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Letter from the Editor-in-Chief

TCDE Chair Election

There is a letter from the TCDE nominating committee on page two of this issue announcing the election for
TCDE Chair and proposing a candidate. In the past, electoral participation has been low. I would urge you,
however, to give some thought to whom you would like to see in this position, and make your preference clear
by voting in the election. The electoral process is simple and is described in by Carrie Walsh of the IEEE
Computer Society in her message. It simply involves having your IEEE CS membership number and visiting a
web site to register your vote.

Workshop Report

Let me draw your attention to the report on the Workshop on Self-Managing Database Systems on page three
of this issue. The Self-Managing Database Systems Working Group is a subgroup of the TCDE that focuses
on automating the management of database systems. It holds a workshop in conjunction with the International
Conference on Data Engineering. The report is on the 2010 workshop, held in Long Beach, California. There
will be another of these annual workshops in 2011 in Hanover, Germany in conjunction with ICDE 2011.

The Current Issue

Data provenance, i.e. information about the source and history of the data, has come to be widely recognized as
a vital element for many database applications. While managing data for business data processing purposes has
a long and successful history, dealing with provenance is simultaneously relatively new, increasingly important,
and both subtle and challenging. Because of this, there is now an active community of researchers who are
investigating data provenance, how to uncover it, how to store it with data, how to support, manipulate, annotate
and discuss it, and how to propagate it, especially as data from multiple sources are combined and passed onward.
Wang-Chiew Tan has worked in this area and knows well the complexities of the area and the researchers in this
community. The current issue includes both university research and industrial efforts to deal with provenance.
This is the kind of breadth that I like to see in the Bulletin, helping it fulfill its role of bringing current research
together with the latest industrial practices to inform our readers in depth on important topics. I want to thank
Wang-Chiew for her hard work in successfully bringing this issue on this important topic to fruition. And I thank
her for her patience in the somewhat delayed publication process as we awaited details of the TCDE election
process.

David Lomet
Microsoft Corporation
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Message about the Election of TCDE Chair

The Chair of the IEEE Computer Society Technical Committee on Data Engineering (TCDE) is elected for a
two-year period. The mandate of the current Chair, Paul Larson, is coming to an end and it is time to elect a
Chair for the next two years.

The TCDE Chair Nominating Committee, consisting of Paul Larson, Erich Neuhold, and Calton Pu is nom-
inating David Lomet for the position as Chair of TCDE. A call for nominations was published in the June issue
of the Data Engineering Bulletin but no other nominations were received.

Erich Neuhold
TCDE Nominating Committee Chair

Information about TCDE Chair Election

The 2010 TCDE Chair election is now open. The Chair’s term will run from December 1, 2010 through Novem-
ber 30, 2012. Polls close October 31, 2010, at 5 pm Pacific time. Before entering the poll, please read the
following:

• Please take a few moments to review candidate Biosketches and Position Statements in advance of voting
here (scroll to bottom of Web page): http://www.computer.org/portal/web/tandc/tcde

• To cast your vote, you will need your IEEE CS Member number (to obtain a misplaced number, please
visit: http://www.ieee.org/web/aboutus/help/contact/index.html ).

**Only CS Members can vote. **
VOTE here: http://www.surveymonkey.com/s/XDVQB8Z

If you have trouble voting, please contact T & C Sr. Program Specialist, Carrie Walsh (ccwalsh@computer.org).

Carrie Walsh
IEEE Computer Society
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Candidate Information: David Lomet

Biography

David Lomet is a principal researcher managing Microsoft Research’s Database Group. Earlier, he worked at
Digital, IBM Research, and Wang Institute. He has a CS Ph.D from U. of Pennsylvania. His research is mostly in
database systems, particularly indexing, CCR, and transactions. He has authored over 100 papers (two SIGMOD
”best papers”) and 40 patents. He is the editor-in-chief of the Data Engineering Bulletin, for which he was given
the SIGMOD Contributions Award. He is a fellow of the IEEE, ACM, and AAAS.

Position statement

The Technical Committee on Data Engineering is the group within the IEEE Computer Society that focuses on
data management, including database systems and their use. It sponsors the ICDE conference and co-sponsors
a limited number of other conferences and workshops as well. A subgroup of the TC focuses on self-managing
databases. The TC’s charter is thus an important one, with ICDE being one of the premier database conferences.
If elected, I will strive to continue the fine work of my predecessor, Paul Larson, to preserve and enhance these
activities. And I will work with Calton Pu, the chair of the ICDE Steering Committee, in his efforts to preserve
ICDE as a venue for the publication of great database research.

David Lomet
TCDE Chair Candidate
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Report: 5th Int’l Workshop on Self-Managing Database Systems
(SMDB 2010)

Shivnath Babu
Duke University

shivnath@cs.duke.edu

Kai-Uwe Sattler
Ilmenau University of Technology

kus@tu-ilmenau.de

1 Introduction

The SMDB Workshop series sponsored by the IEEE TCDE Workgroup on Self-Managing Database Systems
brings together researchers and practitioners to exchange ideas related to autonomic data management systems.
Previous workshops of the SMDB series focused on core topics in self-managing databases like physical design
tuning, problem diagnosis and recovery, and database integration and protection. In addition to core topics, the
2010 workshop aimed to broaden the interest range by covering emerging research areas like Cloud computing,
multitenant databases, large-scale storage systems, and datacenter administration.

2 Workshop Overview

The 2010 workshop took place on March 1st, 2010 in Long Beach, CA, on the day before ICDE. The workshop
received generous sponsorships from Oracle, Sybase iAnywhere, IBM, and Ingres.

The program committee consisted of the members of the SMDB Workgroup’s executive committee and other
researchers well-known in the area. We received 15 submissions out of which 6 submissions were accepted as
long papers and 3 submissions as short papers. In addition to the research paper sessions, the workshop included
keynote and panel sessions. The average attendance over all sessions was 35 participants, with the attendance
peaking to around 45 during the panel. The full workshop program as well as presentation slides can be found
on the workshop’s Web site at http://db.uwaterloo.ca/tcde-smdb/smdb10.

3 Keynote

Oliver Ratzesberger, Sr. Director Architecture & Operations at eBay Inc., delivered the keynote. Oliver has more
than 12 years of experience in large-scale Data Warehousing and Business Intelligence, and is now responsible
for the overall eBay site capacity planning and operations cost management – one of the world’s largest database
infrastructure with more than 20,000 servers.

Oliver’s keynote presentation, titled “Agile Enterprise Analytics,” gave insights into eBay’s new approach
of Analytics as a Service (AaaS). AaaS is implemented as virtual data marts which are logical instances created
on a shared physical infrastructure. A virtual data mart can be created by a user in less than five minutes by
filling a Web form. A virtual data mart may be created for prototyping, development, or testing as well as
for production use such as click stream, financial, or performance analytics. The virtual data marts run on a

Copyright 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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single MPP infrastructure on a single copy of the data, exploiting workload management techniques such as
queuing and resource partitioning. The talk concluded with the thesis that agile analytics enables users to try out
new ideas much faster and lowers the time to market. Going forward, workload management, scalability, and
virtualization will be key factors determining the success of AaaS.

4 Paper Sessions

The research paper program was organized into three paper sessions: Indexing and Workload Management, On
Cloud and Column Stores, and Query Optimization and Workload Management.

The papers in the first session dealt with index and workload management in database systems. Graefe and
Kuno [1] proposed an approach that enables self-selecting and self-tuning indexes for point (equality) queries.
Previous work on adaptive indexing had focused on range queries. The new approach uses ideas from database
cracking and adaptive merging. Simulation results show that the overhead (the number of records accessed
beyond the number of records used in case of full indexes) can be reduced significantly compared to a pure
database cracking approach.

Schmidt and Härder [2] presented their work on index selection in native XML databases. Specific chal-
lenges in XML indexing include support for different node types, flexible path expressions, and the indexing of
both structure and content. After a discussion of storage structures and different XML index types, the authors
proposed an approach for estimating the costs and benefits of indexes. Finally, they presented strategies for
generating and selecting index candidates. The experimental results showed the benefits of self-tuning indexing
as well as the ability to adapt to workload shifts.

Powley et al. [3] dealt with the problem of workload management. They proposed an approach for workload
execution control based on query throttling. Here, problematic queries are slowed down to free resources for
more important parts of the workload. The authors described three approaches for throttling: a simple controller
which uses a diminishing step function, a controller based on a control theoretic approach where the database
is treated as a black box, and a hybrid variant that combines these two techniques. The experimental results
verified that by using the controllers the important workload can meet desired performance goals continuously.

The main topic of the papers in the second session was data management in the Cloud. Ganapathi et al. [4]
introduced a framework for predicting resource requirements for Cloud computing applications. The goal of this
work was to predict execution times of MapReduce jobs and Hive queries. For this purpose, the authors used
a machine learning technique for correlation analysis between query plan features (such as job configuration
parameters like the number of maps and reduces as well as input bytes) and performance metrics (execution
time, map time, reduce time, output bytes). Then, these statistical models were used to predict performance
metrics for a given setup or to identify workload features which affect performance. Based on these results, the
authors discussed the design of a workload generator. At the end of the workshop, this paper was selected by
the audience as the most popular paper of this workshop.

Rogers et al. [5] presented a framework that optimizes operational costs of a DBMS on top of an Infras-
tructure as a Service (IaaS) based on a given query workload and the provider’s pricing model while satisfying
QoS expectations. They discussed two solutions: a white-box approach with fine-grained estimation of resource
consumption and a black-box solution with coarse-grained profiling information. Both approaches were treated
as constraint programming problems that were solved using a generic constraint solver. Experimental results
using the TPC-H benchmark with PostgreSQL on Amazon EC2 showed the feasibility of the solutions.

Amossen [6] addressed the problem of vertical partitioning in OLTP databases. He presented a model for
estimating the cost of executing a workload using a given partitioning schema. Based on the cost model, two
algorithms for solving the partition design problem were presented. These algorithms preserve single-sitedness
for read queries and allow column replication. The first algorithm uses a quadratic integer programming ap-
proach, while the second algorithm is based on simulated annealing. Experiments showed that the latter reduces
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the computational effort by 37% for the TPC-C benchmark while returning solutions with costs close to the
quadratic approach.

The short paper session contained one paper on query optimization and two papers on workload manage-
ment. Dash et al. [7] addressed the problem of time-consuming calls to the query optimizer from automated
physical design advisors. While the optimizer evaluates each configuration, it creates and evaluates several inter-
mediate plans. Caching partial query plan costs can provide quick answers to subsequent calls to the optimizer.
Based on this observation, the PostgreSQL optimizer was extended to support PINUM, an index selection tool
for PostgreSQL. Experiments with a synthetic star-schema workload demonstrated 5 times reduction in overhead
with only 3% loss in accuracy compared to direct optimizer calls.

The goal of the work presented by Holze et al. [8] was to predict shifts in workloads with a focus on
periodic patterns. The proposed approach comprises three steps. The first step involves workload monitoring
to collect OS and DBMS metrics as well as SQL statement characteristics. Next, a k-means-based clustering
approach is used to derive statement classes. In the third step, the workload is modeled using n-gram models as
an approximation of Markov models. Detecting that the current workload is similar to a workload W observed
in the past allows the system to switch to a a pre-optimized configuration for W .

Finally, Abouzour et al. [9] described a multi-input single-output controller to determine the optimal mul-
tiprogramming level (MPL) in Sybase. The throughput level (number of server-side requests), the total number
of outstanding requests, and the control interval are used as input. The output parameter is the MPL to use in the
next control interval. The tuning task was implemented using different algorithms: hill climbing, global parabola
approximation, as well as a hybrid approach that switches between the other two strategies. Experimental results
showed that the hybrid approach was able to reach around 90% of the optimal (hand-tuned) value.

5 Panel

The workshop concluded with a panel on “Databases, MapReduce, and the Cloud–Oh My! What’s in it for the
Administrator?”, with six distinguished panelists: Ashraf Aboulnaga from Univ. of Waterloo, Namit Jain from
Facebook, Guy Lohman from IBM, Oliver Ratzesberger from eBay, Benjamin Reed from Yahoo!, and Jingren
Zhou from Microsoft.

The computer science community has witnessed a recent debate on the performance advantages and disad-
vantages of database systems vs. MapReduce systems for large-scale analytics. The panelists were asked to
discuss the system administration aspects of these two systems. Questions posed to the panelists included: (a)
are there fundamental strengths or weaknesses that databases and MapReduce systems have regarding adminis-
tration? (b) what does administering a MapReduce system involve? (c) does the emergence of Cloud computing
shift the “cost of administration” equation in favor of either of these systems? (d) what lessons should MapRe-
duce systems learn regarding administration from database systems? (e) will the roles of the data analyst, system
developer, and system administrator increasingly overlap in the future?

Aboulnaga discussed how the number of software and hardware instances that have to be administered in a
Cloud setting is very high, and the impact of an administrator mistake can be high as well. Administrative tasks
like upgrades are hard on the Cloud. Aboulnaga also discussed how database and MapReduce systems can learn
good practices from each other. For example, databases need to learn how to manage data that is not already
loaded into the system, while MapReduce systems can learn how to auto-tune configuration parameters.

Jain gave an overview of Facebook’s 12 PetaByte data analytics infrastructure driven by Hadoop. This
warehouse runs on 9600 cores, and absorbs 10 TeraBytes (compressed) of new data per day. Data analysts and
engineers use a SQL-like language to run declarative queries in this massive warehouse. Jain mentioned the
challenges in this setting which include ensuring performance isolation across jobs in a shared cluster, metadata
discovery, cluster and job monitoring, and efficient query plan generation.

Lohman summarized the Cloud’s main value propositions from a customer’s perspective which include pay-
as-you-go usage and reduction of human effort. A study done by IBM found that Cloud deployment solutions

6



can liberate considerable amounts of IT funds for new development. However, Lohman questioned whether
these benefits will continue to be realized years from now when the Cloud becomes legacy. He warned of
a future where the benefits of Cloud computing disappear due to improper management of mixed workloads,
schema, service-level objectives, and security.

Ratzesberger developed on his keynote theme emphasizing the need for Analytics as a Service, and the
accompanying management challenges. Virtual data marts have to be provisioned automatically on demand
based on user specification, while addressing workload management challenges like performance isolation in a
shared physical cluster.

Reed identified three current administrative roles in Hadoop at Yahoo!: developers who write Hadoop code
with certain tuning knobs, operations personnel who configure Hadoop clusters but do not configure job-level
tuning knobs, and release engineering personnel who prepare Hadoop images for release. Since interactions
among people in these roles is limited, Reed opined that Hadoop stands to benefit immensely from auto-tuning
techniques.

Zhou observed that while database systems run on many tens of machines, MapReduce systems run on tens
of thousands of machines. While database administrators focus on issues like physical design tuning and system
recovery, in large-scale systems running on the Cloud, most of an administrator’s time today goes into keeping
the system and data alive and available for use.

6 SMDB 2011

SMDB 2011 is being organized by Vivek Narasayya and Neoklis Polyzotis, and is scheduled for April 10th, 2011
in Hannover, Germany. Visit http://db.uwaterloo.ca/tcde-smdb/smdb11 for more information.
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Letter from the Special Issue Editor

The importance of data provenance has been increasingly recognized by both users and publishers of data. For
users of data, the scientific basis of their analysis relies largely on the credibility and trusthworthiness of their
input data. For publishers of data, the provision of provenance as part of their published data is important
for scholarship and reproducibility. In today’s Internet era, where complex ecosystems of data are even more
prevalent, it is no wonder that data provenance has become a major research topic in many conferences and
workshops. Data provenance was already the topic of the December 2007 issue of IEEE Data Engineering
Bulletin. This issue attempts to complement the December 2007 issue by focusing on how provenance has been
captured and exploited by systems that either have been developed or are in the process of being developed in
the industry and the academia, and by reporting on new interesting research directions.

The first three articles describe how provenance has been applied in systems developed in the industry and
academia. Provenance in ORCHESTRA, by Green et al., describes a collaborative data sharing system OR-
CHESTRA, whose architecture and provenance model are largely motivated from the needs of the life sciences
community. As part of ORCHESTRA, the authors describe an interesting application of provenance to the spec-
ification of trust policies and update exchange. In the article titled Refining Information Extraction Rules using
Data Provenance, Liu et al. describe how provenance can be used to aid the process of developing information
extraction rules. Here, provenance is exploited to understand the changes that need to be made to the information
extraction rules so that the result is what the user desires. Gonzalez et al. describe how Google Fusion Tables can
be used to faciliate collaboration around data sets in their article Socializing Data with Google Fusion Tables.
Attribution and provenance are anticipated to play a significant role in socializing data and this article provides
an accessible exposition to the attribution feature of Google Fusion Tables, as well as the authors’ experience
with the system.

It is important for scientists to be able to pinpoint and cite data easily for proper scholarship. In the article
A Rule-Based Citation System for Structured and Evolving Datasets, Buneman and Silvello discuss the require-
ments that must be met by a citation system in order to guarantee consistency and integrity of citations. The
issues that arise in two data sets found in the fields of Digital Libraries and Curated Databases, as well as a
rule-base system for automatically generating proper citations that addresses the issues are fully described in
this article.

According to the December 2007 issue of IEEE Data Engineering Bulletin, connecting workflow and data
provenance is said to be “the most interesting research challenge in the general field of provenance models”. In
Panda: A System for Provenance and Data, Ikeda and Widom report on their work-in-progress Panda project,
whose goal is to develop a system that would seamlessly manage and query both data-based and process-based
provenance. The authors have provided a simple and yet elaborate example for explaining various aspects of
their vision, as well as the challenges associated with building such a system.

As scientists tend to follow the “extract, transform, and analyze” workflow model to process scientific data,
many workflow systems aim to provide scientists with a platform for easily authoring workflows. The Trident
scientific workflow system is described in the article Provenance for Scientific Workflows Towards Reproducible
Research. Barga et al. give a good overview of various provenance-related components of Trident. An integral
part of Trident is the automatic capturing of provenance in both control-flow and data-flow aspects of workflows,
as well as in workflow evolution.

Finally, the article Causality in Databases takes a fresh perspective at the problem of explaining outputs
of database transformations. Meliou et al. give an accessible description of how the notions of causality and
responsibility, which are well-studied notions in philosophy, can be applied to databases to provide explanations
of answers to database transformations, and point out several promising research directions.

Wang-Chiew Tan
IBM Almaden Research Center and UC Santa Cruz
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Todd J. Green∗

University of California, Davis
Davis, CA USA
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gregkar@gmail.com
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University of Pennsylvania

Philadelphia, PA USA
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Abstract

Sharing structured data today requires agreeing on a standard schema, then mapping and cleaning all
of the data to achieve a single queriable mediated instance. However, for settings in which structured
data is collaboratively authored by a large community, such as in the sciences, there is seldom con-
sensus about how the data should be represented, what is correct, and which sources are authoritative.
Moreover, such data is dynamic: it is frequently updated, cleaned, and annotated. The ORCHESTRA

collaborative data sharing system develops a new architecture and consistency model for such settings,
based on the needs of data sharing in the life sciences. A key aspect of ORCHESTRA’s design is that the
provenance of data is recorded at every step. In this paper we describe ORCHESTRA’s provenance model
and architecture, emphasizing its integral use of provenance in enforcing trust policies and translating
updates efficiently.

1 Introduction

One of the most elusive goals of the data integration field has been supporting sharing across large, hetero-
geneous populations. While data integration and its variants (e.g., data exchange [9] and warehousing) are
being adopted in the enterprise, little progress has been made in integrating broader communities. Yet the need
for sharing data across large communities is increasing: most of the physical and life sciences have become
data-driven as they have attempted to tackle larger questions. The field of bioinformatics, for instance, has a
plethora of different databases, each providing a different perspective on a collection of organisms, genes, pro-
teins, diseases, and so on. Associations exist between the different databases’ data (e.g., links between genes
and proteins, or gene homologs between species). Unfortunately, data in this domain is surprisingly difficult to
integrate, primarily because conventional data integration techniques require the development of a single global
schema and complete global data consistency. Designing one schema for an entire community like systems
biology is arduous, involves many revisions, and requires a central administrator.

Even more problematic is the fact that the data or associations in different databases are often contradictory,
forcing individual biologists to choose values from databases they personally consider most authoritative or
trusted [23]. Such inconsistencies are not handled by data integration tools, since there is no consensus or
“clean” version of the data. Thus, scientists simply make their databases publicly downloadable, so users can

Copyright 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗Work performed while at the University of Pennsylvania
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copy and convert them into a local format (using ad hoc scripts). Meanwhile the original data sources continue
to be edited. In some cases the data providers publish weekly or monthly lists of updates (deltas) to help others
keep synchronized. Today, few participants, except those with direct replicas, can actually exploit such deltas;
hence, once data has been copied to a dissimilar database, it begins to diverge from the original.

In order to provide collaborating scientists, organizations, and end users with the tools they need to share
and revise structured data, our group has developed a new architecture we term collaborative data sharing sys-
tems [18] (CDSSs) and the first implementation of a CDSS in the form of the ORCHESTRA system. The CDSS
provides a principled semantics for exchanging data and updates among autonomous sites, which extends the
data integration approach to encompass scientific data sharing practices and requirements—in a way that also
generalizes to many other settings. The CDSS models the exchange of data among sites as update exchange
among peers, which is subject to transformation (via schema mappings), filtering (based on trust policies re-
garding source authority), and local revision or replacement of data. As a prerequisite to assessing trust, the
CDSS records the derivation of all exchanged data, i.e., its provenance or lineage [5].

In this paper, we provide an overview of the basic operation of the ORCHESTRA CDSS, emphasizing its use
of data provenance for enforcing trust policies and for performing update exchange incrementally and efficiently.
This paper summarizes our main results from [14, 20, 21]; we mention further aspects of the system in Section 6.

2 Overview of CDSS and ORCHESTRA

The CDSS model represents a natural next step in the evolution of ideas from data integration, peer data manage-
ment systems [17] (PDMS), and data exchange [9]. The PDMS model removes data integration’s requirement
of a single central schema: rather, the PDMS supports greater flexibility and schema evolution through multiple
mediated schemas (peers) interrelated by compositional schema mappings. Along a different dimension, data
exchange alleviates the tight coupling between data sources and queriable target data instance: it enables mate-
rialization of data at the target, such that queries over the target will be given the same answers as in traditional
virtual data integration.

As in the PDMS, the CDSS allows each data sharing participant to have an independent schema, related to
other schemas via compositional schema mappings. However, in a CDSS each participant (peer) materializes its
own database instance (as in data exchange). Through a variety of novel techniques we sketch in this paper and
describe in detail in [14, 20, 21], the CDSS enables the peer to autonomously control what data is in the instance
by applying updates and policies about which data is most trusted.1

2.1 The topology of data sharing: specifying how peers are related

A CDSS collaboration begins with a set of peer databases, each with its own schema and local data instance.
Each peer’s users pose queries and make updates directly to its local data instance.

Example 1: Consider (see Figure 1) a bioinformatics collaboration scenario based on databases of interest to
affiliates of the Penn Center for Bioinformatics. GUS, the Genomics Unified Schema covers gene expression,
protein, and taxon (organism) information; BioSQL, affiliated with the BioPerl project, covers very similar
concepts; and a third schema, uBio, establishes synonyms among taxa.2 Instances of these databases contain
taxon information that is autonomously maintained but of mutual interest to the others. For the purposes of
our example we show only one relational table in each of the schemas, as follows. Peer GUS associates taxon
identifiers, scientific names, and what it considers canonical scientific names via relation G(GID, NAM, CAN);
peer BioSQL associates its own taxon identifiers with scientific names via relation B(BID, NAM); and peer uBio
records synonyms of scientific names via relation U(NAM1, NAM2).

1Our implementation assumes relational schemas, but the CDSS model extends naturally to other data models such as XML [10].
2The real databases can be found at http://www.gusdb.org, http://bioperl.org, and http://www.ubio.org.
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G(GID, NAM, CAN)

GUS

B(BID, NAM)

BioSQL

U(NAM1, NAM2)
uBio

m3

m1

m2

(m1) G(g, n, c)→ ∃b B(b, n)

(m2) G(g, n, c)→ U(n, c)

(m3) B(b, n1) ∧ U(n1, n2)→ B(b, n2)

Figure 1: Mappings among three bioinformatics databases

G :
GID NAM CAN

828917 Oscinella frit Drosophila melanogaster
2616529 Musca domestica Musca domestica

U : NAM1 NAM2

B :
BID NAM

4472 Periplaneta americana

(a) Tables from GUS, uBio, and BioSQL before update exchange. (U is empty.)

U :
NAM1 NAM2

Oscinella frit Drosophila melanogaster
Musca domestica Musca domestica

B :

BID NAM

4472 Periplaneta americana
⊥1 Oscinella frit
⊥1 Drosophila melanogaster
⊥2 Musca domestica

(b) Tables after update exchange. Shaded rows indicate newly-inserted tuples. (G is unchanged.)

Figure 2: Bioinformatics database instances before and after update exchange

The participants of the CDSS collaboration specify relationships among their databases using schema mappings.

Example 2: Continuing with Example 1, suppose it is agreed in this collaboration that certain data in GUS
should also be in BioSQL. This represented in Figure 1 by the arc labeled m1. The specification G(g, n, c) →
∃b B(b, n) associated with m1 is read as follows: if (g, n, c) is in table G, the value n must also be in some
tuple (b, n) of table B, although the value b in such a tuple is not determined. The specification just says that
there must be such a b and this is represented by the existential quantification ∃b. Here m1 is an example of
schema mapping. Two other mappings appear in Figure 1. Peer uBio should also have some of GUS’s data, as
specified by m2. Mapping m3 is quite interesting: it stipulates data in BioSQL based on data in uBio but also on
data already in BioSQL. As seen in m3, relations from multiple peers may occur on either side. We also see that
individual mappings can be “recursive” and that cycles are allowed in the graph of mappings.

Schema mappings (expressed in ORCHESTRA using the well-known formalism of tuple-generating dependen-
cies or tgds [2]) are logical assertions that the data instances at various peers are expected to jointly satisfy. As in
data exchange [9], a large class of mapping graph cycles can be handled safely, while certain complex examples
cause problems and are prohibited.

In summary, every CDSS specification begins with a collection of peers/participants, each with its own
relational schema, and a collection of schema mappings among peers. Like the schemas, the mappings are
designed by the administrators of the peers to which data is to be imported. (In addition, administrators also
supply trust policies, described in Section 3.) By joining ORCHESTRA, the participants agree to share the data
from their local databases. Mappings and trust policies provide a more detailed declarative specification of how
data is to be shared.

2.2 The semantics of query answers, and what must be materialized at each peer

Given a CDSS specification of peers and schema mappings, the question arises of how data should be propagated
using the declarative mappings, and what should be materialized at the target peer. Clearly, a user query posed
over a peer’s materialized instance should provide answers using relevant data from all the peers. This requires
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materializing at every peer an instance containing not only the peer’s locally contributed data, but also additional
facts that must be true, given the data at the other peers along with the constraints specified by the mappings.
However, while the mappings relating the peers tell us which peer instances are together considered “acceptable,”
they do not fully specify the complete peer instances to materialize.

In CDSS we follow established practice in data integration, data exchange and incomplete databases [1, 9]
and use certain answers semantics: a tuple is “certain” if it appears in the query answer no matter what data
instances (satisfying the mappings) we apply the query to. In virtual data integration, the certain answers to a
query are computed by reformulating the query across all peer instances using the mappings. In CDSS, as in
data exchange, we materialize special local instances that can be used to compute the certain answers. This
makes query evaluation a fast, local process. We illustrate this with our running example.

Example 3: Suppose the contents of G, U , and B are as shown in Figure 2(a). Note that the mappings of Fig-
ure 1 are not satisfied: for example, G contains a tuple (828917, “Oscinella frit”, “Drosophila melanogaster”)
but B does not contain any tuple with “Oscinella frit” which is a violation of m1. Let us patch this by adding to
B a tuple (⊥1, “Oscinella frit”) where⊥1 represents the unknown value specified by ∃b in the mapping m1. We
call ⊥1 a labeled null. Adding just enough patches to eliminate all violations results in the data in Figure 2(b).3

In order to support edits and accommodate disagreement among participants, CDSS incorporates mechanisms
for local curation of database instances. This allows CDSS users to modify or delete any data in their local
database, even data that has been imported from elsewhere via schema mappings. In this way, CDSS users
retain full control over the contents of their local database. The technical obstacle in supporting such a feature
is how to preserve a notion of semantic consistency with respect to the mappings, when such modifications may
introduce violations of the mappings.

Example 4: Refer again to Figure 2(b), and suppose that the curator of BioSQL decides that she is not interested
in house flies, and wishes to delete tuple B(⊥2, “Musca domestica”) from her local instance. Since, as we have
seen, this tuple was added to satisfy a mapping, the deletion of the tuple leads to a violation of some mapping.

To allow such local curation, CDSS stores deleted tuples in rejection tables, and newly inserted tuples in local
contribution tables, and converts user-specified mappings into internal mappings that take the contribution and
rejection tables explicitly into account. Alternatively, sometimes local curation corrects mistakes in the imported
data; if we wish for the corrections to be propagated back to the original source tuples, ORCHESTRA also
incorporates facilities for bidirectional mappings [20].

3 Trust policies and provenance

CDSS participants often need to filter data based how much they trust it (and its sources). In order to allow the
specification of such provenance-based trust policies, ORCHESTRA records the provenance of exchanged data,
i.e., “how data was propagated” during the exchange process.

The most intuitive way to picture CDSS provenance is as a graph having two kinds of nodes: tuple nodes,
one for each tuple in the system, and mapping nodes, where several such nodes can be labeled by the same
mapping name. Edges in the graph represent derivations of tuples from other tuples using mappings. Special
mapping nodes labeled “+” are used to identify original source tuples.

Example 5: Refer to Figure 3, which depicts the provenance graph corresponding to the bioinformatics example
from Figure 2 (we have abbreviated the data values to save space). Observe there is a “+” mapping node
pointing toG(26,Musc.,Musc.); this indicates that it is one of the source tuples from Figure 2(a), present before

3Note that sometimes patching one violation may introduce a new violation, which in turn must be patched; hence this process is
generally an iterative one, however under certain constraints it always terminates.
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+

+

G :

82 Osci. Dros.

26 Musc. Musc.

m2

m2

U :

Osci. Dros.

Musc. Musc.

m1

m1

m3

m3

B :

44 Peri.

⊥1 Osci.

⊥1 Dros.

⊥2 Musc.

+

Figure 3: Provenance graph for bioinformatics example

EVALUATE TRUST OF {
FOR [B $x] <$p [] <-+ [$y]
WHERE $p = m1 OR $p = m3
INCLUDE PATH [$x] <-+ [$y]
RETURN $x

} ASSIGNING EACH leaf_node $y {
CASE $y in G and

$y.n = "Musc." : SET false
DEFAULT : SET true

} ASSIGNING EACH mapping $p($z) {
CASE $p = m3 : SET false
DEFAULT : set $z

}

Figure 4: A provenance query in ProQL

update exchange was performed. Next, observe that G(26,Musc.,Musc.) is connected to U(Musc.,Musc.) via a
mapping node labeledm2. This indicates thatU(Musc.,Musc.) was derived usingG(26,Musc.,Musc.) withm2.
Also, notice that B(⊥2,Musc.) has a derivation from G(26,Musc.,Musc.) via mapping m1. Finally, note that
B(⊥2,Musc.) also has a second derivation, from itself and U(Musc.,Musc.) via mapping m3. The graph is thus
cyclic, with tuples involved in their own derivations. In general, when mappings are recursive, the provenance
graph may have cycles.

Provenance graphs form the basis of our ORCHESTRA implementation, and [14] shows how they can be
computed during data exchange and stored together with exchanged data. Underlying the graphical model,
however, is another, equivalent perspective on CDSS provenance, based on a framework of semiring-annotated
relations [15, 10]. These are algebraic structures that arise naturally with database provenance. Their two
operations correspond to joint use of data (represented in the graph model by the incoming edges into a mapping
node) and to alternative use of data (represented in the graph model by the incoming edges into a tuple node).
M-semirings [19] extend those structures with unary functions to capture mappings. The semiring framework
has the virtue of uniformly capturing as special cases many other data provenance models from the literature
(e.g., lineage [7], why-provenance [4], and Trio lineage [3]). By putting all these models on equal footing, we
are able to make precise comparisons of various kinds: e.g., their relative informativeness, or their interactions
with query optimization [12]. In particular, we can explain precisely why ORCHESTRA’s provenance is strictly
more informative than the other models. Moreover, we see that ORCHESTRA provenance captures the most
general semiring computations and thus can be specialized to compute events (hence probabilities), scores,
counts, security access levels, etc, as we discuss in Section 5 and [21]. Provenance annotations also assist in
formulating efficient algorithms for update exchange, as we explain in Section 4 and [14, 20].

Using such data provenance information, we can compute trust scores for exchanged data, based on CDSS
users’ beliefs about the trustworthiness of source data and mappings. Trust policies can then be expressed to
control the flow of data through mappings, allowing CDSS administrators to specify which tuples are “trusted”
or “distrusted,” depending on their provenance.

Example 6: Some possible trust policies in our bioinformatics example:

• Peer BioSQL distrusts any tuple B(b, n) if the data came from GUS and n = “Musca domestica,” and
trusts any tuple from uBio.

• Peer BioSQL distrusts any tuple B(b, n) that came from mapping m3.

Once specified, the trust policies are incorporated into the update exchange process: when the updates are being
translated into a peer P’s schema they are accepted or rejected based on P’s trust conditions.

The example above illustrates Boolean trust policies, which classify all tuples as either (completely) trusted
or (completely) untrusted, depending on their provenance and contents. In fact, CDSS also allows richer forms
of ranked trust policies in which trust scores are computed for tuples indicating various “degrees of trust.” When
a conflict is detected among data from multiple sources (for example, by a primary key violation), these scores
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can be used to resolve the conflict by selecting the tuple with the highest trust score and discarding those with
which it conflicts. Fortunately, our same semiring-based provenance information can be used to evaluate either
Boolean or ranked trust, as well as—possibly contradictory—trust policies of different CDSS peers without
recomputing data exchange solutions [21].

4 Dynamic operation and update exchange

Given that ORCHESTRA performs query answering on locally materialized data instances, this raises the ques-
tion of data freshness in the peer instances. The CDSS approach sees data sharing as a fundamentally dynamic
process, with frequent “refreshing” data updates that need to be propagated efficiently. This process of dy-
namic update propagation is called update exchange. It is closely related to the classical view maintenance
problem [16].

Operationally, CDSS functions in a manner reminiscent of revision control systems, but with peer-centric
conflict resolution strategies. The users located at a peer P query and update the local instance in an “offline”
fashion. Their updates are recorded in a local edit log. Periodically, upon the initiative of P’s administrator,
P requests that the CDSS perform an update exchange operation. This publishes P’s local edit log, making it
globally available via central or distributed storage [27]. This also subjects P to the effects of the updates that
the other peers have published (since the last time P participated in an update exchange). To determine these
effects, the CDSS performs incremental update translation using the schema mappings to compute correspond-
ing updates over P’s local instance: the translation finds matches of incoming tuples to the mappings’ sources,
and applies these matchings to the mappings’ targets to produce outgoing tuples (recall the “patching” process
in Example 3).

Doing this on updates means performing data exchange incrementally, with the goal of maintaining peer
instances satisfying the mappings. Therefore, in CDSS the mappings are more than just static specifications:
they enable the dynamic process of propagating updates.

Example 7: Refer again to Figure 2(b), and suppose now that the curator of uBio updates her database by adding
another synonym for the fruit fly: U(“Oscinella frit”, “Oscinella frit Linnaeus”). When this update is published,
it introduces a violation of mapping m3 that must again be “patched.” The update translation process therefore
inserts a corresponding tuple into BioSQL: B(⊥1, “Oscinella frit Linnaeus”).

Propagating the effects of insertions to other peers is a straightforward matter of applying techniques from [16].
Deletions are more complex, both in terms of propagating them downstream (to instances mapped from the ini-
tial deletion) and optionally upstream (to sources of a derived, now-deleted tuple).

Downstream propagation involves identifying which tuples in a derived instance are dependent on the tu-
ple(s) we are deleting and have no alternate derivations from the remaining source tuples. The algorithms of [16]
provide one solution, involving deleting and attempting to re-derive all dependent tuples. Provenance enables
a more efficient algorithm [14], which determines if a tuple has alternative derivations, avoiding unnecessary
deletions and rederivations.

Upstream propagation requires determining the sources of a derived tuple, and removing (some of) them,
so that this tuple is no longer derivable through the mappings. This problem is closely related to the view
update problem [8], and raises the possibility of side effects: if a source tuple is removed, additional tuples that
were derived from it and were not among the users’ deletions may also be deleted. Traditionally, we disallow
updates whenever the database integrity constraints do not guarantee side-effect-free behavior (a very restrictive
approach in practice). In ORCHESTRA we provide a more flexible approach. We use provenance to check at
run-time whether some deletion propagation would cause side effects to any other peer specified by the user.
We only propagate to the sources those deletions that do not cause side effects, while we handle the remaining
deletions through the rejection tables (Section 2.2). This allows much greater levels of update propagation in
practice.
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5 Querying provenance

To this point, we have described the internal uses of provenance in a CDSS. However, provenance is also useful
to CDSS end-users as they perform data curation and other manual tasks. Unfortunately, the complexity of
provenance graphs can often make it difficult for such users to explore the provenance of data items they are
interested in. Moreover, curators may not be interested in the complete provenance of some items, but only
derivations involving certain mappings or peers they consider authoritative.

For these reasons, we have designed and implemented ProQL [21], a query language for provenance. ProQL
can help curators or other CDSS users explore and navigate through provenance graphs, based on as little
information as they have in their disposal, through the use of path expressions. It also allows them to focus
only on parts of the graph which are of interest to them. ProQL builds upon the fact that our provenance model
generalizes a variety of annotation computations, such as trust scores, probabilities, counts, security access levels
or derivability. In particular, ProQL allows CDSS users to specify “source” annotations for tuple and mapping
nodes in these graphs and uses those to compute annotations for derived tuples of interest.

Example 8: The query shown in Figure 4 illustrates some of these features. First, it matches all derivations of
tuples inB (of any length, as indicated by←+) whose last step involves mappingsm1 andm3. Then, it specifies
that any derivations throughm1 as well as tuples inG with name “Musc.” are untrusted, while everything else is
trusted (essentially, these are the trust policies from Example 6). Applied on the provenance graph of Figure 3,
it determines that the tuples B(44, “Peri.”), B(⊥1, “Osci.”) are trusted, while the remaining tuples in B are
untrusted.

More details about the syntax of ProQL, as well as indexing techniques to optimize provenance query processing
can be found in [21].

6 Related work

In this paper we surveyed briefly the core update exchange and provenance facilities of ORCHESTRA, as orig-
inally presented in [14, 20], and the provenance query language of [21]. Other major features of the sys-
tem include a distributed conflict reconciliation algorithm [27], a distributed storage and query engine [28], a
keyword-based query system incorporating rankings and user feedback [25]. Related work on incremental up-
date optimization appears in [13]. Data sharing with conflict update resolution policies is studied in [22]. The
semiring framework for ORCHESTRA’s provenance model was introduced in [15], and further elaborated in [10]
and [12].

With hindsight, we find misleading the term “how-provenance” (originating in a footnote of [15] and popu-
larized in [5]). It allows for an interpretation according to which this is yet another provenance model, parallel
to why- and where-provenance [4]. As we saw, the semiring framework encompasses many previously proposed
provenance models. This includes where-provenance as soon as we annotate other data elements beyond tuples,
as shown in [10] (see also [26]).

Recognizing the limitations of why-provenance, [6] introduces route-provenance, which is closest to the
provenance model used in ORCHESTRA, albeit used for a different purpose—debugging schema mappings. Our
model maintains a graph from which provenance can be incrementally recomputed or explored, whereas in [6]
the shortest route-provenances are recomputed on demand. [5] contains many more references on provenance
that space does not allow us to mention here.

ORCHESTRA builds upon foundations established by PDMS (e.g., [17]) and data exchange [24, 9]. In [11],
the authors use target-to-source tgds to express trust. We support a more flexible trust model where each peer
may express different levels of trust for other peers, and trust conditions compose along paths of mappings.
Moreover, our approach does not increase the complexity of computing a solution.
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7 Conclusions

The ORCHESTRA project represents a re-thinking of how data should be shared at large scale, when differences
of opinion arise not only in the data representation, but also which data is correct. It defines new models and algo-
rithms for update exchange, provenance, trust, and more. Our initial prototype system demonstrates the feasibil-
ity of the CDSS concept, and we are releasing it into open source at code.google.com/p/penn-orchestra.
We believe that many opportunities for further research are enabled by our platform. For example, we believe
there are many interesting avenues of exploration along derivations, conflicting data, data versions, etc. We also
feel it would be worthwhile to explore integrating probabilistic data models into the CDSS architecture.
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Abstract

Developing high-quality information extraction (IE) rules, or extractors, is an iterative and primarily
manual process, extremely time consuming, and error prone. In each iteration, the outputs of the ex-
tractor are examined, and the erroneous ones are used to drive the refinement of the extractor in the
next iteration. Data provenance explains the origins of an output data, and how it has been transformed
through a query. As such, one can expect data provenance to be valuable in understanding and debug-
ging complex IE rules. In this paper we discuss how data provenance can be used beyond understanding
and debugging, to automatically refine IE rules. In particular, we overview the main ideas behind a
recent provenance-based solution for suggesting a ranked list of refinements to an extractor aimed at
increasing its precision, and outline several related directions for future research.

1 Introduction

As vast amounts of data are made available in pure unstructured format on the web and within the enterprise,
Information Extraction (IE) – the discipline concerned with extracting structured information from unstructured
text – has become increasingly important in recent years. Today, information extraction is an integral part of
many applications, including semantic search, business intelligence over unstructured data, and data mashups.

In order to identify regions of text that are of interest, most IE systems make use of extraction rules. Rule-
based systems such as CIMPLE [10], GATE [8], or SystemT [3, 16], use rules throughout the entire extraction
flow. An example rule in these systems might read, in plain English, “identify a match of a dictionary of
salutations followed by a match of a dictionary of last names and mark the entire region as a candidate person”.
The rule would be formally expressed using the system’s rule language such as XLog [23] in CIMPLE, JAPE [7]
in GATE, or AQL [21] in SystemT. Machine learning-based systems such as [12, 17] use rules in the first stage of
an extraction flow, to identify basic features such as capitalized words, or phone numbers. These basic features
are fed as input to various machine learning algorithms that implement the rest of the extraction process. We
refer the reader to recent tutorials [5, 6, 11] and survey [22] for more details on information extraction systems.
Regardless of the kind of system, machine learning-based or rule-based, the output of extraction rules must be
extremely accurate in order to minimize the negative impact on subsequent data processing steps, i.e., the rest
of the extraction flow, or the application consuming the extracted information.

Copyright 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗Work partially done while at IBM Research – Almaden.
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Developing highly accurate information extraction rules (or extractors, in short) is a laborious process, ex-
tremely time consuming, and error prone. The developer starts by building an initial set of rules, and sub-
sequently proceeds with an iterative process consisting of three steps: (1) execute the rules over a set of test
documents, and identify mistakes in the form of wrong results (false positives), as well as missing results (false
negatives); (2) analyze the rules to understand the causes of the mistakes; and (3) finally determine refinements
that can be made to the extractor to correct the mistakes. This 3-step process is repeated until the developer is
satisfied with the accuracy of the extractor.

Traditional research in the field of data provenance [2, 24] seeks to explain the presence of a piece of data
in the result of a query: why it is in the result, where it originated in the input database, and how it has been
transformed by the query. Such kind of provenance has been recently referred to as provenance for answers.
In contrast, recent work on provenance for non-answers [1, 14, 15] seeks to explain the reasons for which an
expected result is missing from the output. Together, techniques for computing provenance for answers and
respectively, non-answers, can be used to explain false positives, and respectively false negatives, therefore
facilitating step 2 of the rule development process described above.

While provenance helps the developer in identifying possible causes for incorrect results (step 2), it does not
directly address the challenges associated with identifying rule refinements (step 3). In practice, an extractor may
contain hundreds of rules, and the interactions between these rules can be very complex. Therefore, designing a
rule refinement is a “trial and error” process, in which the developer implements multiple candidate refinements
and evaluates them individually in order to understand their effects: “Are any mistakes being removed ?”, and
side-effects: “Are any correct results affected ?” An “ideal” refinement would eliminate as many mistakes as
possible, while minimizing effects on existing correct results. Based on our experience building information
extraction rules for multiple enterprise software products, designing a single such refinement may take hours. In
the same spirit, refining a complex extractor when switching from one application domain to another can take
weeks or even months [4, 20].

In this article we explore the question of whether provenance can be used beyond understanding the incorrect
behavior of extraction rules, to automatically refine the rules, therefore facilitating step 3 of the rule development
process. We start by illustrating the challenges associated with refining extraction rules using a simple motivating
example (Section 2). In Section 3, we overview the main ideas behind a recently proposed provenance-based
solution for suggesting a ranked list of refinements aimed at improving an extractor’s precision that we have
implemented in the SystemT1 information extraction system [3, 16, 21] developed at IBM Research – Almaden.
In doing so, we keep the discussion at a high-level, and refer the reader to [19] for technical details. We conclude
by outlining several directions for future research in Section 4.

2 Challenges in Developing Information Extraction Rules

Figure 1(a) illustrates a simple extractor for identifying mentions of person names consisting of rules R1 to
R5. The figure also illustrates the output of the extractor on an input document consisting of a (fictitious) news
report as markup in the input text itself, as well as using a familiar tuple-based representation. At a high-level,
the semantic of the extraction rules are as follows. Rules R1 and R2 look for mentions of first and last names
by identifying matches of entries in dictionaries ‘first names.dict’ and ‘last names.dict’ in the input text. These
mentions are used by rules R3 and R4 to identify candidate person names. In particular, R3 looks for mentions
of a first name followed immediately by a last name, therefore marking, for instance, Morgan Stanley and
John Stanley as candidate persons. RuleR4 identifies mentions of last names preceded by a salutation (e.g.,
Mr., Ms.), therefore marking, for example, Stanley in “... Mr. Stanley ...” as candidate person. Finally, R5

constructs the output of the extractor by unioning together the person mentions identified by R3 and R4.
1http://www.alphaworks.ibm.com/tech/systemt
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Dictionary file first_names.dict: John, Morgan, Smith, …

Dictionary file last_names.dict: Barney, Doe, Stanley,…

R1: create view FirstName as
Dictionary(‘first_names.dict’, Document, text);

R2: create view LastName as
Dictionary(‘last_names.dict’, Document, text);

R3: create view Candidate1 as

select Merge(F.match, L.match) as match
from FirstName F, LastName L
where FollowsTok(F.match, L.match, 0, 0);

R4: create view Candidate2 as

select * from LastName L
where MatchesRegex(‘Mr.|Ms.|Mrs.’, LeftContextTok(L.match,2)));

R5: --Create the output of the extractor
create table Person (match span);

insert into Person

( select * from Candidate1 )
union all
( select * from Candidate2 );

Investment firm Smith Barney Co. 

announced that it hired 

ex-Morgan Stanley executives 

John Stanley and Morgan Doe. 

Mr. Stanley and Mr. Doe have been 

fired by Morgan Stanley Co. last week.

p1 (c1)

FirstName:

Morganf5:

Morganf4:

Johnf3:

match

f1: Smith

f2: Morgan

LastName:

Stanleyl7:

Doel6:

Stanleyl5:

Doel4:

match

l1: Barney

l2: Stanley

l3: Stanley

Candidate1:

Morgan Stanleyc5:

Morgan Doec4:

John Stanleyc3:

match

c1: Smith Barney

c2: Morgan Stanley

Candidate2:
match

c6: Stanley

c7: Doe

Person:

Morgan Stanleyp7:

Doep6:

Stanleyp5:

Morgan Doep4:

John Stanleyp3:

match

p1: Smith Barney

p2: Morgan Stanley

p2 (c2)

p3 (c3) p4 (c4)

p5 (c6) p6 (c7)

p7 (c5)

(a) (b)

(c) (d)

Morgan Stanley

Morgan Stanley

π3

Morgan Stanley

σ3

⋈3

Morgan

Dictionary1

Stanley

Dictionary2

Document

R3

R2R1

c2:

l2:f2:

c’2:

c’’2:

Morgan Stanley

Morgan Stanley

∪5

π 5

σ5

p2:

p’2:

p’’2: Morgan Stanley

R5

d0:

Document:
text

d0: Investment firm ...

Figure 1: Example Person extractor (a); an input document (b); the results of the extractor on the input docu-
ment (c); provenance graph of output tuple p2 (d).

As the reader might have gleaned from the example, the basic unit of data in the information extraction
context is a region of text, called a span. An information extraction program takes as input a document text
(represented as relation Document with a single span attribute text), and outputs a set tuples, each with one or
more attributes of type span. A span is associated with begin and end offsets in the input text (see Figure 1(b)).
For simplicity, however, we distinguish between spans with the same text value using unique identifiers, see for
example p2, and p7. In specifying the extraction rules, we use SQL enriched with a few constructs for expressing
text-specific operations, such as basic feature extraction (e.g., Dictionary() table function to specify dictionary
matching), and span manipulation scalar functions (e.g., combine two spans into a larger span – Merge(), select
the left context of a span of certain length – LeftContext()) and predicates (e.g., check if two spans follow one
another within a certain distance – Follows(), check that a span satisfies a regular expression – MatchesRegex()).
The syntax is self-explanatory and we do not insist on the details. We note that we use an SQL-like language
for ease of exposition in this article. The language is similar to SystemT’s AQL rule language used in our
implementation, and can express most popular constructs in other IE rule languages such as JAPE or XLog.

It is easy to see that the extractor in Figure 1 suffers from low precision: while it identifies all correct person
mentions, or true positives (e.g., John Stanley, Mr. Stanley), it also identifies incorrect mentions, or false
negatives (e.g., Smith Barney, Morgan Stanley). Suppose a developer wishes to improve the precision
of the extractor. To this end, her goal is to refine the rules in order to remove as many false positives from
its output, while preserving true positives as much as possible. Table 1 lists a few of the many possible rule
modifications (expressed in both English and our rule language), along with their effects and side-effects. For
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ID Rule refinement Effect Side-effect
M1 Filter Person if it contains the term Stanley p2, p7 p3, p5

Add selection predicate Not(ContainsDict(’invalidPersonFragment.dict’, match)) to R5

M2 Filter Candidate1 if it contains the term Stanley p2, p7 p3
Add selection predicate Not(ContainsDict(’invalidPersonFragment.dict’, match)) to R3

M3 Remove entry Stanley from dictionary ‘last names.dict’ p2, p7 p3, p5
M4 Remove entry Morgan from dictionary ‘first names.dict’ p2, p7 p4

M5(M
′
5) Filter Person (Candidate1) if it contains the term Morgan Stanley p2, p7 –

Add selection predicate Not(ContainsDict(’invalidPerson.dict’, match)) to R5 (R3)

M6 Filter (Candidate1) if right context contains organization clue, e.g., Co p1, p7 –
Add selection predicate MatchesDict(’orgClue.dict’,RightContextTok(L.match))) to R3

M7 Identify person mentions contained within organization mentions;
Subtract them from Person p1, p2, p7 –

Table 1: Potential rule refinements for the extractor in Figure 1, along with their effects and side effects.

example, M1 adds a predicate to R5 that filters mentions containing the term Stanley. While this eliminates
two of the three false positives, it also removes two correct results (i.e., John Stanley, and Mr. Stanley).
Alternatively,M2 modifiesR3 in a similar fashion with the side-effect of removing a single correct result (John
Stanley). M3 modifies R2 so that Stanley is no longer identified as a last name, which affects both R3 and
R4, which will fail to identify correct candidates John Stanley and Mr. Stanley, respectively. Similarly,
M4 modifies R1 so that Morgan is no longer identified as first name, thus causing R3 to fail to mark Morgan
Doe as a candidate person. The rest of modifications do not have any side-effects: M5 and M ′

5 have the same
outcome as M2, while M6 removes Smith Barney, but only one of the mentions of Morgan Stanley.
Finally, assuming the developer has available an extractor for identifying mentions of organizations, she may
use it to add a subtraction on top of R5 so that person mentions completely contained within an organization
mention are subtracted from the final result. Assuming Smith Barney and Morgan Stanley are identified
as organizations, M7 results in removing all incorrect person mentions, while not affecting any correct ones.

As illustrated by our example, the developer faces several challenges when designing a rule refinement for
removing false positives from the result to improve the precision of the extractor.

Challenge 1: Which rule should be modified ? In general, there are multiple rules that may be refined in order
to remove a false positive. For example, as illustrated by M1 to M4, a modification to any of R1, R2, R3 and
R5 may potentially result in removing Morgan Stanley from the output. However, the overall effects and
side-effects of such potential modifications are very different.

Challenge 2: What kind of modification should be made ? Once a rule has been chosen for refinement, there
are multiple possible classes of modifications to choose from. For example, should we add a selection predicate
as in M6, or a more complex subtraction that involves adding a new rule as in M7 ?

Challenge 3: How should the modification be parametrized ? Within each class or rule modifications there
are multiple parameters to configure. Consider for example the addition of a selection predicate. Should the
predicate be applied to the match itself as in M5, or the context as in M6, and if so, what is the length of the
context? Furthermore, should the predicate be based on a regular expression (such as in rule R4), or a dictionary
(e.g., M5, M6)? Which regular expression or dictionary is most appropriate?

Although not illustrated by our example, the developer faces similar challenges when designing refinements
to address false negatives, with the goal of improving recall. Furthermore, the space of refinements increases
dramatically as we move from a simple example to a real-world extractor consisting of hundreds of rules.
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3 A Provenance Approach to Automatic Rule Refinement

Clearly, it is not feasible for a rule developer to consider all possible refinements. In general, in each iteration of
the development process, an experienced developer focuses on a few mistakes that exhibit some commonality.
She designs several refinements by considering a few alternatives of rule, type of refinement and parameters,
evaluates each refinement individually, and choose one that she finds most appropriate in addressing the target
mistakes. Finally, she repeats the process, usually targeting a different class of mistakes. As the amount of human
effort required in this “trial and error” process is considerable, an interesting question is whether it is possible
to automate some (if not all) of the above steps. In the rest of this article we discuss how provenance enables an
approach for systematically and efficiently exploring a large space of possible refinements, and computing a list
of “most effective” refinements to be presented to the rule developer.

Provenance Graph. While examining the result of an extractor on a collection of documents, the rule developer
records information on the results’ accuracy. Let us assume that she labels the extracted results as correct (i.e.,
true positives) or incorrect (i.e., false positives). With this information, we can leverage provenance directly
in order to systematically address Challenge 1, i.e., which rule to modify? In particular, we are interested
in a provenance model that captures how an output tuple has been generated by the extraction program from
the input document. Such a provenance representation can be obtained by rewriting the extraction program
to record, for each tuple generated by the system, the source or intermediate tuples directly responsible for
generating that tuple. The additional information obtained via the rewritten program can be used to construct a
provenance graph2 that illustrates how source tuples and intermediate tuples have been combined by operators
of the extraction program in order to generate each of the output tuples. Similar to the representation of SQL
using relational algebra operators, we assume a canonical representation of an extraction program as a DAG of
operators (e.g., the SPJUD relational operators and text-specific operators such as Dictionary). However, in the
context of information extraction, none of these operators are duplicate removing, as deduplication is explicitly
applied at certain stages of the pipeline using a special consolidation operator. We do not consider this operator
in this article, and therefore each output tuple has a single derivation. For example, the portion of the provenance
graph corresponding to the derivation of the false positive p2: Morgan Stanley is shown in Figure 1(d).

High-Level Changes. In order to remove a false positive from the final result, it is sufficient to remove any
edge in its provenance graph, since each tuple has a single derivation. Therefore, by examining the prove-
nance of each false positive, we can compile a list consisting of triplets of the form (Op, intermediate result,
false positive), representing the fact that modifying operator Op in order to remove intermediate result
from its output causes false positive to disappear from the result of the extractor. We call such triplets
high-level changes. For example, the following high-level changes would be among those generated for p2:
(Dictionary1, f2, p2), (Dictionary2, l2, p2), (◃▹3, c

′′
2 , p2), (σ3, c

′
2, p2), . . ., (∪5, p2, p2). Therefore, the choice

of which rule to modify in order to remove p2 from the output is narrowed down to R1 - R3 and R5.

Low-Level Changes. A high-level change indicates which rule may be refined, but it does not tell us how
to refine it (i.e., Challenges 2 and 3). We refer to a specific refinement that implements one or more high-
level changes as a low-level change. For example, M1 is a possible low-level change for the high-level change
(Dictionary1, f2, p2). It is easy to see that any high-level change can be trivially translated into a low-level
change that removes exactly one false positive (e.g., M5 and M ′

5). However, such refinements are not useful in
practice, as they do not generalize well to unseen documents. Intuitively, we would prefer non-trivial refinements
(e.g., M6 and M7) that remove multiple false positives at a time, and thus have the potential to be effective in
general. It turns out that high-level changes are useful towards addressing this problem. Specifically, grouping

2The provenance graph can be seen as a graphical representation of an instantiation of provenance semirings [13] in which each
source (document) tuple is tagged with a unique id, and each derived tuple is tagged with an expression over a semiring having the set
of all source tuple ids as domain, and equipped with operations · and + for combining the provenance of tuples involved in a join, and
respectively, when a tuple can be derived in multiple ways, and a unary function for representing the operator involved in the derivation.
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high-level changes by operator Op produces a maximal set of false positives that can be affected by any refine-
ment of Op, along with the specific outputs that should be removed from the output of Op in order to achieve
that maximal effect. For example, the three high-level changes for operator π3 of R3: (π3, c1, p1), (π3, c2, p2)
and (π3, c5, p7) indicate that modifying π3 to remove c1, c2 and c5 from its output results in eliminating all false
positives p1, p2 and p7. With this information, it is now possible to devise an algorithm for efficiently exploring
a large space of types of refinements, as well as algorithms for parametrizing specific types of refinements, while
not overfitting to the training document collection.

Given the set of high-level changes grouped by operator Op, our algorithm for generating a set of top-k
“promising” refinements to be presented to the rule developer proceeds in three steps. First, for each group of
high-level changes, we consider different types of low-level changes that can be applied to Op. For example,
in the case of the Dictionary operator we may consider removing some entries from the dictionary (e.g., as in
M3), or changing the matching mode from case insensitive to case sensitive. For the select operator, we may
consider adding a selection predicate (e.g., as in M6). In order to be able to evaluate a refinement’s quality, the
types of refinements considered are carefully selected to guarantee restricting the final result set. Indeed, it is
impossible to evaluate a refinement that introduces new tuples in the extraction result, as we have no knowledge
of whether these new tuples are correct or not. Second, for each Op and each type of low-level change, we
generate k most promising sets of parameters for that low-level change. At the same time, we also compute
the effects and side-effects of each concrete low-level change. Finally, we rank the low-level changes generated
based on the quality improvement they achieve and present the top-k to the user.

In generating candidate sets of parameters, we apply algorithms specifically designed for each type of low-
level change. Before discussing an example of such an algorithm, we briefly overview the main ideas underlying
low-level change evaluation, which are shared by all our specific algorithms. A naive evaluation approach would
be to simply implement each low-level change and execute the refined extractor. However, this is wasteful and
would significantly affect the response time of the system, as the number of refinements considered in a single
iteration might be in the order of thousands. A better approach is to traverse the provenance graph and record a
mapping between each output tuple and each of the intermediate tuples involved in its provenance. By reverting
this mapping we can obtain, for each intermediate tuple t in the result of some operator Op, the set of output
tuples depending on it. Since each tuple has a single derivation tree, modifying Op to remove a tuple t from
its local output guarantees the removal of all tuples depending on t from the final result. Furthermore, since
each refinement can only restrict the final result, we also know the labels of all these tuples. Therefore, we can
determine the effects and side-effects of the refinement on overall result quality by unioning this information for
all tuples removed by the refinement from the local output of Op.

A detailed discussion of specific algorithms for parametrizing low-level changes is outside the scope of this
article. To give the reader a flavor, however, we briefly describe the algorithm for parametrizing filter selection
predicates (as in M6) next. The algorithm systematically considers the tokens to the left or right of each span
in a tuple affected by a high-level change. For each choice of left/right context of a given length up to a preset
maximum value, the union of the contextual tokens forms a set of potential dictionary entries. For example, in
the case of operator σ3 of R3, the tokens Co and executives would be considered as potential dictionary
entries for a filtering predicate on the right context of length 1. We now need to evaluate the effects of using
various subsets of these dictionary entries to filter the local output of σ3. However, the number of all subsets can
be prohibitively large. To avoid evaluating all of them, we adopt a greedy approach: we group together tuples
according to which dictionary entries occur in the vicinity of their spans, evaluate the effect of each entry on
result quality using the approach described above, and generate k refinements, each using top-k most effective
entries (k is the maximum number of refinements that will be presented to the developer). Two refinements
would be generated for our example, one using Co, while the other using both Co and executives as filter.
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4 Conclusion and Directions for Future Research

We discussed some of the challenges in designing high-quality information extraction rules, and showed that
provenance plays an important role in facilitating rule development that goes far beyond the general consensus
that “provenance is useful in understanding the program and its output”. In particular, we discussed the main
ideas behind a framework for automatically generating rule refinements aimed at improving the precision of an
extractor based on user labeled examples. Very recently, the idea of extractor refinement based on provenance
and labeled examples has been also approached in [9] in the context of iterative IE systems, however, refinements
are considered only for the last step of an extraction flow, and not an entire extraction program as we do here.

Our approach is only a first step towards a general framework for automatic refinement of information
extraction rules. We conclude by outlining several possible extensions.

Precision-driven Refinement. Besides the provenance → high-level change → low-level change paradigm,
the usefulness of the framework lies in efficient algorithms for generating concrete refinements. While the
framework implements several such algorithms, more could be added. In particular, incorporating existing
approaches for learning basic features such as regular expressions [18] would be extremely useful. Furthermore,
the assumption made in Section 3 is that an output tuple has a single derivation. Therefore, removing any
single intermediate result involved in its provenance is sufficient to eliminate that output tuple. Formalizing the
notion of high-level change in the case of multiple derivations, and designing efficient algorithms for generating
concrete refinements in this context are interesting directions for future work.

Recall-driven Refinement. Our current framework handles refinements geared towards improving precision.
However, equally important is improving the recall, i.e., generating refinements that remove false negatives,
while not affecting existing correct results. Towards this end, it would be interesting to extend our framework to
incorporate recent techniques for computing provenance of missing answers [1, 14, 15]. The notion of high-level
change, and algorithms for efficiently generating low-level changes need to be revisited in this context.

Active Learning of Labeled Examples. The ability to automatically generate useful refinements depends on
the number, variety and accuracy of the labeled examples provided to the system. While labeled data for certain
types of popular extractors on general-purpose domains is publicly available [26], in most cases the labeled data
must be provided by the rule developer. Unfortunately, labeling data is itself a tedious, time-consuming and
error prone process. It would be interesting to investigate whether active learning techniques [25] can be used to
present to the developer only those most informative examples, therefore facilitating the labeling process.
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Abstract

We describe the social features of Google Fusion Tables, a cloud-based data management service whose
goal is to facilitate collaboration around data sets. The social features include the ability to specify
attribution of data sets, a mechanism for conducting discussions on data (at fine granularity, such as
row, column or cell), the ability to merge tables that belong to different owners, and the ability to share
specific queries and visualizations and embed them in other properties on the Web. We describe the
rationale for designing these features and our experiences after our first year of interacting with users.

1 Introduction

Google Fusion Tables [7, 8] is a cloud-based service for data management and integration. The over-arching goal
of Fusion Tables is to facilitate new types of collaboration around private and public data sets and to enable data
management by a broader audience of users. Though we have witnessed a wide range of applications of Fusion
Tables, we have seen considerable usage by organizations that are struggling with making their data available
internally and externally, and communities of users that need to collaborate on data management across multiple
enterprises.

Fusion Tables enables users to upload tabular data files (spreadsheets or CSV) of up to 100MB. The system
provides several ways of visualizing the data (charts, maps, time-lines), and the ability to query by filtering and
aggregating the data. We support integrating data from multiple sources by performing joins across tables that
may belong to different users. Derived tables can be created by joining multiple tables or by projecting a subset
of the columns from a single table. Users can keep the data private, share it with a select set of collaborators, or
make it public. Fusion Tables also supports an API which many have used to build interesting applications.

As we gathered requirements for Fusion Tables it was clear that provenance and lineage need to be attached
to tables in such an open environment. However, we quickly realized that there is a much broader set of features
that are needed to support rich social interactions. This paper focuses on the social features of Fusion Tables:

• Attribution: when a user uploads a table into Fusion Tables, she is given the option to attach an attribution
to the data. The attribution is the mechanism for specifying the provenance of the data. The attribution is
attached to any visualization or table that is derived from the table. Attribution is crucial for two reasons.
First, it is important for users to know the source of the data they are looking before they can trust it or
use combine it in interesting ways. Second, many owners of data are reluctant to share data unless the
attribution is attached. Hence, attribution plays a key role to entice organizations to share their data.

Copyright 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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• Discussion: Fusion Tables enables users to discuss the data at a fine granularity: individual rows, columns
and cells. Discussions are important in order to enable users to improve the quality of the data, clarify the
assumptions underlying it, or opine on its meaning.

• Data integration: as users find tables produced by others, they want to combine them to create new tables.
Fusion Tables enables a user to merge any pair of tables as long as the user has read permissions on it.
The system also enables users to inspect the lineage of derived tables.

• Publishing: Fusion Tables offers several easy ways of publishing data. A user can create a saved link
of a table or a visualization that can be shared via social media. Users can also embed a visualization
in other web pages by cutting and pasting an HTML snippet. Publishing data effectively is an important
component of enticing people to create interesting data sets.

This paper discusses the social aspects of fusion tables and the rationale underlying their design (Section 2).
We then discuss some of the experiences we have had with these features and the challenges that lie ahead 3).

2 Social features of Fusion Tables

We designed the social features of Fusion Tables to facilitate collaboration among multiple parties, the ability to
enhance the data, create new data sets, and to provide easy discovery and dissemination of data. In what follows
we describe the features of Fusion Tables that are focused on social interactions.

Attribution: In an open data environment such as the Web, it is crucial that data owners get credit for publishing
their data and that users know the provenance of the data as they inspect it or use it further. As we were building
Fusion Tables, the need to specify attribution came up as a key requirement.

Figure 1: Specifying attribution in Fusion Tables. Users are encouraged to provide the attribution as a string
and a URL. They are also encouraged to describe their data during the import process. In addition, users can
specify whether the data can be exported into CSV files by other parties.

Users specify the attribution of a table in initial import flow (see Figure 1). Our import flow is designed
to have as few steps as possible in order to make import simple. Even so, we felt that specifying attribution
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is important enough to be included. The attribution includes both a string value and a URL of the source. It
is important to note that you do not need to be the originator of the data in order to give the attribution. For
example, in Figure 1 a user is importing data that he found (and attributes to) the Pacific Institute. On the Web
it is common for users to upload data that is attributed to other organizations.

The attribution is always shown along with the data, whether it is visualized as a table or using a chart or a
map. As the data gets processed, the attribution is propagated appropriately.1 When two tables are joined, the
attributions of both tables are shown and the interface on the table view shows the columns from the different
sources in slightly different colors. The attribution is also propagated to views and selections of the data. Given
the current query capabilities of Fusion Tables, there are no subtle issues related to propagating attribution – the
attribution always includes the attributions of all the base tables involved in a view. Users can also inspect how
a table is derived from other base tables in the About menu. We note that lineage on views is shown at the level
of tables. We do not currently show how each row in a derived table is derived from rows in the base tables.

Discussion: Viewing and querying data are just a first step in a real collaborative effort. In many applications
where data is shared among multiple parties, there needs to be significant discussion about the data. The dis-
cussion can lead to correcting data values, expressing additional opinions about the data, and elucidating the
assumptions underlying the data.

Given that we aim to support large collections of data, it was necessary that we enable users to discuss data at
varying levels of granularity – discussing 1 million rows in one block of text would be an ineffective way of keep
track of conversations. Hence, Fusion Tables enables conducting discussions at different levels of granularity,
including individual rows, columns and cells (see Figure 2).

 

Figure 2: Discussion on cells in Fusion Tables. Discussions can be conducted on individual rows, columns or
cells. Discussions are shown as trails, and if the value of the data is changed, then the change is shown as part
of the trail to provide context.

Discussions are presented as a record of statements through time, similar to instant messaging interfaces.
When a value in a cell changes, the change is shown as part of the discussion trail, and therefore the context

1When data is embedded in other web sites, we currently do not show the attribution, mostly because we have not yet found an
appropriate place in the UI.
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of the change is visible. Fusion Tables also provides a discussion panel, where the user can search through a
collection of discussions, rather than having to view each one.2

Unlike attribution, we do not propagate discussions on a table to tables that are derived from it. The rationale
for this design is that a view may be used for a different purpose. For example, you may want to conduct two
parallel discussions on a different views of the same underlying data with two distinct set of collaborators. There
are cases where users would like to propagate discussions to views, and therefore in, in principle, we could leave
the propagation decision to the user (using the mechanisms developed in DBNotes [5]).

One of the emergent use cases of the discussion feature has been to annotate the data with additional ex-
planation. For example, a column may use a convention to describe different health facilities in a country, and
a comment on the column can explain the meaning of the different conventions. While the same information
could have been put in the text description of the table, putting it in a comment makes it more accessible while
viewing the data. However, explanations of the data are likely valuable to all users of the data, and less likely to
need to be kept limited to a private set of collaborators. This is an example of where the capability to over-ride
the decision not to propagate discussions to views would be useful.

Data integration: The ability to find tables produced by others raises the potential of combining multiple tables.
For example, if you own a table about coffee production by different countries in the world, you may want to
combine it with tables containing the GDP or population of these countries. More generally, combined data sets
enable users to discover deeper correlations or trends. As shown in Figure 3, Fusion Tables currently lets users
merge (i.e., join) two tables based on a shared column. When two tables are combined, the permissions on the
individual columns are the same as for the base tables.

Some subtle issues arise as we propagate permissions on tables that are derived by merging. Suppose user
A wants to grant permissions on table T to user B. If the table T is the result of fusion tables T1 and T2, then
A may not have write permissions on all of T ’s columns. Hence, A can only grant write permissions to B on
columns of T for which A himself has write permissions. We note that join column used to create a merged
table is never directly editable on the merged table itself. All changes to the merge column need to be made on
the base tables.

Publishing data: There are several mechanisms for sharing data in Fusion Tables. For starters, an owner of
a table can share it with a set of collaborators by specifying their email addresses. The collaborators can be
granted read and/or write permissions on the table. The owner can also specify merge permissions, where the
collaborator can add new columns to the table but cannot change the data in the existing columns. Merge
permissions are useful in cases where multiple parties are creating a data set together, but each one has authority
over a particular set of columns.

Tables can also be made public to be viewed by anyone. The table owner can decide whether to allow search
engines to crawl the table or not. If not, the data may be shared by sending around a link. In addition to showing
up in general search results, Fusion Tables provides a search facility over the tables that have been made public
and crawlable in the spirit of [6].

We quickly found out that users want share visualizations of the data in addition to the data itself. The
reason is that creating a visualization (which may apply to a carefully chosen subset of the table) can convey a
particular point and involve more intimate knowledge of the data than can be expected by the viewers. Hence,
Fusion Tables enables users to create saved links of the data. A saved link is a visualization (e.g., map, bar chart)
applied to some query over the data. The link can be shared using any social media (e.g., Twitter or Facebook).

Visualizations of the data can be embedded in other Web properties. For example, as illustrated in Figure 4,
a common use case of Fusion Tables is by journalists who want to back up their article by relevant data. Such

2At the storage level, comments are stored in a separate table than the data itself. We store all the comments for all user tables in
a single Bigtable table. The key of the comments table is the subject of the com- ment, which is the triple: (table, row, column). It
uniquely identies the element a comment applies to. The value of a row is the text of the comment, the author, and the date the comment
was posted.
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Figure 3: Integrating two tables via a merge operation. The user can search for tables to merge with, and then
specifies the join column in both tables. In the figure, the user is merging the table Coffee Consumption per
Capita with the table Coffee Production on the Country’ column.

embeddings are a significant source of our traffic, because the data is served to users who are browsing other
popular Web pages. The owner of the data can see how many views a data set received, which is another
mechanism to create an incentive for owners to share their data.

3 Experiences and Challenges

We learned several lessons from our experience with Fusion Tables and from users’ requests. These lessons have
given rise to some challenges in our system and lead to some interesting future work. We summarize the main
ideas below.

Attribution and provenance: We observed that 12% of the tables in the system provide some attribution, and
among tables that have been made public 34% have attribution. One of the issues that was raised by our users is
the desire to distinguish between the case in which the data is uploaded by the actual owner/producer of the data
versus the case in which someone uploaded data they found and want to provide the appropriate attribution. Of
course, in the current state attribution can be abused, but we have not witnessed that happening yet. Currently, the
only way to check whether the data was uploaded by the owner is if their email address matches the appropriate
organization.
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Figure 4: Embedding a map visualization from Fusion Tables in a news article. Updates to the underlying table
will be automatically propagated to the map visualization.

Given our current experience, we view the attribution feature of Fusion Tables as reasonably effective. We
note that comments in discussions also contain the email address of the person commenting. Currently, we do
not let users query for comments by owner, though that could be a useful feature.

We see attribution and provenance playing a significant role in socializing data. In particular, there are
domains in which the source of the data and the exact method that derived data was computed are crucial. For
example, in climate science or bio-diversity many of the discussions among scientists and the messaging of
science to the general public is based on derived data sets. But given the diversity of opinions in these fields and
the fact that the science is constantly evolving, it must be possible to specify where the data came from and when
and how it was derived from other data. Such provenance is necessary in order to ensure that the assumptions
underlying the data are appropriate for the implied conclusion, and in order for other scientists to be able to
recreate the same results.

Discussion: The experience with the discussion feature has been much more mixed and we believe there are
many more challenges there. Our main observation from talking to users is that the role of the discussion feature
in collaboration is not yet clear. Specifically, users do not always understand the purpose of leaving a comment
and what effect it will have. For example, they do not know whether someone will actually reply or act on a
comment that was left on a cell or row. As a result, they resort to the usual ways of discussing data (e.g., email
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and chat).
One strategy to address the confusion issue is to provide discussion mechanisms with more specific seman-

tics. For example, we can enable a data owner to set up a comment where she solicits ratings for particular rows.
As another example, we can specify that a comment is an explicit proposal to change or correct a value in a cell.
The challenge here would be to select a relatively small set of discussion types that would satisfy users’ most
common needs.

Another feature requested by our users is to be able to provide a comment on a set of cells (which cannot be
described as a query in a simple fashion). For example, such a comment would specify that a set of values seem
inconsistent, or that the cells together exhibit an interesting phenomenon that deserves attention.

Users have also noted the desire to discuss specific visualizations or parts of a visualization. For example,
when viewing a scatter plot of a data set you may notice a set of outliers, and it is much more effective to mark
them on the visualization itself. Annotating on visualizations raises the challenge of propagating the annotation
to the underlying data (and from there to other visualizations, when relevant). Basic functionality for annotating
visualizations is supported in ManyEyes [1].

Discussions often refer to specific versions of the data. Fusion Tables does not currently support creating
snapshots of the data and referring to them later. Several users have noted that adding snapshots would increase
the variety of cases in which our discussion features could be used.

Data integration: Our data integration features are quite basic at this point, and this was an explicit decision
when we designed Fusion Tables. The goal was simply to let users see different data sets side by side, without
having to perform any schema-level integration. One of the common requests is to allow more flexibility in
joining two tables. In particular, the rules for matching pairs of cells from the two join columns should be more
flexible. Typically, users merge a pair of tables, but we have seen cases of up to up to eleven base tables being
merged3

Figure 5: A page on the Houston Chronicle that crowd-sources data about burglaries in the Houston area.
Readers are asked to report known burglaries on the accompanying web form.

3See http://tables.googlelabs.com/DataSource?dsrcid=183101.
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Crowd sourcing: One of the interesting applications enabled by Fusion Tables is the ability to crowd-source
data that would otherwise be hard to obtain. For example, Figure 5 shows how the Houston Chronicle asks
their readers to report burglaries in the Houston area. We have seen several cases where Fusion Tables has been
used for this purpose. Crowd-sourcing raises several issues that we will need to address in Fusion Tables, such
as being able to determine which data is reliable, which is accurate and up to date and which is redundant.
Currently all of these issues need to be addressed in the code that implements the crowd-sourcing.

4 Conclusion

Recently, there have been many calls for an open data movement, where data is made public by organizations,
curated and enhanced by people who care about it, and then disseminated to a much wider audience. Such
open data projects have the potential of affecting decision making throughout many organizations, and making
high-quality data more readily available to those who need it.

Fusion Tables and related products such as Factual [2], Socrata [3] and Swivel [4] aim to support the inter-
actions needed for open data using a set of social mechanisms to encourage collaboration. This article discussed
the social features we currently support in Fusion Tables, but we note that the area of supporting social aspects
of data management is still very much in its infancy. We described some of the challenges we have gleaned from
our users, but we are sure more challenges will soon become evident.
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Abstract

We consider the requirements that a citation system must fulfill in order to cite structured and evolving
data sets. Such a system must take into account variable granularity, context and the temporal dimen-
sion. We look at two examples and discuss the possible forms of citation to these data sets. We also
describe a rule-based system that generates citations which fulfill these requirements.

1 Motivation

Citations are one of the most significant tools used in the creation and propagation of knowledge; through
citations we can give credit or attribution to researchers, convey a brief indication of the contents (such as a title),
and provide location information for retrieval of the referenced work. Over the years, a well-developed system
(with minor variations) has evolved for the citation of sources such as books, journals and scholarly papers.
On the other hand, there is no well-defined mechanism for publishing, accessing and citing datasets [9, 1, 8].
Datasets are difficult to catalog [8] and, consequently, they are difficult to cite, retrieve and reuse. We should
note that publishing datasets that are subsequently cited is beneficial for scientists, who may receive credit for
their work of collecting and assuring quality of the dataset and for organizations such as digital libraries or
funding bodies that want to build accessible data collections for the benefit of designated communities [6].

We start with the observation that a citation is more than a persistent identifier such as a URI or Digital Object
Identifier (DOI) 1 which allow us to locate the data of interest; citations also carry certain kinds of metadata such
as a title, authorship, date – information that is immediately useful in judging the quality or currency of the cited
information. Moreover, citations are increasingly used to judge the reputation of a work or person. We believe
that these functions of traditional citation should carry over to data citation, but in order to pursue this idea we
need to make the following assumptions: (a) that there is an accepted system of persistent identifiers, (b) that
the referenced material does not change and (c) that it is hierarchical in structure. All three of these require
some consideration. For (a) there is still no universally accepted system. Many data sets change in time, and old
versions are not always available in order to satisfy (b). While (c) is required for the mechanisms we propose

Copyright 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗Work of this author was performed at the University of Edinburgh, while visiting from the University of Padua.
1http://www.doi.org/ Note that this is neither a persistent identifier nor a citation.
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and is usually true for scientific data sets, it is not clear how it applies to ontologies, something that we briefly
discuss at the end of this paper.

In a conventional citation, information such as ISBN, journal number, page number etc. serve uniquely to
identify a work and also may provide some help in retrieving the work (e.g. once you are inside the library.)
A persistent identifier such as the DOI provides unique identification and may also be associated with a means
of retrieval such as a URL. In order to fulfill the requirements of a conventional citation we clearly have to
associate further information with the DOI. While it is common practice to do this for digital objects, there are
no conventions or standards and, most importantly for data citation, we are typically citing a part of some larger
collection. Here neither the location information within the collection nor the metadata associated with the cited
component can be carried with the DOI. In fact, we believe the situation is the reverse. The DOI should be a
part of the citation.

We consider the citation issues related to the field of Digital Libraries and of Curated Databases. In the
first case we consider how to cite digital archives described by means of the international standard for archival
description which is the Encoded Archival Description (EAD) 2. For the latter case we consider a widely used
curated database which is the IUPHAR DB3 incorporating detailed pharmacological, functional and pathophys-
iological information.

In this paper we present the requirements that a citation system must fulfill in order to guarantee the con-
sistency and the integrity of citations. Furthermore, we take into account the concept of citable unit, explaining
how it is adopted in the citation practice of traditional publications and how it can be exploited in the citation of
structured and evolving datasets. We show how this concept is implicitly adopted by different citation systems
based on the use of unique identifiers. We present the advantages but also some issues of these citation systems;
in particular we put in relation the EAD files and the IUPHAR DB with these citation systems pointing out
where a new solution is necessary to overcome some citation issues. The final section of this paper presents the
rule-based citation system that we have designed and developed4, showing how it addresses the presented issues
and how it can be further extended.

2 Two examples: EAD and the IUPHAR Database

Of our examples, the EAD represents a widely-adopted standard to represent and describe archival resources;
IUPHAR is a curated database that resembles a conventional publications such as a reference manual in that
it represents the work of a large number of experts who both create and revise its content. These two datasets
are quite different in their nature and use, but they both have a hierarchical structure that can be exploited for
the definition of an automatic citation system. Furthermore, they represent two different means of representing
and disseminating the information which has the same citation issues and that can benefit from the solution we
propose.

In order to understand the characteristics of the EAD file we need to introduce some basic concepts about
archives. An archive is a complex organization which is not just a series of (digital) objects that have been
accumulated over time. Archives have to keep the context in which their documents have been created and the
network of relationships among them in order to preserve their informative content and provide understandable
and useful information over time. This is achieved through a richly annotated hierarchical classification system.

In a digital archive the components are described by the use of metadata that can express and maintain this
structure and relationships. The standard format of metadata for representing the complex hierarchical structure
of the archive is EAD [11], which reflects the archival structure and relationships between documents in the
archive. To maintain all this information an EAD file turns out to be a large eXtensible Markup Language (XML)

2http://www.loc.gov/ead/
3http://www.iuphar-db.org/
4The Java API can be found here: http://www.dei.unipd.it/˜silvello/datacitation/
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file with a deep hierarchical internal structure. In Figure 1 we can see how the XML structure of an EAD file
resembles the structure of the archive5.

<eadheader> 

    [...]

<eadheader>

<archdesc level=”fonds”>

    [...]

<did> [...] </did> 

       <dsc label="Fonds">

    [...]

    <c01 label="Sub-fonds"> 

[...]

    </c01>

           <c01 label="Sub-fonds">

        [...]

        <c02 label="Serie">

   [...]

</c02>

             <c02 label="Serie">

   [...]

             </c02>

             <c02 label="Serie">

   [...]

             </c02>

           </c01>

         </dsc>

</archdesc>

FONDS

SUB-
FONDS

SUB-
FONDS

SERIE

SERIE

SERIE

Documents

Archival Tree EAD Structure

Figure 1: The hierarchical structure of an archive mapped into an EAD file.

We can see that every node in the archival hierarchy is mapped in a specific tag of the EAD XML file, where:
The <eadheader> contains metadata about the archive descriptions and includes information about them such
as title, author and date of creation. The <archdesc> contains the archival description itself and constitutes the
core of EAD; it may include many high-level sub-elements, most of which are repeatable. The most important
element is the <did> or descriptive identification, which describes the collection as a whole; it is composed
of numerous sub-elements that are intended for brief, clearly designated statements of information and they are
available at every level of description. Finally, the <archdesc> contains an element that facilitates a detailed
analysis of the components of a fond, the <dsc> or description subordinate components. The <dsc> contains
a repeatable recursive element, called <c> or component. A component may be an easily recognizable archival
entity such as series, subseries or items. Components are not only nested under the <archdesc> element, they
usually are nested inside one another and they are indicated with <c...> tag.

The IUPHAR database incorporates detailed pharmacological, functional and pathophysiological informa-
tion on G Protein-Coupled Receptors, Voltage-Gated and Ligand-Gated Ion Channels. Although the database
is internally represented as a relational database, its structure as see by both the users and the contributors is
essentially hierarchical, where the root is the database as a whole and it has the list of receptor families as chil-
dren nodes; each receptor family node has the receptors as children nodes. Each receptor is described by a Web
page containing the main technical information; these Web pages contain information such as lists of “agonists”,
“antagonists” for each receptor.

3 Requirements of a Citation System

In order to define the requirements that a citation system for structured and evolving datasets has to satisfy, we
need to identify which are the “citable” elements in a dataset. To accomplish this purpose we have to introduce
an important concept, i.e. the “citable unit”. The concept of citable unit has been used in general terms to
indicate the target of a citation such as a book, a chapter, a journal or a paper [10]. In [2] the concept of citable

5For the uninitiated a fond is a term derived from French that describes the collection of records in an archive that originate from the
same creator. Please see: http://www.archivists.org/glossary/term_details.asp?DefinitionKey=196
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(ION 
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[...]

<Iuphar> 

     <name>IUPHAR-DB </name>

     [...]

     <gpcr>

    <name>G protein-coupled receptors</name>

              [...]

    <family> 

<id>29</id>

                    <name>Glucagon receptor family</name>

                    [...]

                     <receptor>

                              <id>247</id>

                              <name>GHRH</name>

                              [...]

                              <agonists>

                                     <ligand>

                                         [...]

                                     </ligand>

                                     [...]

                              </agonists>

                              [...]

                      </receptor>

                      [...]

    </family>

              [...]

         </gpcr>

         <ionchannels>

               [...]

         </ionchannels>

</iuphar>

IUPHAR Database Structure IUPHAR XML Serialization

Figure 2: The structure of the IUPHAR Database and its XML serialization.

unit is exploited in the law documentation context to indicate each element of an “Act of Parliament” that must
be unambiguously identified. While the object of interest may be a simple fact or a single number, the citable
unit is the context in which that object occurs. Note that what constitutes a citable unit is usually understood:
a book or an article, but there are cases in which it may not be clear. For example, in a book which is a tightly
integrated collection of chapters by different authors, is the citable unit the book or the chapter; or should both
be allowed?

For the hierarchical structures we are considering we believe that it should be possible to cite nodes at various
levels in the database. For example, in IUPHAR, the citation for “The IUPHAR database does not contain X”
is the whole database, however for “Y is an agonist for X it is the section on receptor X (the authorship for
each family of receptors is different). Thus it should be possible to have one citable unit contained in another.
Furthermore, we believe that the onus is on the publishers of the data to define the citable units.

Most of the data citation proposals [9, 1, 8] are what we call “identifier-based” – they start with the idea of
assigning a unique identifier (e.g. a DOI) to the objects that need to be independently cited by and by associating
appropriate metadata for that object. The main differences between these proposals are in the forms of metadata
to be associated with the identifier. These solutions implicitly adopt the concept of citable unit as a foundational
idea; indeed, they identify each citable unit with a unique identifier and then use the associated metadata for
citations. They appear not to take into account the hierarchical nature of the objects being cited. It should
also be noted that citable units can be very large (a whole book or database) and that it is often useful to have
a means for locating a given “small” element of information – a fact or figure – within that unit. Thus some
location system may be needed for this, but as we shall see, this does not necessitate an independent global
digital identifier for each such element.

Let us see how these identifier-based solutions behave with the presented datasets; we can point out two
main requirements that a citation system has to support: deep citations and temporal invariance. Deep citations
can be divided into two parts: variable granularity and context. Each section in an EAD file may be identified
by means of a unique identifier with associated metadata. At the same time we may want to cite a particular
document contained in a node of the archive (e.g. a document contained in a series); in this case we need to
have an identifier and a metadata for each document described in the EAD file and not only for the main parts
representing the archival divisions. If we consider the IUPHAR database, as we have just seen there are good
reasons for making nodes at different levels available as citable units. Moreover the metadata associated with
each unit will change: the “authorship” of the whole database is different from that of its sub-units; the “title”
will be different; and the currency (the date of last modification) may also differ.

Even though the number of citable units in a hierarchy may be limited, we may want – in a citation –
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to provide information about a node that is not a citable unit, but is part of one. Typically this is location
information for that node within the citable unit. When a citation is used in the form “In C it is stated that X”, it
is often useful to have some further information, e.g., “page 305”, about where in X is located in C; but we do
not want to use X (or its location) itself as the citable unit. This is would be use out of context. The same is true
of the data sets we have been discussing: a single data value is not itself a citable unit, but having its location
within a citable unit can be enormously useful for verification.

The second requirement is that once a dataset has been cited, it must remain stable and always accessible
in the cited form; this involves the temporal issues connected with evolving datasets such as curated databases.
In order to address this issue a reasonable solution is to employ a versioning system that permits us to access
a specific version of a dataset or of a component of a dataset. In any case, we have to take into account that
the adoption of a versioning system is not a one-size-fits-all solution; for instance, with highly dynamic datasets
the volume of changes can be so large or frequent to make tracking back difficult to manage [8]. The temporal
requirement is particularly relevant in the case of the IUPHAR DB because it changes quite often; indeed, the
information about a receptor may be updated or new families can be added, some errors can be corrected etc. In
the case of EAD files this is less frequent because archival information is relatively stable. For this reason we
present our citation system starting from its use with the EAD files and then with the IUPHAR database which
requires additional work to deal with the evolution of the data set.

4 A Rule-Based Citation System

We now describe a simple rule-based system for the automatic generation of citations directly from the data.
We believe this is important not only for consistency and accuracy, but also for efficiency. It may be better to
generate citations “on the fly” than to store them in the database. The system was originally sketched in in [3]
but we have added important extensions that provide location information of the citable units themselves and of
nodes within the citable units.

In the current system, those nodes that correspond to citable units are tagged with a rule (or reference
to a rule) that can be used to generate citations. For EAD we exploited the <prefercite> that is in-
tended to contain a textual citation. In order to avoid any conflicts we specify an attribute (<prefercite
type="citationRule">) that allows us to distinguish between an element used for common textual cita-
tion and the element containing a citation rule that will be interpreted by the citation system. In the IUPHAR
XML serialization we use a <citation> tag with no attribute because there is no risk of ambiguity with other
elements. Another possibility would be not to modify the XML hierarchy but to use XPATH that can be gener-
ated from the rules themselves to describe the citable units, but this introduces some complications and we leave
it for later work.

The form of a rule suggested in [3] is C ← P where C provides the concrete syntax of a human or machine-
readable citation and P is a pattern that is expressed in the syntax of XPath augmented with decorated variables.
The purpose of P is not, as in XPath, to identify nodes, but to bind these variables that can then be used in C.
The syntax of C is not important here: there are literally hundreds of conventions for human-readable citations 6

and a good number of machine-readable forms. For illustration we shall use a simple name-value pair syntax:
{a1 = $x1, . . . , an = $xn} in which the variables $x1, . . . , $xn will be instantiated by the rule to produce, for
example, {Author=”Smith”, Title=”. . . ”, . . . }.

The general form of a pattern is P = /t1[p
1
1 = $x11, . . . , p

k1
1 = $xk11 ]/ . . . /tn[p

1
n = $x1n, . . . , p

kn
n = $xknn ]

in which the ti are tag names and the pki are fully specified downward paths consisting of a sequence of tag
names. The variables $x11, . . . , $x

kn
1 , . . . , $x1n, . . . , $x

kn
n are all distinct. Although this follows the syntax of

XPath, its purpose is different. XPath identifies nodes in an XML tree. This pattern assumes that the node is
given, and it binds values – XML fragments that are typically character strings – to these variables. Of course

6http://citationstyles.org/styles claims more than a thousand
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we expect the given node to be specified by the XPath expression /t1/ . . . /tn, but this is where our first kind of
variable plays a role. Key variables, denoted by $′ are there to specify location information. If we remove all
other variables from a pattern, to leave a pattern of the form /t1[p

1
1 = $′x11, p

2
1 = $′x21 . . .]/t2[. . .]/ . . . we expect

there to be a unique binding vji for each variable ′xji . That is, each of the paths pji is unique from its context node.
More importantly, after substitution of these values, the XPath expression /t1[p11 = v11, p

2
1 = v21 . . .]/t2[. . .]/ . . .

uniquely specifies the node at which the citation rule is attached. In other words, these bindings, together with
the citation rule, provide location information7.

It is assumed that the bindings of the key variables will be available and possibly expressed as an XPath
expression in the citation C. We now describe to other useful bindings of variables. While for key variables we
expect the paths pji to specify a node uniquely, in general such a path will specify a set of nodes. If we take
document order, there is a list V j

i of XML values associated with each such path. The following decorations are
constraints on V that we expect to be useful in generating citations.

• $.xji : |V
j
i | = 1. The path pji is unique, and .xji is bound to the single member of V j

i . One might, for
example, insist on a unique title that is to be expressed in the citation. Note that there is no implication
that a $. variable will serve as a key.

• $?xji : |V
j
i | ≤ 1. Here, ?xji is bound to the unique member of V j

i or to some designated null value if V j
i is

empty.

• $ ∗ xji : No constraints; ∗xji is bound to the list V j
i . A possibly empty list of keywords, for example.

• $+xji : |V
j
i | ≥ 1. Again, +xji is bound to the non-empty list V j

i . A non-empty list of authors for example.

With a little cunning these constraints can be checked in a single scan of the XML tree. The time taken
to generate a citation will depend on the physical representation of the XML; in the worst case it can again be
done with a linear scan through the whole document, but it can obviously be performed more efficiently if, for
example, the document is represented as a main-memory tree. As a first example of the citation system at work,
in EAD we considered each element representing a node in the archival hierarchy to be a citable unit. In Figure
3 we can see a set of rules that generates a machine-readable citation and an example of what it generates; the
input of the system is the XML node representing the citable unit to be cited.

We can see that we exploit the hierarchical structure of the EAD file to build a citation and we use only the
information already present in the document. When we have decided which archival element we need to cite,
the system starts creating the XPaths from the rule corresponding to that element and then going up generating
absolute XPaths from the rules of each ancestor element. The citation is created by executing the conjunction
of the recursively generated XPaths. Finally, from the citation we can reconstruct the path from the document
root to the cited element reversing the mechanism (i.e. C → P ). By means of this procedure we do not need
any further metadata specifically created for the data citation. Furthermore, the system can be easily customized
because the citation rules can be defined and tuned by the publishers who decide which information should be
presented in the citation and how the citation should be defined.

Figure 4 is taken from IUPHAR and shows an example of how different rules are invoked for citable units at
two levels of granularity. In contrast to EAD, in IUPHAR, we may want to cite nodes that are not citable units.
The specification of a citation is exactly as before, with a pattern of the general form: /t1[p11 = $x11, . . . , p

k1
1 =

$xk11 ]/ . . . /tn[p
1
n = $x1n, . . . , p

kn
n = $xknn ] which must include at least enough key ($′x) variables to specify a

key for that node, precisely as was required before. The system now searches up the path to the root to find the
lowest citable unit and combines (with appropriate renaming of variables) the two patterns. Note that on the key
variables, the two patterns must agree at any node that occurs at or above the citable unit. Now C will contain

7In the presence of a key constraint [4] this check could be performed against the schema rather than the data
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<eadheader> 

    [...]

<eadheader>

<archdesc level=”fonds”>

    [...]

          <prefercite type="citationRule">Rule0</prefercite>

<did> [...] </did> 

       <dsc label="Fonds">

    [...]

    <c01 label="Sub-fonds"> 

[...]

    </c01>

           <c01 label="Sub-fonds">

        [...]

                   <prefercite type="citationRule">Rule1</prefercite>

        <c02 label="Serie">

   <unittitle>The Feast of Apollo [...]</unittitle>

                        <prefercite type="citationRule">Rule2</prefercite>

</c02>

 <c02 label="Serie">

   [...]

             </c02>

             <c02 label="Serie">

   [...]

             </c02>

           </c01>

         </dsc>

</archdesc>

ead[]/archdesc[]/did[unittitle=$.ta,unitid=$.i]/

repository[corpname=$?n]

ead[]/archdesc[]/dsc[]/c01[]/did[unittitle=$.c01]

ead[]/archdesc[]/dsc[]/c01[]/c02/did[unittitle=$.c02]

{titleArchive=$ta, idArchive=$i, institute=$n, titleC01=$c01, titleC02=$c02}

Rules:

The citation that gets generated (example):

{ titleArchive = Mildred Davenport dance programs and dance school materials || idArchive = MS-P29 || institute = 

University of California, Irvine. Library. Special Collections and Archives. || titleC01 = Dance programs || titleC02 = The 

Feast of Apollo, Brattle Hall, Massachusetts }

Instantiation of  the variables:

The first rule interpreted by  the system

The second rule interpreted by  the system

The first rule interpreted by  the system

The rules are recursively 

processed by the system and 

then transformed into a 

conjunction of XPaths. 

The interpretation of the XPaths 

generates the citation. 

Figure 3: EAD: A set of rules that generates a machine-readable citation and an example of what it generates.

all the information for the citable unit in addition to some extra information about the part of that unit that is of
interest. At this point we should observe that our simple name/value pair concrete syntax for the expression of
citations is probably inadequate. A more sophisticated syntax may be required to delineate location information
and what parts of a citation refer to the citable unit.

Note that if, as is the case in IUPHAR, the document is “fully keyed” [4]; that is, there is already a defined
key for every node in the document, there is no overhead for adding location information for nodes that are not
citable units. As an example suppose that we want to cite a specific datum within a ligand in an agonists table:
we want to cite the fact that the action of the ligand named “CT (salmon)” (i.e. id=2097) is to be a “full agonist”;
then, once the system has created the citation for the receptor (i.e. id=“43”) containing the ligand, it adds E

′

= /agonists[]/ligand[$.i]/action[] that once interpreted generates the following relative XPath:
/agonists/ligand[id=2097]/action allowing the system to cite the specific datum and then to reach
the cited datum from the citation. As we have seen by means of this system we do not have to define a specific
rule for each datum someone may want to cite, but only for a restricted set of citable units. Every part of a
dataset is then citable without requiring any additional effort.

The presented system is compliant with versioning systems which take track of the changes of a dataset;
in particular we can adopt the archiving system presented in [5] and implemented by Heiko Muller’s XArch8.
As we have stated before the EAD files are not very prone to change, instead this is the case of the IUPHAR
database in which corrections are made. Our system can provide in the citation a version number, for instance
{database=IUPHAR-DB, Version=15, Family=Glucagon receptor family}. The version number allows the sys-
tem to select the correct snapshot of the database stored in the archival system and than to retrieve the cited
element in the form in which it was cited. In this paper, as well as in [3], we chose to use a version number to
record it at the database level (i.e. the coarsest citable unit). The temporal issues of data citation lead to some
interesting questions (e.g. Why do we use a version number and not time? Why should the version number be
recorded at the coarsest level?) that we shall further investigate providing an extension of the presented system
comprising the temporal dimension.

8http://www.dcc.ac.uk/resources/tools-and-applications/xarch
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<Iuphar> 

     <name>IUPHAR-DB </name>

     <citation>Rule0</citation>

     [...]

     <gpcr>

    <name>G protein-coupled receptors</name>

               <citation>Rule1</citation>

                [...]

    <family> 

<id>29</id>

                    <name>Glucagon receptor family</name>

                    <citation>Rule2</citation>

  <receptor>
                              <id>247</id>
                              <name>GHRH</name>
                              [...]

 <agonists>
                                     <ligand>
                                         [...]
                                     </ligand>
                              </agonists>
                              [...]
                      </receptor>
                      [...]

    </family>
              [...]
         </gpcr>
         <ionchannels>
               [...]
         </ionchannels>

</iuphar>

iuphar[name=$.d,url=$.u, version=$.v]

iuphar[]/gpcr[name=$.n]

iuphar[]/gpcr[]/family[name=$.f,id=$.i]

/contributors[]/contributor[name=$?c]

{database=$d, version=$v, contributors=$c, db-family=$n, family=$f, idFamily=$i}

Rules:

The citation that gets generated (example):

{ database=IUPHAR-DB: the IUPHAR database || url=http://www.iuphar-db.org/ || version=15 || 

dbFamily=G protein-coupled receptors || family=Glucagon receptor family || idFamily=29 || contributor=

{Laurence J. Miller;;Daniel J. Drucker;;[...];;Rebecca Hills;;}}

The rules are recursively 

processed by the system and 

then transformed into a 

conjunction of XPaths. 

The interpretation of the XPaths 

generates the citation. 

Instantiation of  the variables:

The first rule interpreted by  the 

system

The second rule interpreted by  

the system

The third rule interpreted by  

the system

Figure 4: IUPHAR: A set of rules that generates a machine-readable citation and an example of what it generates.

5 Final Remarks

In this paper we outlined the main requirements a citation system must fulfill in order to cite structured and
evolving datasets. We have argued that persistent object identifiers alone do not satisify the the conventional
requirements of citations and have shown how a simple rule-based system can be used both to extract location
information and other relevant data from a hierarchically structured data set.

An assumption we have made is that the data set is hierarchical and that this hierarchy is intimately connected
with the structure of citations. This is certainly true for most scientific data sets. However there is a growing
movement to express data by “linking”: that is, through ontologies in which the underlying structure is a large
graph and the notion of a citable unit or authorship is not immediately obvious. There are some proposals [7] to
place a layer on top of this graph in order to deal with issues of provenance and trust. Whether this will lead to
the hierarchical structures that are suitable for defining citations or whether ontologies will give rise to a form
of scholarship in which citations are not needed remains to be seen.
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Abstract

Panda (for Provenance and Data) is a new project whose goal is to develop a general-purpose system
that unifies concepts from existing provenance systems and overcomes some limitations in them. Panda
is designed for “data-oriented workflows,” fully integrating data-based and process-based provenance.
Panda’s provenance model will support a full range from fine-grained to coarse-grained provenance.
Panda will provide a set of built-in operators for exploiting provenance after it has been captured,
and an ad-hoc query language over provenance together with data. The processing nodes in Panda’s
workflows can vary from well-understood relational transformations, to “semi-opaque” transformations
with a few known properties, to fully-opaque “black boxes.” A theme in Panda is to take advantage of
transformation knowledge when present, but to degrade gracefully when less information is available.
Panda yields interesting optimization problems, including data caching decisions and eager vs. lazy
provenance capture. This paper is largely an overview of motivation and plans for the project, with
some material on current progress and results.

1 Introduction

In its most general form, provenance (also sometimes called lineage) captures where data came from, how it was
derived, manipulated, and combined, and how it has been updated over time. Provenance can serve a number of
important functions:

• Explanation. Users may be particularly interested in or wary of specific portions of a derived data set.
Provenance supports “drilling down” to examine the sources and evolution of data elements of interest,
enabling a deeper understanding of the data.

• Verification. Derived data may appear suspect—due to possible bugs in data processing and manipulation,
because the data may be stale, or even due to maliciousness. Provenance enables auditing how data was
produced, either for verifying its correctness, or for identifying the erroneous or outdated source data or
processing nodes that are responsible for erroneous or outdated output data.

• Recomputation. Having found outdated or incorrect source data, or processing nodes that are buggy or have
been modified, we may want to propagate corrections or changes to all “downstream” data that are affected.
Provenance helps us recompute only those data elements that are affected by corrections or modifications.

Copyright 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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Figure 1: Analytics workflow example.

There has been a large body of very interesting work in lineage and provenance over the past two decades.
Space limitations preclude detailed discussion of previous work here, but surveys are presented in, e.g., [2, 3, 5].
Despite all the past work, we believe there are still many limitations and open areas. Specifically:

1. Most work has been either: data-based (fine-grained), in which provenance of data elements is tracked
based on well-defined, transparent properties of data models and query languages; or process-based (coarse-
grained), in which provenance typically involves workflows and data at the schema level.

2. Often the primary focus is on modeling and capturing provenance: How is provenance information repre-
sented? How is it generated? There has been far less work on querying provenance: What can we do with
provenance information once we’ve captured it?

3. Many projects have focused on specific functions or application domains, rather than developing a general
provenance system that can be used for different purposes and across domains.

In the Panda (for “Provenance and data”) project at Stanford, our goal is to fill these gaps. Specifically, in Panda
we will:

1. Seamlessly merge data-based and process-based provenance, so that the two types of provenance can be
combined (e.g., workflows that combine “opaque” processing nodes with well-understood relational queries
and transformations). Thus, our model and system will offer users a full range from fine-grained to coarse-
grained provenance.

2. Define a set of useful operators for taking advantage of provenance after it has been captured, as well as
a general-purpose language for querying and analyzing provenance, and for combining provenance with
relevant data.

3. Develop a general-purpose open-source system that is flexible and configurable enough to be used for a
wide variety of applications. The system will support its own mechanisms for provenance capture, storage,
operators, and queries, while also offering interfaces for coupling with outside data sources, processes, and
systems.

2 Running Example

We use a detailed fictitious example to illustrate many of our goals for the Panda system. Consider ClothCo, a
mail-order clothing company that is trying to decide which items to feature most prominently in its upcoming
catalog. ClothCo runs an analytics workflow to predict which items will have the largest demand among its
customers. The workflow is shown in Figure 1.

The initial input to the workflow is customer lists CustList1,CustList2, . . ., CustListn, obtained from
ClothCo’s own databases and from partnerships with other companies. The lists contain names, addresses, and
possibly additional attributes (e.g., gender, income), all of which are used for list deduplication and for buying-
behavior predictions. The workflow involves the following steps:
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• Dedup: Records from the customer lists are deduplicated so that customers represented in multiple lists are
counted only once.

• Split: The deduplicated customer records (CD) are then partitioned into a European customer set (CE) and
a USA customer set (CU). (If Split cannot determine that a customer is European, by default it assumes the
customer is American.)

• Europe / USA / Union: Based on Split, records are routed either to Europe or USA, where the records’
addresses are “canonicalized” into a standard form using existing software specialized for the region. The
output lists CE’ and CU’ are unioned back to form canonicalized customer list CC.

• Predict: The next stage in the workflow predicts which ClothCo items customers are most likely to purchase.
Specifically, for each customer in input list CC, and for each item ClothCo stocks, the Predict module
consults a Buying Patterns database and attaches to the customer-item pair a likelihood that the customer
will buy the item. Predict’s output CP is a set of customer-item-probability triples.

• ItemAgg: Finally, from the CP triples, ItemAgg aggregates the predicted demand for each of ClothCo’s
items. The output, ItemVolumes, contains a list of items and predicted sales volumes for each one.

Now suppose a ClothCo analyst runs the workflow and is surprised to find that the item in ItemVolumes
predicted to have the highest demand is a cowboy hat, despite the fact that ClothCo’s target customers rarely
hail from the southern United States. Noticing this anomalous result, the analyst would like to find out why the
predicted demand for cowboy hats is so high.

The Panda system will support the following interaction. Tracing the provenance of the cowboy-hat record
in ItemVolumes back one step to CP yields a large data set, but with a simple provenance query the analyst
discovers that the majority of the customers predicted to want the cowboy hat live in Paris, Texas. Something
is clearly wrong: the population of Paris, Texas is only 25,000, and ClothCo doesn’t cater to this demographic
anyway. Further tracing the provenance of the relevant CP records, the analyst discovers that most of them
were processed by USA, but they came originally from a French customer list. It turns out because the French
list did not specify “France” explicitly in its addresses, Split mistakenly routed these customer records to USA,
which added “Texas” during the canonicalization process. To fix the error, a simple new module is inserted that
appends “France” to the addresses from the problematic list. Using provenance, when the modified workflow is
rerun with the new module, only the item predictions potentially affected by the modifications are recomputed.

While this example captures a large number of the most important capabilities planned for the Panda system,
there are a few missing. For example, we want to capture provenance from human-generated data edits and
manipulations, along with computer-generated ones. Also, we expect that capturing and managing evolving
versions of data, including long-term and frequent evolutions, will be a critical feature.

3 Processing Nodes and Provenance Capture

The workflow in our example is representative of the variety of processing node types that Panda will support.
Specifically, processing nodes may vary from fully transparent (e.g., relational queries), to partially transparent
(e.g., one-to-one transformations that apply an opaque function or filter on each element), to true “black boxes”
(e.g., private code, calls to external services). Whenever possible, we want to capture provenance automatically.
In addition, we plan to define an interface by which any type of processing node (including a human) can write
out provenance information in a well-specified uniform fashion.

In our example, the Union and ItemAgg nodes perform standard relational operations. For relational nodes,
there is a great deal of past work that can be applied for capturing and tracing provenance automatically and
efficiently (see [3] for a survey). Consider ItemAgg, for example, which is a standard relational group-by
aggregation operator. As defined by past work, the provenance of an element e output by ItemAgg consists of
all elements in CP with the same group-by attribute as e.
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Now consider Dedup, an opaque processing node. We cannot rely on the automatic methods for relational
queries mentioned above to capture and trace provenance for Dedup. Either Dedup must be instrumented to
write out provenance information as it executes (presumably in the form of mappings between deduplicated
records and their original customer records), or it must provide some sort of procedure for provenance-tracing,
or in the worst case we cannot determine fine-grained provenance at all.

One of the most important first steps in Panda is to formalize its provenance model. Possible models range
from a simple bipartite graph structure connecting input and output data elements, to the much higher-level and
more “semantic” Open Provenance Model [17]. We decided to begin with an implicit bipartite graph model
induced by provenance predicates (Section 7). However, the model will need to be enhanced as the project
develops, in keeping with our goals of combining data-based and process-based provenance, and capturing the
range from fine-grained to coarse-grained provenance (recall Section 1). Based on the provenance model, Panda
will specify a uniform interface by which all types of processing nodes can create and manipulate provenance,
both manually and automatically.

Once provenance has been captured, what are we going to do with it? Our overall goal is to support the
features mentioned in Section 1: explanation, verification, and recomputation. To do so, Panda will offer at least
two methods of using provenance:

• A set of built-in operations that can be used on their own or as building blocks for higher-level functionality
(Section 4)

• A full-featured query language that can be used to pose ad-hoc queries and analyses over provenance infor-
mation, and over provenance information combined with relevant data (Section 5)

4 Provenance Operations

For basic built-in operations, Panda will support at least:

• Backward tracing. Given a derived data element e, where did e come from? That is, what data elements
and/or processing contributed to e? In our running example, we used backward tracing to go from the output
cowboy-hat record c to the record-set R in input list CP from which c was derived. Then we used further
backward tracing to determine that most records producing R came through the USA processing node and
originated from a specific French customer list.

• Forward tracing. Given an input or derived data element e, where did e subsequently go? That is, what
processing nodes did e later pass through and what data elements were produced by it? In our running
example, we can use forward tracing to determine all of the item predictions that were affected by French
customers erroneously passing through the USA processing nodes.

From these two basic operations, we can layer on additional functionality, for example:

• Forward propagation. If an input or derived data element e changes, propagate the change to everything
it affects. Clearly this function will rely on forward tracing. In our running example, once we correct
the problem with our French customer list, we can use forward propagation to recalculate only those item
predictions affected by the correction.

• Refresh. Given a derived data element e, check if e is still valid. If it is not, refresh it to its new valid value.
Clearly this function will rely on both backward tracing and forward propagation. In our running example,
suppose we correct the error with the French addresses, but ironically a celebrity then begins wearing cowboy
hats. Suddenly cowboy hat sales soar, with corresponding modifications in our Buying Patterns database.
We decide to once again investigate the cowboy hat prediction in ItemVolumes, this time asking for it to be
refreshed to ensure we get the latest predicted demand.
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5 Provenance Queries

The operations in the previous section are not specific to a particular application, but they still encode specific
provenance-based functionality. We believe that in addition to a set of common operations, it will be very useful
for a general-purpose provenance system to support a declarative ad-hoc query language, similar to what is
provided by database management systems.

As we develop our query language, we have a few guiding principles. One is that we want our query lan-
guage to operate over provenance and data seamlessly, so that they can be combined in useful ways. Second, we
want our query language to be compact and intuitive for basic queries, with specific features for additional ex-
pressiveness, similar in spirit to SQL. Finally, the language must be amenable to finding efficient query execution
plans, again in a database-system style.

Our running example relied on a query that aggregated the data elements in CP contributing to the cowboy-
hat output element in ItemVolumes. Here are a few other queries that demonstrate the type of functionality we
plan to support in a query language:

• Determine which customer list contributes the most to the top 100 predicted items.

• Considering only customers from a specific list, which items have significantly higher demand among those
customers than among the general population?

• Which customers have more duplication in our original customer lists—those that are eventually processed
by USA, or those that are processed by Europe?

6 System and Optimization Issues

Building a full-featured, general-purpose system for managing provenance and data together entails a significant
effort just for the basic functions: provenance capture and storage, built-in operations like those in Section 4,
and general-purpose query processing. (Progress on our initial prototype is described later in Section 7.2.) In
addition, we see a number of specific opportunities and challenges, both theoretical and systems-related.

Query-Driven Capture

The most general approach is to capture provenance in support of any possible operation or query that may
subsequently be performed using it. However, if there is a known restricted set of operations and queries to be
performed, we may be able to streamline what is captured.

Eager vs. Lazy

Even when supporting arbitrary operations and queries, there may be a choice between eager and lazy prove-
nance capture. It’s a typical space-time tradeoff: eager capture occupies space but speeds up operations and
queries. (Note that capturing all possible provenance at a fine-grained level could entail enormous amounts
of space.) Also, similar to materialized views, eager capture may incur an update cost if we wish to keep
provenance up-to-date. The choice between eager and lazy might be made on a per-processing-node basis. For
example, eager capture makes sense for Dedup, since the overhead of recording the source customer records
contributing to each deduplicated record may be fairly low, while recomputing that information may be very
expensive (perhaps requiring deduplicating the entire data set again). On the other hand, for ItemAgg, if we
have access to intermediate data set CP, then computing the provenance of an output element in ItemAgg is a
simple selection query over CP.
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Intermediate Results

Along similar lines, in a workflow such as our ClothCo example, we may or may not wish to store all of the
intermediate data sets. Storing these data sets may be very helpful for provenance operations (such as finding
the provenance of an ItemAgg output element by querying CP, as above) but the storage overhead may be high,
and intermediate results may not always be necessary. For example, if we only wish to consider provenance
from final output elements back to initial input data, and we take a fully eager approach, then no intermediate
data sets are necessary. Overall, we envision a suite of interesting optimization problems involving decisions
about intermediate data sets and eager vs. lazy computation.

Fine-Grained vs. Coarse-Grained

Another trade-off, perhaps intertwined with the previous two, is between fine-grained and coarse-grained prove-
nance. Even if it is prohibitive to compute provenance eagerly at the data-element level, it may be helpful
to record some provenance at the data-set level: some operations and queries may only need coarse-grained
provenance, or perhaps coarse-grained provenance can be used to support later computation of fine-grained
provenance. Suppose, for example, for each input list we record only the percentage of its customers that are
eventually sent to processing node Europe, versus those sent to processing node USA. Queries may ask for
this information directly, or in some cases (e.g., lists that are 100% Europe or 100% USA), this schema-level
information may be used to optimize provenance queries involving individual records.

Approximation

Another avenue for dealing with prohibitively large fine-grained provenance may be to support approximate
provenance capture, operations, and/or query results.

7 Initial Progress

We briefly describe some of our initial progress. We decided to drive our work by considering one of the specific
operations discussed in Section 4, refresh. Targeting an “end-to-end” efficient solution to the refresh problem
forced us to: become more concrete about the data-oriented workflows Panda is targeting; to develop formal
underpinnings and a number of algorithms; and to code up a fledgling prototype system; all of which are now
serving us well as a basis for the entire Panda project.

7.1 The Refresh Problem

Consider any workflow that is an acyclic graph of processing nodes, as in our running example. Suppose the
input data sets have been modified since the workflow was run, but the workflow has not been rerun on the
modified input. However, suppose we would like to selectively refresh one or more elements in the output data,
i.e., compute the latest values of particular output elements based on the modified input data. With selective
refresh, we can avoid the expense of recomputing an entire output data set frequently, when all we need is a few
up-to-date output values after the input has undergone some changes.

Our initial approach to performing selective refresh assumes that we capture input-output data provenance at
each processing node when the workflow is run initially, although lazy processing and optimizations like those
discussed in Section 6 are certainly possible. In our initial approach, provenance takes the form of provenance
predicates: Each output data element o has an associated predicate, which is applied to the input sets to compute
o’s provenance. For example, each element o in ItemVolumes has a provenance predicate that selects all
customer-item-probability triples from CP with the same item as o. Provenance predicates are flexible and
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Figure 2: Architecture of the prototype Panda system.

general: Provenance in the form of pointers to specific data elements can be specified as predicates selecting
on identifiers or keys, and provenance for basic relational operators [3] is easily expressed as predicates. Note
that provenance predicates, when applied for all output elements, yield a bipartite graph structure as discussed
in Section 3.

Frequently, provenance predicates take the same basic form for each data element in an output set, and we
do plan to exploit that fact. For example, recently we added attribute mappings as a schema-level provenance
specification mechanism. The provenance representation is very compact, while the semantics still logically
yields a provenance predicate for each output element. For example, the provenance for ItemVolumes can be
specified using an attribute mapping between CP.item and ItemVolumes.item. The element-level provenance
predicates implied by this mapping are the same predicates discussed in the previous paragraph.

To perform refresh, we first apply provenance predicates recursively to determine which input elements are
responsible for the output elements to be refreshed, i.e., we perform backward tracing as discussed in Section 4.
Then we rerun the workflow only on that portion of the data needed for refresh. i.e., forward propagation from
Section 4. Laying the formal foundations, developing the algorithms, and implementing refresh in a prototype
system was a substantial challenge. One of our important results was to identify specific properties of processing
nodes, provenance, and workflows for which refresh can be very efficient, while it is inherently less efficient
when the properties do not hold. For details, please see our technical report [4].

7.2 Panda System Prototype

We began by building up the system infrastructure and features needed to experiment with all aspects of refresh
as described in the previous section. In doing so, we produced an excellent starting point for the more ambitious
and general-purpose Panda system.

The high-level architecture of the Panda system is shown in Figure 2. For now, all data must be repre-
sentable as relational tables, and the main backend is a SQLite server. The server stores all data sets, relational
(SQL) transformations, provenance, and workflow information. Panda also supports opaque processing nodes
programmed in Python; they are stored separately in files.

Panda supports arbitrary acyclic graphs of processing nodes. Currently, users interact with Panda through a
simple command-line interface; a GUI is underway. There are three general types of user commands: (1) Cre-
ating or modifying input tables; (2) Creating transformations that generate newly-defined tables from existing
ones, to build up workflows; (3) Backward-tracing and refresh commands. When workflows are created and run,
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Panda stores everything needed to support selective refresh: provenance and intermediate data sets for backward
tracing, and transformations for forward propagation. Panda currently supports provenance predicates as de-
scribed in Section 7.1; provenance based on schema-level attribute mappings (Section 7.1) is also underway.

Panda supports transformations specified as SQL queries, including queries involving multiple input tables.
Provenance predicates are created automatically for SQL transformations, following known definitions and tech-
niques [3]. For Python processing nodes, Panda currently supports one-one and one-many transformations only,
so that provenance predicates can be generated automatically. Specifically, the “opaque” Python code associated
with a processing node is run separately on each data element in the input set (multi-input Python transforma-
tions currently are not supported), producing zero or more elements for the output set. Input data elements
are required to have keys, so the provenance predicate for an output element can simply select the key of the
corresponding input element. Support for more general Python processing nodes is in progress.

Conclusions, Website, and Acknowledgments

The Panda project is in its early stages; much of the work is ahead of us. We have a fairly clear roadmap in terms
of motivation, goals, and specific technical challenges, as laid out in Sections 1–6, and we have a solid start with
the work reported in Section 7. For more information, and to follow progress in the Panda project, please visit
our website: http://i.stanford.edu/panda.

We are grateful to Parag Agrawal, Charlie Fang, Diana MacLean, Abhijeet Mohapatra, Raghotham Murthy,
Aditya Parameswaran, Hyunjung Park, Alkis Polyzotis, Semih Salihoglu, and Satoshi Torikai for many useful
Panda meeting discussions that have been instrumental in forming the direction for our system. We thank Semih
Salihoglu for his contributions to the refresh work and the Panda system, and we thank Charlie Fang and Satoshi
Torikai for their contributions to the Panda system. We thank Philip Guo for his helpful comments on this paper.
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1 Introduction

eScience has established itself as a key pillar in scientific discovery, continuing the evolution of the scientific
discovery process from theoretical to empirical to computational science [13]. Extensive deployment of instru-
ments and sensors that observe the physical and biological world are bringing in large and diverse data to the
reach of scientists. Often, that data is more frequently shared due to the cost of the instrumentation or because
of the desire to address larger scale and/or cross-discipline science such as climate change. There is a tangible
push towards building large, global-scale instruments [2][3] and wide deployment of sensors [1] with the data
they generate being shared by a large collaboration which has access to the data generated by these instruments.
Indeed, funding agencies and publishers are starting to insist that scientists share both results and raw datasets,
along with the provenance for how the result was produced from the raw dataset(s), to foster open science [4].

Scientific workflows have emerged as the de facto model for researchers to process, transform and analyze
scientific data. These workflows may run on the users desktop or in the Cloud and the workflow framework is
geared towards easy composition of scientific experiments, allocation and scheduling of resources, orchestration
and monitoring of execution, and collecting provenance [20]. The goal of the Trident Scientific Workflow
System is to provide a specialized programming environment to simplify the programming effort required by
scientists to orchestrate a computational science experiment.

1.1 Trident Scientific Workflow System

In designing Trident [9][5], our goal was to leverage the existing functionality of a commercial workflow man-
agement system to the extent possible and focus development efforts only on functionality required to support
scientific workflows. The result is a much smaller code base to maintain, improving sustainability, and a thor-
ough understanding of requirements unique to scientific workflows. Trident is implemented on top of Windows
Workflow Foundation [6], a workflow enactment engine included in the Windows operating system. Windows
Workflow Foundation is highly extensible. All activities in Windows WF derive from a common .NET base class
and an extensible development model enables the creation of domain specific activities that can then be used to
compose workflows useful and understandable to domain scientists. In addition users can add new infrastructure
services to the workflow runtime, such as automatic provenance capture.

Copyright 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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Figure 1: Diagram of the Trident logi-
cal architecture

Figure 2: Provenance Data Model. Entities in dotted blue describe
the workflow schema that is populated during composition. Entities
in solid green describe the provenance schema that is populated at
runtime.

The key elements of the Trident architecture, illustrated in Figure 1, include a composer that enables users
to visually author a workflow using a library of existing activities and complete workflows. The registry serves
as a metadata catalog of known datasets, services, workflows, activities, and computational resources, and it
maintains state for workflows that are currently active. Administrative tools allow users to register and manage
compute resources, track workflows currently running, along with a workflow launcher that supports scheduling
of workflows. Community tools include a web service to launch workflows from any web browser, access to
a repository of workflow results, and a facility to publish and share workflows with other scientists. At the
lowest level of Trident is a data access layer that abstracts the actual storage service used from the workflows,
so a workflow can read and/or write data objects that are transparently mapped to the target data source. We
currently support a default XML store and SQL Server for local storage, along with Amazon S3 and SQL Azure
for cloud storage.

The rest of the paper is organized as follows: Section 2 describes the Trident provenance data model, along
with the capture, storage and querying of provenance, while Section 2.4 describes the workflow evolution frame-
work in Trident that tracks the evolution of workflow definition and the results produced by individual workflow
version, related work is presented in Section 4, and we summarize our paper in Section 5.

2 Provenance in Trident

The Trident Workbench provides an integrated way to collect, store, query, and view provenance for scientific
workflows [18]. Windows WF generates low level events during every step of workflow execution, from the
point a workflow is loaded for execution to workflow termination. Trident intercepts and routes these event
through a publish-subscribe API; C# libraries we provide allow user defined provenance events to be published.
Trident enhances basic Windows WF tracking by adding automated logging of workflow input and output pa-
rameters, execution events and data flows, including external applications launched from the workflow and
system calls. In addition, Trident tracks workflow evolution provenance [14], to record changes to the individual
workflows over time and correlates versioned workflows with the results they generate [8]. The provenance
data collected by Trident is compatible with the emerging Open Provenance Model standard [17] and different
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data stores are supported for storing provenance. In the following sections, we discuss the interoperable data
model used to represent provenance in Trident, means for distributed collection of provenance from the various
workbench components, and its storage and dissemination.

2.1 Provenance Data Model

Provenance information is available as a combination of static, composition information about the workflow -
the workflow schema, along with dynamic, runtime information about the actual execution of an instance of a
workflow - the provenance schema. The workflow composition information provides structural knowledge of
the workflow, its activities, and their data and parameter type signatures, and is static for a composed workflow
version. These are described using the Activity, Activity Sequence, Activity Parameter and Parameter Assign-
ment entities in the data model shown in Figure 2. The composed workflow is an abstract workflow that can be
instantiated with initial parameter and data values, and executed by the workflow engine. Information about the
actual workflow execution forms the runtime provenance, and includes the job that represents a local or remote
submission of the workflow instance to the workflow engine, the workflow and activity execution times, the pa-
rameters to/from each activity instance, and the status of their execution. The Job, Activity Instance, Provenance
Info, Provenance Detail, Processing Status and InputOutputParam entities in Figure 2 record these. Using this
two level model of abstract workflow and workflow instance details intuitively corresponds to composition and
execution phases of a workflow. It also allows common workflow features that do not change across runs to be
stored once while dynamic information unique to each workflow run is accumulated. Having explicit relations
between the abstract and instance metadata allows rich queries that combine both workflow structural features
and runtime knowledge.

This native data model used in Trident is also compatible with the Open Provenance Model (OPM) speci-
fication [17] that evolved at the same time as Trident. OPM allows interoperability with other provenance and
workflow systems to allow provenance tracking of data that are reused across workflow systems, as is common in
collaborative research projects. Both OPM and Trident use similar entities to represent workflows and activities
(OPM Processes), data products and parameters (OPM Artifacts), and relationships like Used and Produced for
data dependencies. The OPM model is a subset of the native Trident model and we have demonstrated the abil-
ity to export Trident provenance to OPM and import it from other systems to perform interoperable provenance
queries, as part of the third Provenance Challenge workshop [19].

2.2 Provenance Collection

The primary source for the abstract workflow details is the workflow composer. Workflow activities imported
into the workbench are examined and their signatures extracted into the Activity and Activity Parameter enti-
ties. When users compose new workflows or import existing ones and save them, the Activity Sequence and
Parameter Assignment entities store the data and control flows present in the workflow.

Collecting runtime provenance information about a workflow instance is more challenging given the dis-
tributed nature of workflow execution. The different sources of dynamic information include the execution
service that submits and triggers workflow job execution, the Windows WF engine that orchestrates the work-
flow instance by invoking activities and the activities themselves that may be built-in or user defined, illustrated
in Figure 3. The execution service tracks the submission of each workflow instance by the workbench or man-
agement studio interface, its status (scheduled, executed, or completed) on a local or remote machine. It is the
source for Job and Activity Instance entities of the data model. The Windows WF engine natively generates
tracking events of the workflow execution, such as when the workflow starts and finishes, an activity initializes,
executes, and completes successfully or fails, or an exception is raised. Trident event handlers to listen for these
built-in events and populate the Provenance Info, Provenance Detail and Processing Status entities that track
the workflow’s control flow. Lastly, we use instrumentation in the Trident base activity class to generate custom
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Figure 3: Provenance Architecture
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user events that capture the actual input and output parameter values passed to/ from the activities that provide
data flow knowledge used to fill the InputOutputParam entity.

Given that these information sources may each be running on a different machine, and remote from where
the provenance is stored, we have developed the BlackBoard [21] publish-subscribe, asynchronous messaging
framework to distribute provenance events from the sources to the provenance storage. The messages form
incremental pieces of the complete provenance information. They are generated by publisher libraries incorpo-
rated into the workflow engine and execution Service, and are listened to by a Provenance Service subscriber.
Message payloads consist of a list of name-value attributes that identify the workflow instance and activity that
the message describes, the timestamp of the message, and details such as the current status of the workflow
or activity, input or output parameter values, and exceptions that may have occurred. The provenance service
listens to the events and records them in the provenance store in the Trident Registry.

Besides distributed provenance collection, the use of the BlackBoard pub-sub model has two other advan-
tages: (1) it separates the responsibility of message creation by the source from its fault resilient delivery by the
BlackBoard broker to the subscriber, and (2) it allows the same set of messages to be delivered to different sub-
scribers with different goals, such as real-time monitoring in a GUI, filtering them to detect workflow failures or
anomalies [3], or simply recording them in the provenance store. Both of these features are essential for reliable
scaling of workflow instances across distributed resources [21].

2.3 Provenance Storage

The Trident Registry is the central information repository and stores the provenance and workflow metadata. It
uses the data access layer to abstract the data model from the storage layer, allowing the use of local and cloud
backends. The Registry data model can be easily configured through an XML schema file and supports entities
and relationships with different cardinalities.

Trident’s complete data model, including the provenance and workflow entities, is created and available in
the Registry schema with auto-generated .NET objects for programmatic access all the entities. The provenance
service and other Registry users initially create a .NET handle to the active workbench Registry. Inserting a tuple
for a particular entity is as simple as instantiating a .NET object of that type and setting its properties. Similarly,
relationships between different entity tuples are created from corresponding .NET object references. Depending
on the Registry storage backend, storage adapter implementations map the .NET objects to the storage layer, for
example, SQL Tables and tuples or Amazon S3 blob objects. This approach makes it easy for .NET services
and workbench to easily and intuitively store data in the Registry without programming directly to the storage
implementation, and allows backend storage to be switched to suit the needs of the scientific domain.
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The Registry also supports queries over the data model using the .NET Language Independent Query (LINQ)
mechanism [10]. This provides a collection abstraction for accessing stored items in the data model and allows
filter, project, and aggregate operators over the collection. Specifying queries becomes a natural extension of
the .NET language and results are returned as collections of .NET objects. LINQ also supports deferred, just in
time execution for efficiency. The Registry’s backend storage adapters provide the implementation for mapping
the LINQ to the access/query model supported by the storage layer, such as, SQL or REST.

2.4 Provenance Query and Dissemination

Provenance is typically used in three ways in Trident: for realtime monitoring of the workflows, for analysis and
mining post workflow execution and for exporting to external provenance systems. The workflow monitor GUI
allows users to launch and visualize the workflow execution from a user’s desktop. Upon workflow launch, the
workflow monitor subscribes to provenance messages from the BlackBoard broker for that workflow instance.
The light-weight provenance messages published by the workflow engine and execution service allow the work-
flow monitor to show the current status of each workflow activity as they execute. The monitor also displays
resource performance information, such as CPU and memory usage, of the machine running the workflow and
activities that are also published as separate events. Additionally, the workflow monitor can pull more detailed
information about the workflow execution by querying the provenance service using concise LINQ queries over
the Registry data model. This is also possible through the workflow management studio where a user can list of
all past and currently executing workflows and retrieve details of the workflow, its execution, the data produced
and consumed, and the faults that happened, and step through each activity execution in the workflow to visu-
ally replay the execution. This also allows the same workflow to be re-executed for validation. These features
provide a powerful tool for scientists to maintain a comprehensive record of their in silico experiments that is
useful for verification and reproducibility.

Some of the queries supported by the provenance and workflow data model include:
• Display the status statistics of all workflows run today: This groups all workflows run today by their status

property, and returns and prints the count for workflows for each status.
var jobStats =

// Todays’ WFs
from j in jobs where j.Update.ToShortDate() == DateTime.Now.ToShortDate()
// Group by status
group j by j.Status into g
// WF count for each status
select new {status = g.Key, count = g.Count()};

// Print stats
foreach(var stats in jobStats) Console.WriteLine(stats.ToString());

• Find the authors who composed workflows which have the output of the SecretTask activity passed as input
to the OnlinePublish: This queries the data flow of the abstract workflow for those workflows that can
potentially publish the output for a proprietary ’SecretTask’ activity through an OnlinePublish activity, and
identifies the authors of those workflows.
var badAuthors = from aseq in

// Activity OnlinePublish’s input is connected to output from activity
// SecretTask
(from pa in paramAssigns
where pa.ActivityParameter.Activity.ActivityClass == "OnlinePublish" &&

pa.BoundTo.ActivityParameter.Activity.ActivityClass == "SecretTask"
select pa.ActivityParameter.Activity.ActivitySequences).SelectMany(sq => sq.ToList())

where aseq.Parent.IsBase select aseq.Parent.Activity.Author; // Authors of parent WF

• Find all abstract workflows that have been executed with an activity that uses the Needleman-Wunsch as
the genome sequence aligner parameter: This provenance data flow LINQ query selects InputOutput entities
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with the ’aligner’ activity parameter set to ’Needleman-Wunsch’ and traces them back to jobs that ran the
workflow instances containing that activity, and returns the abstract workflows for those jobs.
var needlemanWorkflows =

// 1. Activity is a workflow, and ...
from a in activities where a.IsWorkflow &&

// 2.A. Job IDs for WF
(from j in (from ai in a.Instances select ai.Jobs) select j.ID)

.Intersect
(from pi in (from io in inOuts where io.Name == "aligner" &&

io.Value == "Needleman-Wunsch" select io.Provenance)
// 2.B. Job IDs with Needleman-Wunsch activity parameter value
select pi.JobId

// Intersection of job IDs from (2.A) and (2.B) has items
).Count() > 0 select a;

Lastly, provenance for a workflow instance execution stored in the Registry can be published as an XML
document following the OPM specification using a prototype tool. This allows workflow provenance to be
interoperably shared with the external community for collaboration, for peer review, or as part of a publication
that uses that experiment, usable by even users who do not employ Trident as their workflow workbench.

3 Versioning of Workflow Evolution

As researchers use a workflow management system to carry out their computations the workflows evolve as
the research evolves and this workflow evolution can be a valuable tool for tracking both the evolution of the
research and results created by a specific workflow instance across time. Scientists can trace their research and
associated results through time or go back in time to a previous stage and fork a new branch of exploration. And
since workflows encapsulate a vast amount of knowledge associated with experiments, tracking the evolution of
workflow can help to aggregate this knowledge for later analysis. To support this, Trident provides a workflow
evolution framework (EVF) to enables efficient management of knowledge associated with workflow evolution
over time. The benefits of the Trident workflow evolution framework include the following:
• Research evolution: When a scientist associates their research with a collection of workflow, tracking the

evolution of these workflows becomes an approximation to the initial problem of tracking the evolution of
their research process. Along with the evolution of a workflow, all the components within it will also evolve
from the selection of web services and databases to the implementation of individual activities. Scientists
can later examine the result of a workflow execution and reason about how the research evolved to the current
state to produce that particular output.

• Result Comparison: A given research exploration may evolve in more than one direction. It is important
to understand the changes these choices had on the outcome of the research by comparing the difference
between the outputs of two or more versions of the same workflow.

• Attribution: When a workflow is executed, attribution information such as who performed the experiment,
the author of the workflow, the owner of the data products, etc., can be collected at runtime and associated
with the final result. This attribution information can be used later to identify issues with data or code qual-
ity and to give proper credit to contributors. Also, while carrying out an experiment it is becoming more
common to reuse subset graphs within a workflow scientists can utilize not only the algorithms and im-
plementations developed by others, but also the data products generated including optimally derived model
parameter configurations. In research, it is not only the technical aspects that matter; sharing and attribution
of research can and should be an integral part of research. The Trident workflow management system can
access and download subset graphs from sources like myexperiment.org [12] to reduce development costs
and track the author with our evolution framework for proper accreditation to the contributors.
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3.1 Versioning Model

In order for workflow based research to be reproducible, a versioning strategy needs to consider the workflow,
along with the associated data products, parameters, configurations and executable, and bind this information
together. The Trident Workflow Evolution framework can support reproducibility by persisting all information
about previously executed experiments. If the underlying data management service supports versioned data
products, then a scientist using Trident can re-run previously executed experiments.

This versioning model, illustrated in Figure 4, is built on two orthogonal dimensions of workflow evolution,
namely direct evolution and contributions. Direct evolution occurs when a user performs one of the following:
• Changes the flow and arrangements of the components within the system;
• Changes the components within the workflow;
• Changes inputs and/or output parameters or configuration parameters to different components within the

workflow.
Direct evolution will primarily come from a researchers direct manipulation (editing) of the workflow that

is being tracked. On the other hand contributions will track components that are reused from previous system.
One of the unique features of the Trident EVF is that it tracks both direct evolution and contributions to

research. Together this contributes towards the existing eco-systems to acknowledge each other’s contributions
to the existing research and also encourages scientists to share and use existing work. Versioning of workflows
and related artifacts is done at three separate stages of execution.
• User explicitly saves the workflow;
• User closes the workflow editor;
• Executing a workflow in the editor: since workflow instances should always be associated with a workflow,

EVF requires all the workflows to be saved and versioned before executing them.
This level of granularity does not capture minor edits to a workflow, but in applying EVF in actual use cases

we have established a level of sufficiency for this versioning for later retrieval and workflow evolution. Figure
4 also presents the data model used for versioning of objects and the relationships between them. This model is
designed such that all the artifacts related to an experiment can be captured and versioned.

3.2 Architectural Features

There are several architectural features that enable the workflow evolution tracking, which are presented below:
Unique Association of Research Artifacts to Workflows As a workflow is executed, the Trident EVF asso-
ciates the relevant data, parameters, and configuration information, as well as meta-data identifying who per-
formed the experiment (user id), when and where the output was saved in the system, etc. In addition Trident
records the lineage information of the workflow. This information is of value in evaluating the end result and can
be used to reproduce the research at a later time. Trident records this information in the provenance log using
the information model outlined in Figure 4 and associates both provenance log and output result in the Trident
Registry.
Automatic Versioning The Trident EVF automatically versions workflows as users edit them. This enables a
researcher to later retrieve a previous workflow for viewing or to create new branches from previous points in the
workflow evolution. Versioning of the workflow templates inside EVF is comparable to a typical version control
system, but EVF also has the ability to work with other versioning systems to support different versions of data
products. The Trident EVF provides clearly defined extension points to add new versioning systems. Once a data
provider, capable of versioning data products, is registered with the system, EVF will save enough information to
retrieve a given version of a data product. When EVF associates a data product with a workflow execution it will
include this versioning information so that the correct version of the data product can be retrieved later, in case
the scientist is interested in reproducing the research. Also if an extension is registered to handle versioning, EVF
will use that extension to automatically retrieve the data and to execute the workflow within Trident. During the
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workflow authoring process, the user may make multiple changes to a workflow and possibly save intermediate
steps. But in the end only execute the final version of the workflow. Should the scientist opt to delete the
previous versions, EVF gives the control to the user to select the versions to persist inside the registry or to
remove from the system. This will not only reduce the clutter in the scientist’s workspace, but also optimizes
the workflow lineage information persistence. However, a user is not allowed to delete a workflow version that
is either associated with a result or contributed to a workflow that produced a result.
Navigation through Time Navigating a workflow evolution through time can provide a unique view on the
evolution of the research and associated output results. A user may see a change or improvement in the results
of tan experiments over time, observe the effects of the different data sets being used, or identify the contributor
of a new subset graph (workflow). Trident captures sufficient information to allow a user to select a workflow
and navigate previous versions of that workflow through time, visualizing the evolution of both the workflow
and associated results. Since the Trident EVF information model associates the workflow instances of a given
version of the workflow, scientists can even see the runtime information of each and every workflow execution.
We believe that providing this information along a time-line will give users more insight into their research
process.

4 Related Work

Provenance in scientific workflows has received attention in the recent past. Several workflow systems support
provenance recording, such as Taverna [16] and Kepler [15]. Taverna [16] uses a pure dataflow model for its
workflows and its provenance capture is also limited to dataflow provenance. Trident in addition captures the
control flow aspects of the workflow and its provenance. Taverna also captures provenance for hierarchical data
collections, which Trident does not.

There are also stand alone provenance tracking and storage systems like Karma [11] and PASOA [7]. Karma
[11] uses instrumentation of workflow engine and Axis2 web service activities for recording provenance in a
database, also using a pub-sub model for event transfer. It has been demonstrated with G-BPEL and ODE
workflow engines. Trident uses similar instrumentation but is more tightly integrated with the Windows WF
engine and activities. This is partly due to the reuse of existing tracking information provided by Windows
WF, and enables features like tracking provenance of interactive user operations on Windows GUI elements
like graphs and forms. Karma and PASOA support dual views of provenance tracking, both from the workflow
engine and activity/web service. Trident does not make this distinction. However, neither libraries support
transparent use of diverse backend storage such as file, database, and cloud that the Trident Registry enables.
Despite these differences, there is overlap on the provenance collected by the different provenance systems as
demonstrated in the third Provenance Challenge workshop, where provenance data collected in Trident was able
to interoperate with the provenance systems of Taverna, Kepler, Karma and PASOA [19].

5 Summary

Scientific workflows have emerged as the de facto model for researchers to process, transform and analyze
scientific data. Workflow management systems provide researchers with many valuable and time saving features,
from cataloging workflows, workflow activities and web services, to visual authoring and workflow monitoring.
But arguably the most valuable service they offer is the automatic capture of provenance data sufficient to
establish trust in a result and potentially allow other researchers to reproduce a result. In this paper we have
summarized highlights of the workflow provenance that is automatically collected and managed by the Trident
Scientific Workflow Workbench. Trident provides an integrated way to collect, store and view provenance for
workflows, and supports a range of provenance queries over workflow results. The implementation is based
on the ability to intercept and routes low level events through a scalable and high performance pub-sub API.
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In addition Trident tracks workflow evolution provenance to record changes to individual workflows over time
and correlates versioned workflows with the results they generate. The provenance data collected by Trident
is compatible with the emerging Open Provenance Model standard and different data stores are supported for
storing provenance.
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Abstract

Provenance is often used to validate data, by verifying its origin and explaining its derivation. When
searching for “causes” of tuples in the query results or in general observations, the analysis of lineage
becomes an essential tool for providing such justifications. However, lineage can quickly grow very
large, limiting its immediate use for providing intuitive explanations to the user. The formal notion of
causality is a more refined concept that identifies causes for observations based on user-defined criteria,
and that assigns to them gradual degrees of responsibility based on their respective contributions. In
this paper, we initiate a discussion on causality in databases, give some simple definitions, and motivate
this formalism through a number of example applications.

1 Introduction

The notion of causality and causation is a topic in philosophy, studied and argued over by philosophers over the
centuries. A formal, mathematical study of causation and responsibility has been initiated recently by the work
of Pearl [Pea00] and Halpern and Pearl [HP05], who have distilled the generally accepted aspects of causality
into a rigorous definition. This work has been influential in the Computer Science research community and has
already lead to applications in model checking and verification [BBDC+09, CHK08, CGY08].

The goal of this paper is to initiate a discussion on causality in databases. In Sec. 2, we give a minimalistic
definition of query causality that still captures the key concepts in the HP definition: (1) counterfactual v.s.
actual cause, (2) the notion of a contingency set, (3) Chockler and Halpern’s notion of responsibility [CH04].
We also show its relation to provenance, also refered to as lineage in this paper. Then in Sec. 3, we show that
our definition is general enough to be applied to a broad class of database-related applications.

2 Definitions

Causality in databases aims to answer the following question: given a query over a database instance and a
particular output of the query, which tuple(s) in the instance caused that output to the query? An important
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contribution of Halpern and Pearl’s definition of causality is its reliance on structural equations, which express
the notion of intervention: what happens to the outcome if we change the state of the input. As a starting point,
we propose to define causality in databases by using a single structural equation: the lineage of that answer to
the query. We first define causality without referring to lineage, then relate the two notions.

2.1 Causality

Following Halpern and Pearl (HP from now on), we partition the tuples in the database into exogenous and
endogenous tuples. The endogenous tuples are those that are considered candidates for causes. Exogenous
tuples are deemed not to be possible causes: they define the context determined by external factors. This
partition depends on the particular application and is defined either by the system or by the user. Let Dn ⊆ D
denote the endogenous tuples; the exogenous tuples are then Dx = D − Dn. For each relation name Ri, we
write Rn

i and Rx
i to denote the endogenous and exogenous tuples in Ri, respectively. Thus, Ri = Rn

i ∪Rx
i .

Our definition of causality simplifies the HP definition while still retaining its two key elements, counterfac-
tual causes and contingencies.

Definition 1 (DB Causality): Let t ∈ Dn be an endogenous tuple, and r a possible answer to query q.
• t is called a counterfactual cause for r in D if D |= q(r) and D − {t} ̸|= q(r).
• t ∈ D is called an actual cause for r if there exists a set Γ ⊆ Dn, called a contingency for t, such that t is a

counterfactual cause for r in D − Γ.

A tuple t is a counterfactual cause if its removal from the database also removes r from the query result. The
tuple is an actual cause if one can find a contingency for which the tuple becomes a counterfactual cause: more
precisely, one has to find a set of tuples Γ such that, after removing Γ from the database we bring the database to
a state where removing/inserting t causes r to switch between an answer and a non-answer. The set Γ is called
a contingency for t. Obviously, every counterfactual cause is also an actual cause, by taking Γ = ∅.

Our simplified definition of causality is analogous to the definition for causality in Boolean circuits used in
[CHK08]. For monotone queries, it can be shown that this simplified definition agrees with the full HP defini-
tion. For example, one requirement that we dropped is the following restriction on the contingency Γ: for any
Γ′ ⊆ Γ, it is required that D − Γ′ |= q(r). In other words, if we keep the candidate cause t in the database, then
any subset of the contingency should not change the output to the query. If the query is monotone then this con-
dition is automatically satisfied by our simple definition (asD−Γ |= q(r) impliesD−Γ′ |= q(r)). However, for
non-monotone queries, our simple definition differs from the HP definition and may be inadequate. For example,
consider a non-monotone query over a database containing three tuples t1, t2, t. The query evaluates to true if
both t1 and t2 are in the database, or if t is in the database and neither of t1, t2 are; in other words, its lineage is
(Xt1∧Xt2)∨(¬Xt1∧¬Xt2∧Xt) (see Sec. 2.2). In our simplified definition, t is an actual cause with contingency
Γ = {t1, t2} (as removing t1, t2 from the database makes t counterfactual). Under the full HP definition, this
contingency is not allowed because the query becomes false by just removing t1 from the database. For a pre-
liminary attempt towards a more general adaptation of the HP definition in a database context, see [MGMS09].

2.2 Relating Causality and Lineage

We can now relate causality and lineage. We define lineage as a Boolean expression, specifically based on the
Boolean c-tables representation [GT06, GKT07]. Associate a Boolean variableXt to each tuple t in the database
instance D. The lineage of an answer r to a query q is defined as the unique (up to logical equivalence) Boolean
expression φq,r,D such that, for every truth assignment θ of Xt, φq,r,D[θ] = true iff the query q returns the an-
swer r when restricted to the subset D0 = {t | θ(Xt) = true} ⊆ D. For example, the lineage of the answer c
to the query q(x) :−R(x, y), S(y) might be (XR(c,b)∧XS(b))∨(XR(c,f)∧XS(f)), which says that cwill be an an-
swer to q on any subset of the database that contains the tuples R(c, b) and S(b), or the tuples R(c, f) and S(f).
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The lineage expression gives us a simple tool for computing all causes for an answer r to a monotone query
q. Write the lineage φq,r,D in DNF, then substitute all Boolean variables corresponding to exogenous variables
with true; call the result ψ. A minterm of ψ is a minimal set of tuples T such that

∧
t∈T Xt ⇒ ψ. Then every

tuple that occurs in a minterm of ψ is a cause for the answer r.

Proposition 2 (Lineage Minterms): Letφq,r,D be the lineage expression for an answer r to a monotone query q
over a database instanceD. Let ψq,r,D be obtained from φq,r,D by replacing all Boolean variables for exogenous
tuples with true. Then tuple t is an actual cause of the answer r to the query q on D iff there exists a minterm
in ψq,r,D that contains t.

For example, if ψ = (Xt1 ∧Xt2 ∧Xt3)∨ (Xt1 ∧Xt3 ∧Xt4)∨ (Xt1 ∧Xt2 ∧Xt3 ∧Xt5), then there are two
minterms, {t1, t2, t3} and {t1, t3, t4}, and the actual causes are t1, t2, t3, t4; the tuple t5 is not a cause because
the third term in ψ is redundant. In the case where all tuples are endogenous, Proposition 2 eliminates terms
that do not appear in the minimal witness basis of the answer [BKT01], and therefore the set of actual causes is
equivalent to the union of all sets in the minimal witness basis.

2.3 Degree of Responsibility

To measure the degree to which a tuple is considered a cause, Chockler and Halpern [CH04] introduced the
notion of degree of responsibility, or simply responsibility. We present the intuition with a simple example:
Assume 11 voters who can vote for either candidate A or candidate B. In an 11-0 outcome, each voter is a cause
for A’s win, but each one’s responsibility is less than in a 6-5 outcome. The following definition, an adaptation
from Chockler and Halpern [CH04], captures this intuition.

Definition 3 (DB Responsibility): Let r be an answer to a query q, and let t be a cause. With Γ ranging over
all possible contingencies for t, the responsibility of t for the answer r is ρt = (1 +minΓ |Γ|)−1

Thus, the responsibility of t is a function of the minimal number of tuples that we need to remove from the
real database D before t becomes counterfactual. The tuple t is a counterfactual cause iff ρt = 1. If t is not
a cause then, by convention, we take ρt = 0. Intuitively, the larger the contingency, the less counterfactual a
variable is, and thus its responsibility is lower. In the case of the 6-5 vote, each vote for A is critical, so it has
degree of responsibility 1. On the other hand, in the case of the 11-0 vote, each vote has degree of responsibility
1/6; 5 votes have to be changed before one becomes critical. Some first results on the complexity of computing
causality and responsibility for the case of conjunctive queries can be found in [MGMS11].

Constraints. The definitions of causality and responsibility should be revisited in the presence of known
constraints over the data. Take for example q(x) :−R(x, y, z), S(x, y, u), with the constraintR(x, y) ⊆ S(x, y).
Under this constraint, q is equivalent to q′(x) :−R(x, y, z), and yet computing responsibility over q and q′ would
yield different results. Constraints are beyond the scope of this paper, but important to consider in future work.

3 Applications of Causality and Responsibility in Databases

3.1 Explaining Unexpected Answers

We start with the most basic application: explaining unexpected answers to a query. Consider the IMDB movie
database, available from www.imdb.org. It consists of the six tables illustrated in Fig. 1. Tim Burton is an
Oscar-nominated director well known for fantasy movies involving dark, Gothic themes. Examples of his work
include “Edward Scissorhands”, “Beetlejuice”, and the recent “Alice in Wonderland”. A user wishing to learn
more about Burton’s movies queries the IMDB dataset to find out about the genres of movies that he has di-
rected; the query issued, shown in Fig. 1, retrieves all genres of movies directed by Burton. The query’s answer,
ran on the actual database and shown in Fig. 1, includes some expected genres, such as Fantasy and Horror, and
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Query AnswersQuery

select distinct g.genre

from Director d, Movie Directors md,

Movie m, Genre g

where d.lastName like ‘Burton’

and g. mid=m.mid

and m. mid=md.mid

and md. did=d.did

order by g.genre

Database Schema

Director(did, firstName, lastName)
Actor(aid, firstName, lastName)
Movie(mid, name, year, rank)
Movie Directors(did, mid)
Genre(mid, genre)
Casts(aid, mid, role) ?

Fantasy

History

Horror

Music

Musical

Mystery

Romance

. . .

. . .

. . .

Figure 1: Example constructed with real data from the IMDB dataset. The user issues the query above to
identify the movie genres that Burton has directed, and is surprised to see the categories Music and Musical

listed. (Note that a movie may be classified under several genres.)

some genres that seem more suspicious, such as Music and Musical. Are the latter errors in the data or the query,
or are they interesting discoveries? In other words, what are the causes of Musical and Music appearing in the
query’s answer?

Tracing back the lineage of each answer to the query is a first step towards explaining them, but it is not suffi-
cient. In combination, the lineage of these two answers consists of a total of 137 base tuples, and this, we argue,
is overwhelming to a user. Representing this lineage as a list of minterms (44 in this case), still requires further
analysis by the user to determine the frequency of a tuple’s appearance in the lineage, as well as its participation
in minterms of possibly different sizes, to determine its actual significance to the result. It also turns out that all
137 tuples are actual causes (by Prop. 2), so causality does not provide us with any more information than lineage
in this case. However, ranking by responsibility gives us much more interesting information, as we now show.

Consider the case of the answer Musical, whose lineage is much smaller than Music and shown in Fig. 2a. 1

We can see immediately the causes of the suspicious answer. Although Tim Burton did direct one musical,
“Sweeney Todd” (surprise!), there are two other directors with last name Burton (oops!) who directed several
musicals. What we would like from a system is to list “Sweeney Todd”, David Burton, and Humphrey Burton
as top causes for Musical: the first is a surprising finding, the last two point to a bug in the query. We don’t want
a system to list a movie like “The Melody Lingers On” as a top explanation, because that doesn’t really explain
directly the surprising answer Musical. Ranking by responsibility achieves precisely this behavior, as shown in
Fig. 2b. The movie “Sweeney Todd” has a minimum contingency of size two, consisting of the directors David
and Humphrey Burton, because by removing these two directors from the database, “Sweeney Todd” becomes
counterfactual. In addition, each of the three directors with last name Burton also has a contingency of size two,
consisting of the other two directors. Thus, these four tuples (the movie and the three directors) have the same
responsibility, 1/3, and are listed as the top explanations for why Musical is returned by the query. On the other
hand, the smallest contingency for the movie “Manon Lescaut” has size four,2 hence its responsibility is 1/5.
The answer Music has a much larger lineage consisting of 118 tuples; ranking them by responsibility proves
to be a key technique in identifying interesting explanations. In this case Tim Burton and his movie “Corpse
Bride” appear highest in the ranking, along with three more directors who share the same last name: Al, Tom,
and Humphrey.

Discussion. Our example illustrates a general phenomenon. Tuples with high responsibility tend to be in-
teresting explanations to query answers; tuples with low responsibility tend to be uninteresting. The reason for
why a tuple is interesting may vary: it may be a surprising fact in the data, it may point to a bug in the query,
or it may represent an error in the data. Our simple definition of causality does not distinguish between these
explanations, but only ranks them by the degree of interestingness to the user. A challenging research direction

1The lineage has 21 tuples. Tuples from the Movie Directors and Genre relations are depicted in Fig. 2a as edges between the
Director and Movie tuples and the Movie and answer tuples, respectively. It is natural to consider the latter exogenous; if they were
endogenous, they would have the same responsibility as the movie they correspond to.

2{Movie(“Candide”), Movie(“Flight”), Director(David Burton), Director(Tim Burton)}.
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23456 David Burton

23468 Humphrey Burton

23488 Tim Burton

Director Movie

Musical

565577 The Melody Lingers On 1935

359516 Let’s Fall in Love 1933

389987 Manon Lescaut 1997

173629 Flight 1999

6539 Candide 1989

526338 Sweeney Todd: . . . 2007

Query answer

(a) Lineage from Directors and Movies of the Musical tuple

Answer tuple ρt

Movie(526338, “Sweeney Todd”, 2007) 0.33

Director(23456, David, Burton) 0.33

Director(23468, Humphrey, Burton) 0.33

Director(23488, Tim, Burton) 0.33

Movie(359516, “Let’s Fall in Love”, 1933) 0.25

Movie(565577, “The Melody Lingers On”, 1935) 0.25

Movie(6539, “Candide”, 1989) 0.20

Movie(173629, “Flight”, 1999) 0.20

Movie(389987, “Manon Lescaut”, 1997) 0.20

(b) Responsibility rankings for Musical

Figure 2: Ranking causes in the IMDB example. Displayed are the results for the Musical tuple, assuming that
all the tuples in the relations Directors and Movies are endogenous.

would be to refine these notions in order to adapt them to specific purposes.

3.2 Diagnosing Network Failures

With the basic intuition in mind, we will illustrate now a quite different application of causality. Consider a
computer network consisting of a number of servers, with physical links between the servers stored in a table
Link(srv1,srv2). At any given time, a server may be active or down, and Active(Srv) is the table of servers
that are assumed to be active. A network administrator, call her Alice, is concerned in maintaining the network’s
connectivity, which can be expressed by the following Datalog program:
Connected(x,y) :- Link(x,y),Active(x),Active(y)

Connected(x,y) :- Connected(x,z),Link(z,y),Active(y)

Connected(x,y) :- Connected(y,x)

The last rule expresses the fact that the graph is undirected. If a server is down and Alice knows that, she
will take immediate corrective action, by rebooting the server or replacing the physical machine. Thus, under
normal operation, all servers are up and the network is connected.

At any given time, Active contains all servers that are believed by Alice to be active. Suppose that, at some
point, Alice observes that a server A is no longer connected to a server B. She can learn this from failed processes,
or by examining logs, or by receiving a system alert. Some servers in the network are down, and this caused A and
B to become disconnected. Alice’s challenge is to identify which servers are down. Thus, the content of Active
is no longer up to date: if we run the query Connected, it still returns the answer A,B, but this clearly disagrees
with the actual observation because Active is not up to date. Here we use causality and responsibility to help
diagnose the real system, instead of the database. Suppose that we declare all tuples in Link to be exogenous;
only tuples in Active are endogenous. In other words, we assume that links do not fail, only servers. Then the
lineage of the answer Connected(A,B) consists of all active servers on all simple paths connecting A to B, and
each server C on a simple path from A to B is an actual cause. Ranking these servers by responsibility will help
Alice diagnose the network. Indeed, a minimal contingency for a server C to be a cause is a set of servers Γ
such that Γ ∪ {C} is a minimal cut disconnecting A from B. Thus, servers with a high responsibility are a more
likely explanation for the observed disconnection in the network, while servers with low responsibility are less
likely explanations. By ranking servers in decreasing order of their responsibility the system assists the network
administrator with valuable information, allowing her to prioritize her diagnosis work.

Extensions. In a well-studied problem called network reliability [Col87], we are given a network where
each edge (or node) has a given probability of failing, and are asked to compute the probability that the network
remains connected. The network diagnosis example is clearly related to network reliability, and this connection
suggests the following extension of causality and responsibility. Suppose that for each tuple in the database we
are given a score (or weight): then it makes sense to define the responsibility of a tuple t as a function of the mini-
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mum weight of a contingency Γ for t. Thus, we no longer consider only the cardinality of Γ, but take into account
the weights of the tuples in Γ. In the case of network reliability, the weight of a node s can be the probability that
s fails, that is, s is active with probability 1−p(s), and the probability of a contingency Γ is

∏
s∈Γ p(s)

∏
s̸∈Γ(1−

p(s)). Define the responsibility of a tuple t to be the maximum probability of all contingencies.
Halpern [Hal08] has recently discussed a related refinement of causality, by combining it with default rea-

soning. In that setting, the weight of a world represents how normal that world is. K(D1) ≤ K(D2) means that
D1 is more “normal” than D2, where K, is a given ranking function; equivalently, D2 is more “exceptional”
than D1). The definition of causality is then modified by requiring the contingency Γ to lead to a more “normal”
world, that is, K(D − Γ) ≤ K(D). Notice that this is different from changing the definition of responsibility,
because it restricts the set of allowable contingencies rather than modifying their numerical value. The two ex-
tensions are motivated by different applications. In the case of network reliability, every contingency containing
at least one failure is more exceptional than the normal state (with no failures), so restricting contingencies does
not make a difference here.

3.3 Handling Aggregate Queries

Causality poses additional challenges when the query contains aggregates. Consider a simple aggregate query:
select sum(A) from R. Here every tuple in R that has R.A̸=0 is counterfactual, because its addition/removal
changes the sum, but obviously not all tuples in R are equal contributors to the sum. This highlights the lim-
itations of our simple definition of causality. It would be interesting to extend the definition of causality and
responsibility to quantify the contribution of each input tuple to the aggregate, which may be challenging when
the query combines aggregates with joins.

However, even our simple definition of causality captures some interesting aspect of aggregate queries.
Consider the question “why is the sum greater than 500?”. This can be phrased as a causality question for
the boolean query Q: select ‘true’ from R having sum(A) > 500, to which our notion of causality
and responsibility applies. Assume the following instance of R.A: {450, 150, 75, 25}. In this case, 450 is a
counterfactual tuple for Q (removing it makes Q false); 150 is an actual cause with contingency {75}, while 25
is not an actual cause at all. The responsibilities are ρ450 = 1, ρ150 = ρ75 = 1/2, and ρ25 = 0 (for details see
[MGMS09]).

Typical monitoring queries contain several joins and aggregates, and generate alerts based on whether an ag-
gregate reached a specified value, that is, having count(*) > N. Causality aims to answer the question “why
did the number of events (or errors, or failures) exceed N?”. We note here that, while causality and responsi-
bility are captured by our definition, the computational challenges may be much higher in the case of queries
with aggregates, because the lineage may have a size that is exponential in N , and therefore it is not possible to
compute explicitly. New algorithms are likely to be needed in order to efficiently compute or approximate the
responsibility of tuples in queries with aggregates.

3.4 View-Conditioned Causality

In all previous examples we have assumed that there is a single query q, and a single answer r to that query, and
have defined causality for a fixed q and r. In practice one often has multiple queries and/or multiple answers. Fix
a query q and an answer r, and consider k additional queries, called views, v1, . . . , vk, with answers b1, . . . , bk.
The answers to the views are normal and expected, but the answer to the query is unexpected. We want to explain
the cause for the answer r to q, conditioned on the answers to the views: we call this View-Conditioned causality.

We define view-conditioned causality by making the following small change to Definition 1: we require
a contingency Γ to be such that D − Γ − {t} |= vi(bi), for all i = 1, k. This is related to the view side-
effect problem studied by Buneman et al. [BKT02], which asks for changes to the database that have minimal
side-effects on some given views. We illustrate the usefulness of this notion on the examples considered so far:

64



• Suppose that all answers in Fig. 1 are normal except Music and Musical. With the revised definition, we
consider as contingencies only those sets of tuples whose removal does not affect the other query answers.

• Consider a monitoring query that is run periodically on a data stream: for example the query may count the
number of dropped IP packets per minute in a computer network. The query returns a stream of answers,
a1, a2, . . . , at−1, at. Suppose that the last answer at is abnormal: there is a spike in the number of dropped
packets. The natural question to ask is: what is the cause for the spike at given that the previous answers
a1, a2, . . . , at−1 were normal? This is captured by view-conditioned causality, where a1, . . . , at−1 are the
views and at is the query.

• Consider a distributed query execution environment, such as Pig over Hadoop [GNC+09, ORS+08]. Com-
plex Pig (or Map-reduce) jobs take hours to run, and their performance depends on a large number of param-
eters, such as the number of servers, the size of the data, number of reduce tasks, size of the data chunks, etc.
Suppose that the same job is run repeatedly, with slightly different parameter settings, and results in running
times a1, a2, . . . , an. Suddenly, the last running time an is abnormally high. The interesting question is:
what caused an to be abnormally high, given that a1, a2, . . . , an−1 were normal?

• Assume the network administrator (Alice) has more information about the actual state of the network: she
knows that C and D are still connected, and so are E and F, but that A,B are disconnected and so is the pair
M,N. View-conditioned causality allows her to ask the question: why are certain pairs of servers disconnected
while others remain connected?
Discussion. Conditioning on views seems to be a key ingredient to causality in databases. We can think of

exogenous tuples as those we want to take as given; view-conditioning allows us to to extend this intuition by
treating tuples in the view as given.

3.5 Preemption

A major effort in the original HP definition of causality consisted in capturing correctly the notion of preemption,
which had been discussed in philosophy and turned out to be difficult to capture in a mathematical formalism.
Preemption occurs when one possible cause is known to rule out another possible cause. The standard example
of preemption given in [HP05] and elsewhere is when Alice and Bob both throw a rock at a bottle: both aim
accurately, but Alice throws first, and therefore her throw hits the bottle and is the cause the bottle breaking,
not Bob’s. Here preemption is due to temporal ordering, where events that happened earlier preempt events that
happened later. For another example, suppose one wants to trace the source of an infection with a computer virus:
servers that were infected earlier preempt (as potential causes) servers that were infected later. Non-temporal
criteria may also be reasons for preemption. For example, suppose that a burst in stock purchases caused a certain
stock to jump 5 points in a few minutes: when searching for the causes of the sudden increase, transactions with
high volume should preempt transactions of low volume, as their contribution to the change is higher.

The HP definition approach deals with preemption by choosing the appropriate structural equations. If both
Alice and Bob throw a rock at a bottle and we take the equation for bottle breaks (BB) to be BB = A ∨ B
(where A is “Alice throws” and B is “Bob throws”), then both A and B are actual causes, because the set {B}
is a contingency for A and vice versa. This equation treats A and B symmetrically; it does not capture the fact
that Alice’s throw hit the bottle before Bob’s did. It is beyond the scope of this paper to review Halpern and
Pearl’s full definition of causality and responsibility and explain how it addresses preemption. The HP treatment
of preemption seems to require the more complicated full HP definition. A major challenge is that of finding a
definition more in the spirit of the one used in this paper which handles preemption well.

3.6 Why-not Causality for non-answers

Explanation of query answers naturally extends to the absence of expected results. Recent work has focused on
the why-not question, that is, why a certain tuple is not in the result set. The problem has been addressed from
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Author Title Price Publisher
Epic of Gilgamesh $150 Hesperus

Euripides Medea $16 Free Press
Homer Iliad $18 Penguin
Homer Odyssey $49 Vintage
Hrotsvit Basilius $20 Harper
Longfellow Wreck of the Hesperus $89 Penguin
Shakespeare Coriolanus $70 Penguin
Sophocles Antigone $48 Free Press
Virgil Aeneid $92 Vintage

(a)

(b)

Y1 =(¬M1)∨M2M2

M1

Y =M1∧Y1

(c)

Figure 3: Example book store database from [CJ09] (a), representation of the workflow (b), and the correspond-
ing causal network (c).

both the perspectives of data [HCDN08], which is our focus, and query revisions [CJ09, TC10]. Causality unifies
explanations for answers and non-answers under a common framework. We demonstrate how causality, with the
notion of preemption discussed in Sec. 3.5, can model an example presented by Chapman and Jagadish in [CJ09].

Example 1 (Book Shopper (Ex. 1) [CJ09]): A shopper knows that all “window display books” at Ye Olde
Booke Shoppe are around $20, and wishes to make a cheap purchase. She issues the query: Show me all
window display books. Suppose the result from this query is (Euripides, Medea). Why is (Hrotsvit, Basilius)
not in the result set? Is it not a book in the store? Does it cost more than $20? Is there a bug in the query-database
interface such that the query was not correctly translated?

Chapman and Jagadish consider a discrete component of a workflow, called manipulation, as an explanation
of a why-not query. The workflow describing the query of the example is shown in Fig. 3b. Roughly, a manipu-
lation is considered picky for a non-result if it prunes the tuple. For example, manipulation 1 of Fig. 3b is picky
for “Odyssey”, as it costs more than $20. Equivalently, a manipulation is frontier picky for a set of non-results
if it is the last in the workflow to reject tuples from the set. In this framework, the cause of a non-answer will be
a frontier picky manipulation.

In Example 1, tuple t =(Hrotsvit, Basilius) passes the price test, but is rejected by manipulation 2 as it does
not satisfy the seasonal criteria. The causal network representing this example is presented in Fig. 3c. Input
nodes model the events and describe the pickiness of manipulations: M1 holds if manipulation 1 is not poten-
tially picky with respect to t, and M2 holds if manipulation 2 is not potentially picky with respect to t. At the
end, the tuple appears only if neither manipulation is picky: M1 ∧M2. Node Y1 encodes the precedence of the
manipulations in the workflow. A tuple will be stopped at point Y1 of the workflow if M2 is picky but M1 was
not, that is, if M1 ∧ ¬M2 holds. Thus, it will pass this point if Y1 = ¬(M1 ∧ ¬M2) = ¬M1 ∨M2 holds. A
tuple is reported if Y =M1 ∧ Y1 holds.

Applying the HP framework in the context of the example where M2 is picky but M1 is not (M1 ∧ ¬M2),
correctly yields that M2 is the only cause (counterfactual): Γ = ∅. If both manipulations were potentially picky
(¬M1 ∧ ¬M2), the HP definition again correctly picks M1 as the only cause with contingency Γ = {M2}.
Hence, even though M2 is potentially picky, it is preempted by M1. This is in agreement with the why-not
framework that selects as explanation the last manipulation in the workflow that finally rejected the tuple.

This example demonstrates not only that causality can model why-not questions, but also that it can handle
as causes any element that may be considered contributory to an event (in this case workflow manipulations).
However, when focusing on tuples, we can again use a simple definition along the lines of the one presented
in Sec. 2, this time tweaked to specify causes and contingencies for missing tuples. This requires some minor
changes to Definition 1. Now the real database consists entirely of exogenous tuples Dx. In addition, we are
given a set of potentially missing tuples, whose absence from the database caused r to be a non-answer: these
form the endogenous tuples Dn, and we denote D = Dx ∪Dn. We do not discuss here how to compute the set

66



Dn; we assume thatDn is given (one possibility is to compute it using techniques from [HCDN08]). Definition 1
is then modified as follows:

Definition 4 (Why-not Causality): Let t∈Dn be an endogenous tuple, and r a missing answer for q.
• t is called a counterfactual cause for the non-answer r in Dx if Dx ̸|= q(r) and Dx ∪ {t} |= q(r)

• t ∈ D is called an actual cause for the non-answer r if there exists a set Γ ⊆ Dn such that t is a counterfactual
cause for the non-answer of r in Dx ∪ Γ.

4 Conclusions and Future Work

This paper initiates a discussion of causality in databases. It gives a simple definition of causality in database
queries, and illustrates it with several applications, including explanations, validation, data correction, and sys-
tem debugging. Currently, such tasks can be performed by manually exploring provenance information. Cau-
sality allows to refine the analysis of provenance by including user and application specific constraints, and
provides meaningful ranking metrics. Future work needs to specialize this definition to more concrete applica-
tions, and to study the computational challenges associated with computing cause and responsibility.
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June 13–June 15, 2011, Athens, Greece

Program Chair:
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Program Committee:

Sara Cohen
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Thomas Eiter

(Vienna University of Technology)
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Rafail Ostrovsky
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Thomas Schwentick
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Stijn Vansummeren
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Peter Widmayer (ETH Zürich)

Ke Yi

(Hong Kong Univ. of Sci. and Tech.)

PODS General Chair:

Maurizio Lenzerini

University of Rome La Sapienza

Proceedings & Publicity Chair:

Wim Martens

TU Dortmund University

The PODS symposium series, held in conjunction with the SIGMOD conference series,

provides a premier annual forum for the communication of new advances in the theoreti-

cal foundations of database systems (see http://www.sigmod.org/the-pods-pages). For the

30th edition, original research papers providing new insights in the specification, design, or

implementation of data-management tools are called for. We especially welcome papers ad-

dressing such insights in emerging database environments and applications. Topics that fit

the interests of the symposium include the following (as they pertain to databases):

languages for semi-structured data (including XML and RDF);

search query languages (including techniques from information retrieval);

distributed and parallel aspects of databases (including cloud computing);

dynamic aspects of databases (updates, views, real-time and sensor data,

approximate query answering, data streams);

incompleteness, inconsistency, and uncertainty in databases;

schema and query extraction;

data integration; data exchange;

provenance; workflows;

metadata management; meta-querying;

semantic-Web data and ontologies;

data mining and machine learning techniques for databases;

constraints (specification, reasoning, mining, constraint databases);

privacy and security;

Web services; automatic verification of database-driven systems;

model theory, logics, algebras and computational complexity;

data modeling; data structures and algorithms for data management;

design, semantics, and optimization of query and database languages;

domain-specific databases (multi-media, scientific, spatial, temporal, text).

Submitted papers should be at most twelve pages, including bibliography, using reasonable

page layout and font size of at least 9pt (note that the SIGMOD style file does not have to be

followed). Additional details may be included in an appendix, which, however, will be read

at the discretion of the PC. Papers longer than twelve pages (excluding the appendix) or in

font size smaller than 9pt risk rejection without consideration of their merits.

The submission process will be through the Web; a link to the submission website will appear

on the conference website in due time. Note that, unlike the SIGMOD conference, PODS

does not use double-blind reviewing, and therefore PODS submissions should be eponymous

(i.e., the names and affiliations of authors should be listed on the paper).

The results must be unpublished and not submitted elsewhere, including the formal proceed-

ings of other symposia or workshops. Authors of an accepted paper will be expected to sign

copyright release forms, and one author is expected to present it at the conference.

Important Dates:

Short abstracts due: 7 December 2010

Paper submission: 14 December 2010

Notification: 7 March 2011

Camera-ready copy: 4 April 2011

Best Paper Award: An award will be given to the best submission, as judged by the PC.

Best Student Paper Award: There will also be an award for the best submission, as judged

by the PC, written exclusively by a student or students. An author is considered as a student

if at the time of submission, the author is enrolled in a program at a university or institution

leading to a doctoral/master’s/bachelor’s degree.

The PC reserves the right to give both awards to the same paper, not to give an award, or to

split an award among several papers. Papers authored or co-authored by PC members are not

eligible for an award.
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