which the
preference specified by P holds. In the following, we briefly review approaches to preference specification and
then focus on the specification of a multidimensional model for context. As a running example, we shall use
a single relation with schema: Movies (mid, Title, Year, Director, Genre, Language, Duration). An example
relation (instance) of Movies with three tuples is shown in Fig. 1.

Preference Specification. Preference can be specified either qualitatively or quantitatively. In the qualitative
approach, a preference P is specified as a binary relation rp over a set D of items of interest, i.e., rp C D X D [6].
For relational databases, many alternatives exists for the domain D over which preferences can be specified, thus
allowing preferences with various granularities. Let us first assume that preferences are expressed over tuples
of a single database relation R. Then, for two tuples 7, t; € R, preference (t;,¢;) € rp, also denoted as t; > 1},
means that tuple 7; is preferred over tuple 7;. For example, for the database in Fig. 1, preference | > 1, specifies
that “Casablanca” is preferred over “Psycho”. Preference relations can be also defined over attributes to indicate
their importance or relevance. For instance, for our example database, preference Director > p Duration means
that the director of a movie is considered more important or more relevant than its duration. Preferences can be
also defined at the level of attribute values, for instance comedy > p drama indicates a preference of comedies
over dramas.

Qualitative preferences can be also specified by using conditions: for two items d;, d; € D, d; =p d;, if
Cond(d;,d;), where Cond is a condition that must be satisfied for the preference to hold. For example, preference
ti =p tj, if t;.Year > t;.Year, expresses a preference for recent movies. We can also specify preferences that
involve tuples from more than one relation as well as conditions Cond whose evaluation is not based solely
on the values of the items involved in the preference. The latter are called extrinsic preferences. An example
extrinsic preference would be that a movie directed by M. Leigh is preferred over a movie directed by A.
Hitchcock, if there exist no Spanish speaking movies.

In the quantitative approach, a preference P is specified through a preference function fp: D — [0, 1] that
assigns to each item d € D a preference degree or score fp(d) usually in [0, 1]. Larger scores indicate higher
degrees of interest, i.e., for d;, d; € D, fo(d;) > fp(dj) = d; =¢ d;. Again, there are many alternatives regarding
the domain D over which a preference function is defined. For example, quantitative preferences defined over
join conditions between two relations have been used to express the strength of the relatedness between the two
relations [12]. Function fp may be also defined using conditions, i.e., fp(d) = ¢, if Cond(d), where d € D, ¢ €
[0, 1] and Cond is a condition. For example, preference fp(r) = 0.9, if t.Genre = drama defined over tuples of
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Accompanying _people Mood Time_period

ALL All ATL All ALL All
relationship friends  family alone emotion good bad interval weekdays weekend holidays
occassion Mo Tu We Th Fr Sa Su Christmas Faster

Figure 2: Hierarchy schema and concept hierarchy of Accompanying _people, Mood and Time_period.

the Movie relation assigns score 0.9 to all dramas.

A Multidimensional Context Model. We make a general distinction between internal and external context.
Internal context refers to conditions that involve data items stored in the database, for example, the fact that a
preference for a specific director is applicable under the condition that the genre of the movie is drama. External
context expresses conditions that involve information outside the database. Note that in the case of preferences
specified through conditions, the Cond part may be considered as a specification of internal context. In the rest
of this section, we focus on external context and introduce a multidimensional model for capturing it.

A variety of models for (external) context have been proposed (see for example [20] for a survey). We follow
a data-centric approach. We call context environment, CE, a set of n context parameters: CE = {C\,...,Cy,},
where each context parameter C;, 1 < i < n, captures information that is not part of the database, such as the user
location or the current weather. For our movie database, let us assume that the context environment consists of
context parameters Accompanying_people, Mood and Time_period. Each context parameter takes values from
a hierarchical domain, so that different levels of abstraction for the captured context data are introduced.

In particular, each context parameter has multiple levels organized in a hierarchy schema. Let C be a context
parameter with m > 1 levels, L;, 1 <i < m. We denote its hierarchy schema as L = (L1,...,L,). L; is called the
lowest or most detailed level of the hierarchy schema and L,, the top or most general one. We define a total order
among the levels of L such that L; < ... < L,, and use the notation L; < L; between two levels to mean L; < L;
or L; = L;. Fig. 2 depicts the hierarchy schemas of the context parameters of our running example. For instance,
the hierarchy schema of context parameter Time_period has three levels: occasion (L), interval (L,) and the
top level ALL (L3). Each level Lj, 1 < j < m, is associated with a domain of values, denoted dom,; (C). For
all parameters, their top level has a single value All, i.e., domy, (C) = {All}. A concept hierarchy is an instance
of a hierarchy schema, where the concept hierarchy of a context parameter C with m levels is represented by
a tree with m levels with nodes at each level j, 1 < j < m, representing values in doij (C). The root node
(i.e., level m) represents the value All. Fig. 2 depicts the concept hierarchies of the context parameters of our
running example. For instance, for the context parameter Time_period, holidays is a value of level interval.
The relationship between the values at the different levels of a concept hierarchy is achieved through the use
of a family of ancestor and descendant functions [22]. For example, for the concept hierarchies in Fig. 2,
ancif (Christmas) = holidays whereas descﬁf (weekend) = {Sa,Su}. Finally, we define the domain, dom(C), of
C as: dom(C) = UL domy,;(C).

A context state cs of a context environment CE = {Cy,...C,} is an n-tuple (cy,...,c,), where ¢; € dom(C;),
1 <i < n. For instance, (friends, good, holidays) and (friends, All, Christmas) are context states for our movie
example. The set of all possible context states, called world CW, is the Cartesian product of the domains of the
context parameters: CW = dom(Cy) X --- x dom(Cy,).

The context specification part C of a contextual preference CP = (C,P) specifies a set of context states or
situations in which 2 holds. C is a multi-parameter context descriptor defined as follows. A single parameter
context descriptor scod(C) of a context parameter C is an expression of the form C € {vi,...,v;}, where v €
dom(C), 1 < k <. We use the notation Context(scod(C;)) = {v1,...,vi}. For example, for Time_period, a
single parameter context descriptor is Time_period € {Fr, weekend}. A multi-parameter context descriptor cod
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is an expression of the form /\’]?:0 scod(C;,), 1 < k < n, where i; € {1, ...,n}, scod(C;;) is a single context
parameter descriptor for C;; and there is at most one single parameter context descriptor for each C;;. A multi-
parameter context descriptor specifies a set of context states computed by taking the Cartesian product of the
contexts of all the single parameter context descriptors that appear in the descriptor. If a multi-parameter context
descriptor does not contain descriptors for a context parameter, we assume that the values of the absent context
parameter are irrelevant. In particular, if a context parameter C; is missing from a multi-parameter context
descriptor, we assume the default condition C; € {All}. For example, the multi-parameter context descriptor
cod = (Accompanying people € {friends, family} N Time_period € {holidays}) defines the following two
context states: Context(cod) = {(friends, All, holidays), (family, All, holidays)}.

We call profile the set of all contextual preferences (cod;,®;), available to an application. The context
Context(Pr) of a profile Pr is the union of the contexts of all context descriptors that appear in Pr, that is,
Context(Pr) = U;Context(cod;), where (cod;,P;) € P.

3 Contextual Preference Selection

Query personalization refer to the process of using preferences to adapt the results of a query based on the
interests of users as expressed through their preferences. Adaptation may be achieved through ranking the
results, selecting representative subsets of the results or using different visual or otherwise presentations of
the results. Preferences may be employed to personalize the query results either in a preprocessing or in a
postprocessing step. As a preprocessing step, user preferences are used to rewrite or augment the original query,
for example, by adding selection conditions to the query to incorporate preferences. Such selection conditions
are in general considered soft constraints as opposed to the hard constraints expressed by the selection conditions
present at the original query [10]. As a postprocessing step, user preferences are used after the execution of the
original query to personalize its results, for example by re-ranking or filtering them.

Irrespectively of when preferences are used during query processing, a common issue is which of the pref-
erences in the user profile to use for personalizing each specific query. The number of preferences to be used is
central for the success of personalization, since selecting too many preferences may result to over-specialization,
while selecting too few preferences may not be effective. Preference selection is based on the relevance between
the preference and the query. In the following, we focus on defining formally the relevance between the context
of a preference and the context of a query.

Let g be a query. We use cod? to denote the multi-parameter context descriptor that specifies the context
associated with g: Context(q) = Context(cod?). Such context descriptors may be postulated by the application
or be explicitly provided by the users as part of their queries. Typically, in the first case, the context implicitly
associated with a query corresponds to the current context, that is, the context surrounding the user at the
time of the submission of the query. Besides this implicit context, we also envision queries that are explicitly
augmented with multi-parameter context descriptors by the users issuing them. For example, a user may pose
an exploratory query asking for a movie to see with friends during Christmas. The context associated with a
query may correspond to a single context state, where each context parameter takes a specific value from its
most detailed domain. In other cases, it may be possible to specify the query context using only rough values,
for example, when context values are provided by sensor devices with limited accuracy. In such cases, a context
parameter may take a single value from a higher level of the hierarchy or even more than one value.

Let us first consider a simple example where the context descriptor of g is (Accompanying_people €
{friends} N\ Mood € {good} N Time_period € {Christmas}) that specifies a single context state cs? = (friends,
good, Christmas) as the context of ¢g. If there exist a preference in the profile whose context includes a context
state cs such that cs = ¢s?, called an exact match, then this is a relevant preference that can be used to personalize
g. Assume now that there is no exact match for ¢s? in Context(Pr). For example, assume that Pr includes just
the first three preference specifications of Fig. 3(a). To simplify presentation, in the following, we consider
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preferences with a single context state. Intuitively, in the absence of an exact match, we would like to use those
preferences in Pr whose context “covers” that of the query. Formally, a context state cs! = (cl,...,c}) € CW
covers a context state cs> = (c3,...,c2) € CWifVk, 1 <k <n,c} =ciorc} = anclL‘f (c2) for some levels L; <
L;. In our example, the context states of p; and p, cover ¢4, whereas that of p3 does not. It can be shown that
the cover relation imposes a partial order among context states.

Although the context states of both p; and p, cover ¢?, the context state of p; is more closely related to c?.
This is formalized through the notion of the most specific state or tight cover. Given a profile Pr and a context
state cs', we say that a context state cs> € Context(Pr) is a tight cover of cs' in Pr, if and only if:

(i) cs? covers cs' and
(1) -3 csd e Context(Pr), cs? #* cs?, such that ¢s? covers c¢s® and cs> covers cs'.

We now provide a formal definition of context resolution, that is, of the process of selecting appropriate

preferences from a profile based on context.

Definition 1 (Context Resolution Set): Given a profile Pr and a contextual query ¢, a set RS of context states,
RS C Context(Pr), is called a context resolution set for ¢ if (i) for each context state ¢s? € Context(q), there
exists at least one context state cs in RS such that cs is a tight cover of ¢s? in Pr and (ii) cs belongs to RS only if
there is a cs? € Context(q) for which cs is a tight cover in Pr.

Note that there may be more than one tight cover of a query context state. For example, consider again query
context ¢? = (friends, good, Christmas) and the first four preference specifications in Fig 3(a). Both the context
states of p; and p4 are tight covers of ¢?. For a set of context states to qualify as a context resolution set, it
must include at least one of them. In [17], we provide a systematic way of ranking context states based on their
distances from the state of the query. The definition of distance between two context states is based on the path
distance between their values in the corresponding concept hierarchy and on the relative size of their domains.
Distances can be used to select exactly one, i.e., the most similar, tight cover of each query state, thus, creating
the smallest context resolution sets. They can also be used to include in the context resolution set more than one
tight cover per query context state, for example, by selecting among the tight covers of a query context state,
the k (k > 1) most similar to it. This provides a means for controlling the degree of personalization. Finally,
note that for a query ¢ and profile Pr, there may be no tight cover and thus no context resolution set. In this
case, we can either execute g as a regular query, i.e., without using any preference, or relax our requirement for
relevance and consider context states that are similar to the query state although not necessarily tight covers of it
[19]. Our usability studies have indicated that in most cases using exactly one tight cover produces slightly more
satisfying results than using more than one tight cover, whereas using preferences with relaxed context states is
better that using none.

4 Indexes for Contextual Preferences

In this section, we focus on the efficient computation of context resolution sets. One way to achieve this is by
sequentially scanning all context states of all preferences in Pr. To improve response time and storage overheads,
we consider indexing the preferences in Pr based on the context states in Context(Pr). To this end, we introduce
two data structures: the preference graph and the profile tree. The preference graph exploits the cover relation
between context states.

Definition 2 (Preference Graph): The preference graph PGp, = (Vp,, Ep,) of a profile Pr is a directed acyclic
graph such that there is a node v € Vp, for each context state cs € Context(Pr) and an edge (v;, v j) € Ep,, if the
context state that corresponds to v; is a tight cover of the context state that corresponds to v;.

For example, Fig. 3(b) depicts the preference graph for the preferences in Fig. 3(a). Note that, when there
is at least one preference with context state (All, ..., All), the graph has a single root. The preference graph is
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Figure 3: (a) Example set of preferences and (b) the corresponding preference graph.
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Figure 4: The profile tree for the example preferences of Fig. 3(a).

acyclic, since the cover relation over context states is a partial order. The size of PGp, depends on the number
of distinct context states in Pr.

Given a context state ¢s and a profile Pr, the context states in Context(Pr) that are tight covers of cs are
located by a top-down traversal of the preference graph PGp, starting from the nodes in Vp, with no incoming
edges. Search stops at a node v of the graph, if v is a leaf node or the context state of v does not cover cs. The
context state of a node is included in the result if (i) it is a leaf node whose context state covers cs or (ii) the
context states of all of its children do not cover c¢s. For example, consider the preference graph in Fig. 3(b) and
input context state cs = (friends, good, Christmas). Search starts at the root node v; and since its context state
covers cs, it proceeds to its children. Search stops at v3 which is a leaf node and at v4 whose context state does
not cover c¢s. The context state (friends, All, Christmas) of v3 is returned, since v3 is a leaf node whose context
state covers c¢s. From v, search proceeds to node vs and then to leaf node vg. The context state (friends, good,
holidays) of vs is returned, since the context state of its only child does not cover cs.

The profile tree explores common prefixes of context states in the profile. We say that a value ¢ € dom(C;)
appears in a context state ¢s = (cy, ..., Ci, ..., ¢n), if ¢; = c. The length k prefix of (cy, ..., ¢k ..., cp)is (cy, ...,
ck). A profile tree has n+1 levels. Each one of the first n levels corresponds to one of the context parameters.
We use C;, to denote the parameter mapped to level i, ¢; € {1, ..., n}. The last level, level n+ 1, includes the leaf
nodes.

Definition 3 (Profile Tree): The profile tree Tp, of a profile Pr is a tree with n+1 levels constructed as follows.

(i) Each internal node at level k, 1 < k < n, contains a set of cells of the form [val, pt] where val € dom(C;,)
and pt is a pointer to a node at the next tree level, i.e., level k4 1.

(i) Each leaf node at level n+ 1 contains one or more preference.

(iii) At the first level of the tree, there is a single root node that contains a [c, p] cell for each value ¢ € dom(Cy,)
that appears in a context state ¢s € Context (Pr).

(iii) Atlevel k, 1 <k < n, there is one node, say node v,, for each [c,, p,] cell of each node at level k — 1. Node
v, includes a [c, p] entry for each value ¢ € C,, that appears in a context state cs such that cs € Context (Pr)
and ¢, also appears in cs. The corresponding pointer p, points to v,.
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(iv) There is a leaf node, say node v; for each [c, p| cell of a node at level n. Pointer p points to this leaf node.
Letcs = (¢, - - -, ¢1,) be the context state formed by the values of the cells on the path from the root node
to v;. The leaf node v; contains the preferences associated with context state c¢s = (cy, ..., ¢,).

For example, for the preferences in Fig. 3(a), the profile tree depicted in Fig. 4 is constructed. Note that
there is exactly one root-to-leaf path for each context state ¢s in Context(Pr). Each leaf node maintains the
preferences associated with the corresponding context state. The size of the profile tree Tp, depends on the
number of common prefixes of the context states in Context(Pr) and on the assignments of context parameters
to tree levels.

The profile tree Tp, supports the efficient look-up of a context state cs = (cy, ..., ¢,), since at each level i we
just need to follow the pointer of the cell with value ¢;,. If cs exists in Pr, then a single path is followed. If an
exact match for cs does not exist in Pr, the context states in Context (Pr) that cover cs are located by a top-down,
breadth-first traversal of Tp,. These context states need to be processed further to identify which of them are
tight covers. In particular, at each level i of the tree, all paths of length i whose context state is either the same
or covers the prefix (¢ ,...,c;) of the input context state ¢s are maintained as candidates. For example, for the
profile tree of Fig. 4 and input context state cs = (friends, good, Christmas), search starts from the root node and
follows the pointers of the cells with values friends and All (i.e., the same or ancestor values of friends) to nodes
vy and v4 respectively. At the next level (level two): (i) from node v,, the pointers associated with value good
and All is followed to nodes vs and vg respectively, and (ii) from node vy, the pointer associated with value All is
followed to node vg. At the next level (level three): (i) from node vs, the pointers associated with holidays and
All (ii) from node v, the pointer associated with Christmas and (iii) from node vg, the pointer associated with
All are followed. Thus, preferences P, P>, P4, and P, i.e., all preferences whose context state covers that of cs,
are returned.

The profile tree is in general smaller than the preference graph since it takes advantage of repetitions of
prefixes of context states. With the profile tree, exact matches are resolved by a simple root-to-leaf traversal,
while for non exact matches, multiple candidate paths are maintained. The preference graph performs similarly
for both exact and non exact matches. Note that the profile tree returns covering context states, thus, to compute
tight covers, the extra step of sorting these context states based on their distances to the query context state is
required. Finaly, note that so far, we have used the preference graph and the profile tree to locate tight covers
of a single context state. Algorithms for locating tight covers of more than one context state can be designed by
representing the context states in Context(q), using a preference graph or a profile tree.

5 Summary and Related Work

In this paper, we have briefly presented our work on contextual preferences [16, 17, 18]. Our focus is on
annotating preferences with contextual information. Context is modeled using a set of context parameters that
take values from hierarchical domains, thus, allowing different levels of abstraction for the captured context data.
A context state corresponds to an assignment of values to each of the context parameters from its corresponding
domain. Preferences are augmented with context descriptors that specify the context states in which a preference
holds. Similarly, each query is related with a set of context states. We have considered the problem of identifying
those preferences whose context states are the most similar to that of a given query. We called this problem
context resolution. To realize context resolution, we have proposed two data structures, namely the preference
graph and the profile tree, that allow for a compact representation of contextual preferences.

The research literature on preferences is extensive, see, for example, [15] for a recent survey on using
preferences in database systems. In the quantitative approach (e.g., [2, 11]), preferences are expressed using
scoring functions that assign degrees of interest to specific pieces of information. In the qualitative approach
(for example, [6, 10, 8]), preferences between pieces of information are specified directly, typically using binary
preference relations. Our model is orthogonal to the approach taken to represent preferences. Contextual prefer-
ences consider either internal [1, 14] or external context [21, 9, 13]. Work on internal context focuses mainly on
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efficiently ranking database tuples using preferences. The main novelty of our model lies in multidimensionality
that allows flexibility in expressing preferences.
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Personalized DBMS: an Elephant in Disguise or a Chameleon?

Georgia Koutrika
IBM Almaden Research Center, USA

Abstract

A query, expressed in a structured query language such as SQL, describes precisely the data that should
comprise the answer and a non-empty answer is returned only if it satisfies all query criteria. However,
the Boolean database query model has limitations. A user may run into empty answers when the query
conditions are too restrictive or sift through too many results that match the query. User preferences
naturally blend into queries allowing to explore alternatives or prioritize and filter available choices. In
addition, they can be used to generate answers that are personalized to the user. In this paper, we explain
the need towards personalized and preference-aware query answering in the context of databases and
we discuss how it can be enabled. Our objective is to discuss the pros and cons of existing approaches
and the challenges and opportunities towards a truly personalized preference-aware DBMS.

1 Introduction

Database systems answer queries accurately and deterministically. A query, expressed in a structured query
language such as SQL, describes precisely the data that should comprise the answer and a non-empty answer is
returned only if it satisfies all query criteria. The DBMS guarantees that the same exact answer will be generated
every time the query is issued as long as the data does not change. This exact-match query paradigm serves well
many scenarios. When querying your bank account balance, you always expect to get the exact amount and this
amount should be the same every time a check balance request is issued as long as no deposits or withdrawals
have taken place. Or when a credit card company is preparing customer bills, it is important that the correct
amounts are computed and displayed on each bill.

However, the database query model may sometimes be very strict. For example, when accessing databases
on the web, whose schema and contents are unknown, it may be difficult to formulate accurate queries. In this
context, a user may run into either of two problems: (i) the empty-answer problem when the query conditions
are too restrictive or (if) the too-many-answers problem when too many results match the query. Furthermore,
information abundance and user heterogeneity are additional factors that make the exact-match query paradigm
often not appropriate. Due to information abundance, showing all possible information that matches a query may
be overwhelming for the user. User heterogeneity means that different users may find different things relevant
when searching because of different preferences and goals [17]. Especially on the web, it is critical to provide
the ‘right’ answer to a user rather than the exact same answer to everyone for the same query.

Introducing preferences in query answering can help cope with the issues mentioned above. The empty-
answer problem can be tackled by relaxing some of the hard constraints in the query, i.e., considering them as
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Movies Actors

movie_id title year genre actor_id | movie_id name
m, Anger Management 2003 comedy a My Adam Sandler
m; The Proposal 2009 comedy a; M Jack Nicholson
M3 The Odd couple 1968 comedy a M Sandra Bullock
My New in Town 2009 comedy a ms Walter Matau
as My Renée Zellweger

Figure 1: An example database instance

soft or as user wishes or by replacing them by constraints that capture user preferences related to the query. The
too-many-answers problem can be tackled by strengthening the query with additional conditions expressing user
preferences to restrict the results. In both cases, results can be prioritized according to how well they match the
preferences in the query.

Furthermore, incorporating user preferences in query answering can help generate answers customized to
each user. To illustrate this personalized answer paradigm, let us consider a web-based movie database. Figure
1 shows a snapshot containing new arrivals. Two users, Bob and Diana, issue the following queries on: (Q;)
comedies released after 2000; (Q,) movies with Ben Stiller; and (Q3) new comedies. Based on the exact-
match database query paradigm, the same answers will be returned to both users, which are the following: (i)
{my,my,mq} for Qy, (ii) {} for Q, and (iii) all new arrivals for Q3. On the other hand, a personalized database
query model would possibly generate a different answer for each query depending on the targeted user. For
instance, for Q;, Bob could receive {m;,m;} because he is not a fan of actress R. Zelweger. For O, showing
movies that are a close match to the movies described by the query would potentially be better than an empty
answer. For example, for Diana who also likes Adam Sandler and has liked movies where both Ben Stiller and
Adam Sandler have co-starred, m; might be suggested as an alternative answer. Finally, results for Q3 can be
ordered according to a user’s preferences so that each individual can easily sift through them.

Preferences naturally relax the exact-match query model by allowing to prioritize and filter available choices
(as in Qg and Q3) or to explore alternatives (as in Q). Moreover, embedding preferences in queries enable a shift
from ‘consensus relevancy’, where the computed relevancy for the entire population is presumed relevant for
each user, towards ‘personal relevancy’, where relevancy is computed based on each individual’s characteristics.

In this article, we review related work on preference-aware query answering in databases. We discuss
(i) how preferences are represented in the context of database queries, (ii) how the answer of a query with
preferences is defined, and (iii) how preference-aware query answering is implemented. This review aims at
showing how tightly preferences are currently coupled with database queries and sharing our vision regarding
opportunities and challenges in fully implementing preferences as first-class citizens inside the database engine
by changing both the database query model and internal code. Finally, this article highlights the challenges in
going from preference-aware query answering to personalized preference-aware query answering, where the
database automatically customizes answers taking into account user preferences.

2 Preference Representations

Understanding preferences and finding appropriate representations for them is a real challenge. Preferences have
been studied for several years in fields such as philosophy (e.g., [8]), psychology (e.g., [18]) and economics (e.g.,
[6]). In recent years, preference modeling has drawn the attention of researchers from computer science fields
including artificial intelligence (e.g., [22]) and databases.

In databases, preference representation approaches (preference models) are divided into two categories.
Qualitative preferences are specified using binary preference relations that relatively compare tuples. Prefer-
ence relations may be specified using logical formulas [4] or special preference constructors [11]. Quantitative
preferences are expressed by assigning scores to particular tuples [1] or query conditions that describe sets of
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tuples (e.g., [14]), where a score expresses degree of interest.

To illustrate, let us consider the database schema of Figure 1 and assume that ¢ denotes a tuple and #[A]
stands for the projection of # on one of its attributes, A. A preference for recent movies can be expressed in a
qualitative way as follows: movie ¢ is preferred over movie #; iff #;[year| > t;[year]. This formulation is natural
for humans and results in a partial ordering of the query results. Absolute specification of the significance of a
preference is not possible. On the other hand, using a scoring function such as f(¢) = 0.001 x t[year], the same
preference can be captured in a quantitative way. A movie ¢; is preferred over movie ¢; if the score of #; is higher
than the score of 7;. This formulation leads to a total ordering of the results based on user preferences.

Existing works have studied various types of preferences following a qualitative or quantitative approach in-
cluding likes and dislikes [11, 14], context-dependent preferences [29], set preferences [23], and multi-granular
preferences [13]. A survey on preference models in the context of databases can be found in [19].

3 Integrating Preferences into Queries

In the exact-match database world, the answer to a query is unanimously defined. Interestingly, there seems to
be no single definition regarding how preferences should be interpreted in the context of database queries.

One reason is that existing approaches have thought of preferences as a means of solving seemingly different
problems. Driven by the empty-answer problem, several approaches treat preferences as soft constraints that are
part of the query [4, 11]. In contrast to the classical hard constraints of the query, soft constraints may be
optionally satisfied in the final answer. Dealing with the too-many-answers problem, other approaches view
preferences as additional constraints that can be applied in conjunction with the query conditions to prioritize
and possibly restrict the query results [14, 29]. However, more importantly, the lack of a single preference-aware
query model is due to the fact that preferences can be defined either qualitatively or quantitatively and different
approaches for embedding qualitative or quantitative preferences into queries have emerged.

If preferences are expressed in a qualitative way (i.e., using preference relations), then they are embedded
into relational query languages through an operator that selects from its argument relation the set of the most
preferred tuples according to a given preference relation. This operator has been given different names such as
winnow [4], BMO [11] and skyline [2]. The set of most preferred tuples is typically defined as the set of all
tuples not dominated by any other tuple. Many variations of this definition have been proposed mainly due to the
computational complexity of the optimal answer based on the original definition. For instance, according to the
k-dominant skyline definition, a tuple #; k-dominates another tuple #; if there are k dimensions, or preferences, in
which ¢; is better than or equal to 7; and 7; is better in at least one of these k dimensions [3]. Ranking the whole
input can be achieved by repetitive applications of this preference operator.

On the other hand, if preferences are expressed quantitatively (i.e., using scores) and there is an aggregating
function for combining the partial scoring predicates, then tuples are assigned scores, and the answer of a query
with preferences is defined as the ranked set of top-n results [5, 9]. A complementary approach is to make sure
that the query results satisfy at least some of the specified preferences [14].

There has also been a significant number of proposals for extending SQL with special preference operators.
For example, skylines were first introduced in SQL using the following clause [2]:

SKYLINE OF Aj [MIN | MAX | DIFF], ..., Ay [MIN | MAX | DIFF]
where a MIN (or MAX) specification following an attribute A; expresses preference of small (or large) values of
A; whereas DIFF expresses that only tuples with identical values of A; are comparable.
The top-n preference operator was introduced in SQL by adding a clause of the form:
ORDER BY [user-defined-function] STOP AFTER n
In this case, the tuples in the result are ranked according to a user-defined scoring function and the results with
the n highest scores are returned.
As yet another example, Preference SQL supports soft constraints using a special PREFERRING clause [11]:
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PREFERRING [conditions] BUT ONLY [conditions]
Preference SQL follows a “best matches only” (BMO) semantics. First, it finds all perfect matches to the
conditions of PREFERRING. If this set is empty, then it considers all other best matching values excluding those
that do not satisfy the BUT ONLY conditions.

As a result of the proliferation of different interpretations of preferences in the context of database queries,
no single preference-aware query model has been widely adopted in the database world and implemented as an
alternative or an extension of the exact-match database query model. As a first step towards reaching consensus,
we need to understand that we do not try to solve two disconnected problems by integrating preferences into
queries: both the empty-answer and the too-many-answers problems are two sides of the same coin caused by
the strictness of the exact-match query model. One can go from an empty answer to too many results and vice
versa. For example, integrating preferences as additional constraints to restrict a query with too many answers
may lead to an empty answer. Bringing preferences into queries is a means to ‘relax’ the exact-match query
model and tackle both these problems in a unified way.

More importantly, a widely accepted preference-aware query model needs to transparently extend the exact-
match model with the notion of preferences. One challenge in designing such a model is to come up with new
query components that capture the main concepts of preference-aware query answering without adding too much
complexity. Ideally, these components should be oblivious to how preferences are represented or implemented
and they should naturally blend with the traditional query constructs. In addition, a preference-aware query
model should be flexible regarding how preferences are treated within a query. For instance, all preferences
could be considered optional or a lower bound on the number of preferences that should be satisfied in the
results could be provided by the user.

At a high level, we envision that a preference-aware query would contain the following parts:

e hard constraints that are exactly matched

e soft constraints (i.e., preferences) that are optionally satisfied. If a query has no soft constraints then we
roll back to the exact-match query paradigm, where the answer satisfies exactly the hard conditions.

e a preference bound that specifies how preferences should be treated: an any preference option would allow
any answer that matches the hard constraints (if exist) and any preferences (e.g., as in [11]) whereas an at
least N preferences option would restrict candidate answers to those that satisfy at least N preferences (e.g.,
as in [14]).

e a best-answer specification that describes which of the candidate answers should be output. For instance, a
best-n answer would comprise the best n tuples. If n=1, then only the tuples that are of the highest interest
to the user would be returned.

The more the new query components are sealed from the details of their actual implementation, the easier is
for users to understand and formulate queries with preferences. For instance, the best answer may vary and dif-
ferent algorithms may be required for answer computation depending on whether preferences are quantitatively
or qualitatively captured. However, when formulating a preference-aware query, a user just needs to describe
how much of the answer she is interested in seeing without caring about such details. This is also true, to some
extent, for traditional queries: for example, a user does not care how a join is executed. Finally, a transparent
preference-aware query model makes application development easier since the interface to a preference-aware
database can be standardized even if the underlying implementation of the engine may vary.

4 Implementations of Preference-Aware Query Answering

In implementing preference-aware query processing, there are three possibilities: (i) query translation, (i) spe-
cial evaluation algorithms for implementing preference operators on-top of the DBMS, and (iii) native imple-
mentation, i.e., inside the database engine using specific physical operators and algorithms. We call the first two
approaches plug-in since they are implemented on top of the database engine.
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The straightforward approach to preference-aware query processing is to translate queries with preferences
to conventional queries and execute them over the DBMS. Query translation conceptually involves the following
steps (e.g., [4, 12, 14]): (query rewriting) the preferences are integrated as standard query conditions in the query
producing a set of new queries, (materialization) the new queries are executed and (aggregation) the partial
results are combined into a single ranked list. This is for example the approach taken in the implementation of
Preference SQL, where preference queries are translated into standard SQL queries [12] as well as for integrating
user preferences into queries for personalizing query results (e.g., [14]).

There is a large number of special evaluation algorithms for implementing preference operators (e.g., top-n
[10] and winnow [2, 4]). For retrieving the top-n tuples of a relation, the basic idea has been captured in the
algorithm called FA [5] and has been improved by several subsequent algorithms (e.g., [9]). These algorithms
can be thought of as operating on the aggregation phase of query translation [16]. FA performs a sorted access
to each partial list of results until there is a set of tuples, such that each of these tuples has been seen in each list.
Then, for each tuple seen, FA performs random accesses to retrieve its missing scores and compute an aggregate
score. Finally, the top-n tuples based on their aggregate scores are selected.

The naive way to compute the winnow of a relation is to apply a basic nested-loop method that compares each
tuple in the relation with every other tuple. This method works for every type of preference relation but requires
scanning the whole relation for each tuple, which becomes inefficient for large datasets. Several improved
algorithms have been proposed over this basic version (e.g., [2]) that employ techniques such as indexing (e.g.,
[21]) to avoid scanning the whole relation.

These special evaluation algorithms are typically implemented on top of the DBMS on the returned query
results as standalone programs. In order to facilitate the integration of any preference operator (e.g., top-n,
skyline) into the database engine with minimal effort, FlexPref is a system that allows registering preference
methods through a set of functions that define rules for determining the most preferred tuples [15]. Once a
preference method is injected into the database, it can be used for querying the database.

In the case of implementing preference operators inside the database engine, a set of algebraic rules that
characterize the interaction of winnow with the standard relational operators, such as commutativity, are pro-
vided in [4] and can be used for query optimization. However, few actual native implementations exist. The rank
operator [16] is an extension to relational algebra that enables pipelining and hence optimizing top-n queries. A
hybrid approach to implementing Preference SQL that provides support for preference-aware query processing
within the database engine has been also proposed [7].

Both native and plug-in approaches have pros and cons. Plug-in approaches rely on the existing Boolean
query model, which is preference-agnostic. Their main advantage lies in the fact that they require no modifica-
tion of the database code. They are easier to implement, and they leverage existing, invested, technology. On
the downside, treating the DBMS as a black box means that there is no access to internal database operators.
Consequently, these methods do not lend themselves to finer-grained dynamic optimization at the operator level
based on the features of the query and the preferences. This has an impact on query performance and scalability.

In particular, in query translation, the execution plan for a query with preferences is composed outside the
database engine. This external query plan is a high-level execution plan that describes the queries sent to the
database, materializations of intermediate results and how partial results are combined in order to generate the
answer to a query with preferences. Inevitably, possible query optimizations are more coarse-grained such as
reducing the number of queries sent to the DBMS or the data processed outside the DBMS engine. Implementa-
tions of preference operators as programs outside the DBMS work as a post-processing step after partial query
results have been generated, i.e., primarily improving the aggregation phase.

A fully native implementation of preference-aware query processing requires modifying the database query
engine so that queries with preferences can be directly expressed in the query model supported by the database
itself and query processing is entirely pushed inside the database engine. Native implementations of operators
such as the rank operator [16] represent a significant step towards this direction. However, they mainly aim at
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Figure 2: Preference-aware query plans

pushing aggregation inside the database engine while preference evaluation may be still performed externally.

To illustrate the benefits of a fully native implementation, let us assume a preference-aware DBMS. A
hypothetical internal query plan (along the lines of the query model outlined in Section 3) is shown in Fig. 2(a).
There are two preference-related operators combined with the classical relational operators. The ‘preferring’
operator applies a preference on a relation. For instance, if we have a quantitative preference that associates
comedies with a score 0.8, the ‘preferring’ operator would assign this score to comedies. The ‘best(n)’ operator
selects the n most preferred tuples. Such a query plan can be dynamically optimized taking into account the
properties of each operator. For example, we could push the filter down the tree, apply the most selective
preference first (that is the one referring to actors) or apply the ‘best(n)’ operator to each of the input relations
to restrict the size of intermediate results. Fig. 2(b) illustrates some possibilities.

Another benefit of a native implementation is that query expressivity is not restricted by having a preference-
agnostic database model hidden behind a query translation or special evaluation mechanism. Instead, queries
with preferences are precisely defined by the preference-aware query model supported by the database. An im-
portant challenge is how expressivity and performance can be balanced. Depending on whether a qualitative or
quantitative approach is followed, the new operators may have different properties enabling different optimiza-
tions. Making the operators very generic may limit the range of optimizations and may weigh down the benefits
of a generic implementation. A careful design of the query optimizer is required.

5 Personalized Queries

In a preference-aware database, queries with preferences could be explicitly issued by users. For example, we
can imagine a user interface that allows users to specify hard and soft criteria for movies they would like to
see. Querying with preferences is a more relaxed search paradigm but it does not ensure that empty or too many
answers will not be generated. To a great extent, it is still up to the user to formulate the right queries. In addition,
user preferences may be ephemeral coming along with a particular request or long-term. For example, Bob is
not a fan of R. Zelweger. This could be considered a long-term preference. A personalized preference-aware
database system would store and maintain user preferences along with data. Furthermore, given a query and an
ephemeral or long-term user profile, a personalized DBMS would dynamically decide how to best answer the
query in order to satisfy the user information need. For instance, it could dynamically decide that for query Q;
it does not make sense to show movies with actress R. Zelweger to Bob. Given the proliferation of applications
that rely on user preferences to provide a personalized experience, there is an ongoing need for such personalized
database systems that provide storage and processing of user preferences.

Dynamically modifying a query taking into account user preferences is termed query personalization [14].
Existing works implement personalized queries on top of the exact-match query model rather than a preference-
aware one. Their most important limitation is that the effect of query personalization is manually determined
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(e.g., by specifying the number of preferences that the answer should satisfy [14]) and they focus on how to
retrieve these preferences from the profile and generate the expected personalized results.

However, query personalization needs to be considered from a fresh perspective as a complex dynamic
optimization problem. There are several possible queries that can be generated and executed in place of the
initial user query by applying query transformations such as: (i) some of the hard conditions of the query may
be converted to soft conditions; (ii) preferences may be added in the query; (iii) preferences may replace some of
the hard conditions. Which personalization option to follow, what preferences to consider related in the context
of a particular query and what makes the best answer to a query for a particular user are shaped by several
factors. The DBMS needs to consider the characteristics of the query and the possible effect of the preferences
on the query. For example, if a query returns just a few results (like a query about movies with Meg Ryan), then
user preferences may be applied only for result ranking. For a too broad query (e.g., a query on comedies), query
personalization may use preferences to focus the result set. However, not all preferences may be applicable. For
instance, preferences related to dramas may lead to empty answers if combined with a query about comedies.
The query context is also important. For example, when a user is browsing movies, query personalization may
be less aggressive than when the user explicitly asks for personalized suggestions.

Ideally, a personalized database system should help users find interesting answers that are natural given their
queries. Answers that cannot be justified or explained in the context of their initial query or seem random are
bound to confuse users. For example, if the user has asked for new comedies she has not watched, then if there
are no such comedies, it may make sense to show zero results than suggesting watching a drama. Finally, some
control may be given to the user at the application level in order to express the desired extent of personalization.

6 Conclusions

Querying with preferences provides a relaxed query paradigm compared to the exact-match database query
model and can help generate answers tailored to each individual. There is substantial work in this area but no
single preference-aware query model has been widely adopted in the database world. We believe that the key
to making this happen is coming up with a preference-aware query model that is simple and as transparent to
preference representation and implementation details as possible. Furthermore, in order to fully unleash the
power of a preference-aware query model and exploit query optimization opportunities in the database core,
such a model should be natively supported by the database engine. Pushing preferences inside the DBMS will
also provide a transparent unified interface to applications and make application development lighter since much
of the preference-related logic will be supported by the underlying database system.

Embedding preferences in database queries is a big step forward but alone it will not help users find the
‘right’ answers to their queries. A personalized database system would actually help by cleverly modifying
queries considering user preferences, whenever available, to generate customized answers. However, from a
traditional DBMS to a personalized preference-aware DBMS, there is a long way to go, and it goes beyond
disguising the elephant to make it look like a chameleon.
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Abstract

PAROS is a generic system under design whose goal is to offer personalization, recommendation, and
other adaptation services to information providing systems. In its heart lies a rich user model able
to capture several diverse aspects of user behavior, interests, preferences, and other attitudes. The user
model is instantiated with profiles of users, which are obtained by analyzing and appropriately interpret-
ing potentially arbitrary pieces of user-relevant information coming from diverse sources. These profiles
are maintained by the system, updated incrementally as additional data on users becomes available, and
used by a variety of information systems to adapt the functionality to the users’ characteristics.

1 Introduction

The quality of human interactions is often intimately affected by the level of understanding that the persons
involved have for each other. To a large extent, this holds for interactions between persons and information-
providing systems as well. This paper outlines the philosophy and general approach of PAROS, a system under
design and initial development at the Univ. of Athens, whose goal is to obtain such an understanding for its
users by maintaining profiles of their attitudes' so that it may offer them information and other services in a
personalized and adaptive fashion. The system aims to provide rich relevant functionality at a generic level, on
top of which, particular applications may be built. The key contribution of our work around PAROS is fourfold:

(a) User-model independence: Currently, personalization and other user-based adaptations are mostly of-
fered in ways that are tightly coupled with the main information system or application concerned. They are
based on custom user models and profiles that are intimately dependent on the specific application domain, and
profiling is based on user interactions with that same system alone. In reality, however, users typically inter-
act with a variety of systems and applications, and their behavior within each environment is useful not only
locally but for all other environments as well. PAROS moves away from the conventional restrictive approach
and decouples the user model and its associated profiles from its environment-dependent functionality, i.e., user-
data analysis and application adaptation. Hence, one’s profile may be synthesized from observations coming
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advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
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from several applications and be used to adapt the behavior of several other applications, achieving the desired
independence to a large degree.

(b) User-model expressive power: As a consequence of their application dependence, current user models
often deal with a single type of user preferences or attitudes (e.g., just behavioral tendencies, such as like to
watch or like to read) for just a single class of entities (e.g., just movies or just books). PAROS supports a
labeled-graph-based user model that can express, in principle, any kind of attitude towards any entity managed
by the applications being personalized. Furthermore, the users, the world of relevant entities and relationships,
and most importantly, the various kinds of attitude and their intensity are modeled in a uniform fashion, allowing
for the effective expression of interactions and influences between them.

(c) Profile-derivation formulation: Derivation (prediction) of unknown user attitudes is a major part of most
related efforts’ investigation and is usually approached in seemingly ad hoc ways. Based on the graph form of its
user model and the resulting profiles, PAROS formulates most types of profile derivation as path computations
on these graphs. Having this common foundation, it is able to capture a wide variety of approaches by simply
choosing different functions for two function-valued parameters that are the essential elements of the definition
of path computations. Thus, the effectiveness of each approach depends on the cognitive and psychological
plausibility of these two functions, while its efficiency depends on the algebraic properties of these functions
and the performance of the suite of available path computation algorithms.

(d) Application environment novelty: The flexibility and richness afforded by the design of PAROS have
inspired relevant work in several novel and challenging environments, whether with respect to profiling or to
application adaptation or both. Traditional web logs recording user actions, large discussion threads, multimedia
file streams, and user traces from a variety of sensors (e.g., geo locations from smart phones) are some of
the sources we are dealing with for user profiling in different contexts. Recommendations in digital libraries,
personalized storytelling during museum visits, and opinion summarization of controversial discussions are
some of the application environments we are working on.

Each of the above aspects of PAROS presents significant new research (and engineering) challenges, which
are part of our current and future work. In addition, PAROS faces extensive syntactic and semantic diversity
of data that are part of user profiles, serve as input to the profiling processes, or are otherwise managed by the
applications. Hence, the old and ever-present issue of heterogeneous data integration and harmonization arises
in all PAROS components as well, but it is not our focus in the context of this work. The remaining sections of
the paper are in more or less one-to-one correspondence with the four contribution areas above, identifying the
relevant challenges and highlighting the corresponding directions of our work.

2 System Architecture and User-Model Independence

Figure 1 presents the key PAROS components and their interactions. User Model and Profile Management
serves as the foundation on top of which all other parts are built. It provides the basic functionality required
by the PAROS user model, which captures several levels of user attitudes towards the relevant world entities
and concepts. Following the database tradition, such functionality may be partitioned into profile definition and
profile instantiation. The former is reminiscent of database schema definition and consists of defining types of
attitude to be captured in a particular environment, functions that are available for use in profile derivation, and
classes of users, relevant world entities, and their relationships. The latter is reminiscent of database manipu-
lation and consists of storing and maintaining the actual profiles, expressing particular users having particular
attitudes towards particular world entities. Pattern Extraction includes techniques that analyze user-behavior
data, compute statistical measures and correlations, and extract usage patterns. Such data may be collected ex-
plicitly, by having users provide related input directly, or implicitly, by having the system monitor and document
users’ behavior in different contexts. Profiling encompasses mechanisms for creating user profiles based on the
patterns identified. The latter are appropriately interpreted within the framework of the user model to obtain a
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first set of profile elements, which may then be recursively processed further to expand profiles with additional
elements. Futhermore, as additional user data becomes available (whether online or in batch mode) and us-
age patterns are updated, the corresponding user profiles are modified accordingly to capture short-term mood
swings or long-term attitude changes. To be effective, profile interpretation, expansion, and evolution should
all be done according to cognitive and psychological theories. Adaptation represents the actual selection of the
appropriate profiles and their use to adapt the behavior of and the content provided by information systems and
other applications to the users’ preferences and interests. In principle, a separate component is required for each
external system customized, although PAROS may take advantage of certain commonalities.

General Platform i Application Environment

(' .te f . ] 3 ™)
Profiling Behavior Pattern Extraction
) | : ; ) Behavior
Interpretation Analysis
: y Observations
- \ J L
-| Extension | :
\_ 4 ——
— ™ : o
=oT Application
Adaptations
Profiles P
User Model
_ Info Systems
User Model & Selection & Applications
\Profile Management ) \Adaptation )

D PAROS components |:| external components
Figure 1: PAROS Architecture

Separation of the four main conceptual components of PAROS is the critical element that leads to the de-
sirable user model independence. User profile elements may come from multiple sources (from applications
customized by PAROS or possibly from completely external ones), based on different interaction modes (direct
user input or indirect monitoring of user behavior), and after different statistical analyses and other processing
based on different techniques. Nevertheless, they are all captured in a unified profile that expresses all aspects
of user attitudes. This one profile can then be used to adapt any relevant application, independent of the latter’s
role in shaping up that profile.

3 User Model

The basis of any personalization or recommendation system is its user model, which must be able to represent
in sufficient detail the objects, concepts, and relationships on which the system would offer customized services.
The PAROS user model attempts to represent in a uniform way the entire universe of users and their attitudes
, including i) individual users, groups of users, communities, and their relations, ii) entities that are the objects
of users’ attitudes and their relationships to other entities, categories, or concepts, and iii) user attitudes towards
these objects. For the sake of readability under space constraints, in this section, we present a somewhat sim-
plified version of the PAROS user model, which is a graph GUM(UOF,DAA), with UOF as its set of nodes and
DAA as its set of edges. Nodes in set UOF primarily represent classes of (if any) and individual Users of the
system, Objects of the world represented in the system being personalized, and Functions between the above
(also captured in edge set DAA). Nodes may also represent particular user groups or communities, object sets,
function families, or their combination, if such aggregations play particular roles in the environment concerned.

Edges in set DAA represent two main kinds of relationships among the graph nodes. The first kind is Data
relationships, such as those typically found in databases or other data collections, capturing object structure,
association, membership, and inheritance. The second and most interesting kind is A#titudinal relationships,
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whose corresponding edges emanate from user nodes and are incident to any kind of node and capture user
preferences and beliefs or user actions. Examples of the former may target users (e.g., trusts a friend, is inspired
by a celebrity, follows an authority), world objects (e.g., likes a concrete object, supports a cause, believes an
ideal), or functions (e.g., values a function, in the sense that an attitude towards one of its ends affects the attitude
towards the other). Examples of the latter include actions towards users (e.g., tag a friend, respond to a forum
member), actual world objects (e.g., buy a book, watch a movie), or virtual objects (e.g., query a term, visit a
page, send a comment). Figure 2 gives a simple example of a profile illustrating various kinds of relationships
(for simplicity, no class nodes or action edges are shown). Note that functions have a dual representation in
GUM, being both edges and nodes, a flexibility that facilitates the expression of certain attitudes.

Each attitudinal edge in DAA (and maybe other edges as well) is potentially associated with a label vector,
whose structure depends on the edge type. An example of a potential singleton label vector is trusts[ti](u,v),
where for users u and v, trust intensity # € [-1,1] captures the level of trust that u has for v, where 1 indicates
complete trust, -1 indicates complete distrust, and O means indifference. Similarly for other attitudinal edges,
such as likes[li](u,0), capturing the level of likeness that user u has for object o, and values[vi](u,f), capturing
the level of importance that user u places in function f for calculating /i of likes(u,0) based on the /i of likes(u,0),
for any o, o’ such that f(0)=0’. See Figure 2 for such examples. Possible enhancements of all of these label
vectors include at least three other elements: [co, so, tmp]. Confidence co € [0,1] captures the confidence level
for the value of the corresponding intensity (ti, /i, or vi), source so indicates where intensity and confidence
values have been extracted/derived from, and timestamp #mp indicates the time period during which the other
elements of the vector are valid. To a large extent, the structure, semantics, and detailed mechanisms of the label
vectors determine the complexity of the overall user model. Simpler or more complex label vectors result in
correspondingly less or more refined representations of users’ attitudes.

The above model is rather general and can capture most models appearing in the literature (even if using
different notations and representation languages). This generality allows one to remain in the same framework
during experimentation with and comparison of different models, as well as in possible future enrichments.

User Space World Object Space
User-to-Object
Sacial Attitudes Attitudes
KATE
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trusts 0.8 ,/ -~"""-~ .~ starring
- Sand A S
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S _-h"""'--."@gs_g'_s-"f
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e - CALIFORNIA

PETER A belongs_to

Figure 2: Profile example in the GUM graph user model

4 Profile Derivation Formulation

Profile derivation can be distinguished into first-level derivation (profile interpretation, from action edges to at-
titudinal edges) and second-level derivation (profile expansion, from existing attitudinal edges to other unknown
attitudinal edges). As a simple example of interpretation, consider two nodes, user Alex and actor Kate Hud-
son, and an action edge between them, queries[37](Alex,Kate Hudson), indicating that Alex has queried about
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Kate Hudson 37 times. The process of interpretation (of attitudes from actions) could derive an attitudinal edge
likes[0.85](Alex,Kate Hudson) between the same nodes, predicting the intensity of Alex’s attraction to the said
actress based on his behavior related to her. Why 37 queries imply an 0.85 level of attraction (both numbers
chosen arbitrarily here, for the sake of the example) is a matter of cognitive and psychological theory, which
should be codified in the derivation process in some fashion.

Likewise, as an example of expansion, consider the following sequence of attitudinal and data edges and their
end nodes: trusts[0.9](Alex,Lydia), likes[0.7](Lydia, Nine), values[0.99](Lydia,starring), starring(Nine,Kate
Hudson). Informally and by ignoring some sticky points, the last two edges, values[0.99](Lydia,starring), star-
ring(Nine,Kate Hudson), could be merged into one: values[0.99](Nine,Kate Hudson). Together with the first two
edges above (trusts and likes), this forms a path through nodes Alex, Lydia, Nine, and Kate Hudson. The process
of expansion (of attitudes) could essentially derive a (probably missing) attitudinal edge, likes[0.62](Alex,Kate
Hudson), between the two end nodes, Alex and Kate Hudson, predicting the intensity of the former’s attraction
to the latter based on indirect information. Again, the methods that generate 0.62 as the attraction intensity
should be scientifically justified and be realized in appropriate system components.

Whether as interpetation or as expansion, profile derivation in PAROS is abstracted as an optimal path
computation problem, similar to the shortest path, most reliable path, or bill of materials problems. All these are
defined on labeled directed graphs and essentially compute a property for an (existing or non-existing) edge (a,b)
based on corresponding properties of all the paths between nodes a and b in the graph. Most path computation
studies use a path algebra formalism [1], which associates a label with each edge and each path in the graph. A
path label is computed as a function, called CON (for concatenate), of the sequence of labels of the edges in the
path. In addition, a path set P is also associated with a label, which is computed as a function, called AGG (for
aggregate), of the labels of the paths in P.

Profile derivation does not directly map to conventional path computations, having several additional com-
plications or differences that raise some new theoretical and computational challenges. For example, edges
typically have rich label vectors instead of just individual scalar values (e.g., labels could be of the form [inten-
sity, confidence, timestamp, ...]), edges are of different types and affect each other in diverse ways (e.g., different
combinations of attitudinal-edge types may be used to derive further edges of these or other types), or the alge-
braic properties of CON and AGG required for applying the known path computation algorithms do not always
hold (e.g., associativity of CON is missing in some cases). Still, modeling derivation as path computation and
using that as the foundation of this work is very valuable and serves as a promising starting point in our current
and future efforts.

S5 Adaptation Applications

In this section, we report on several interesting application environments and information systems we have
worked on to personalize their behavior and make their services adaptive. In each case, we point out the most
characteristic aspects of our work, whether in the analysis or the adaptation components of PAROS. The great
variety of these environments offers a good indication of the applicability of our overall approach.

Query Recommendations in Digital Libraries: In the context of the portal of European National Libraries
(TEL [2]), we have implemented a suite of mining techniques to analyze the usage logs maintained by the
portal, including techniques for data collection, cleaning, transformation, and pattern extraction. All these form
appropriate workflows of data processing operators that are built on top of and orchestrated by madlIS [3], an
open-source extensible data transformation and analysis system that we have developed for this purpose, but
is proving a reliable platform in other ongoing efforts as well. In addition to their intrinsic value on how the
portal is used, the statistical patterns being extracted by the analysis workflows have also formed the basis for
identifying personal, national, and global profiles for its users, based on which, the portal’s services have been
extended with recommendations on term queries, library collections, and even similar users [4].
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Opinion Mapping in Web Discussion Forums: Our work in the area has focused on analyzing online
discussions, summarizing the key viewpoints, and profiling the discussants in terms of the side they support. We
have used the posts of a discussion thread to construct a Reply Graph, where nodes denote posts and an edge
from post A to post B indicates that A quotes B and replies to it. Careful analysis of this graph leads to discussion
topic extraction and like-minded discussant identification. The topic extraction analysis algorithm is based on
identifying the appropriate keywords within the scope of each post, which consists of the posts that are closely
related to it, whether topologically (proximity in the Reply Graph) or chronologically (proximity of the posts
timestamp). The end result is the set of topics of every post, even of small posts with no characteristic keywords
in their bodies, and the overall set of topics of each discussion and sub-discussion. The group identification
analysis algorithm is based on the observation that most discussion exchanges are expressing disagreement
[5, 6, 7]. The end result is the set of discussant groups, where each group has a particular opinion or attitude for
the discussion topics and members of each group largely disagree with members of other groups.

Other applications: In addition to ongoing work in the above two environments, we are also involved in
some other efforts that take advantage of the PAROS approach but also enrich its range of applications. One
such effort investigates the basic characteristics of trust between people and also its derivation from people’s
interactions in social networking sites. Another one is building on madIS to monitor the life-cycle of scientific
publications, form the profiles of ad hoc research communities, and provide personalized search and alerting
services to their members. Finally, a recent effort focuses on personalized and adaptive storytelling during mu-
seum visits: profiles of visitors are to be derived based on the route they follow while in the museum, on details
of their interaction with relevant applications on their mobile phones, and on stereotypical information about
them. The goal is for visitors to be guided around the exhibits through a story whose narration is dynamically
adapted to their profiles.

6 Conclusions and Future Work

Based on the concept of user model independence, a general graph-based user model, and the use of path
computations as the starting point for profile derivation, PAROS aims to become a comprehensive platform
for user modeling, user profiling, and profile-based adaptation of information provision and other services. In
addition to investigating the limits of the overall approach, the system will serve as a platform for studying the
cognitive and psychological validity of profile derivation techniques, the scalability and efficiency of behavior
analysis and pattern discovery algorithms, the effectiveness of adaptation strategies, and other relevant research
issues. Design and initial implementation of PAROS are currently under way and preliminary experimentation
with available parts is quite promising.
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Abstract

This article provides an overview of the CareDB context and preference-aware database system. CareDB
provides efficient and scalable personalized query answers to users based on their preferences and cur-
rent surrounding context. CareDB moves beyond the rigid query processing semantics of traditional
relational database systems, which employ a boolean “all or nothing” query model, and addresses sup-
port for “preference-aware” query processing methods. Specifically, CareDB supports a plethora of
multi-objective preference methods capable of finding the “best alternatives” according to users’ given
preference objectives. This article describes the architecture of the CareDB system and describes the
details for three of its novel query processing characteristics: (1) a generic and extensible preference-
aware query processing engine, (2) a framework to gracefully handle contextual attributes that are
expensive to retrieve, and (3) a framework to efficiently process queries over uncertain contextual data.

1 Introduction

Currently, database systems are extremely rigid: a user submits a query with a set of constraints to the database,
and the system returns a set of answers that are exact matches for the constraints. In the worst case, the database
may return no answers if the given constraints are too restrictive. For many application scenarios (e.g., location-
based services, point-of-interest finders), users want from the database only a few “best” answers according to
their personal preferences and context (e.g., location, weather). For instance, when searching for a restaurant, a
user may want the database to return only five restaurants that present the best trade-off between minimizing the
price and travel time to the restaurant, while maximizing the restaurant rating.

In the database literature, a number of multi-objective preference methods have been proposed that are capa-
ble of evaluating a set of user preference constraints. Examples of these methods include top-k [5], skylines [2],
hybrid multi-object methods [1], k-dominance [3], k-frequency [4], and top-k dominance [13]. In general, the
point of proposing new preference methods is to challenge the notion of “best”” answers. Given the large number
of preference methods already proposed, and likely to be created in the future, a fundamental research issue has
become how to embed the semantics of each preference method within a database management system that may
execute arbitrary queries composed of relational operators (e.g., selection, joins).
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Another important consideration is how to integrate dynamic contextual data into preference query pro-
cessing. Contextual data refers to any interesting data about the user or her environment that can help refine
a preference answer. Currently, such data is readily available through third-party web services. For instance,
when searching for restaurants, a user may want to take into account travel time (e.g., using the Bing Maps web
service) or restaurant reviews (e.g., using the Yelp web service). While useful, this contextual data poses two
main problems when integrated with preference query processing: (1) the contextual attributes are expensive to
derive relative to static data stored locally in a database (e.g., retrieved from a third party over a network) and
(2) contextual data may contain uncertainty (e.g., restaurant prices reported as a range).

Toward the goal of embedding support for context and preference within a DBMS, this article describes
CareDB: a context and preference-aware database system. CareDB addressees two fundamental core sys-
tems challenges: (1) support for various multi-objective preference evaluation methods (e.g., skyline, top-k,
k-dominance) within the query processor and (2) integration of surrounding contextual data (e.g., current traffic,
weather) within the query processing, calling for support for gracefully handling expensive attributes and uncer-
tain data. CareDB is a complete database system, meaning all ideas discussed in this article have been realized
and experimentally evaluated in the PostgreSQL [12] open-source database system.

In the rest of this article, we describe how CareDB addresses the core systems research challenges behind
embedding context and preference within the database query processor. Section 2 provides an overview of the
CareDB architecture. Section 3 describes the novel technical features of CareDB. Finally, Section 4 describes a
CareDB prototype.

2 CareDB Overview

This section provides an overview of the CareDB context and preference-aware database system, depicted in
Figure 1.

User Preferences | U271 Users User,,
and Context l i l e i :
Y Y Y

( PR

User
Queries

Input. Besides queries expressed in SQL, CareDB
takes preference and contextual data as input. Prefer-
ences are specified by a user and stored in a profile. In
CareDB, a single user preference maps to single data at-
Query H Preference- and Context-Aware tribute. The structure of a preference is (Attribute,
Building | | Query Processing and Optimization Preference, [Value]), where attribute is a sin-

Aj ... b carenB gle data attribute, preference describes a user “wish”
é - % ,,,,,,, Crie é‘i for that attribute, and value (numeric, categorical, or

s Doty | Date Sources | Data, boolean) is optional determined by the type of prefer-
ence. Preferences for a user are stored in their preference
profile. The available preferences are based on the the-
oretical foundation of PreferenceSQL [8]. Preferences
can be hard (e.g., equals) or soft (e.g., highest, lowest), and specified over numeric or categorical attributes.
Furthermore, the user may specify a ranking function (either user-defined or built-in) over multiple attributes in
order to perform top-k preference evaluation.

In addition, CareDB has three input context types, each context can be either static (rarely changed) or
dynamic (frequently changing). (1) User context. User context is any extra information about a user. Examples
of static user context data include income, profession, and age while dynamic attributes include current user
location or status (e.g., “at home”, “in meeting”). (2) Database context. Database context refers to data sources
(e.g., restaurant, hotel, and taxi databases) that are registered with CareDB, representing data in the domain a
user wishes to query. As an example, for a restaurant database, static context data includes price, rating, and
operating hours while dynamic context includes current waiting time. (3) Environment context. Environment
context is any information about the user’s surrounding environment, assumed to be stored at a third party and
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Figure 1: CareDB Architecture
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consulted by the query processor. A dynamic environmental context includes road traffic, while a relatively
static context includes weather information.

Query Building Module and Preference Queries. The purpose of the query building module (rounded
square in Figure 1) is to personalize queries for each user such that the best answers are returned. The user
submits simple SQL queries without constraints (e.g., “Find me a restaurant”). The query building module
creates preference queries by augmenting the submitted query with the preference constraints stored in the
user’s preference profile. Preference queries contain traditional relational constraints (e.g., selection conditions),
as well as new preference constraints added to a preferring clause. In general, hard preference constraints are
added to the where clause while soft preference constraints are specified in the preferring clause. Meanwhile, a
using clause specifies what preference method will be used to evaluate the preference constraints to produce an
answer. An example preference query for restaurants is given in Figure 2 that employs the skyline method in the
using clause to produce a preference answer.

Query Processor. The preference and context-
-------------------- User Query: “Find me a Restaurant” aware query processing and optimization engine

.
' .
' . SELECT R.Name, R.Location . : : : :
b Adr Pref  [Vall} | FRow Restsurant is responsible for executing preference queries in
Rating  Highest ' ¢ Contoxt v CareDB. The main novelty of CareDB lies in this
g oune e : Query Building Context
} Groups  Equals  “Yes”s i.Cawlog § query processing engine. The main responsibilities
¢ Travel Time Lowest ! SELECT R.Name, R.Location H H
S 5 PROM Reoiaurant R, Roview RV of this module are as follows. (1) Embed various
S ! FHERE R.iceRV.id AND R Groups = res. types of preference-aware query processing within a
PREFERRING R.Price dl, RV.Rating dl
Travelrn(R-L:cation,kvser_lf-:ca)tiggl relational database engine. Specifically, we aim to
Road Network, Traffic . ) . .
USING Skyline Min dl, Min d2, Min d3 support various types of multi-objective preference
methods, e.g., skylines [2], k-dominance [3], top-k
Figure 2: Preference queries in CareDB dominance [13]. Each method accepts preference ob-

jectives like those specified in the preferring clause of
the query in Figure 2. However, given the same constraints, each method may produce a different preference
answer for a given data set. (2) Support the integration of context-aware query processing. Contextual data (e.g.,
traffic and weather information) is assumed to be retrieved from a third-party source and expensive to derive
relative to data stored locally in the database. (3) Support preference and context-aware query evaluation that
involves uncertain data.

3 CareDB Technical Features

A distinguishing feature of CareDB is its integration of preference and context concepts inside the database
query processor. In this section, we describe the details of three novel systems features of CareDB: (1) FlexPref:
the generic and extensible preference query processing engine of CareDB that includes an efficient preference-
aware join operator, (2) a preference query processing framework for efficiently handling computationally-bound
contextual data, and (3) a framework for efficiently answering preference queries for uncertain data.

3.1 FlexPref: An Extensible Preference Query Processing Framework

CareDB queries can be evaluated using any number of preference methods (e.g., skyline, top-k, k-dominance)
based on the constraints given in the preferring clause. Thus, the query processor must be aware of how to
evaluate any of these methods. One approach is to create a user-defined-function that evaluates preference
on-top of a query plan. A second approach is to create a custom implementation for each preference method
that can be integrated with query operators. CareDB takes a third approach by implementing FlexPref [9], a
general and extensible framework for implementing preference evaluation methods inside the query processor.
Figure 3 relates the main idea of FlexPref. The framework is built into the PostgreSQL query processor, and
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only FlexPref touches the query processor. Each new preference method added to the system is “plugged into”
FlexPref by registering only three functions: (1) PairwiseCompare: given two data objects P and Q, update the
score of P and return whether P or Q can never be a preferred object based on a pairwise comparison of objects.
(2) IsPreferredObject: given a data object P and a set of preferred objects S, return true if P is a preferred object
and can be added to S, false otherwise. (3) AddPreferredToSet: given a data object P and a preference set S, add
P to S and remove or rearrange objects from S, if necessary.

The main idea behind FlexPref is separation of duties. (1) The registered func- /Ca:DB\
tions, specific to each preference method, define the semantics of the preference cri- v

teria. These functions define how one object is qualitatively better than the other. Query Processor
These functions are not aware of the internals of the query processor. (2) The gener- | FlexPref

alized framework is responsible for efficient preference query processing by injecting
preference evaluation as close to the native data operators as possible (i.e., selections,
joins). The generalized framework uses the registered functions to evaluate the se-
mantics of the specific preference method. With FlexPref, a preference evaluation
method can “live” inside the query processor with minimal implementation effort
compared to a custom approach. FlexPref consists of a set of generic, extensible
relational operators. The basic idea is that each operator is written in terms of the Figure 3: FlexPref
extensible functions. The operator implements the common query processing func-

tionality common across all supported multi-objective preference methods. During query runtime, the appropri-
ate plugin functions for a specific preference method are used by the operators to evaluate the semantics of that
method. Currently, FlexPref consists of the following three operators.

Selection. The selection operator produces the preference answer from data stored in a single table. The ba-
sic idea of the selection operator is to implement a block-nested loop algorithm to execute single-table preference
evaluation (assuming data is not indexed). The operator compares tuples pairwise, using the plugin functions to
evaluate the specific preference semantics, and incrementally builds a preference answer set.

Join. FlexPref integrates preference evaluation with the join operation,

o resulting in an operator named Prefloin [7, 9]. For example, the preference
SELECT R.id, H.id . A . . L. i
FROM Restaurants R, Hotels H query depicted in Figure 4 involves a join between the Restaurant and Review
WHERE R.city=H.city, R.groups="yes” . . . . A
PREFERRING Rprice ¥p, Morating x| relations, where preference evaluation is performed using attributes from both
USING KFrequency min rPr max hr, relations. A naive method to implement a preference-aware join would be

join all necessary data and perform preference evaluation afterward. PrefJoin
improves upon this naive strategy by using the extensible plugin functions to
prune tuples before the join that have no chance of contributing to the final
preference answer. The PrefJoin algorithm consists of four phases, namely,
local pruning, metadata preparation, join, and refinement. The local pruning
phase filters out, from each input relation those tuples that are guaranteed not

to be in the final preference set. The metadata preparation phase associates
Ropeton A rating metadata with each remaining tuple used to optimize the join. The join phase
uses the metadata to decide on which tuples should be joined together. Finally,
the refinement phase finds the final preference set from the output of the join
phase. These steps enhance join performance as joins are usually non-reductive, thus pruning tuples early
reduces the output of the join, which in turn means less data must be processed in subsequent operations after
the join.

Figure 4: Preference join

3.2 Query Processing with Expensive Contextual Data

In CareDB, it is assumed that some attribute values will be expensive to derive, as the derived value may require
extensive computations (e.g., road network travel time), or must be retrieved from a third party (e.g., remote web
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service). Figure 5 gives an example query (and plan) to find a preferred restaurant using the top-k domination
method [13], where attributes price and rating are stored in a local relation, while the travel time attribute is
requested from the Microsoft MapPoint [11] web service based on the restaurant and user locations. Under
these circumstances, computational overhead is dominated by deriving the expensive travel time attribute, thus
the preference query processing operator should avoid computing these expensive attributes whenever possible.
The CareDB query processor is designed to take these challenges into

SELECT R.id, R.Location account. CareDB employs a preference evaluation operator that com-
FROM Restaurants R, . . 3 A
MapPoint M putes the preference answer by retrieving as few expensive data attributes
PREFERRING R.price p, R.rating r, . . . . .
M.travelTime (R.Location, as possible [10]. The main idea is to first perform preference evaluation
U . L tion) t . . . .
USING Topmominations::n :?amiﬁnt, over local data attributes, forming a local answer set LA using “plug-in”
max x with k=10; functions to determine the semantics of the specific preference method

used to execute the query (e.g., top-k domination). The operator then
7 selectively requests expensive attributes for objects in LA guaranteed to
Ih{:/'lméanoint“ be preference answers, and prunes objects that are guaranteed not to be
M.travelTine é:i:rci)ation: preference answers. CareDB then attempts to make the minimum num-
ber of expensive attribute requests necessary to completely and correctly

answer the preference query.

Restaurant R
R.price, R.rating

Figure 5: Expensive attribute query 3.3 Handling Data Uncertainty in CareDB

Given the growing number of applications that generate uncertain data
(e.g., e.g., sensors, human entry errors), it is likely that some data registered with CareDB will contain uncer-
tainty. Thus, CareDB employs a query processing framework, named UPref [6], capable of answering preference
queries over data containing a mix of certain and uncertain attributes. UPref assumes uncertain attributes are
represented as a continuous range of values, common in many real-life applications (e.g., biological data, spatial
databases, sensor monitoring, and location-based services). UPref associates a probability P with each object O,
that represents the chance that P is an answer to the preference query.

To process queries, UPref assumes two System Jzommmme @ T
parameters: (1) A tolerance value A that specifies the | €~ ¢ ¥ nnsescmenn o i ) © B £
maximum error allowed in calculating probability P,
and (2) a Threshold value H, that each object proba-
bility must exceed in order to be a preference answer.
UPref employs a two-phase filter-refine approach to
processing preference queries over uncertain data. ——— - :
Phase I calculates an estimated upper-bound prefer- | | :
ence probability for each object, and filters objects
on-the-fly that have an upper-bound probability that
falls below the threshold H. Phase II computes a fi-
nal preference probability for each candidate answer
within a user-given tolerance A. Phase II employs
a novel, efficient probability calculation method that
performs only as much computation as is needed to
guarantee the final preference probability for an ob-
ject falls within A. Much like FlexPref and the ex-
pensive attribute framework, UPref is designed to be
generic and extensible, capable of supporting many well-known preference methods within a single framework.

Welcome Justin Sign outy

Figure 6: CareDB Demo Application
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4 CareDB Prototype

To demonstrate the usefulness and functionality of CareDB, we implemented a location-based restaurant and
hotel finding application using the Google Maps API, depicted in Figure 6, which interacts with the CareDB
server implemented within PostgreSQL [12]. In the application, users can set their CareDB preference profile
explicitly using a profile editor window. The editor allows the user to specify their preference objectives, as
well as the preference method used to evaluate these objectives. Since the CareDB query processing framework
(i.e., FlexPref) is generic and extensible, we provide a number of different preference methods to the user (e.g.,
skyline [2], top-k [5], top-k domination [13]). To process queries, the application forwards a simple query
to CareDB (e.g., “find me a restaurant”) where it is injected with preference and context constraints based
on the users’s preference profile. CareDB returns (1) the personalized preference SQL query that was run on
the database, which can be displayed the application using a drop-down menu, and (2) the personalized query
answers that are displayed on an embedded Google Maps interface.
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Abstract

We give an account of the researches on context-aware information tailoring which are going on within
the PEDIGREE" group at Politecnico di Milano, starting from a foundational framework for the life-
cycle of context-aware information systems, in which the system design and management activities con-
sider context as an orthogonal, first-class citizen. The design-time and run-time activities involved in
this life-cycle provide material for stimulating research, summarized in this paper.

1 Introduction

In a world of global networking, the increasing amount of heterogeneous information, available through a variety
of channels, has made it difficult for users to find the right information at the right time and at the right level of
detail. This is true not only when accessing information from portable, mobile devices, characterized by limited
— although growing — resources and by high connection costs, but also when using powerful systems, since
the amount of “out-of-context” answers to a given user request may be overwhelming. Therefore, we evolve
from the need of personalizing information presentation to the difficult task of filtering and personalizing the
information itself.

User tastes and profile, external environmental factors, current trends and involved phenomena are today
recognized as parts of the notion of context [9, 30, 1, 6], enriching the initial concept only based on time and
location. In the cognitive-science view, “context is used to model interactions and situations in a world of
infinite breadth, and human behaviour is key in extracting a model”’; in our work we focus on the less ambitious
engineering view, where “context is useful for representing and reasoning about a restricted state space within
which a problem can be solved” [9], and use it as the basis for information personalization and filtering.
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Modern applications adopt a context-aware perspective to manage: 1) communication among users and
among systems [11], or between the system and the user [10, 14]; ii) situation-awareness, like modelling loca-
tion and environment aspects (physical situation) [25, 22] or the current user activity (personal situation) [18];
iii) knowledge chunks: determining the set of situation-relevant information [27, 7], services [26, 16] or be-
haviours [4, 31].

Because the applications are so different, we feel that context modelling should be addressed independently
of the specific objective, therefore on the side of the operational system we design the context management
system, where all the above-mentioned variables contributing to context, rather that being considered just as
all the other system parameters (holistic view), have the special role of context variables and are modelled
orthogonally with respect to the other instantaneous system inputs. In the Context-ADDICT project [7] context
is hierarchically modelled in terms of observable parameters that have a symbolic internal representation within
a context schema?, and some of which correspond to numerical values gathered from the environment by means
of suitable appliances like sensors or RFID tags. At run time, the context is “‘sensed”, and then validated, when
the discovered combinations of values constituting the current context are verified against the context schema.
This triggers a context-aware behaviour: delivery of context-aware data or actuation of context-aware operations.

This general view of the design-time and run-time activities involved in context-awareness encompasses all
kinds of context-aware systems, however in Context-ADDICT we concentrate on a data-oriented perspective,
where users are presented with the right information at the right moment, while all the data that are not really
interesting for the current context are considered as “noise” and thus removed. This process is referred to as
context-aware information tailoring.

The activities involved in context-aware information tailoring provide material for stimulating research,
summarized with the help of Figure 1, which conceptually illustrates the vision adopted in Context-ADDICT
to support all the phases of the tailoring process. We consider a general scenario where several classes of
users access, through a (set of) application(s), a variety of information, made available by internal or external
data sources, from sensors used for monitoring the environment to datasets of any format. The knowledge of
the context is used to control the flow of information reaching the users, excluding the information noise. A
fundamental aspect of the whole context management architecture is to keep the elaborations, queries and data
retrieval operations necessary to present the context-tailored information transparent to the user, independently
of the type of information source. The core of the architecture consists of the following main components:

a) Design-Time Context Manager: in charge of supporting i) the design of the context schema of the
specific application scenario by means of a suitable context model, and ii) for each context admitted by
the context schema, its association with the appropriate context-aware view over the available data sources.

b) Context-Aware Personalization Manager: it determines, at each instant, the currently active context,
applies contextualization to the queries issued towards the different data sources and delivers the context-
aware data to the users and applications. Some of the aspects characterizing the current context can
be automatically derived (such as the location and time of the user, her/his role within the application
scenario, the kind of device used to access the data), while others may require an explicit specification by
the user (for instance, her/his current topics of interests).

c) Data Access Manager: it offers access to data that can reside internally, for instance in a database, or in
other, external data sources, providing an early-tailored, context-aware unified answer.

The components we have just described constitute the basic architecture of the Context-ADDICT project.
While striving to design this architecture in detail and to adopt it in some real-life cases, we came across several
of the research challenges that are currently absorbing our group. Let us consider the Design-Time Context
Manager; here, the designer’s role is to envisage the possible contexts the user will incur during the system’s

2 A context schema specifies the possible contexts for the current application domain.
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Figure 1: A general view of the architecture of a data-oriented, context-aware system.

life. However the application requirements of a context-aware system are intrinsically dynamic and thus can
evolve, therefore it is highly probable that, after some time, the context perspectives and parameters anticipated
at design time be not applicable any more. Accordingly, the context schema used as the basis of the tailoring
process should be allowed to change over time, along with the design and assignment of the related context-
aware views. These two strictly related problems originated the research that is briefly described in Section 2.
More about context-aware query tailoring will be described also in Section 4.

Note that the user interests and preferences may vary according to the context the user is currently in, for a
change in context may change the relative importance of information. In the Context-Aware Personalization
Manager, contextual preferences are used to refine the views associated with contexts, by imposing a ranking on
the data of a context-aware view and adding the opportunity to dispose of the less interesting portion if needed.
On the other hand, since we cannot actually expect a user to manually specify the long list of preferences that
might be applied to all available data when a context becomes active, we propose a methodology and a system,
PREMINE, where data mining is used to learn contextual preferences from the previous user’s querying activity.
This research is briefly described in Section 3.

The proliferation of freely-accessible data-intensive websites, as well as initiatives for open-accessible linked
data in the Web [5], provide the users with potential sources of precious information. The Data-Access Man-
ager, discussed in Section 4, supports the context-aware querying of heterogeneous and dynamic data sources,
retrieving from the sources only the data that are consistent with the current context. Among the information
sources we also consider devices which are spatially distributed and possibly mobile, the task of some of which
is to monitor different kinds of physical phenomena for application support. Still at the data-access level, we
designed the PerLa language and middleware which allow for declarative gathering of data from the environ-
ment, where some of these “pervasive” data are used to provide information to the operational system, while
a context-management extension to the same language permits to declare the context and to provide the actual
values for the context parameters.
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2 Design-Time Context Manager

A key element in the design of context-aware systems is the representation and management of context and
of its attributes, to be able to define a relationship between each context and the aspects of interest (such as
relevant information, applicable “rules” and behaviour, presentation, etc.) of the application scenario. As all
well-conceived formalisms, a model that allows the designer to specify such aspects should satisfy at least the
requirements of generality (it should be suited to represent any application scenario), modularity (describing the
context perspectives at the correct level of granularity), readability (to serve as design documentation), expressiv-
ity (allowing querying, reasoning or constraint specification on the contexts of a given target application) [6, 22].

We devoted our initial efforts to the definition of a suitable context model, the Context Dimension Tree
formally presented in [7], used to specify at design-time the context schema, that is, all possible contexts the
user will be acting in. The context schema (or CDT) of a given scenario is a hierarchical structure consisting
of 1) context dimensions (black nodes), modeling the different perspectives through which the user perceives
the application domain and ii) the allowed dimension values (white nodes), i.e. the actualized parameters based
on which the context-aware information, behaviours, etc. are to be selected. Each context is then defined as a
combination of context elements, that is, <dimension-value> pairs. The adoption of a hierarchical organization
allows us to employ different abstraction levels to specify and represent contexts. It is also possible to define
appropriate constraints on the schema, that prevent some of the combinations of context elements, if meaningless
for the current application. For example, consider the university campus scenario where users are students
of any level (undergraduate, graduate, PhD), faculty members and guests. The university provides a mobile
application to allow an easy, context-aware, personalized access to all information that might be of interest,
like courses, schedules, rooms, other activities, local transportation, dining resources. Here, a valid context
is the one of a student, who is interested in finding information about courses, formally expressed as user =
student N\ interest topic = courses, while the context user = undergraduate A interest topic = research might
be considered meaningless by the designer and thus ruled out by writing an appropriate constraint.

It is easy to see that the burden of explicitly defining the portion of data deemed interesting for each context
is a time-consuming task given the possibly high number of valid contexts; therefore the naive per context
association of views to contexts evolved towards the definition of a methodology working on a per context-
element basis, which supports the designer in the definition of a view for each context element — called relevant
area, or Rl —; based on this specification, the system automatically derives the data portion associated with
a context by opportunely combining the relevant areas of the involved context elements. The advantage is
twofold: 1) to reduce the designer’s work and ii) to achieve a high flexibility w.r.t. an evolving application
scenario. The approach is fully general, and has been profitably applied to other data models; in particular, in
order to add the necessary reasoning capabilities, we have explored the representation of the context model by
means of ontologies [23] and logic programs [24]. For data tailoring in the relational model [8], we have defined
operators that apply to sets of relations and support the composition of context-aware views. As a result, the
designer’s effort is devoted to the definition of the CDT and of the %e/s, while a tool? performs, for each context,
the automatic computation of the resulting context-aware views.

Starting from techniques devised in the literature on schema evolution in various fields [2, 19], our recent
research proposes strategies to flexibly manage the evolution of the context schema. During system operation,
the initial vision of the designer about the possible contexts pertaining to a given application scenario may
change, and new dimensions or values might come into play or old ones might become not applicable. As a
result, the context schema has to change, and for each new node the associated view needs to be computed or a
modification of some existing views might be necessary. For instance, in the university scenario, a change from
quarters to semesters (i.e., a change of dimension values) would cause a revision of the schema and the need to

3The activities of the Design-Time Context Manager are supported by CADDFrame, integrating a CDT Designer to define the CDT,
a tool to specify the &/s, and an engine that combines them to compute the final views associated with each valid context.
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write new views, associated with the semester data. A context schema change might also be triggered when the
user device detects some environmental parameter values that are not envisaged by the current schema.

The Design-Time Context Designer supports context schema modifications by allowing the use of a prede-
fined set of evolution operators that keep the coherence between the schema changes and the (induced) changes
in the encompassed contexts. The sequence of the modifications is logged, and used to refresh the user context
and views in such a way that, when the user device detects a context change and requests the related data, these
are delivered consistently with the new schema. This is made possible by the fact that the per-element view-
construction strategy is employed, and thus only a limited number of views — those related to the nodes that are
involved in the evolution operation — have to be added or revised by the designer.

3 Context-Aware Personalization Manager

Data personalization based only on the notion of context represents but a partial solution to the problem of
information reduction, since the tailoring turns out to be often too coarse-grained. For example, consider the
context of Bob, a student interested in finding a free room for the afternoon; a contextual system will suggest
only the rooms close to his current location, and will not be able to propose any ranking or further filtering of the
contextual data according to Bob’s tastes. Actually, the context often plays a crucial role in determining different
prefences of the same person: for instance Bob could be very interested in quiet rooms when he is alone, and in
open spaces when he is with his friends.

To obtain a more effective personalization, the Run-Time Preference Manager (see Figure 1) couples the
knowledge of context with the user personal preferences: this allows to specify which information represents
the actual interests and needs for Bob, when he is in a particular context (alone or with friends). In this direction,
some approaches [29, 21, 17, 20] have been proposed for personalizing relational data (both tuples and attributes)
on the basis of contextual preferences defined by the user. However, when considering a large variety of data and
a rich set of possible contexts, the manual specification of an extensive list of preferences may be onerous for
the user, who may be discouraged w.r.t. the activity of explicitly indicating his/her preferences. A way around
this problem is to learn the user tastes from a log of his/her past behaviour, i.e., the past data-querying activities.
We use data-mining algorithms to discover implicit contextual behaviours, in the form of association rules that
correlate each contexts with the values accessed in it. In particular, a 6-rule 75 on the relation schema R(X) is a
triple (C — cond, sup,conf), where C — cond is an association rule, C is a context and cond a conjunction of
simple conditions in the form A = value, with A € X; for some R;(X;) € R(X); sup and conf indicate the support
and the confidence of C — cond, respectively. The support corresponds to the frequency of C A cond be true
in the log storing the user activities; the confidence corresponds to the (conditional) probability of finding cond
true in the log of the activities done in context C, and is given by %. For example, if we consider the
table CLASSROOM (NAME,BUILDING,FLOOR,LOCATION,TYPE) in the dataset of our scenario, and we mine
the o-rule (user = student A situation = alone — Gyype—computerizdCLASSROOM ,0.8,0.9) by analysing Bob’s
activities, we can state that, when alone, he is often interested in computer-equipped classrooms (with a support
0.8 and a confidence 0.9).

o-rules are used to learn preferences on tuples, but the preferences can be mined also on attributes. A T-
rule 75 on the relation schema R(X) is a triple (C — A, sup,conf), where C is a context and A € X; for some
Ri(X;) € R(X). For example, the w-rule (user = student A situation = alone — {location},0.7,0.8) states that
Bob, when alone, often visualizes the classroom location.

Our approach, differently from the majority of recommendation systems, does not require any explicit input
from the user about his/her preferences; we are studying its seamless combination with recommendations that
can be used to personalize the views for new users, when the history of their activities is not available yet, on
the basis of the behaviours of other, “similar” users in the same context.
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4 Data-Access Manager

In Context-ADDICT the data sources are generally dynamic, transient, and heterogeneous in both their data
models (e.g., relational, XML, RDF) and schemas®. Therefore, in order to access their content, it is first neces-
sary to understand their schemas and to represent them in a suitable semantic formalism (e.g., description logics
or Datalog-like languages) to enable their semi-automatic reconciliation. We designed extractors (Figure 1) to
automatically derive, through reverse-engineering, the external schemas from the schemas of the data sources.
In particular the extractors are domain-aware, i.e., they include in the external schema only the data-source enti-
ties which have a counterpart in a global schema [12] which is used as a uniform representation of the available
information in the integration system. Each external schema is then (semi-)automatically mapped to the global
schema, which can be eventually queried using a suitable query language, e.g. SQL or SPARQL, depending on
the model chosen for the global schema. The mappings between the external schemas and the global schema are
provided in a semi-automatic way, using schema matching tools [3].

In Context-ADDICT, the schemas are expressed using the CA-DL data language that allows to: (i) uni-
formly represent the data and the user context(s) in any application domain and (ii) support efficient context-
aware query distribution and answering, for external data-sources context-based information filtering is per-
formed at run-time (early tailoring), by selecting fragments of the global schema that are considered relevant for
the current context. These relevant areas are computed by means of the per-context-element strategy discussed
in Section 2. Each relevant area is matched against the external schemas produced by the extractors, inducing,
through the mappings, corresponding context-aware fragments of the external schemas [23]. Data access pro-
ceeds as follows: the queries formulated over the global schema are first translated into context-aware queries
using the specifications provided by the relevant areas. Then, the contextualized queries are reformulated in
terms of the global schema and of the mappings, producing queries over the data sources. The queries are then
distributed to the corresponding data sources and finally translated into the native language of each target source
by means of suitable wrappers.

A similar perspective is adopted to access data coming from sensors. We developed PerLa’(PERvasive
LAnguage) [28] a declarative, high-level language that allows to query a pervasive system within the unifying
setting provided by Context-ADDICT, hiding the difficulties related to the need of handling different technolo-
gies. A database-like abstraction of the whole sensor network is provided in order to hide the high complexity
of low-level programming, allowing users to retrieve both functional and non-functional data from the system
and send configuration/activation commands to the sensors in a fast and easy way. A middleware provides an
abstraction for each device in terms of a logical object, and supports the execution of PerLa queries. During the
design of the middleware, we strove to make the definition and the addition of new devices easier by minimising
the amount of low-level code the user has to write to make the new device recognizable by the system.

Context awareness has a two-fold role with respect to sensors’ data: part of the collected information con-
tributes to the information base to be made available through the application and is filtered according to context
as in the general case; part of it must be directly used to determine the context itself, such as the time of the day
or the location (e.g., from GPSs). In the latter situation, the information is directly exploited by the Run-Time
Context Manager (see Figure 1) to actualise the correct context. PerLa, originally conceived only for query-
ing sensors, has thus been extended with statements to i) define the CDT structure, also with the capability of
acquiring that part of context information that cannot be deduced from sensor readings; ii) create a context on
a defined CDT; iii) activate/deactivate a context at run-time as by the actual values of the context variables;
iv) perform the contextual actions required on the system, e.g.: activating actuators, changing measurement
modalities, cutting and tailoring queries from a general query stereotype.

4In our research we mostly concentrate on data sources whose schema is available, while for less structured data sources we resort
to techniques found in state-of-the-art literature [15].
Shttp://perlawsn.sourceforge.net/index.php
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5 Conclusions

We have given a brief report of our understanding of the research on context-awareness, and of the activities on
context-aware information systems going on within the PEDiGREE group at Politecnico di Milano. The overall
research area is so stimulating that we continuously encounter topics that should be investigated, like context
sharing, automatic synthesis (from observing the environment) of the possible contexts and of the views to be
associated with them, automatic recognition of the next active context to the end of anticipating critical situa-
tions [13], uncertainty and inconsistency of the context data, stability of the system when the context changes
become too frequent for adaptation, support of non-functional requirements like context-aware data quality [4],
and many others, which can be a stimulus to the scientists who are attracted by this ever-growing research area.
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Abstract

Interactive database exploration is a key task in information mining. However, users who lack SQL
expertise or familiarity with the database schema face great difficulties in performing this task. To
aid these users, we developed the QueRIE system for personalized query recommendations. QueRIE
continuously monitors the user’s querying behavior and finds matching patterns in the system’s query
log, in an attempt to identify previous users with similar information needs. Subsequently, QueRIE uses
these “similar” users and their queries to recommend queries that the current user may find interesting.
We discuss the key components of QueRIE and describe empirical results based on actual user traces
with the Sky Server database.

1 Introduction

Database systems are becoming increasingly popular in the scientific community, as tools to access and ana-
lyze large volumes of scientific data. Prominent examples include the Genome browser! that hosts a genomic
database, and SkyServer? that stores large volumes of astronomical measurements. Such databases are typically
accessed through a web interface that allows users to pose queries through forms or in some declarative query
language (e.g., SkyServer users can submit SQL queries directly).

Despite the availability of querying tools, users of these systems may still find it challenging to discover in-
teresting information. Specifically, users may not know which parts of the database hold useful information, may
overlook queries that retrieve relevant data or might not have the required expertise to formulate such queries.
An exhaustive exploration of the database is also practically impossible, due to the continuously growing size of
the data. To address this issue, we designed the QueRIE? system that assists users in the interactive exploration
of a large database. The core idea is to present a user with personalized query recommendations, which are
relevant to the user’s information needs and can serve as “templates” for query formulation. The user is able to
directly submit or further refine these queries, instead of having to compose new ones.

QueRIE is built on a simple premise that is inspired by Web recommender systems: If a user A has similar
querying behavior to user B, then they are likely interested in retrieving the same data. Hence, the queries of

Copyright 2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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user B can serve as a guide for user A. One obvious approach to realize this idea is to leverage well known
collaborative filtering techniques, which were popularized in Web recommender systems. However, this transfer
introduces several technical challenges. First, the use of declarative queries implies that users may retrieve the
same data through queries that are syntactically different. This complicates greatly the computation of user
similarity, since it is not trivial to simply compare the corresponding queries — we essentially have to solve
the notoriously difficult query-equivalence problem. A second challenge is the absence of an explicit rating
system for the queries posed by a user — how do we know which queries are important in the computation of
user similarity? Finally, it is important to recommend queries that are intuitive, i.e., queries that the user can
understand and refine if necessary. A user may not find a recommendation useful if the query is too “synthetic”.

QueRIE addresses these challenges by employing a closed-loop approach. Specifically, QueRIE decomposes
each query into basic elements that capture the essence of the query’s logic. These elements are used to compute
similarities between users, and also to compute a signature of the user’s querying behavior, and to some extent
of the user’s information needs. Recommendations are generated by mining queries from the system log that
match well with the signature. Hence, the user is presented with queries that match her querying behavior, and
that are likely to be more intuitive than purely synthetic queries.

2 Related Work

Even though the problem of generating personalized recommendations has been broadly addressed in the Web
context [11], only a handful of related works exist in the database context. Some work has been done in the area
of personalized recommendations for keyword or free-form query interfaces [12]. In this scenario, a user queries
a database using keywords or free-form text and the personalization system recommends items of interest. Our
approach is different from this scenario because it aims to assist users who query relational databases using
either ad-hoc or form-based queries. Also, our framework recommends queries instead of “items” from the
database. Finally, QueRIE does not require from the users to explicitly declare their preferences beforehand in
order to generate recommendations.

A multidimensional query recommendation system is proposed in [6, 7]. In this work the authors address
the related problem of generating recommendations for data warehouses and OLAP systems. In this work, the
authors propose a framework for generating OLAP query recommendations for the users of a data warehouse.
Although this work has some similarities to ours (for example, the challenges that need to be addressed because
of the database context), the techniques and the algorithms employed in the multidimensional scenario (for
example, the similarity metrics and the ranking algorithms) are very different to the ones we propose.

The necessity of a query recommendation framework is emphasized in [9], where the authors outline the
architecture of a collaborative query management system targeted at large-scale, shared-data environments. As
part of this architecture, they suggest that data mining techniques can be applied to the query logs in order to
generate query suggestions. The authors present a general outline of a framework for query recommendations
pointing out that this is a challenging process. However, they do not provide any technical details on how such
a recommendation system could be implemented.

Two recent works propose frameworks for query recommendations using the information recorded in the
query logs [13, 8]. In [13], the authors propose a query recommender system that represents the past queries
using the most frequently appearing tuple values. Then, after predicting which new tuples might be of interest
to the end user, they reconstruct the query that retrieves them. This approach works better with relations that
have discrete attribute values, contrary to scientific databases, where most attributes are numeric. The authors
also propose a global ranking of the queries, based on the statistics of the database and not the query logs. Both
approaches are evaluated in a preliminary empirical study, yet no discussion on scalability issues is provided. In
[8] the authors propose SnipSuggest, a system meant to assist users when formulating SQL queries. Using the
information in query logs, the system generates a DAG representing the relationships between different clauses
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in the queries. Based on the current user’s query, the system ranks the outgoing edges and recommends the
nodes/clauses of the most similar ones. This work differs in ours in several ways. SnipSuggest recommends
possible additions to various clauses in the current user’s query, and not complete queries. Moreover each query
is treated independently of any previous one, even if they belong to the same user session.

3 An Abstract Framework for Query Recommendations

This section discusses an abstract framework for generating query recommendations. The abstract framework
is essentially a workflow that takes as input the queries of previous users and the queries of a current user, and
outputs query recommendations. We discuss two possible instantiations of the workflow in the next section.

We consider a setting where users explore a relational database through SQL queries. Specifically, each user
interacts with the database in the form of sessions, where each session consists of a sequence of SQL queries.
We expect the queries in the same session to be correlated, as we assume that the user is trying to mine useful
information from the data in an exploratory fashion, i.e., the formulation of the next query in the session is
highly dependent on the results of previous queries. To simplify our presentation, we assume that each user has
a single session with the database. This assumption can be lifted in a straightforward manner at the expense of
more complicated notation.

Given a user i, let Q; denote the set of queries that the user has posed thus far in a single session. We
introduce the notion of a session summary to summarize the characteristics of the queries posed in the session.
Contrary to Web recommender systems, where a session summary can be readily constructed as the items that
a user visits/rates/purchases, there exist several ways to model a session of SQL queries. For instance, a crude
summary may contain the names of the relations that appear in the queries of the user, and the importance of each
relation can be measured as the number of queries that reference it. On the other extreme, a detailed summary
may contain the actual results inspected by the user, along with an explicit rating of each result tuple. The
different possibilities represent trade-offs between detail and conciseness, and as we will see later, also affect
the quality of the generated queries. In what follows, we use S; to represent the session summary for user i. User
i = 0 will always represent the current user (for whom recommendations are generated), whereas i = 1,...,n
represents past users of the system. In a slight abuse of notation, we use S; to represent both the session summary
and user i.

Our conceptual framework generates recommendations for Sy in two steps. First, the framework computes
a “predicted” summary SP™ that captures the importance of different query characteristics for user Sy . Note
that P may contain characteristics that already appear in the queries of Sy, but also new ones that the user has
not used yet. The summary SP™ is used in the second step of the recommendation workflow, as the “seed” to
generate recommendations. We further detail the two steps below.

The predicted summary is computed as SP = f(a,So,S1,...,5,), where f is a function that combines
information from summaries Sy, Sy,...,S,. Clearly, the function will depend on the specific model for session
summaries. Parameter o is a mixing factor, which controls the importance of Sy (the current user’s session)
with respect to Si,...,S, (the sessions of other users). Recall that S includes query characteristics that
already appear in the queries of Sp. The reason is that we want to recommend queries that extend or restructure
the queries already posed by Sy, in addition to completely different (yet relevant) queries. By setting o = 0,
we ignore completely the queries in Sp, whereas o = 1 has the exact opposite effect, i.e., only the queries
in Sy affect the recommendations. We have found in our experiments that neither of these two extremes are
satisfactory, which justifies the introduction of o in our framework. It is interesting to contrast our approach
to Web recommender systems, where the equivalent of SP™ is computed using o = 0, i.e., based solely on
information from other users. (As an example, it is not meaningful to recommend to a user a movie that they
have already watched.)

Summary SP™¢ is used to generate the queries that are presented to the user as recommendations. One
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approach is to synthesize queries based on the characteristics present in SP™4, but this is not likely to work well
for several reasons. First, it is important to recommend queries that have non-empty result sets, and hence it
will be necessary to verify this property for every candidate recommendation. Second, it is extremely difficult
to synthesize intuitive queries that combine specific characteristics, unless there is some semantic knowledge
about the data and/or the schema (which is difficult to acquire in itself). Our approach is completely different:
we mine the query log of the DBMS to select queries that have a good match to the characteristics described in
sPred - The recommendations are likely to be intuitive and easy to understand, since they correspond to queries
formulated by other human users. Furthermore, we can verify easily that these queries return non-empty results,
by examining the metadata in the system’s query log®.

Overall, our framework consists of the following components: (a) a model for session summaries, (b) a
method to compute the session summaries Sy, ..., Sy, (c) a method to compute SPred and (d) a method to select
queries based on SPd, An interesting feature is that the framework forms a closed-loop, receiving SQL queries
as input and generating SQL queries as output. This design follows from our starting assumption that users
interact with the database through a declarative query language.

4 Tuple-based and Fragment-based Query Recommendations

We now describe two instantiations of the abstract recommendation framework, namely a fuple-based recom-
mendation engine and a fragment-based recommendation engine. As discussed below, the two instantiations
represent a trade-off between efficiency and quality of recommendations.

Tuple-Based Recommendation Engine. The session summary S; is represented as a weighted vector, where
every coordinate corresponds to a distinct database tuple. The weight S;[t] represents the importance of a given
tuple 7 in the session of user i, and is non-zero only if T is a witness for at least one query in the session. The
intuition is that S; captures the tuples in the base tables that are touched by the queries in the session. Hence,
sessions that contain equivalent queries will map to the same summary.

We consider two schemes for setting S;[t] for a witness T: a frequency-based scheme, where S;[t] essentially
corresponds to the number of queries that have T as the witness; and a result-based scheme, where S;[t] is
inversely proportional to the result sizes of the queries for which 7 is a witness. The idea behind the last scheme
is similar to the IDF concept from information retrieval-t obtains a higher weight if it is a witness to queries
with small results.

We compute SP as follows: SPe = o1 So+ (1 — ) - Xy, 5im(S;, So) - S, where sim(S;, So) is a similarity
metric between the two vectors (e.g., cosine similarity). This approach is inspired by Web recommender systems,
where the idea is to bias the recommendations based on users that exhibit similar behavior to the current user.
The difference is that we use the mix-in factor o to blend in the behavior of the current user. Overall, SP"? yields
a weight per tuple that corresponds to the importance of the tuple to the user’s exploration.

Having computed SP™Y, we output as recommendations the queries of past users whose witnesses match the
high-weight tuples in SP™d. Specifically, for each candidate query Q (we maintain a sample of past queries as our
candidate pool), we compute the similarity sim(Sgp, spred) where So is the summary of a session that comprises
solely query Q. The few candidate queries with the highest similarity metric are returned as the recommendation
to the user. (The number of returned queries is a parameter of the framework.)

Overall, the tuple-based approach captures the user’s querying behavior at a very fine level of detail—the in-
dividual witnesses to the user’s queries. Moreover, it handles readily the issue of equivalent declarative queries,
since the underlying witness sets are exactly the same. The downside is the increased complexity, since, in prin-
ciple, the session summaries grow linearly with the size of the database. Fortunately, it is possible to implement

40One obvious concern is that a query may not return any results if the database has been updated. However, this scenario is rather
unlikely for scientific data sets, which are typically append-only.
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this method efficiently by employing randomized sketching techniques (e.g., AMS sketches [3] or min-hash
sketches [5]) to compress the summaries and compute the similarity metrics with a small loss in precision.

Fragment-Based Recommendation Engine. The fragment-based approach works similarly, except that the
coordinates of the session summaries correspond to fragments of queries instead of witnesses. We identify as
fragments the following syntactical features of the queries in the session: attribute references, tables references,
join and selection predicates. At a high level, the idea behind this approach is to recommend queries whose
syntactical features match the queries of the current user.

Formally, a session summary S; is a vector whose cell S;[¢] contains a non-zero weight if the fragment ¢
appears in at least one query of the session. Conceptually, the length of the vector is equal to the number of
possible fragments, but we expect only few cells to have non-zero values. There are several possibilities for the
weighting scheme, and we consider two in our work: binary, which indicates the presence of ¢, and frequency-
based, which assigns to S;[¢] the count of queries that contain the fragment.

Under this model, SP™¢ corresponds to a vector that indicates the relevance of query fragments to the current
user’s exploration. Similar to the tuple-based engine, we compute SP™! as a blend of the user’s summary Sy and
other users’ summaries Sy, .. .,S, weighted according to some similarity metric. The difference is that we employ
a fragment-fragment approach, which is reminiscent of the item-item paradigm of collaborative filtering systems
on the Web. Specifically, we first define a fragment-similarity metric sim(¢,p) that evaluates the similarity of
the two fragments in terms of their corresponding weights in the session summaries Sy, ...,S,. We use Jaccard’s
coefficient and cosine similarity for the binary and frequency-based schemes respectively, but our framework
can accommodate any metric. Using this metric, each coordinate SP*4[¢] is computed as a blend of Sy[¢] and
the expression Yo (So[p] - sim(p,9))/ X pcrsim(p, ), where R is the set of k fragments (k is a parameter of our
framework) that have the highest similarity to ¢. Intuitively, ¢ obtains a high weight if Sy contains fragments
that co-occur frequently with ¢ in the queries of past users.

The generation of the recommended queries occurs in a similar fashion as the tuple-based approach: each
candidate query Q is mapped to a summary Sp, and the queries that have the highest similarity to spred are
returned as recommendations.

The fragment-based approach clearly captures information at a coarser level of detail, and hence it is ex-
pected to miss interesting correlations between users. For instance, two distinct selection predicates will be
mapped to different fragments even if they are satisfied by the same tuples in the base tables. The big advantage
is that it can be implemented very efficiently, as the space of fragments grows slowly, the summaries are very
sparse and the fragment-to-fragment similarities can be computed offline and stored for very fast retrieval when
recommendations need to be generated. (This offline preprocessing is not possible in the tuple-based approach,
since the similarity metric involves the complete vector Sy of the current user.)

5 The QueRIE System Prototype

We implemented a prototype of our system that supports the two recommendation engines described in the
previous section. The prototype is implemented in Java and runs on top of a standard relational DBMS. The
details of our system are described in [10, 1].

Using the prototype, we evaluated the efficacy of our recommendation techniques using real user traces from
the SkyServer database. Our results demonstrated that it is possible to generate meaningful query recommenda-
tions for a large set of users in the traces. Specifically, our experiments showed that: (a) using o = 0.5 produces
the best results in terms of recommendation quality, (b) the tuple-based engine generates perfectly precise rec-
ommendations (precision is equal to one) for 40% of the users in the test set, (c) the fragment-based engine is
noticeably less effective in terms of precision, and (d) the fragment-based engine has much less computational
overhead. A detailed discussion of the results can be found in [4, 2]
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6

Conclusions and Future Work

Query recommendations can provide valuable guidance for interactive database exploration, particularly for
users who lack the expertise to formulate complex queries or who are not familiar with the data. The proposed
QueRIE system aims to provide a generic framework where we can develop and evaluate recommendation
techniques for this novel domain.

As part of our future work, we intend to investigate a hybrid of the two recommendation engines that achieves

a better trade-off between efficiency and precision. We also plan to extend our techniques to form-based query
interfaces that are common for Web-accessible databases. Our fragment-based approach is readily applicable for
single-form interfaces, but we wish to examine the case of multi-form interfaces where the query is formulated
in several steps.
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1 Introduction

Spurred by the advances in collaborative filtering, by applications that form the core business of companies such
as Amazon and Netflix, and indeed by incentives such as the famous Netflix Prize, research on recommender
systems has become quite mature and sophisticated algorithms that enjoy high prediction accuracy have been
developed [1]. Most of this research has been concerned with what we regard as first generation recommender
systems. Ever since the database community got interested in recommender systems, people have begun asking
questions related to functionality. This includes developing flexible recommender systems which can efficiently
compute top-k items within their framework [18] and using recommender systems to design packages subject to
user specified constraints [11].

Significant effort has been dedicated to improving accuracy of recommendations. Many of the recommen-
dation algorithms, while highly accurate, have scalability issues. The number of items managed by modern
information systems is growing rapidly. Therefore, scalability is one of the serious issues for future generation
recommender systems. Recommendation methods try to capture personalized patterns in user feedback data by
making assumptions and keeping dense summaries of data. User feedback is typically represented in the form
of a sparse matrix that stores existing ratings of users on items. There are two groups of methods — model-
based and memory-based [1]. Model-based methods assume there is a lower dimensional underlying parametric
model that has generated the ratings matrix. These methods aim at finding optimal parameter values for the
model, given the observed data. Memory-based methods, on the other hand, calculate similarities between users
or items and use these similarities for aggregating existing ratings and predicting unknown ratings. Thus, any
item recommendation process has two steps: (1) an off-line training phase that captures personalized profiles
(either as a model or as a similarity matrix); (2) an online recommendation generation process that uses the latest
up-to-date model or similarity matrix to return top-k recommendations for a user. Any approach for improving
scalability of item recommendation needs to pay attention to both profile building and recommendation gener-
ation. In section 2, we show how better scalability can be achieved in both aspects for one of the most popular
and practical recommendation algorithms.

In addition to efficiency and scalability, an important limitation of classical recommender systems is that they
only provide recommendations consisting of single items, e.g., books or DVDs. It has been recognized several
applications call for composite recommendations consisting of sets, lists or other collections. For example, in
trip planning, a user is interested in suggestions for a set of places to visit, or points of interest (POI). If the
recommender system only provides a ranked list of POIs, the user has to manually figure out the most suitable
set of POIs, which is often non-trivial as there may be a cost to visiting each place (time, price, etc.), and the

Copyright 2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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user may want the overall cost of all POIs to be less than a cost budget. Furthermore, some additional package
constraints such as “no more than 3 museums in a package”, “not more than two parks”, “the total distance
covered in visiting all POIs in a package should be < 10 km.” might render the manual configuration process
even more tedious and time consuming. Another application which needs package recommendation is music
list generation [17], where the system needs to recommend users with lists of songs called playlists, and users
may have a constraint on the overall time for listening to these songs, and possibly constraints on the diversity
of songs in the list.

So in these applications, there is a natural need for top-k package recommendations which can recommend
users with high quality packages which satisfy all the constraints. Some so-called “third generation” travel
planning web sites, such as NileGuide', YourTour?, and some recent research works like [2, 3] are starting to
consider certain of these features, although in a limited form.

1.1 Our Vision for the Next Generation Recommender System

We believe that the next generation recommender system should be efficient, scalable, and flexible enough to be
tailed to different applications and users’ customization requests such as the ability to compose packages and
other collections and enforce user-specified constraints. In Figure 1, we show the architecture of our envisioned
next generation recommender system that we call TopRecs™.
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Figure 1: Next Generation Recommender System

In TopRecs™, the recommendation engine can choose to recommend either top items or top packages de-
pending on the application and user requests. The item recommendation engine can leverage the user item rating
matrix to efficiently maintain the item-item similarity matrix, then based on this similarity matrix, an efficient
and scalable top-k item recommendation algorithm can provide users with the set of k most interesting items
[18]. On the other hand, based on the items generated by the item recommendation engine, combined with meta-
data information (such as price, type and etc.) associated with each item, the top-k package recommendation
engine can return top-k packages that users will be interested in [11].

2 Top-k Item Recommendation

Predicting personalized scores of individual items for users is the core task of most recommendation algorithms.
We follow item-based collaborative filtering (CF) [4], which is used widely in academia and practice [14, 5]. In
CF, input data is typically represented as a sparse n x m matrix(R) of user ratings on items. An entry r;; shows
the existing rating of user u; on item v;. The main task is to predict the unknown ratings using the existing ones.
Item-based CF computes and maintains an item-item similarity matrix using the existing ratings in R. Pearson
correlation coefficient [12], is one of the popular choices for calculating item similarities. In item-based CF, the
unknown rating r;;, of u; on v;, is predicted by taking the weighted average of ratings of u; on N most similar
items to v;. Equation 2 shows how existing ratings are aggregated to calculate r;; where N(v;,u;) denotes the
set of N items that are most similar to v; and are rated by u;.

1 http://www.nileguide.com
2http: //www . yourtour . com

62



N

rii=(Y sxr) /(Y s 2)

x=1 VyEN(Vj.,M,')

A unique challenge here in providing a score sorted list of items, is the fact that the individual scores to be
aggregated to calculate r;; come from different lists for different items. This is because each candidate item can
have a different set of N nearest neighbors among those rated by u;. This makes it challenging to use traditional
top-k algorithms. In fact, in [18], we theoretically show that adapting classic TA/NRA [13] algorithms, which
are known to be instance optimal, for aggregating partial scores and returning top items leads to unpredictable
performance due to this challenge. In particular, instance optimality no longer holds and there are instances
where the adaptations can perform as bad as naive algorithms. Therefore, we identify the problem of discovering
N(vj,u;) for all candidate items to be the costly step in score prediction. For this purpose, we propose a novel
algorithm, called the Two Phase Algorithm (TPH). for finding all N(v;,u;) in two steps.

2.1 Two Phase Algorithm

A naive approach for finding N nearest neighbors of a candidate item v; in u;’s profile is to retrieve similarities
of v; to all (y;) items rated by u;. Going over all y; similarity values and finding the N highest ones can be done
in O(u;logN) for one item. t The total cost of finding nearest neighbors of all candidate items in «;’s profile is
O(mu;logN), which can be costly in practice if ; is large.

In order to design a more efficient process, we propose a new global data structure, L, rather than the
similarity matrix. Every column of L corresponds to one of the items. Items in each column are sorted using
their similarities with respect to the item indexing the column. Thus, the j'” entry in the i"* column of L is a pair
(item-id, sim), where item-id is the id of the j* most similar item to the i item. The second element of the pair
is the similarity between these two items.

The main intuition behind the two phase algorithm is the following. Assuming that some N’ < y; nearest
neighbors of a candidate item v; are known, finding N nearest neighbors can be done more efficiently. This is
regardless of whether N’ is greater or smaller than N. Suppose we know N’ < N nearest neighbors of v;, then
finding the remaining ones can be done in O(y;log(N —N')). If N’ = N, no further processing is needed. For
N’ > N, it again takes O(N'logN) to find the N nearest neighbors.

All of the required similarity values for finding N nearest neighbors are in the y; columns of L that correspond
to rated items. Therefore, we propose our two phase algorithm as follows. In the first phase, we choose a
similarity threshold and read only those values from these columns that are above the threshold. This leads
to discovering a variable number of nearest neighbors for every candidate item. Depending on the number of
neighbors found for each item, in the second phase we find the exact N nearest neighbors. For those items that
we have managed to find some neighbors for, the process will be more efficient as described earlier.

V4: V1, V2
V1 V2 V3 V5: V3
kil § RERRREREEE § CEEEE ---eae Ve V1. V2, V3
(V3, sim=0.91) (V4, sim=0.95) (V2, sim=0.98) V7: V1, V2
(V7, sim=0.85) (V8, sim=0.79) (V5, 5im=0.91) Y
(V4, sim=0.82) (V7, sim=0.75) (V6, sim=0.88) N’ neighbours found
(V6, sim=0.73) (V1, sim=0.77) for each candidate item
(V1, sim=0.71) after using 6=
(V5, sim=0.31) (V5, sim=0.19) (V7, sim=0.32) ueing@=0.71
(V2, sim=0.11) (V3, sim=0.05) (V4, sim=0.11)

Columns of L corresponding to items rated by
the user

Figure 2: An example of running the two phase probe step using a prob threshold of 6 = 0.72 and comparing it
to naive algorithms

Figure 2 illustrates the process using a threshold value 8 = 0.72. In the first phase all of the entries above
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the threshold are read as shown on the left side. In this example y; = 3. Notice that for both cases of N =1 or 2,
the process can be done more efficiently for three out of four candidate items.

2.2 Optimal Threshold 6

The cost of the two phase algorithm (C(6)) can be written as the sum of three main components: (1) Cost of the
first phase (C1(0)); (2) Cost of finding N nearest neighbors when N’ < N (C2(6)); (3) Cost of finding N nearest
neighbors when N’ > N (C3(0)).

For instance, assuming the example in Figure 2 and N = 2, vs falls in the second category and vg falls in the
third category. While for v4 and v, we have already found their 2 nearest neighbors. Using smaller 6 results in
greater C1 and C3 and smaller C2. This is due to the fact that more similarity values will pass the filter and make
it to the second phase. On the other hand, C2 increases if we use a larger threshold and the other two components
decrease. Therefore, there is a tradeoff between C1 and C3 on one hand and C2 on the other. Optimal threshold
value is one that minimizes the total cost of all components put together.

We perform a probabilistic cost-based analysis in [18], in order to find the optimal threshold value. In [18],
we fit a Gaussian probability distribution to the similarity values in the similarity matrix. Using the cumulative
density function, we calculate the probability that a particular similarity value can result in one of the N nearest
neighbors of another item. Our cost function provides an upper bound on the expected cost of both phases
together. We find the optimal similarity threshold that minimizes C(6). Moreover, we theoretically prove that
due to the tradeoff between cost components, C(6) always has one and only one minimum. We refer the reader
to [18] for more details, where we also empirically evaluate our algorithm. Our empirical results confirm the
reliability of our theoretical probabilistic process for finding the optimal threshold value which in turn leads to a
consistently efficient performance of the top-k recommender algorithm.

2.3 Updating the Similarity Matrix

Pearson correlation, Cosine and Jaccard are some of the popular examples of similarity measures used in CF.
Among all of these, Pearson correlation has been applied most widely in practice. It is possible to provide
guidelines in order to keep the similarity matrix updated for most of these measures. Here, we show how this
is doable for Pearson correlation measure. Equation 3 shows how similarity between two items v; and v; is
calculated using Pearson correlation coefficient. It measures the similarity between two items using only ratings
of users who have rated both items (Z;;).

uEZIij (R(ut,vi) =y ) (R(,v )=y )

S i7 ) = )
) \/ Y (Ruv)—7,)* £ (R(uy))—F;)
uEll-j uel,-j 7

Iij = vinv; 3)

Equation 4 provides the sufficient statistics that can be stored in order to be able to update the similarity
matrix incrementally.

Ajj= Z R(u,v,’)R(u,Vj),B,'j = Z R(u,vi),C,- =ny,Dij = Z R(u,v,')z,E,'j =|I,'j| 4)

MEIl‘j MEI,']‘ MEIij

Keeping the similarity matrix updated requires storing four m x m matrices (A,B,D,E) and a vector of size
m (C), containing averages of values as shown in Equation 4. When a new rating becomes available, all of the
matrices in Equation 4 can be updated incrementally. Equation 5 shows how every entry of the similarity matrix
can be written based on the matrices defined in Equation 4.
s, j) = A;j—C;B;; —CiBji + E;;CiC;
\/ (Djj + EijCi* — 2CiByj) (Dji + EijC;* —2C;Bji)

&)
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The similarity matrix can be updated incrementally with respect to a new rating in two steps: (1) all of the
entries of matrices in Equation 4 that are affected by the new rating are updated; (2) all of the entries of the
similarity matrix that are affected by the changes in step 1 are updated. Since we are keeping similarities in a
data structure L and columns of L are kept sorted by similarity, every column of L could be stored as a priority
queue. Providing efficient strategies for performing these updates in terms of computational cost, quality of
results and memory requirements is part of our ongoing work.

3 Top-k Package Recommendation

As mentioned in the introduction, many applications like trip planning and music list generation can benefit
from having packages recommended instead of a ranked list of single items. In this section, we will discuss how
the package recommendation engine can be built upon the item recommender system.

Let I be the set of all items, for each item v € I, we denote the value of v for the current active user as val(v)
which can be obtained as the predicted utility or rating from the underlying item recommendation algorithms.
We denote the cost of v as ¢(v). The cost may correspond to time, price, etc. For a subset of items P C I, we
define the value of P as val(P) =Y, cpval(v), and the cost of P as ¢(P) =Y, cpc(v). Let P={P | P C I} be the
set of all possible subsets of items, and given a user defined cost budget B, a subset of items P C [ is feasible if
¢(P) < B. We can define our top-k package recommendation problem as follows.

Definition 1: (Top-k Package Recommendation): Given a universe of items / and an underlying item recom-
mender system for predicting values of items for the current active user, a cost budget B, find top-k packages
P1,..., P such that each P; is feasible and val(P) < val(P;) for all feasible packages P € P—{Py,..., P }.

As discussed in [11], when k = 1, the top-k package recommendation problem can be viewed as a variation
of the 0/1 knapsack problem [6], where we have the restriction that items can be accessed only in the non-
increasing order of their value. This is because of the way recommendations are made by the underlying item
recommender system. Furthermore, because solving the top-k package recommendation problem optimally is
NP-hard [6], we need to consider approximate answers instead of exact ones, i.e., in Definition 1, for a package
P; in the top-k package set, instead of requiring val(P) < val(P;) for all feasible packages P € P—{Py,..., P},
we aim for val(P) < o x val(P;), where o is the approximation factor.

Let ¢ be the access cost of retrieving the next highest-value item from the underlying item recommender
system and let ¢, be the access cost of obtaining the cost (time, price etc) associated with an item. It is clear that
total access cost of processing n items is n X (¢s+ ¢,). Notice that ¢ and ¢, can be large compared to the cost
of in-memory operations: for both accesses information may need to be transmitted through the Internet, and
for the sorted access, val(v) may need to be computed. So well-known algorithms for knapsack which need to
access all items [6] may not be realistic, and instead we should minimize the total number of items accessed by
the algorithm and yet ensure that high quality top-k packages are obtained.

In [11] we also show that without background knowledge about the cost distribution of items, in the worst
case, we must access all items to find top-k packages. To facilitate the pruning of item accesses, we thus assume
some simple background information BG about item costs. In [11], we assume B is the minimum item cost
for illustrative purposes, however, more sophisticated stats like histogram can be easily incorporated.

In the rest of this section, we will first consider an algorithm which can minimize the number of items
accessed while guaranteeing the quality of the packages returned, then we will discuss a greedy algorithm which
may not be optimal w.r.t. the number of items accessed but has very good empirical performance. Handling of
additional constraints and highlights of the empirical results will be discussed at the end of this section.

3.1 Instance Optimal Algorithm

As discussed in the previous section, it is crucial for an algorithm to find high-quality solutions while minimizing
the number of items accessed.

65



Consider the top-1 package recommendation problem. Let S = {vy,...,v,} be the set of items which have
been accessed so far. It is well known from previous work [6] that a pseudo-polynomial algorithm can be utilized
to get the optimal knapsack solution for S. Furthermore, as shown in [11], by utilizing the same algorithm and
the background information BG, we can also get a tight upper bound V* on the value of the optimal solution.
So we can have an iterative algorithm which retrieves a new item in each iteration, calculate the optimal solution
R° for S and stop the algorithm once val(R°) > L x V*,

We have shown in [11] that the above algorithm can correctly return approximate top-k package recom-
mendations, and is instance optimal [13]. In particular, given any instance of the problem, and given any
o-approximation algorithm A for the problem with the same background cost information B¢ and the same
access constraints, A must read at least as many items as the our algorithm.

To produce top-k package recommendations, we can apply Lawler’s procedure [19] to the above top-1 pack-
age recommendation algorithm. The idea is that instead of returning the o-approximation solution found in the
top-1 package recommendation algorithm, we enumerate at this point all possible o-approximation solutions
using Lawler’s procedure. If the number of a-approximation solutions is at least &, then we can report the top-k
packages found; otherwise, we continue accessing the next item. It can be shown that the above top-k package
recommendation algorithm is also instance optimal.

3.2 Greedy Algorithm

Although the instance optimal algorithms presented above guarantee to return top-k packages that are o-approxi-
mations of the optimal packages, they rely on an exact algorithm for the knapsack problem, which may lead to
high computational cost. To remedy this, we proposed in [11] more efficient algorithms which utilize simple
greedy heuristics to form a high quality package from the accessed itemset S.

Similar to the instance optimal algorithm, this greedy algorithm will always generate a correct o--approximation
to the optimal solution, however, it is not instance optimal among all a-approximation algorithms with the same
constraints and background information.

3.3 Highlights of the Empirical Results

To evaluate the performance of various proposed algorithms, in [11] we tested our algorithms on four datasets:
two real datasets MovieLens®, TripAdvisor*; and two synthetic datasets, one with item value correlated with
item cost, and another with item value and item cost uncorrelated.

We first tested the quality of packages generated by our proposed algorithms compared with optimal top-k
packages generated using an offline knapsack solver. It can be verified that our proposed approximation algo-
rithms can return top-k packages whose values are very close to the optimal solution. Furthermore, by comparing
the average item value from the top-k packages generated, it can be verified that our proposed approximation
algorithms often recommend packages with high average value, whereas the optimal algorithm often tries to fill
the package with small cost and small value items.

For MovieLens, TripAdvisor and the uncorrelated dataset, we have verified that on average the greedy algo-
rithm has excellent performance in terms of both running time and access cost. The instance optimal algorithm
also has low access cost, but its running time grows very quickly with k since it needs to solve exactly many
instances of knapsack, albeit restricted to the accessed items. The only dataset where both the greedy and in-
stance optimal algorithms have a high access cost is the correlated dataset (but for this case the greedy algorithm
still has good running time). The reason for this is that, for the correlated dataset, the global minimum cost
corresponds only to items which also have the least value. Thus the information it provides on the unseen items
is very coarse. In practice, an obvious solution to this is to obtain more precise background cost information.

3 http://www.movielens.org
4http://www. tripadvisor.com
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3.4 Handling Additional Package Constraints

For many applications of package recommendation, the users might have some additional constraints, e.g.,
for trip planning, the user may require the returned package to contain no more than 3 museums. To capture
these constraints in our algorithms, we can define a Boolean compatibility function C over the packages under
consideration. Given a package P, C(P) = true iff all constraints on items in P are satisfied. We can add a call to
C in the proposed algorithms after each candidate package has been found. If the package fails the compatibility
check, we just discard it and search for the next candidate package.

It is worth noting that many constraints studied in the previous work such as [2] and [9] are restricted classes
of boolean compatibility constraints. However, depending on the application needs, for scenarios where only
one specific type of constraint is considered, e.g., having one item from each of 3 predefined categories, more
efficient algorithms like Rank Join [16] can be leveraged.

4 Related Work

Item-based CF was first proposed in [4]. Their solution for improving scalability is storing only N (between 10
and 30) nearest neighbors of each item regardless of user profiles. This approach improves scalability for some
items but has a major drawback: for some users we may not be able to find any rated items among these N items
and make predictions. Other works have tried to improve scalability by instance selection [7, 8]. The main idea
is finding nearest neighbors of all items from a smaller subset of items, thus the nearest neighbors are not global
nearest neighbors. It is also worth mentioning that our approach achieves scalability without deviating from
the standard item-based method, while instance selection achieves scalability at the cost of sacrificing accuracy.
Our approach is orthogonal to instance selection. Indeed, both methods can be combined for providing better
scalability when accuracy can be traded for space needed for storing all pairwise item similarities.

For package recommendation, the closest to our work is [2], where they are interested in finding top-k tuples
of entities. Examples of entities include cities, hotels and airlines, while packages are tuples of entities. A
package in their framework is of fixed size, e.g., one city, one hotel and one airline, with fixed associations
among the entities essentially indicating all possible valid packages. Instead, we allow for packages (composite
recommendations) of variable size, subject to a budget constraint. Associations between entities can be easily
captured in our framework using the notion of compatibility of sets. Another closely related work is [9] where
a novel framework is proposed to automatically generate travel itineraries from online user-generated data like
picture uploads. They formulate the problem of recommending travel itineraries of high quality where the travel
time is under a given time budget. However, in this work, the value of each POI is determined by the number
of times it is mentioned by users, whereas in our work, item value is a personalized score which comes from
an underlying recommender system and unlike their work, accessing these items is constrained to be in value-
sorted order. Finally, motivated by online shopping applications, [15] studies the problem of recommending
“satellite items” related to a given “central item” subject to a cost budget. The resulting notion of packages is
quite restricted compared to our framework, and item values are not taken into account.

S Summary and Open Problems

In this article, we have discussed our vision for the next generation recommender system which has an efficient
and scalable item recommendation engine which recommends top-k interesting items, and an efficient package
recommendation engine which recommends top-k interesting packages which satisfy all the user specified con-
straints. While we have investigated some initial efforts in realizing such a recommender system [18, 11], much
remains to be done for realizing our vision. In the following, we will point to a few interesting open problem in
this direction.

e In order to handle dynamically changing user-item ratings matrix, an efficient way of maintaining the
similarity matrix is critical. Preliminary ideas for doing this appear in [18]. Efficient algorithms for
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incremental maintenance of the similarity matrix is an important open problem.

Instead of returning the exact top-k answers, for many cases, we might also be interested in providing
approximate top-k recommendations with probabilistic guarantees. Some previous work like [10] has
investigated probabilistic threshold algorithm, however, it cannot be directly utilized in a recommendation
framework. A related point is materializing and maintaining a “key”” subset of similarity entries instead of
the whole similarity matrix, thus trading accuracy for speed and storage.

For top-k item recommendation algorithms based on model-based methods such as matrix factorization

[1] is an interesting problem.
For top-k package recommendations, in [11] we have investigated the problem of recommending sets

of items. Sometimes, the order of items in the recommended package might be also critical, e.g., as
mentioned in [17], the order of songs in the recommended music list might be important for the users;
and also for trip planning, the order of visiting different POIs can be important. Thus, recommendation of
richer types of collections should be investigated.
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Recommendation Projects at Yahoo!

Sihem Amer-Yahia,
Yahoo! Labs

1 Introduction

Recommendation is the task of providing content that is likely to interest users and enrich their online expe-
rience. At Yahoo!, the variety of user-facing applications and the nature and volume of data raise multiple
recommendation opportunities and challenges. In this paper, we provide a brief description of several projects
within Yahoo! Labs, in the context of Web Search (Section 2), interpreting users’ clicks and browsing behavior
(Section 3), and on the Social Web (Section 4).

2 In Web Search

2.1 Diversifying Presubmit Query Recommendations
Umut Ozertem, Emre Velipasasaoglu

Search assistance is an important feature in commercial search engines. Its two main flavors are presubmit and
postsubmit. In presubmit, the aim is to auto-complete a user’s partial query (referred to as prefix hereafter) to
save time. In postsubmit, the goal is to suggest relevant follow-up queries to a user query. Presubmit poses a
harder problem because (i) input from the user is a partially typed query and the user’s intent is not defined, (ii)
the algorithm needs to run at each character stroke, imposing a very strict computational complexity bound.

In Web search ranking, queries are associated with multiple intents, and when a user’s intent is unknown,
trading-off some relevance for result diversity is desirable [4, 6, 13, 32]. Presubmit is a clear case where intent is
not defined. Common solutions suggest the most popular queries that match a user’s prefix. However, mere fre-
quency sorting leads to many cases with low utility (see Table 1). Therefore, in order to minimize effort (number
of characters typed) before finding a useful suggestion, one needs to introduce diversity into the suggestion set.

The need for diversification has been studied in the context of query suggestion. There are two recent
publications on this topic: one based on random walks over the query-URL bipartite graph [30], the other based
on manifold ranking [38]. These methods define the diversification objective as “given a query, generate a
relevant but also diverse suggestion set”. Neither method is suitable for presubmit, where the query is yet to be
defined. Hence, we adapt the problem to our context and define it as “given a set of suggestions of size N, rerank
the suggestions such that the overall utility in top K rank is maximized for all K < N.”

Diversity and relevance are conflicting objectives and optimizing both of them is known to be NP-hard. We
develop a greedy algorithm that picks the query with highest marginal utility at each step [31]. We define a query
utility as a function of the difference between its Web results and those of already presented query suggestions.
For example the queries “facebook login” and “facebook home” are recognized as low utility queries when the

Copyright 2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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Table 1: Suggestions for prefixes faceb and well sorted by frequency and diversification

Frequency for faceb

Diversification for faceb

Frequency for well

Diversification for well

facebook
facebook login
facebook home
faceboklogin
facebook friends

facebook

farmville facebook
facebook farm town
facebook layouts
facebook ipo

wells fargo

wells fargo bank
wells fargo online
wellsbutrin

tom welling

wells fargo
wellsbutrin
tom welling
wellpoint
dawn wells

query “facebook” precedes them. We define a measure of utility based on a user browsing model, and estimate
the probability that each result can be examined in the search result page of the other query.

To build our model, we used 6 months of anonymized session logs of Yahoo! Search. We ignored queries
that appeared less than 3 times. The model takes about 2.7M unique queries and 55.6M unique URLs in total,
and builds a 2.7M x 2.7M query similarity matrix. We threshold this similarity matrix to construct a look-up
table of duplicate queries. The look-up table consists of 1.56M queries with 20 duplicates each on average.

We designed an A/B test to measure effectiveness. The search engine traffic is split into two groups: the
baseline (frequency sorting) and the control (greedy diversification algorithm) buckets. The user populations in
both groups are uniformly sampled and their query volumes and distributions, i.e., the proportion of navigational
and informational queries, are similar. If the greedy diversification algorithm changes the query suggestions we
record this event as an affected query. Over affected queries, we found that the average character savings
increased by 17%', and the time it takes the user to click on a destination URL decreases one second on average.
A one-second time saving per search is considerable given the overall search volume. Over all the control bucket
traffic, the increase in latency due to the diversification algorithm is only 1%.

2.2 Entity Ranking for Web Search
Changsung Kang, Srinivas Vadrevu, Ruiqiang Zhang, Roelof van Zwol, Lluis Garcia Pueyo,
Nicolas Torzec, Jianzhang He, Yi Chang

A recent trend in Web search is to return structured entities. For example, a user looking for a movie can also see
the movie plot, genre, cast, review and show times at her location while displaying related news articles, images,
videos and tweets, wherever possible. The type of shown entities depends on the category of the query entity.
For example, for movie queries, the goal is to show both lateral information like related movies and faceted
information such as its cast.

In this work, the extraction of relevant entities relies on an Entity-Relationship knowledge base. The knowl-
edge base contains an Entity-Relationship graph where nodes are entities and their attributes, and edges are
semantic relationships among them. Our base consists of 4 million entities (100+ fine-grain entity types orga-
nized in a taxonomy) and 80 million relationship instances (hundreds of fine-grain relationship types, including
both first order and derived relations). The main domains covered include Yahoo! Movies, Yahoo! TV, Yahoo!
Music, Yahoo! Sports, Yahoo! OMG, and Yahoo! Travel. We have in the order of several hundreds facets for
popular entities, and a few dozens for infamous ones.

We build a framework that computes entity features from various sources, including search logs, Flickr tags,
and entity pairs detected in Twitter. From each source, we compute several probabilistic features that indicate the
strength of the relationship between two entities based on their co-occurrence in various sources. Examples of
features include atomic ones such as entity probability or entropy, symmetric features such as point-wise mutual
information, asymmetric features such as conditional probability, and compound features that combine multiple
ones. Two additional features are also computed from the graph: entity popularity based on a PageRank-like
approach, and shared connections that indicate relationship strength in the graph.

! Average query length is 22, average prefix length for a suggestion click decreases from 13.5 to 12 after diversification.
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We cast entity ranking as a supervised machine learning problem [37] with the goal of predicting relevance
of the related entity to the query entity. We incorporate the categories of related entities into the loss function
and leverage related entities from different categories to improve relevance.

Two types of experiments were conducted to validate our algorithms. The first set evaluates the performance
of our approach on editorially judged entity pairs and the second aggregates user behavior on search results.
Our data set contained 6000 query entities and 33000 entity-facet pairs. In the first experiment, editors provided
a five-point relevance grade to indicate the match between a query entity and a facet entity. We showed that
we achieve high Discounted Cumulative Gain (DCG). In the second experiment, we used pair-wise accuracy
that reports how often users prefer a higher ranked entity over lower ranked entities in the related entity results.
Comparison with several click preference models such as Cumulative Relevance [18], Skip CTR [22] showed
the superiority of our Pair-wise Comparison Model. More details on this work can be found here [23].

3 Interpreting User Clicks and Browsing Behavior

3.1 Ad Recommendation using the Query-Ad Click Graph
Tasos Anastasakos

We address the sponsored search retrieval problem that is, the problem of finding and ranking relevant advertise-
ments to a search query. A text ad on a search results page, otherwise known as sponsored link, is treated as a
short document with a title, a short text and some keywords. We describe a technique to determine the relevance
of an ad document to a search query using click-through data. The method builds on a collaborative filtering
approach to discover and recommend new ads related to a query using a click graph. It is implemented on a
graph with several million edges and easily scales to larger sizes easily.

Major search engines typically see traffic that contains millions of queries and a correspondingly large
number of user-clicks on documents shown as results to those queries. While clicks are noisy due to click
fraud, accidental or exploratory clicks, and position-bias, they can often be interpreted as a weak indicator of
relevance. Several recent works have used click information to improve performance on various tasks. We
propose an algorithm that operates on a large bipartite graph of queries and documents, where an edge between
a query and a document is determined by whether users have clicked on the given document for the query. The
weight on the edge represents the strength of the association measured as a function of several user metrics
such as the number of clicks generated for the corresponding query and ad and the click-through-rate (CTR) of
the query ad pair. We apply a collaborative filtering approach to first determine query-query similarity on this
bipartite graph. Subsequently these query similarity scores are used to discover new documents that have not
been shown for a given query before [7, 8].

The click-graph is built from a portion of Yahoo!’s sponsored search traffic over a 2-week period. It contains
user queries and associated displayed and clicked ads. A typical graph consists of 27 million unique queries,
20 million unique ads and 51 million query-ad edges. The graph is regenerated every week in order to include
recent queries and recent changes in user activity. We implemented a collaborative filtering algorithm on Map-
Reduce and output a large lookup table of query-query and query-ad associations. (provide more brief details
on algorithm or it will be hard to understand why you are doing better than baselines)

We evaluated the ad recommendations from our work off-line using human annotators/editors and online
using live Web traffic to measure CTR improvements. We summarize our evaluation below.

Editorial Assessment : Query suggestions were labeled by trained editors who gave each ad a rating from 1 to
7, to reflect how strongly the ad meets the likely commercial intent or explicit need of the query. A rating
of 1 is reserved for cases where only one perfect ad matches the query (e.g., ). Ratings 2 to 7 represent a
decreasing degree of relevance.
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Online Testing We ran our system live on a fraction (or “bucket”) of Yahoo!’s traffic. The online traffic was
divided so that a random subset of the user population (or a “bucket”) receives candidates retrieved by the
new algorithm. Our evaluation involved several millions users and collected statistics over a sufficiently
long period of time (specify the time period). The goal of the experiment was to evaluate the monetization
capability of the new algorithm using bucket testing measures [26].

We compared our algorithm to several baselines. We found 2-18% relative improvements in click rates, and
5-37% relative improvements in editorial judgments compared to the baseline.

Directions for future work include incorporating negative feedback and improving the performance for tail
queries.

3.2 User Action Interpretation for Personalized Content Optimization
Anlei Dong, Jiang Bian, Srihari Reddy

Content optimization for recommender system is known as the problem of selecting content items to present to
a user who is intent on browsing for information. Examples of content optimization are article publishing on
portal Websites [2, 1], news personalization [16, 27], recommendation of dynamically changing items (updates,
tweets, etc), and computational advertising [11, 33]. This work will address the variant that displays the best set
of trending queries from the search engine in a module on the portal Website. This application is different from
the task of query suggestion in Web search in the sense that it recommends popular queries to users from a certain
pool of globally trending queries while query suggestion suggests queries relevant to those just submitted.

We are interested in user engagement when visiting a page. Engagement means the user examined or at
least partly examined the content of a visited Web page. For example, when a user visits Yahoo! front page,
it is possible she totally ignores the displayed Trending Now module content as she may be attracted to other
modules such as the Today module, or goes to other services such as Search and E-mail. For a recommendation
module, accurate Click-Through-Rate (CTR) estimation should be based on the events where users were really
engaged, instead of all the events where the content of this module were displayed to users. We identify two
categories of events regarding user engagement: click event and non-click event. In click events, it is obvious
that the user likes the item she clicked, it also implies that other non-clicked items inside this module are not so
interesting to the user compared to the clicked item. In contrast, non-click events are less informative because
the user might not have examined the related module at all and the system cannot infer whether or not she is
interested in the items belonging to the module. In this work, we only use click events as user feedback for
online CTR estimation.

To validate our argument, we conduct experiments on real data from Trending Now on Yahoo! homepage.
All data is anonymized in accordance with Yahoo!’s policy. We collected events in terms of views and clicks
from a random learning bucket ([15]) during ten days from November 30th, 2010 to December 9th, 2010. This
resulted in hundreds of millions of events with many millions unique users. Queries are randomly and displayed
to users. An event records a user’s action on the served queries on Trending Now (“view” is encoded as -1,
“click” as 1). Specifically, we represent each event e as a set of tuples:

€= <uaf7P,6]p,a>, p=12,...,10

where u denotes the user, ¢ represents the time stamp for this event, g is the served query, p is the position at
which ¢ is displayed (there are totally ten positions on Trending Now), a is either view or click.

Users are assigned to groups according to a segmentation model. In this model, the system serves users in
a group with models updated using feedback from users belonging to the group. User grouping is determined
based on their demographics (e.g., age, gender) and other behavior and preference features [15]. To evaluate the
recommendation model for Trending Now, we use the model to predict ranking scores for all candidate queries
at a certain time stamp of each event, and rank them in descending order. For click events, we measure the
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ranking position of the query that has actually been clicked by the user. More formally, for those clicks that
actually happened at Position 1, we define precision; as the number of these clicks whose corresponding clicked
items are ranked at Position up to i by the prediction of the model. This evaluation metrics has been proved to
be unbiased towards online result [28].

We compare the modeling results using both all events and click events, where the model using all events
is the baseline model. We observe from Table 2 that only using click events can significantly improve CTR
estimation.

Table 2: Relative precision gain when training using click events over training on all events
Model precy precy precs precy precio
Useclickevents 11.11%  7.05% 822% 7.70% 6.67%

Much research on user action interpretation has been conducted in the context of Web search. In particular,
online user behavior modeling has been attracting much attention in recent years. Some work uncovered user
behavior models based on controlled user studies [21, 35], while other studies focused on large-scale log analy-
sis [36, 17]. Recently, some research [20, 19] has used eye-tracking studies to understand in detail how searchers
examine search results, meanwhile dwell time interpretation has also attracted significant attention [25, 24] and
has been extensively used for various information retrieval tasks [12, 29, 3]. However, user action interpretation
has not been paid much attention in the studies of content optimization. Our work proposes to take deep anal-
ysis on user action interpretation in recommender system. In particular, we leverage user behavior information
to sample training examples in order to remove those with little benefit for learning the model. To our best
knowledge, none previous work has studied interpreting user actions in the context of content optimization.

4 On the Social Web

4.1 Recommending Travel Itineraries from Flickr Photos
Sihem Amer-Yahia, Nadav Golbandi, Ronny Lempel

Vacation planning is one of the frequent—but nonetheless laborious—tasks that people engage themselves
with online; requiring skilled interaction with a multitude of resources. This paper constructs intra-city travel
itineraries automatically by tapping a latent source reflecting geo-temporal breadcrumbs left by millions of
tourists. For example, the popular rich media sharing site, Flickr, allows photos to be stamped by the time of
when they were taken and be mapped to Points Of Interests (POIs) by geographical (i.e. latitude-longitude) and
semantic (e.g., tags) metadata.

Leveraging this information, we construct itineraries following a two-step approach. Given a city, we first
extract photo streams of individual users. Each photo stream provides estimates on where the user was, how
long he stayed at each place, and what was the transit time between places. In the second step, we aggregate all
user photo streams into a POI graph. Itineraries are then automatically constructed from the graph based on the
popularity of the POIs and subject to the user’s time and destination constraints [14].

We evaluated our approach by constructing itineraries for several major cities and comparing them, through
a “crowd-sourcing” marketplace (Amazon Mechanical Turk), against itineraries constructed from popular bus
tours that are professionally generated. Our extensive survey-based user studies over about 450 workers on AMT
indicate that high quality itineraries can be automatically constructed from Flickr data.

This work is being integrated into Yahoo! Travel for suggesting intra-city itineraries of different time lengths.
In particular, it is leveraged on mobile devices forinteractive itinerary planning as in [34].
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4.2 Centralized and Distributed Query Personalization on Delicious
Sihem Amer-Yahia, Xiao Bai

Collaborative tagging systems represent huge mines of information. Yet, exploring these mines is challenging
because of the unstructured nature of tagging and the lack of any fixed ontology. An appealing way to reduce the
exploration space in collaborative tagging systems is to personalize the search by exploiting information from
the social acquaintances of the seeker, typically users that exhibit similar tagging behaviors.

Given a user and a so-called user’s network, composed of her social acquaintances, the relevance of an item
to the user’s query is a function of its popularity in that network, weighted by social distance. This challenge has
been explored in both centralized and peer-to-peer environments. In [5], it was shown that scalable and efficient
network-aware search must leverage user behavior to balance storage volume and response time. While search
over information popular in a seeker’s network can be achieved efficiently with straightforward adaptations of
well-known algorithms, the storage volume of indexing every (seeker, keyword) pair, is daunting. Two space-
saving solutions were explored: network clustering and behavior clustering.

In a centralized environment, it is expensive to maintain the inverted lists up-to-date in highly dynamic
collaborative tagging systems where users frequently change their profiles by tagging new items. One possibility
to circumvent this problem and improve the scalability is to personalize the search in a decentralized way.
Besides being scalable and able to cope with dynamics, decentralized solutions inherently circumvent the danger
of central authorities abusing the information at their disposal.

A natural, fully decentralized solution would consist for each user in a peer-to-peer system to locally store
and maintain her network, enabling thereby efficient top-k query processing. The experiment on a 10,000-user
delicious trace [9] confirms that the same result quality and query response time, as the most time efficient
but storage consuming centralized approach, can be achieved with 0.011% of the total data stored at each user.
Storage is no longer a severe issue in a decentralized setting. Yet, this requires each user to store all the profiles
of her social acquaintances: these would then be massively replicated and hence hard to maintain. At the other
extreme, a storage-effective strategy would consist for each user to store and maintain only her own profile and
seek other profiles whenever a query is to be processed. Clearly, this optimizes the storage and maintenance
issues but might induce a large number of messages and a large latency if profiles of acquaintances are to be
consulted at query time. In addition, the profiles of temporarily disconnected users would be unavailable which,
in turn, might significantly hamper the accuracy of the query processing.

A pragmatic solution [10], which we call P3Q (Peer-to-Peer Personalized Query processing), is a bimodal,
gossip-based protocol to personalize the query processing in peer-to-peer systems. Users in P3Q periodically
maintain their networks of social acquaintances by gossiping among each other and computing the proximity
between tagging profiles. Each user maintains her network, namely a set of IDs of her social acquaintances. A
user however only locally stores a limited subset of profiles, according to her storage capability. This removes
on the one hand the bottleneck of a central server when the system keeps growing, and avoids on the other hand
burdening any individual user in terms of storage. The maintenance of the network is performed in a lazy gossip
mode, at a fairly low frequency to avoid overloading the network.

The querying scheme itself is based on an eager mode of the gossip protocol, i.e., with an increased fre-
quency, and is biased towards social acquaintances. Each query is first computed locally by the querier, based
on the set of stored profiles, providing an immediate partial result. Then the query, together with the list of
profiles needed to compute it, is gossiped and computed collaboratively. The results are iteratively refined ac-
cordingly. Gossiping the query avoids saturating the network by contacting all the users in the personal network
at the same time, and refreshes the part of the network originating from the querier, generating a specific wave
of refreshments in the personalization process.

The analysis shows that the storage at each user only depends on her storage capability and does not increase
with the system scale. The query processing time in gossip cycles can be approximated with O(log,L), where
L is the number of profiles in a user’s network that contribute to the query processing but are not stored by
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her. The experimental evaluation in a 10,000-user delicious trace confirms the scalability of P3Q: even if each
user stores only 10 profiles out of thousands of social acquaintances in her network, corresponding to 12.5M
bytes without any compression technique, the top-k queries can be accurately satisfied within 10 gossip cycles.
Running the lazy mode every minute, even if all users simultaneously change their profiles, in half an hour, 95%
of the stored profiles are updated, ensuring the freshness of the query results. Meanwhile, P3Q incurs acceptable
overload in terms of bandwidth consumption: 13.4 Kbps are sufficient for maintaining the network and 91 Kbps
are sufficient to compute a query. More adequate bandwidth, allowing both modes to run in higher frequency,
would significantly decrease the network maintenance time as well as the query processing time.
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