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Abstract

Developing high-quality information extraction (IE) rules, or extractors, is an iterative and primarily
manual process, extremely time consuming, and error prone. In each iteration, the outputs of the ex-
tractor are examined, and the erroneous ones are used to drive the refinement of the extractor in the
next iteration. Data provenance explains the origins of an output data, and how it has been transformed
through a query. As such, one can expect data provenance to be valuable in understanding and debug-
ging complex IE rules. In this paper we discuss how data provenance can be used beyond understanding
and debugging, to automatically refine IE rules. In particular, we overview the main ideas behind a
recent provenance-based solution for suggesting a ranked list of refinements to an extractor aimed at
increasing its precision, and outline several related directions for future research.

1 Introduction

As vast amounts of data are made available in pure unstructured format on the web and within the enterprise,
Information Extraction (IE) – the discipline concerned with extracting structured information from unstructured
text – has become increasingly important in recent years. Today, information extraction is an integral part of
many applications, including semantic search, business intelligence over unstructured data, and data mashups.

In order to identify regions of text that are of interest, most IE systems make use of extraction rules. Rule-
based systems such as CIMPLE [10], GATE [8], or SystemT [3, 16], use rules throughout the entire extraction
flow. An example rule in these systems might read, in plain English, “identify a match of a dictionary of
salutations followed by a match of a dictionary of last names and mark the entire region as a candidate person”.
The rule would be formally expressed using the system’s rule language such as XLog [23] in CIMPLE, JAPE [7]
in GATE, or AQL [21] in SystemT. Machine learning-based systems such as [12, 17] use rules in the first stage of
an extraction flow, to identify basic features such as capitalized words, or phone numbers. These basic features
are fed as input to various machine learning algorithms that implement the rest of the extraction process. We
refer the reader to recent tutorials [5, 6, 11] and survey [22] for more details on information extraction systems.
Regardless of the kind of system, machine learning-based or rule-based, the output of extraction rules must be
extremely accurate in order to minimize the negative impact on subsequent data processing steps, i.e., the rest
of the extraction flow, or the application consuming the extracted information.
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Developing highly accurate information extraction rules (or extractors, in short) is a laborious process, ex-
tremely time consuming, and error prone. The developer starts by building an initial set of rules, and sub-
sequently proceeds with an iterative process consisting of three steps: (1) execute the rules over a set of test
documents, and identify mistakes in the form of wrong results (false positives), as well as missing results (false
negatives); (2) analyze the rules to understand the causes of the mistakes; and (3) finally determine refinements
that can be made to the extractor to correct the mistakes. This 3-step process is repeated until the developer is
satisfied with the accuracy of the extractor.

Traditional research in the field of data provenance [2, 24] seeks to explain the presence of a piece of data
in the result of a query: why it is in the result, where it originated in the input database, and how it has been
transformed by the query. Such kind of provenance has been recently referred to as provenance for answers.
In contrast, recent work on provenance for non-answers [1, 14, 15] seeks to explain the reasons for which an
expected result is missing from the output. Together, techniques for computing provenance for answers and
respectively, non-answers, can be used to explain false positives, and respectively false negatives, therefore
facilitating step 2 of the rule development process described above.

While provenance helps the developer in identifying possible causes for incorrect results (step 2), it does not
directly address the challenges associated with identifying rule refinements (step 3). In practice, an extractor may
contain hundreds of rules, and the interactions between these rules can be very complex. Therefore, designing a
rule refinement is a “trial and error” process, in which the developer implements multiple candidate refinements
and evaluates them individually in order to understand their effects: “Are any mistakes being removed ?”, and
side-effects: “Are any correct results affected ?” An “ideal” refinement would eliminate as many mistakes as
possible, while minimizing effects on existing correct results. Based on our experience building information
extraction rules for multiple enterprise software products, designing a single such refinement may take hours. In
the same spirit, refining a complex extractor when switching from one application domain to another can take
weeks or even months [4, 20].

In this article we explore the question of whether provenance can be used beyond understanding the incorrect
behavior of extraction rules, to automatically refine the rules, therefore facilitating step 3 of the rule development
process. We start by illustrating the challenges associated with refining extraction rules using a simple motivating
example (Section 2). In Section 3, we overview the main ideas behind a recently proposed provenance-based
solution for suggesting a ranked list of refinements aimed at improving an extractor’s precision that we have
implemented in the SystemT1 information extraction system [3, 16, 21] developed at IBM Research – Almaden.
In doing so, we keep the discussion at a high-level, and refer the reader to [19] for technical details. We conclude
by outlining several directions for future research in Section 4.

2 Challenges in Developing Information Extraction Rules

Figure 1(a) illustrates a simple extractor for identifying mentions of person names consisting of rules R1 to
R5. The figure also illustrates the output of the extractor on an input document consisting of a (fictitious) news
report as markup in the input text itself, as well as using a familiar tuple-based representation. At a high-level,
the semantic of the extraction rules are as follows. Rules R1 and R2 look for mentions of first and last names
by identifying matches of entries in dictionaries ‘first names.dict’ and ‘last names.dict’ in the input text. These
mentions are used by rules R3 and R4 to identify candidate person names. In particular, R3 looks for mentions
of a first name followed immediately by a last name, therefore marking, for instance, Morgan Stanley and
John Stanley as candidate persons. Rule R4 identifies mentions of last names preceded by a salutation (e.g.,
Mr., Ms.), therefore marking, for example, Stanley in “... Mr. Stanley ...” as candidate person. Finally, R5

constructs the output of the extractor by unioning together the person mentions identified by R3 and R4.
1http://www.alphaworks.ibm.com/tech/systemt
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Dictionary file first_names.dict: John, Morgan, Smith, …

Dictionary file last_names.dict: Barney, Doe, Stanley,…

R1: create view FirstName as
Dictionary(‘first_names.dict’, Document, text);

R2: create view LastName as
Dictionary(‘last_names.dict’, Document, text);

R3: create view Candidate1 as

select Merge(F.match, L.match) as match
from FirstName F, LastName L
where FollowsTok(F.match, L.match, 0, 0);

R4: create view Candidate2 as

select * from LastName L
where MatchesRegex(‘Mr.|Ms.|Mrs.’, LeftContextTok(L.match,2)));

R5: --Create the output of the extractor
create table Person (match span);

insert into Person

( select * from Candidate1 )
union all
( select * from Candidate2 );

Investment firm Smith Barney Co. 

announced that it hired 

ex-Morgan Stanley executives 

John Stanley and Morgan Doe. 

Mr. Stanley and Mr. Doe have been 

fired by Morgan Stanley Co. last week.
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Figure 1: Example Person extractor (a); an input document (b); the results of the extractor on the input docu-
ment (c); provenance graph of output tuple p2 (d).

As the reader might have gleaned from the example, the basic unit of data in the information extraction
context is a region of text, called a span. An information extraction program takes as input a document text
(represented as relation Document with a single span attribute text), and outputs a set tuples, each with one or
more attributes of type span. A span is associated with begin and end offsets in the input text (see Figure 1(b)).
For simplicity, however, we distinguish between spans with the same text value using unique identifiers, see for
example p2, and p7. In specifying the extraction rules, we use SQL enriched with a few constructs for expressing
text-specific operations, such as basic feature extraction (e.g., Dictionary() table function to specify dictionary
matching), and span manipulation scalar functions (e.g., combine two spans into a larger span – Merge(), select
the left context of a span of certain length – LeftContext()) and predicates (e.g., check if two spans follow one
another within a certain distance – Follows(), check that a span satisfies a regular expression – MatchesRegex()).
The syntax is self-explanatory and we do not insist on the details. We note that we use an SQL-like language
for ease of exposition in this article. The language is similar to SystemT’s AQL rule language used in our
implementation, and can express most popular constructs in other IE rule languages such as JAPE or XLog.

It is easy to see that the extractor in Figure 1 suffers from low precision: while it identifies all correct person
mentions, or true positives (e.g., John Stanley, Mr. Stanley), it also identifies incorrect mentions, or false
negatives (e.g., Smith Barney, Morgan Stanley). Suppose a developer wishes to improve the precision
of the extractor. To this end, her goal is to refine the rules in order to remove as many false positives from
its output, while preserving true positives as much as possible. Table 1 lists a few of the many possible rule
modifications (expressed in both English and our rule language), along with their effects and side-effects. For
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ID Rule refinement Effect Side-effect
M1 Filter Person if it contains the term Stanley p2, p7 p3, p5

Add selection predicate Not(ContainsDict(’invalidPersonFragment.dict’, match)) to R5

M2 Filter Candidate1 if it contains the term Stanley p2, p7 p3
Add selection predicate Not(ContainsDict(’invalidPersonFragment.dict’, match)) to R3

M3 Remove entry Stanley from dictionary ‘last names.dict’ p2, p7 p3, p5
M4 Remove entry Morgan from dictionary ‘first names.dict’ p2, p7 p4

M5(M
′
5) Filter Person (Candidate1) if it contains the term Morgan Stanley p2, p7 –

Add selection predicate Not(ContainsDict(’invalidPerson.dict’, match)) to R5 (R3)

M6 Filter (Candidate1) if right context contains organization clue, e.g., Co p1, p7 –
Add selection predicate MatchesDict(’orgClue.dict’,RightContextTok(L.match))) to R3

M7 Identify person mentions contained within organization mentions;
Subtract them from Person p1, p2, p7 –

Table 1: Potential rule refinements for the extractor in Figure 1, along with their effects and side effects.

example, M1 adds a predicate to R5 that filters mentions containing the term Stanley. While this eliminates
two of the three false positives, it also removes two correct results (i.e., John Stanley, and Mr. Stanley).
Alternatively, M2 modifies R3 in a similar fashion with the side-effect of removing a single correct result (John
Stanley). M3 modifies R2 so that Stanley is no longer identified as a last name, which affects both R3 and
R4, which will fail to identify correct candidates John Stanley and Mr. Stanley, respectively. Similarly,
M4 modifies R1 so that Morgan is no longer identified as first name, thus causing R3 to fail to mark Morgan
Doe as a candidate person. The rest of modifications do not have any side-effects: M5 and M ′

5 have the same
outcome as M2, while M6 removes Smith Barney, but only one of the mentions of Morgan Stanley.
Finally, assuming the developer has available an extractor for identifying mentions of organizations, she may
use it to add a subtraction on top of R5 so that person mentions completely contained within an organization
mention are subtracted from the final result. Assuming Smith Barney and Morgan Stanley are identified
as organizations, M7 results in removing all incorrect person mentions, while not affecting any correct ones.

As illustrated by our example, the developer faces several challenges when designing a rule refinement for
removing false positives from the result to improve the precision of the extractor.

Challenge 1: Which rule should be modified ? In general, there are multiple rules that may be refined in order
to remove a false positive. For example, as illustrated by M1 to M4, a modification to any of R1, R2, R3 and
R5 may potentially result in removing Morgan Stanley from the output. However, the overall effects and
side-effects of such potential modifications are very different.

Challenge 2: What kind of modification should be made ? Once a rule has been chosen for refinement, there
are multiple possible classes of modifications to choose from. For example, should we add a selection predicate
as in M6, or a more complex subtraction that involves adding a new rule as in M7 ?

Challenge 3: How should the modification be parametrized ? Within each class or rule modifications there
are multiple parameters to configure. Consider for example the addition of a selection predicate. Should the
predicate be applied to the match itself as in M5, or the context as in M6, and if so, what is the length of the
context? Furthermore, should the predicate be based on a regular expression (such as in rule R4), or a dictionary
(e.g., M5, M6)? Which regular expression or dictionary is most appropriate?

Although not illustrated by our example, the developer faces similar challenges when designing refinements
to address false negatives, with the goal of improving recall. Furthermore, the space of refinements increases
dramatically as we move from a simple example to a real-world extractor consisting of hundreds of rules.
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3 A Provenance Approach to Automatic Rule Refinement

Clearly, it is not feasible for a rule developer to consider all possible refinements. In general, in each iteration of
the development process, an experienced developer focuses on a few mistakes that exhibit some commonality.
She designs several refinements by considering a few alternatives of rule, type of refinement and parameters,
evaluates each refinement individually, and choose one that she finds most appropriate in addressing the target
mistakes. Finally, she repeats the process, usually targeting a different class of mistakes. As the amount of human
effort required in this “trial and error” process is considerable, an interesting question is whether it is possible
to automate some (if not all) of the above steps. In the rest of this article we discuss how provenance enables an
approach for systematically and efficiently exploring a large space of possible refinements, and computing a list
of “most effective” refinements to be presented to the rule developer.

Provenance Graph. While examining the result of an extractor on a collection of documents, the rule developer
records information on the results’ accuracy. Let us assume that she labels the extracted results as correct (i.e.,
true positives) or incorrect (i.e., false positives). With this information, we can leverage provenance directly
in order to systematically address Challenge 1, i.e., which rule to modify? In particular, we are interested
in a provenance model that captures how an output tuple has been generated by the extraction program from
the input document. Such a provenance representation can be obtained by rewriting the extraction program
to record, for each tuple generated by the system, the source or intermediate tuples directly responsible for
generating that tuple. The additional information obtained via the rewritten program can be used to construct a
provenance graph2 that illustrates how source tuples and intermediate tuples have been combined by operators
of the extraction program in order to generate each of the output tuples. Similar to the representation of SQL
using relational algebra operators, we assume a canonical representation of an extraction program as a DAG of
operators (e.g., the SPJUD relational operators and text-specific operators such as Dictionary). However, in the
context of information extraction, none of these operators are duplicate removing, as deduplication is explicitly
applied at certain stages of the pipeline using a special consolidation operator. We do not consider this operator
in this article, and therefore each output tuple has a single derivation. For example, the portion of the provenance
graph corresponding to the derivation of the false positive p2: Morgan Stanley is shown in Figure 1(d).

High-Level Changes. In order to remove a false positive from the final result, it is sufficient to remove any
edge in its provenance graph, since each tuple has a single derivation. Therefore, by examining the prove-
nance of each false positive, we can compile a list consisting of triplets of the form (Op, intermediate result,
false positive), representing the fact that modifying operator Op in order to remove intermediate result
from its output causes false positive to disappear from the result of the extractor. We call such triplets
high-level changes. For example, the following high-level changes would be among those generated for p2:
(Dictionary1, f2, p2), (Dictionary2, l2, p2), (◃▹3, c

′′
2 , p2), (σ3, c

′
2, p2), . . ., (∪5, p2, p2). Therefore, the choice

of which rule to modify in order to remove p2 from the output is narrowed down to R1 - R3 and R5.

Low-Level Changes. A high-level change indicates which rule may be refined, but it does not tell us how
to refine it (i.e., Challenges 2 and 3). We refer to a specific refinement that implements one or more high-
level changes as a low-level change. For example, M1 is a possible low-level change for the high-level change
(Dictionary1, f2, p2). It is easy to see that any high-level change can be trivially translated into a low-level
change that removes exactly one false positive (e.g., M5 and M ′

5). However, such refinements are not useful in
practice, as they do not generalize well to unseen documents. Intuitively, we would prefer non-trivial refinements
(e.g., M6 and M7) that remove multiple false positives at a time, and thus have the potential to be effective in
general. It turns out that high-level changes are useful towards addressing this problem. Specifically, grouping

2The provenance graph can be seen as a graphical representation of an instantiation of provenance semirings [13] in which each
source (document) tuple is tagged with a unique id, and each derived tuple is tagged with an expression over a semiring having the set
of all source tuple ids as domain, and equipped with operations · and + for combining the provenance of tuples involved in a join, and
respectively, when a tuple can be derived in multiple ways, and a unary function for representing the operator involved in the derivation.
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high-level changes by operator Op produces a maximal set of false positives that can be affected by any refine-
ment of Op, along with the specific outputs that should be removed from the output of Op in order to achieve
that maximal effect. For example, the three high-level changes for operator π3 of R3: (π3, c1, p1), (π3, c2, p2)
and (π3, c5, p7) indicate that modifying π3 to remove c1, c2 and c5 from its output results in eliminating all false
positives p1, p2 and p7. With this information, it is now possible to devise an algorithm for efficiently exploring
a large space of types of refinements, as well as algorithms for parametrizing specific types of refinements, while
not overfitting to the training document collection.

Given the set of high-level changes grouped by operator Op, our algorithm for generating a set of top-k
“promising” refinements to be presented to the rule developer proceeds in three steps. First, for each group of
high-level changes, we consider different types of low-level changes that can be applied to Op. For example,
in the case of the Dictionary operator we may consider removing some entries from the dictionary (e.g., as in
M3), or changing the matching mode from case insensitive to case sensitive. For the select operator, we may
consider adding a selection predicate (e.g., as in M6). In order to be able to evaluate a refinement’s quality, the
types of refinements considered are carefully selected to guarantee restricting the final result set. Indeed, it is
impossible to evaluate a refinement that introduces new tuples in the extraction result, as we have no knowledge
of whether these new tuples are correct or not. Second, for each Op and each type of low-level change, we
generate k most promising sets of parameters for that low-level change. At the same time, we also compute
the effects and side-effects of each concrete low-level change. Finally, we rank the low-level changes generated
based on the quality improvement they achieve and present the top-k to the user.

In generating candidate sets of parameters, we apply algorithms specifically designed for each type of low-
level change. Before discussing an example of such an algorithm, we briefly overview the main ideas underlying
low-level change evaluation, which are shared by all our specific algorithms. A naive evaluation approach would
be to simply implement each low-level change and execute the refined extractor. However, this is wasteful and
would significantly affect the response time of the system, as the number of refinements considered in a single
iteration might be in the order of thousands. A better approach is to traverse the provenance graph and record a
mapping between each output tuple and each of the intermediate tuples involved in its provenance. By reverting
this mapping we can obtain, for each intermediate tuple t in the result of some operator Op, the set of output
tuples depending on it. Since each tuple has a single derivation tree, modifying Op to remove a tuple t from
its local output guarantees the removal of all tuples depending on t from the final result. Furthermore, since
each refinement can only restrict the final result, we also know the labels of all these tuples. Therefore, we can
determine the effects and side-effects of the refinement on overall result quality by unioning this information for
all tuples removed by the refinement from the local output of Op.

A detailed discussion of specific algorithms for parametrizing low-level changes is outside the scope of this
article. To give the reader a flavor, however, we briefly describe the algorithm for parametrizing filter selection
predicates (as in M6) next. The algorithm systematically considers the tokens to the left or right of each span
in a tuple affected by a high-level change. For each choice of left/right context of a given length up to a preset
maximum value, the union of the contextual tokens forms a set of potential dictionary entries. For example, in
the case of operator σ3 of R3, the tokens Co and executives would be considered as potential dictionary
entries for a filtering predicate on the right context of length 1. We now need to evaluate the effects of using
various subsets of these dictionary entries to filter the local output of σ3. However, the number of all subsets can
be prohibitively large. To avoid evaluating all of them, we adopt a greedy approach: we group together tuples
according to which dictionary entries occur in the vicinity of their spans, evaluate the effect of each entry on
result quality using the approach described above, and generate k refinements, each using top-k most effective
entries (k is the maximum number of refinements that will be presented to the developer). Two refinements
would be generated for our example, one using Co, while the other using both Co and executives as filter.
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4 Conclusion and Directions for Future Research

We discussed some of the challenges in designing high-quality information extraction rules, and showed that
provenance plays an important role in facilitating rule development that goes far beyond the general consensus
that “provenance is useful in understanding the program and its output”. In particular, we discussed the main
ideas behind a framework for automatically generating rule refinements aimed at improving the precision of an
extractor based on user labeled examples. Very recently, the idea of extractor refinement based on provenance
and labeled examples has been also approached in [9] in the context of iterative IE systems, however, refinements
are considered only for the last step of an extraction flow, and not an entire extraction program as we do here.

Our approach is only a first step towards a general framework for automatic refinement of information
extraction rules. We conclude by outlining several possible extensions.

Precision-driven Refinement. Besides the provenance → high-level change → low-level change paradigm,
the usefulness of the framework lies in efficient algorithms for generating concrete refinements. While the
framework implements several such algorithms, more could be added. In particular, incorporating existing
approaches for learning basic features such as regular expressions [18] would be extremely useful. Furthermore,
the assumption made in Section 3 is that an output tuple has a single derivation. Therefore, removing any
single intermediate result involved in its provenance is sufficient to eliminate that output tuple. Formalizing the
notion of high-level change in the case of multiple derivations, and designing efficient algorithms for generating
concrete refinements in this context are interesting directions for future work.

Recall-driven Refinement. Our current framework handles refinements geared towards improving precision.
However, equally important is improving the recall, i.e., generating refinements that remove false negatives,
while not affecting existing correct results. Towards this end, it would be interesting to extend our framework to
incorporate recent techniques for computing provenance of missing answers [1, 14, 15]. The notion of high-level
change, and algorithms for efficiently generating low-level changes need to be revisited in this context.

Active Learning of Labeled Examples. The ability to automatically generate useful refinements depends on
the number, variety and accuracy of the labeled examples provided to the system. While labeled data for certain
types of popular extractors on general-purpose domains is publicly available [26], in most cases the labeled data
must be provided by the rule developer. Unfortunately, labeling data is itself a tedious, time-consuming and
error prone process. It would be interesting to investigate whether active learning techniques [25] can be used to
present to the developer only those most informative examples, therefore facilitating the labeling process.
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